JP2007157350A - Method of manufacturing sealed battery - Google Patents

Method of manufacturing sealed battery Download PDF

Info

Publication number
JP2007157350A
JP2007157350A JP2005346800A JP2005346800A JP2007157350A JP 2007157350 A JP2007157350 A JP 2007157350A JP 2005346800 A JP2005346800 A JP 2005346800A JP 2005346800 A JP2005346800 A JP 2005346800A JP 2007157350 A JP2007157350 A JP 2007157350A
Authority
JP
Japan
Prior art keywords
welding
battery
metal plate
high energy
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005346800A
Other languages
Japanese (ja)
Other versions
JP5084136B2 (en
Inventor
Hiroshi Hosokawa
弘 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005346800A priority Critical patent/JP5084136B2/en
Publication of JP2007157350A publication Critical patent/JP2007157350A/en
Application granted granted Critical
Publication of JP5084136B2 publication Critical patent/JP5084136B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a sealed battery, sealing a metal plate covering a plug for closing an electrolyte pouring hole installed in the battery by welding with high energy beams such as laser beams in a short time, and forming an irradiation mark for discriminating a manufacturing history. <P>SOLUTION: In the method of manufacturing the sealed battery sealing the electrolyte pouring hole by closing the electrolyte pouring hole installed in the battery with the plug, and welding at least two portions 32, 33 in the periphery of the metal plate 29 part covering the plug to a sealing cover with high energy beams, the irradiation mark 36 for discrimination is formed with the high energy beams during relative moving of a working head from a welding finishing point of a first welding portion 34 with the high energy beams to a welding starting point of a second welding portion 35. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池の電解液注入孔を高エネルギー線による溶接法を用いて封止する密閉型電池の製造方法に関し、特に電池に設けられた電池注入孔を塞ぐための栓を金属板で覆い、金属板を短時間でレーザ光等の高エネルギー線によって溶接して封止するとともに判別のための照射痕をも形成することができる密閉型電池の製造方法に関する。   The present invention relates to a method for manufacturing a sealed battery in which an electrolyte injection hole of a battery is sealed using a high energy beam welding method, and in particular, a plug for closing the battery injection hole provided in the battery is covered with a metal plate. In addition, the present invention relates to a method for manufacturing a sealed battery that can weld and seal a metal plate with a high energy beam such as a laser beam in a short time and also form an irradiation mark for discrimination.

携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水電解質二次電池が注目され、このリチウム非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。   With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, small and thin, high capacity, excellent cycle characteristics, and stable performance are required. Yes. In the field of secondary batteries, lithium non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention, and the proportion of lithium non-aqueous electrolyte secondary batteries shows a significant increase in the secondary battery market. ing.

このリチウム非水電解質二次電池は、主としてリチウムイオンの吸蔵放出が可能な黒鉛等の炭素質物を負極活物質とし、リチウム含有コバルト酸化物(LiCoO)、リチウム含有マンガン酸化物(LiMn)等のリチウム含有遷移金属酸化物を正極活物質とするものが、小型軽量でかつ高容量な電池として広く使用されている。 This lithium non-aqueous electrolyte secondary battery mainly uses a carbonaceous material such as graphite capable of occluding and releasing lithium ions as a negative electrode active material, and contains lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing manganese oxide (LiMn 2 O 4). A lithium-containing transition metal oxide such as) is widely used as a small, lightweight and high-capacity battery.

ところで、この種の非水電解質二次電池が使用される機器においては、電池を収容するスペースが角形(偏平な箱形)であることが多いことから、発電要素を角形外装缶に収容し角形の非水電解質二次電池が使用されることが多い。このような角形の密閉型非水電解質二次電池の一例を図面を用いて説明する。   By the way, in a device in which this type of non-aqueous electrolyte secondary battery is used, the space for storing the battery is often a square (flat box shape). Non-aqueous electrolyte secondary batteries are often used. An example of such a square sealed nonaqueous electrolyte secondary battery will be described with reference to the drawings.

図4は、従来から作製されている角形の密閉型非水電解質二次電池を縦方向に切断して示す斜視図である。この非水電解質二次電池10は、正極板12と負極板11とがセパレータ13を介して巻回された偏平状の渦巻状電極体14を、角形の電池外装缶15の内部に収容し、封口蓋16によって角形の電池外装缶15を密閉したものである。   FIG. 4 is a perspective view showing a rectangular sealed nonaqueous electrolyte secondary battery manufactured in the related art cut in the vertical direction. The non-aqueous electrolyte secondary battery 10 accommodates a flat spiral electrode body 14 in which a positive electrode plate 12 and a negative electrode plate 11 are wound via a separator 13 inside a rectangular battery outer can 15. A rectangular battery outer can 15 is sealed with a sealing lid 16.

偏平状の渦巻状電極体14は、正極板12が最外周に位置して露出するように巻回されており、露出した最外周の正極板12は、正極端子を兼ねる角形の電池外装缶15の内面に直接接触し、電気的に接続されている。また、負極板11は、封口蓋16の中央に形成され、絶縁体17を介して取り付けられた負極端子18に対して集電体19を介して電気的に接続されている。   The flat spiral electrode body 14 is wound such that the positive electrode plate 12 is exposed at the outermost periphery, and the exposed outermost positive electrode plate 12 is a rectangular battery outer can 15 that also serves as a positive electrode terminal. It is in direct contact with and electrically connected to the inner surface. The negative electrode plate 11 is formed in the center of the sealing lid 16 and is electrically connected to a negative electrode terminal 18 attached via an insulator 17 via a current collector 19.

そして、角形の電池外装缶15は、正極板12と電気的に接続されているので、負極板11と角形の電池外装缶15との短絡を防止するために、偏平状の渦巻状電極体14の上端と封口蓋16との間に絶縁スペーサ20を挿入することにより、負極板11と角形の電池外装缶15とを電気的に絶縁状態にしている。   Since the rectangular battery outer can 15 is electrically connected to the positive electrode plate 12, a flat spiral electrode body 14 is used to prevent a short circuit between the negative electrode plate 11 and the rectangular battery outer can 15. By inserting the insulating spacer 20 between the upper end of the battery and the sealing lid 16, the negative electrode plate 11 and the rectangular battery outer can 15 are electrically insulated.

この角形の非水電解質二次電池は、偏平状の渦巻状電極体14を角形の電池外装缶15内に挿入した後、封口蓋16を角形の電池外装缶15の開口部にレーザ溶接し、その後電解液注入孔21から非水電解液を注液してこの電解液注入孔21を密閉することにより作製される。このような角形の密閉型非水電解質二次電池は、使用時のスペースの無駄が少なく、しかも電池性能や電池の信頼性が高いという優れた効果を奏するものである。   In this rectangular nonaqueous electrolyte secondary battery, after the flat spiral electrode body 14 is inserted into the rectangular battery outer can 15, the sealing lid 16 is laser welded to the opening of the rectangular battery outer can 15. Thereafter, a non-aqueous electrolyte is injected from the electrolyte injection hole 21 to seal the electrolyte injection hole 21. Such a rectangular sealed non-aqueous electrolyte secondary battery has an excellent effect that there is little wasted space during use, and battery performance and battery reliability are high.

ここで下記特許文献1に開示されている密閉型非水電解質二次電池の封口蓋を角形の電池外装缶の開口部にレーザ溶接する工程を図5を用いて説明する。なお、図5においては図4に示した非水電解質二次電池と同一の構成部分には同一の参照符号を付与して説明することとする。下記特許文献1に開示されている密閉型非水電解質二次電池の封口蓋16は略長方形状をしており、中央部に絶縁体17を介して取り付けられた負極端子18が設けられているとともに、周縁部に電解液注入孔21を備えている。この封口蓋16は外装缶15の開口内縁に取り付けられた後、封口蓋16と電池外装缶15の接合部にパルス的に発振するレーザ光を周方向へ順序よく、断続的に送りながら断続的に照射することによって溶接ビード列22を形成し、レーザ光照射開始側の溶接ビード列23と照射終了側の溶接ビード列24とを重ね合わせてラップ25を形成することにより、これらのラップ25を判別のための照射痕(マーキング)として利用できるようにしている。   Here, the process of laser welding the sealing lid of the sealed nonaqueous electrolyte secondary battery disclosed in Patent Document 1 to the opening of the rectangular battery outer can will be described with reference to FIG. In FIG. 5, the same components as those of the nonaqueous electrolyte secondary battery shown in FIG. A sealing lid 16 of a sealed nonaqueous electrolyte secondary battery disclosed in the following Patent Document 1 has a substantially rectangular shape, and a negative terminal 18 attached via an insulator 17 is provided at the center. In addition, an electrolyte injection hole 21 is provided at the peripheral edge. After the sealing lid 16 is attached to the inner edge of the opening of the outer can 15, the laser beam oscillated in a pulsed manner is intermittently sent in the circumferential direction to the joint between the sealing lid 16 and the battery outer can 15 in an orderly manner. By irradiating, a weld bead row 22 is formed, and a weld bead row 23 on the laser beam irradiation start side and a weld bead row 24 on the irradiation end side are overlapped to form a lap 25, thereby distinguishing these laps 25. It can be used as an irradiation mark (marking).

一方、封口蓋16に設けられた電解液注入孔21は電解液注入後に封止する必要があるが、ここで下記特許文献2に開示されている密閉型非水電解液二次電池の電解液注入孔の封止方法について図6及び図7を用いて説明する。なお、図6は封口蓋の電解液注入孔と封止栓とをレーザ溶接する様子を示す縦断面図であり、図7は同じく平面図であり、図6及び図7においても図4及び図5に示した非水電解質二次電池と同一の構成部分には同一の参照符号を付与して説明することとする。   On the other hand, the electrolyte solution injection hole 21 provided in the sealing lid 16 needs to be sealed after the electrolyte solution is injected, but here, the electrolyte solution of the sealed nonaqueous electrolyte secondary battery disclosed in Patent Document 2 below. A method for sealing the injection hole will be described with reference to FIGS. 6 is a longitudinal sectional view showing a state in which the electrolyte injection hole and the sealing plug of the sealing lid are laser-welded. FIG. 7 is a plan view of the same, and FIG. 6 and FIG. The same components as those of the nonaqueous electrolyte secondary battery shown in FIG.

この下記特許文献2に開示されている電解液注入孔21を封止するための封止栓26は、封口蓋16と同じ材料(例えばアルミニウム)から形成され、周辺に円錐面又は角錐面27が設けられた実質的に平板状の形状を備えている。この封止栓26は、電解液注入孔21を塞ぐように封口蓋16上に載置された後、封止栓26の側面の円錐面又は角錐面27の全体にわたり、パルス的に発振するレーザ光28を周方向へ順序よく、断続的に送りながら断続的に照射して溶接ビード列22を形成するようにして封口蓋16に溶接されている。   The sealing plug 26 for sealing the electrolyte injection hole 21 disclosed in the following Patent Document 2 is formed of the same material (for example, aluminum) as the sealing lid 16, and has a conical surface or a pyramidal surface 27 around it. It is provided with a substantially flat plate shape. This sealing plug 26 is placed on the sealing lid 16 so as to close the electrolyte injection hole 21, and then oscillates in a pulse manner over the entire conical surface or pyramidal surface 27 of the side surface of the sealing plug 26. The light 28 is welded to the sealing lid 16 so as to form a weld bead array 22 by intermittently irradiating the light 28 in order in the circumferential direction.

特開2003− 31186号公報(特許請求の範囲、段落[0013]〜[0018]、図1〜図3)Japanese Patent Laying-Open No. 2003-31186 (Claims, paragraphs [0013] to [0018], FIGS. 1 to 3) 特開2000− 90891号公報(特許請求の範囲、段落[0011]〜[0013]、図1〜図3)JP 2000-90891 A (claims, paragraphs [0011] to [0013], FIGS. 1 to 3)

上記特許文献1に開示された密閉型非水電解質二次電池によれば、封口蓋を角形の電池外装缶の開口部にレーザ溶接する際に、レーザの照射開始側の溶接痕と照射終了側の溶接痕とを重ね合わせてラップを形成し、このラップを判別のための照射痕として利用できるようにしたため、製造されたそれぞれの電池ごとに製造履歴を判別するための照射痕の形成を製造工程中に行うことができ、別途判別するための照射痕を形成するための工数が増えることはなく、製造時間の短縮や製造コストの低減化を測ることができるという効果を奏するものであるが、封口蓋に設けられた電解液注入孔をどのように封止するかに関して示唆する記載はない。   According to the sealed nonaqueous electrolyte secondary battery disclosed in Patent Document 1, when laser-welding the sealing lid to the opening of the rectangular battery outer can, the laser irradiation start side and the irradiation end side Since a lap was formed by superimposing the welding traces of the lap and this lap could be used as an irradiation trace for discrimination, the formation of an irradiation trace for discriminating the manufacturing history for each manufactured battery was manufactured. Although it can be performed during the process, it does not increase the number of steps for forming an irradiation mark for separate determination, and it is possible to measure the shortening of the manufacturing time and the reduction of the manufacturing cost. There is no suggestion regarding how to seal the electrolyte injection hole provided in the sealing lid.

一方、上記特許文献2には、非水電解質二次電池の封口蓋に設けられた電解液注入孔を封止するため、封止栓の側面の円錐面又は角錐面の全体にわたり、レーザ光を周方向へ順序よく、断続的に送りながら断続的に照射して溶接ビード列を形成するようにして封口蓋に溶接したものが示されているが、製造履歴を判別するための照射痕を形成することについて示唆する記載はない。   On the other hand, in Patent Document 2 described above, in order to seal the electrolyte injection hole provided in the sealing lid of the nonaqueous electrolyte secondary battery, the laser beam is applied to the entire conical surface or the pyramidal surface of the side surface of the sealing plug. Although it is shown that it is welded to the sealing lid so as to form a weld bead array by intermittently irradiating while feeding in order in the circumferential direction, it forms an irradiation trace for discriminating the manufacturing history There is no suggestion about this.

通常、密閉型非水電解質二次電池の製造工程においては、封口蓋を電池外装缶の開口部にレーザ溶接する工程と封口蓋に設けられた電解液注入孔を封止する工程とは別々に行われるため、それぞれの工程では別々のレーザ溶接用加工ヘッドが使用される。すなわち、密閉型非水電解質二次電池の封口蓋を電池外装缶の開口部にレーザ溶接する工程においても、封口蓋に設けられた電解液注入孔に封止栓をレーザ溶接する工程においても、レーザ溶接に必要な時間が長いため、レーザ溶接用の加工ヘッドが1個では十分な処理能力が得られないので、複数の加工ヘッドを持つレーザ溶接装置が用いられ、複数電池の溶接を同時並行で行うようにしている。しかしながら、それぞれの加工ヘッド内の光学部品の劣化,損傷等により特定の加工ヘッドで溶接された電池に不良品が多発することがある。   Usually, in the manufacturing process of a sealed nonaqueous electrolyte secondary battery, the step of laser welding the sealing lid to the opening of the battery outer can and the step of sealing the electrolyte injection hole provided in the sealing lid are separated. As a result, separate laser welding processing heads are used in each step. That is, in the process of laser welding the sealing lid of the sealed nonaqueous electrolyte secondary battery to the opening of the battery outer can, or in the process of laser welding the sealing plug to the electrolyte injection hole provided in the sealing lid, Since the time required for laser welding is long, a single laser welding processing head cannot provide sufficient processing capability. Therefore, a laser welding apparatus having a plurality of processing heads is used, and multiple batteries are welded simultaneously. I'm trying to do it. However, defective products may frequently occur in batteries welded with a specific processing head due to deterioration or damage of optical components in each processing head.

したがって、密閉型非水電解質二次電池の封口蓋を角形の電池外装缶の開口部にレーザ溶接する工程だけでなく、封口蓋に設けられた電解液注入孔に封止栓をレーザ溶接する工程においても、製造履歴を判別するための照射痕を形成することが必要とされている。この場合、上記特許文献1に開示されているように、封止栓の周囲にレーザの照射開始側のビード列と照射終了側のビード列とを重ね合わせてラップを形成し、このラップを判別用照射痕として利用するようにするか、或いは、別途封止栓のレーザ溶接箇所とは異なる位置にレーザ照射ヘッドを移動させてその位置に判別用照射痕を形成することが考えられるが、このような方法を採用すると判別用照射痕形成のためのレーザヘッドの移動及びレーザ光の照射に時間を要するため、製造時間が長くなるという問題点が生じる。この製造時間が長くなるという問題点は、個々の電池のレーザ溶接に必要とする時間は短くても、大量生産用途においては累積されると膨大な時間となるため、この問題点を解決することが求められている。   Therefore, not only the step of laser welding the sealing lid of the sealed nonaqueous electrolyte secondary battery to the opening of the rectangular battery outer can, but also the step of laser welding the sealing plug to the electrolyte injection hole provided in the sealing lid However, it is necessary to form an irradiation mark for discriminating the manufacturing history. In this case, as disclosed in Patent Document 1, a lap is formed by overlapping the bead row on the laser irradiation start side and the bead row on the irradiation end side around the sealing plug, and this lap is discriminated. It may be used as an irradiation mark for the laser beam, or it may be possible to move the laser irradiation head to a position different from the laser welding location of the sealing plug to form a determination irradiation mark at that position. If such a method is employed, it takes time to move the laser head and form the irradiation mark for discrimination, and this causes a problem that the manufacturing time becomes long. The problem of this long manufacturing time is that even if the time required for laser welding of individual batteries is short, it will become enormous if accumulated in mass production applications. Is required.

一方、非水電解質二次電池に設けられた電解液注入孔を封止する手段として例えば金属板の表面にゴム栓を固定し、ゴム栓で電解液注入孔を塞ぎ、金属板を封口蓋にレーザ溶接して封口蓋に設けられた電解液注入孔を封止する方法が提案されている。この場合においては、ゴム栓による電解液注入孔の密閉能力が存在するため、必ずしも金属板の周囲全体をレーザ溶接しなくても必要な封止度を確保することができ、レーザ溶接工程に必要とする時間を短縮することができる。この場合においても、製造履歴を判別のための照射痕を付与するために、上記特許文献1に開示されている方法のようにラップを形成するようにしたり、或いは、別途レーザ加工ヘッドの移動を伴うようではレーザ溶接に必要とする時間の大幅な短縮にはつながらない。   On the other hand, as a means for sealing the electrolyte injection hole provided in the nonaqueous electrolyte secondary battery, for example, a rubber plug is fixed to the surface of the metal plate, the electrolyte injection hole is closed with the rubber plug, and the metal plate is used as a sealing lid. A method for sealing an electrolyte injection hole provided in a sealing lid by laser welding has been proposed. In this case, since there is a sealing ability of the electrolyte injection hole by the rubber plug, the necessary sealing degree can be ensured without necessarily laser welding the entire periphery of the metal plate, which is necessary for the laser welding process. Can be shortened. Even in this case, in order to give an irradiation mark for discriminating the manufacturing history, a wrap is formed as in the method disclosed in Patent Document 1, or the laser processing head is moved separately. As such, it does not lead to a significant reduction in the time required for laser welding.

本発明は、上述のような従来技術の問題点を解決すべくなされたものであって、電池の外装缶や封口蓋に設けられた電解液注入孔を栓で塞ぐとともに、金属板で栓を覆い、短時間で金属板を封口蓋にレーザ光等の高エネルギー線によって溶接して封止するとともに判別のための照射痕をも形成することができる密閉型電池の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and plugs the electrolyte injection hole provided in the outer can of the battery or the sealing lid with a plug, and plugs the plug with a metal plate. To provide a manufacturing method of a sealed battery that covers and seals a metal plate in a short time by welding with a high energy beam such as a laser beam and can also form an irradiation mark for discrimination. Objective.

上記目的を達成するため、本願の請求項1に係る密閉型電池の製造方法の発明は、
電池に設けられた電解液注入孔を栓で塞ぐとともに、金属板で栓を覆い、金属板の周縁の少なくとも2箇所を高エネルギー線により前記封口蓋に溶接して前記電解液注入孔を封止する密閉型電池の製造方法において、
前記高エネルギー線による第1の溶接ビード列の終了点から第2の溶接ビード列の開始点まで相対的に加工ヘッドを動かす間に前記高エネルギー線により判別のための照射痕を形成することを特徴とする。
In order to achieve the above object, the invention of a method for manufacturing a sealed battery according to claim 1 of the present application is as follows.
Plug the electrolyte injection hole provided in the battery with a stopper, cover the stopper with a metal plate, and seal the electrolyte injection hole by welding at least two places on the periphery of the metal plate to the sealing lid with high energy rays In the manufacturing method of the sealed battery,
An irradiation mark for discrimination is formed by the high energy line while moving the processing head relatively from the end point of the first weld bead line by the high energy line to the start point of the second weld bead line. Features.

なお、請求項1に係る発明においては、高エネルギー線による溶接の際に密閉型電池を固定して加工ヘッドを移動させても、或いは、加工ヘッドを固定して密閉型電池を例えばX−Yステージを使用することにより移動させてもよい。また、密閉型電池としては、非水電解質二次電池だけでなく、非水電解質一次電池や水性電解質を使用した二次電池及び一次電池であってもよい。また、電解液注入孔は外装缶に設けられていても、封口蓋に設けられていてもよい。   In the invention according to claim 1, even when welding with a high energy beam, the sealed battery is fixed and the processing head is moved, or the processing head is fixed and the sealed battery is, for example, XY. It may be moved by using a stage. The sealed battery may be not only a non-aqueous electrolyte secondary battery, but also a non-aqueous electrolyte primary battery or a secondary battery and a primary battery using an aqueous electrolyte. Further, the electrolyte solution injection hole may be provided in the outer can or the sealing lid.

また、請求項2に係る発明は、請求項1に記載の密閉型電池の製造方法において、前記金属板は多角形状、楕円形状又は円形状であり、前記第1の溶接箇所及び第2の溶接箇所は互いに対向する周縁に設けられていることを特徴とする。   The invention according to claim 2 is the method for manufacturing a sealed battery according to claim 1, wherein the metal plate has a polygonal shape, an elliptical shape, or a circular shape, and the first welding portion and the second welding portion. The portions are provided on the peripheral edges facing each other.

なお、請求項2に係る発明においては、前記金属板が多角形状である場合には方形状であることが好ましく、また、多角形の角の部分は落とされていてもよい。更に、前記第1及び第2の溶接箇所においては、それぞれ単発の溶接ビードを形成するように溶接しても、或いはそれぞれ複数の溶接ビードが重複するように溶接してもよい。   In addition, in the invention which concerns on Claim 2, when the said metal plate is a polygonal shape, it is preferable that it is a square shape, and the corner | angular part of a polygon may be dropped. Furthermore, at the first and second welding locations, welding may be performed so as to form a single welding bead, or welding may be performed so that a plurality of welding beads overlap each other.

また、請求項3に係る発明は、請求項1又は2に記載の密閉型電池の製造方法において、前記高エネルギー線はレーザ光又は電子ビームからなることを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing a sealed battery according to the first or second aspect, the high energy beam is a laser beam or an electron beam.

本発明は上記のような製造方法を採用することにより以下に述べるような優れた効果を奏する。すなわち、請求項1に係る発明によれば、栓による電解液注入孔に対する封止能力を利用できるから、必ずしも栓を覆う金属板の周囲全体を高エネルギー線により溶接しなくても必要な封止度を確保することができる。したがって、請求項1に係る発明によれば、金属板の周縁の少なくとも2箇所を封口蓋に溶接すれば所定の封止強度を確保することができ、しかも少なくとも2箇所の溶接の際には、高エネルギー線による第1の溶接箇所の溶接終了点から第2の溶接箇所の溶接開始点まで相対的に加工ヘッドを移動させる必要が生じるが、この移動の間に判別のための照射痕を形成するようにしたので、別途判別のための照射痕形成のために加工ヘッドを相対的に移動させる必要がなくなり、高エネルギー線による金属板の溶接工程に必要とする時間を短縮することができるようになる。   The present invention has the following excellent effects by adopting the manufacturing method as described above. That is, according to the invention according to claim 1, since the sealing ability of the plug against the electrolyte injection hole can be utilized, the necessary sealing is not necessarily performed by welding the entire periphery of the metal plate covering the plug with a high energy ray. The degree can be secured. Therefore, according to the invention according to claim 1, if at least two places on the periphery of the metal plate are welded to the sealing lid, a predetermined sealing strength can be secured, and at the time of welding at least two places, Although it is necessary to relatively move the machining head from the welding end point of the first welding point to the welding start point of the second welding point by the high energy ray, an irradiation mark for discrimination is formed during this movement. As a result, it is not necessary to relatively move the machining head to form an irradiation trace for distinction separately, and the time required for the welding process of the metal plate with high energy rays can be shortened. become.

また、請求項2に係る発明によれば、第1の溶接箇所及び第2の溶接箇所を互いに対向する周縁に設けたから、強固に栓や金属板を固定することができ、封止度が良好な密閉型電池を製造することができるようになる。   Further, according to the invention according to claim 2, since the first welded portion and the second welded portion are provided on the peripheral edges facing each other, the stopper and the metal plate can be firmly fixed, and the sealing degree is good. A sealed battery can be manufactured.

また、請求項3に係る発明によれば、レーザ光及び電子ビームともに溶接用高エネルギー線として慣用的に用いられており、溶接部の信頼性及び品質が良好な角形電池が得られる。   According to the third aspect of the present invention, both a laser beam and an electron beam are conventionally used as high energy beams for welding, and a prismatic battery with good welded portion reliability and quality can be obtained.

以下、本願発明を実施するための最良の形態を角形の密閉型電池及び高エネルギー線としてのレーザ光を使用した場合を例にとり、図1〜図3を参照しながら詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための一例を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は例えば円形の密閉型電池や高エネルギー線として電子線を使用した場合等、特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to FIGS. 1 to 3 by taking as an example a case where a rectangular sealed battery and a laser beam as a high energy beam are used. However, the examples shown below are merely examples for embodying the technical idea of the present invention, and are not intended to specify the present invention as examples. The present invention can be equally applied to various changes made without departing from the technical idea shown in the claims, such as when a circular sealed battery or an electron beam is used as a high energy beam.

なお、図1は実施例に係る密閉型電池の各製造工程を示す図であり、図1Aは電解液注液後の封口蓋の状態、図1Bは電解液注液孔を金属板で塞いだ状態、及び、図1Cは金属板をレーザ溶接した状態のそれぞれ平面図である。また、図2Aは図1Bの金属板部分とレーザ走査パターンを重ねて表した拡大平面図であり、図2Bは図1Cの金属板部分の拡大平面図である。更に、図3は図2BのIII−III線断面図である。   FIG. 1 is a diagram showing each manufacturing process of the sealed battery according to the example, FIG. 1A is a state of a sealing lid after electrolyte solution injection, and FIG. 1B is a diagram in which the electrolyte solution injection hole is closed with a metal plate. FIG. 1C is a plan view showing a state where the metal plate is laser-welded. 2A is an enlarged plan view in which the metal plate portion of FIG. 1B is overlapped with the laser scanning pattern, and FIG. 2B is an enlarged plan view of the metal plate portion of FIG. 1C. 3 is a cross-sectional view taken along line III-III in FIG. 2B.

実施例に係る角形の密閉型電池の封口蓋16は、図1Aに示したように、略長方形状をしており、中央部に絶縁体17を介して取り付けられた負極端子18が設けられているとともに、周縁部に電解液注入孔21を備えている。この封口蓋16は予め外装缶15の開口内縁に取り付けられ、その後に封口蓋16と電池外装缶15の接合部が周方向全体にわたりレーザ光によって溶接されている。この封口蓋16の電解液注入孔21から所定量の所定組成の電解液を注入した後、図1Bに示したように、金属板29の表面に設けられたゴム栓30(図3参照)を電解液注入孔21内に差し込むことにより封口蓋16の表面に載置、固定する。ここでは金属板29の形状として角を落とした矩形状のものを用いた。   As shown in FIG. 1A, the sealing lid 16 of the rectangular sealed battery according to the embodiment has a substantially rectangular shape, and a negative electrode terminal 18 attached via an insulator 17 is provided at the center. In addition, an electrolyte injection hole 21 is provided at the peripheral edge. The sealing lid 16 is attached in advance to the inner edge of the opening of the outer can 15, and then the joint between the sealing lid 16 and the battery outer can 15 is welded by laser light over the entire circumferential direction. After injecting a predetermined amount of electrolyte with a predetermined composition from the electrolyte injection hole 21 of the sealing lid 16, as shown in FIG. 1B, a rubber plug 30 (see FIG. 3) provided on the surface of the metal plate 29 is used. It is placed and fixed on the surface of the sealing lid 16 by being inserted into the electrolyte injection hole 21. Here, as the shape of the metal plate 29, a rectangular shape with a corner cut off was used.

次いで、図示しないレーザヘッドを、図2Aに示した軌跡31に沿って、金属板29の第1の短辺側32に沿って図面上において上方へ向かって角部をわずかに通りすぎるまで相対的に移動させ、その後、同じく右方向に向かって長辺に平行に第2の短辺側33に対応する位置まで移動させ、更に、同じく下方向に第2の短辺側33に沿って移動させる。その際、断続的にレーザ照射することにより溶接ビード列が生じるようにしている。   Next, the laser head (not shown) is relatively moved along the locus 31 shown in FIG. 2A along the first short side 32 of the metal plate 29 upward in the drawing until slightly passing the corner. Then, move to the position corresponding to the second short side 33 in the right direction, parallel to the long side, and then move downward along the second short side 33 in the same way. . At that time, a series of weld beads is formed by intermittent laser irradiation.

このようにして金属板29の第1の短辺側においては、図2Bに示したように、第1のビード列34が形成され、また、長辺側に沿って判別のための照射痕36が形成され、更に、第2の短辺側においては第2のビード列35が形成される。そして、第1のビード列34及び第2のビード列35によって金属板29は封口蓋16に強固に溶接されるとともに、封口蓋16に設けられた電解液注入孔21の封止は金属板29の表面に設けられたゴム栓30によって確保される。加えて金属板29の長辺側近傍には判別のための照射痕36が形成されているため、この照射痕36によって密閉型電池の製造履歴を判別することができるようになる。   Thus, as shown in FIG. 2B, the first bead row 34 is formed on the first short side of the metal plate 29, and the irradiation mark 36 for discrimination along the long side. Further, a second bead row 35 is formed on the second short side. The metal plate 29 is firmly welded to the sealing lid 16 by the first bead row 34 and the second bead row 35, and the electrolyte solution injection hole 21 provided in the sealing lid 16 is sealed by the metal plate 29. It is ensured by the rubber plug 30 provided on the surface of the. In addition, since an irradiation mark 36 for determination is formed in the vicinity of the long side of the metal plate 29, the manufacturing history of the sealed battery can be determined by the irradiation mark 36.

この実施例における判別のための照射痕36は、レーザヘッドが金属板29の第1の短辺側32で第1のビード列34を形成した後に第2の短辺側33にまで相対的に移動する途中で形成される。したがって、この実施例においては、特に照射痕36を形成するために別の方向にレーザヘッドを動かす必要がないことと金属板29の周縁の全体を溶接する必要がないこととが相まって、上述のような従来例に比すると大幅な溶接時間の短縮を達成することができる。   The irradiation mark 36 for discrimination in this embodiment is relatively close to the second short side 33 after the laser head forms the first bead row 34 on the first short side 32 of the metal plate 29. Formed on the way to travel. Therefore, in this embodiment, in particular, it is not necessary to move the laser head in a different direction in order to form the irradiation mark 36, and it is not necessary to weld the entire periphery of the metal plate 29. Compared to such a conventional example, a significant reduction in welding time can be achieved.

[実験例]
以下において、実施例の密閉型電池の製造方法を採用した場合の溶接時間の短縮効果を具体的データを用いて明らかにする。まず、電解液注入孔を2×4mmの角を落とした矩形状の金属板の表面に設けられたゴム栓で塞ぎ、上記金属板の2mmの短辺2箇所を封口蓋にレーザ溶接して封止栓を固定することによって電解液注入孔を封止する際、判別用の照射痕を形成しない例として、加工ヘッドを以下のように相対的に走査した。
[Experimental example]
Hereinafter, the effect of shortening the welding time when the manufacturing method of the sealed battery of the example is adopted will be clarified using specific data. First, the electrolyte injection hole is closed with a rubber stopper provided on the surface of a rectangular metal plate with a 2 × 4 mm corner, and two 2 mm short sides of the metal plate are laser welded to a sealing lid and sealed. When sealing the electrolyte injection hole by fixing the stopcock, the processing head was relatively scanned as follows as an example of not forming an irradiation mark for discrimination.

加工ヘッドは固定し、電池をX−Yテーブル上に載置して、X−Yテーブルの速度を20mm/秒(すなわち溶接速度=20mm/秒)、X−Yテーブルの加減速にかかる時間を0.1秒とすると、各区間での加工ヘッドの走査に要する時間は、下記表1に示したとおりとなり、合計約0.8秒程度になる。

Figure 2007157350
The processing head is fixed, the battery is placed on the XY table, the speed of the XY table is 20 mm / second (ie, welding speed = 20 mm / second), and the time required for acceleration / deceleration of the XY table is set. Assuming 0.1 second, the time required for scanning the machining head in each section is as shown in Table 1 below, and the total is about 0.8 seconds.
Figure 2007157350

ここで、従来例のように製造履歴判別用の照射痕を追加する場合は次のとおりの時間を更に要する。
(1)加工ヘッドの移動終了後、終了点から1mm程度離れたところに1点だけ製造履歴判別用のレーザ照射痕を形成するように移動させた場合、加速,減速に各0.1秒必要であり、また、加工ヘッドが止まってから実際にレーザが出るまでの通信等に要する時間が約0.04秒必要となるため、合計0.24秒更に必要となる。
(2)(1)の場合と同様にして2点以上判別用照射痕を付けようとすると、1点毎に更に約0.24秒が必要となる。
(3)判別用照射痕をレーザ走査終了点と同時に形成しても判別は可能だが、レーザが出るまでの通信等に要する時間約0.04秒が更に必要となる。この場合、照射痕は溶接部に近いので、溶接ビードと加工ヘッド判別のための照射痕かの区別がし難く、照射痕があるかどうかを確認し難い。
(4)上記(1)〜(3)はレーザ溶接後に判別用照射痕を形成する場合であるが、レーザ溶接前に判別用照射痕を形成するようにしても同様である。
Here, when the irradiation trace for manufacturing history discrimination is added as in the conventional example, the following time is further required.
(1) After moving the machining head, if it is moved so as to form a laser irradiation trace for manufacturing history discrimination at a point about 1 mm away from the end point, 0.1 second each is required for acceleration and deceleration In addition, since it takes about 0.04 seconds for communication until the laser is actually emitted after the processing head is stopped, a further 0.24 seconds are further required.
(2) In the same manner as in the case of (1), if two or more discrimination irradiation traces are to be made, about 0.24 seconds are required for each point.
(3) Although it is possible to discriminate even if the discrimination irradiation trace is formed at the same time as the laser scanning end point, the time required for communication until the laser is emitted requires about 0.04 seconds. In this case, since the irradiation trace is close to the welded portion, it is difficult to distinguish between the welding bead and the irradiation trace for discriminating the processing head, and it is difficult to confirm whether there is an irradiation trace.
(4) The above (1) to (3) are cases in which the discrimination irradiation trace is formed after laser welding, but the same applies if the discrimination irradiation trace is formed before laser welding.

しかしながら、上記実施例の場合、製造履歴判別用の照射痕は、加工ヘッドが4mmの長辺と平行に相対的に移動中にレーザ照射させれば良いので、通信等に要する時間は0.04秒程度であっても平行移動時に通信が行なわれるために実質的に加工時間が長くなることはない。   However, in the case of the above embodiment, the irradiation trace for manufacturing history determination may be irradiated with laser while the processing head is moving relatively in parallel with the long side of 4 mm, so the time required for communication or the like is 0.04. Even if it is about 2 seconds, since the communication is performed during the parallel movement, the processing time is not substantially increased.

以上のように、本発明によれば、レーザ溶接のために加工ヘッドを相対的に移動させる時間を延ばす必要はなく、即ち、製造に必要とする時間を長くすることなしに製造履歴判別用のレーザ照射痕を形成することができるといった優れた効果を得ることができる。なお、上記実施例においては、溶接方法としてレーザ溶接法を採用したものを示したが、これに限らず周知の高エネルギー線、例えば電子ビーム溶接法も使用することができる。   As described above, according to the present invention, it is not necessary to lengthen the time for moving the machining head relatively for laser welding, that is, for the purpose of discriminating manufacturing history without increasing the time required for manufacturing. An excellent effect that a laser irradiation trace can be formed can be obtained. In the above embodiment, the laser welding method is employed as the welding method. However, the present invention is not limited to this, and a well-known high energy beam, for example, an electron beam welding method can also be used.

実施例に係る密閉型電池の各製造工程を示す図であり、図1Aは電解液注液後の封口蓋の状態、図1Bは電解液注液孔を金属板で塞いだ状態、及び、図1Cは封止栓の金属板をレーザ溶接した状態のそれぞれ平面図である。It is a figure which shows each manufacturing process of the sealed battery which concerns on an Example, FIG. 1A is the state of the sealing lid after electrolyte solution injection, FIG. 1B is the state which plugged the electrolyte solution injection hole with the metal plate, and a figure. 1C is a plan view of a state in which the metal plate of the sealing plug is laser-welded. 図2Aは図1Bの金属板部分とレーザ走査パターンを重ねて表した拡大平面図であり、図2Bは図1Cの金属板部分の拡大平面図である。2A is an enlarged plan view in which the metal plate portion of FIG. 1B is overlapped with the laser scanning pattern, and FIG. 2B is an enlarged plan view of the metal plate portion of FIG. 1C. 図2BのIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 2B. 従来例の角形の非水電解質二次電池を縦方向に切断して示す斜視図である。It is a perspective view which cut | disconnects the square nonaqueous electrolyte secondary battery of a prior art example to the vertical direction, and shows it. 従来例の非水電解質二次電池の封口蓋を角形の電池外装缶の開口部にレーザ溶接する工程を示す図である。It is a figure which shows the process of laser-welding the sealing lid of the nonaqueous electrolyte secondary battery of a prior art example to the opening part of a square battery exterior can. 従来の封口蓋の電解液注入孔と金属板とをレーザ溶接する様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows a mode that the electrolyte solution injection hole of the conventional sealing lid and a metal plate are laser-welded. 従来の封口蓋の電解液注入孔と金属板とをレーザ溶接する様子を示す平面図である。It is a top view which shows a mode that the electrolyte solution injection hole of the conventional sealing lid and a metal plate are laser-welded.

符号の説明Explanation of symbols

10 非水電解質二次電池
11 負極板
12 正極板
13 セパレータ
14 渦巻状電極体
15 外装缶
16 封口蓋
17 絶縁体
18 負極端子
21 電解液注入孔
26 封止栓
29 金属板
30 ゴム栓
31 レーザヘッドの軌跡
32 金属板の第1の短辺側
33 金属板の第2の短辺側
34 第1のビード列
35 第2のビード列
36 判別のための照射痕
DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery 11 Negative electrode plate 12 Positive electrode plate 13 Separator 14 Spiral electrode body 15 Exterior can 16 Sealing lid 17 Insulator 18 Negative electrode terminal 21 Electrolyte injection hole 26 Seal plug 29 Metal plate 30 Rubber plug 31 Laser head Locus 32 of the metal plate First short side 33 of the metal plate Second short side of the metal plate 34 First bead row 35 Second bead row 36 Irradiation trace for discrimination

Claims (3)

電池に設けられた電解液注入孔を栓で塞ぐとともに、前記栓を覆うように配置した金属板の周縁の少なくとも2箇所を高エネルギー線により前記封口蓋に溶接して前記電解液注入孔を封止する密閉型電池の製造方法において、
前記高エネルギー線による第1の溶接箇所の溶接終了点から第2の溶接箇所の溶接開始点まで相対的に加工ヘッドを動かす間に前記高エネルギー線により判別のための照射痕を形成することを特徴とする密閉型電池の製造方法。
The electrolyte injection hole provided in the battery is closed with a stopper, and at least two portions of the periphery of the metal plate arranged so as to cover the stopper are welded to the sealing lid with high energy rays to seal the electrolyte injection hole. In the manufacturing method of the sealed battery to be stopped,
Forming an irradiation mark for discrimination by the high energy ray while moving the machining head relatively from the welding end point of the first welding point to the welding start point of the second welding point by the high energy ray. A method for producing a sealed battery, which is characterized.
前記栓を覆う金属板は多角形状、楕円形状又は円形状であり、前記第1の溶接箇所及び第2の溶接箇所は互いに対向する周縁に設けられていることを特徴とする請求項1に記載の密閉型電池の製造方法。   The metal plate that covers the stopper is polygonal, elliptical, or circular, and the first and second welded portions are provided at peripheral edges facing each other. Manufacturing method for a sealed battery. 前記高エネルギー線はレーザ光又は電子ビームからなることを特徴とする請求項1又は2に記載の密閉型電池の製造方法。   The method for manufacturing a sealed battery according to claim 1, wherein the high energy beam is formed of a laser beam or an electron beam.
JP2005346800A 2005-11-30 2005-11-30 Manufacturing method of sealed battery Expired - Fee Related JP5084136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005346800A JP5084136B2 (en) 2005-11-30 2005-11-30 Manufacturing method of sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346800A JP5084136B2 (en) 2005-11-30 2005-11-30 Manufacturing method of sealed battery

Publications (2)

Publication Number Publication Date
JP2007157350A true JP2007157350A (en) 2007-06-21
JP5084136B2 JP5084136B2 (en) 2012-11-28

Family

ID=38241478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346800A Expired - Fee Related JP5084136B2 (en) 2005-11-30 2005-11-30 Manufacturing method of sealed battery

Country Status (1)

Country Link
JP (1) JP5084136B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128375A1 (en) * 2008-04-18 2009-10-22 トヨタ自動車株式会社 Battery
JP2010287457A (en) * 2009-06-12 2010-12-24 Toyota Motor Corp Sealed battery
JP2018045888A (en) * 2016-09-15 2018-03-22 日立オートモティブシステムズ株式会社 Method of manufacturing sealed battery
CN113809444A (en) * 2021-09-17 2021-12-17 珠海冠宇电池股份有限公司 Battery with a battery cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111246A (en) * 1997-08-06 1999-04-23 Toshiba Corp Sealed battery and manufacture thereof
JPH11273638A (en) * 1998-03-19 1999-10-08 Toshiba Corp Sealed battery and its manufacture
JP2000021437A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd Manufacture of sealed battery
JP2003282030A (en) * 2002-03-25 2003-10-03 Sanyo Electric Co Ltd Manufacturing method of square type battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111246A (en) * 1997-08-06 1999-04-23 Toshiba Corp Sealed battery and manufacture thereof
JPH11273638A (en) * 1998-03-19 1999-10-08 Toshiba Corp Sealed battery and its manufacture
JP2000021437A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd Manufacture of sealed battery
JP2003282030A (en) * 2002-03-25 2003-10-03 Sanyo Electric Co Ltd Manufacturing method of square type battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128375A1 (en) * 2008-04-18 2009-10-22 トヨタ自動車株式会社 Battery
JP2009259701A (en) * 2008-04-18 2009-11-05 Toyota Motor Corp Battery
JP4702640B2 (en) * 2008-04-18 2011-06-15 トヨタ自動車株式会社 battery
US8871382B2 (en) 2008-04-18 2014-10-28 Toyota Jidosha Kabushiki Kaisha Battery
JP2010287457A (en) * 2009-06-12 2010-12-24 Toyota Motor Corp Sealed battery
JP2018045888A (en) * 2016-09-15 2018-03-22 日立オートモティブシステムズ株式会社 Method of manufacturing sealed battery
CN113809444A (en) * 2021-09-17 2021-12-17 珠海冠宇电池股份有限公司 Battery with a battery cell
CN113809444B (en) * 2021-09-17 2024-01-30 珠海冠宇电池股份有限公司 Battery cell

Also Published As

Publication number Publication date
JP5084136B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP6806217B2 (en) Rechargeable battery
JP6505859B2 (en) Nonaqueous electrolyte secondary battery
JP5121279B2 (en) Manufacturing method of sealed battery
US10811668B2 (en) Secondary battery
US9054393B2 (en) Secondary battery and method of manufacturing the same
CN105723542A (en) Prismatic battery
CN112424986B (en) Rechargeable battery and method for welding rechargeable battery
JP2007317577A (en) Sealed battery
JP2017041320A (en) Secondary battery and manufacturing method therefor
JP2018010815A (en) Power storage element and method for manufacturing power storage element
JP5084136B2 (en) Manufacturing method of sealed battery
JP2009266695A (en) Manufacturing method of battery, and battery pack
JP5932323B2 (en) Secondary battery and method for manufacturing secondary battery
JP2010080140A (en) Sealed battery and method of manufacturing the same
JP2005190776A (en) Sealed type battery
JP4168491B2 (en) Manufacturing method of sealed battery
JP2007207448A (en) Manufacturing method of sealed battery
JP2004063406A (en) Laser sealing battery, its manufacturing method and laser irradiation apparatus
JP6988305B2 (en) How to manufacture a secondary battery
JP2006351471A (en) Sealed battery
JP2000323105A (en) Weld-sealed battery
JP7373935B2 (en) Battery case lid and battery
JP2005340048A (en) Manufacturing method of sealed battery
CN108475739A (en) Electric energy storage device and its manufacturing method
JP5490967B1 (en) Power storage device and method for manufacturing power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees