JP2010287457A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2010287457A
JP2010287457A JP2009140847A JP2009140847A JP2010287457A JP 2010287457 A JP2010287457 A JP 2010287457A JP 2009140847 A JP2009140847 A JP 2009140847A JP 2009140847 A JP2009140847 A JP 2009140847A JP 2010287457 A JP2010287457 A JP 2010287457A
Authority
JP
Japan
Prior art keywords
welding
opening
lid member
sealing lid
rectangular case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009140847A
Other languages
Japanese (ja)
Other versions
JP5365856B2 (en
Inventor
Toshimi Kawase
聡美 川瀬
Tomohiro Matsuura
智浩 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009140847A priority Critical patent/JP5365856B2/en
Publication of JP2010287457A publication Critical patent/JP2010287457A/en
Application granted granted Critical
Publication of JP5365856B2 publication Critical patent/JP5365856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery having a structure wherein an opening arranged on a case of the square sealed battery is sealed by adequately welding a sealing lid member at a peripheral edge of the opening. <P>SOLUTION: The sealing lid member (60) is mounted so as to block a liquid inlet (50) formed on a rectangular case surface (22) in the sealed battery, sealing of the liquid inlet is attained by welding the sealing lid member at the peripheral edge of the liquid inlet. Welding between the sealing lid member and a peripheral edge section of the liquid inlet is carried out so as to make a welding depth at a section (D) facing to a long side of the rectangular case surface deeper than the welding depth at a section (S) facing to a short side of the rectangular case surface. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は密閉型電池の構造に関し、詳しくは、電池ケースの一部に形成された開口部を塞ぐ封止蓋部材が該開口部の周縁部に溶接されてなる封止構造と該封止構造を有する電池に関する。   The present invention relates to a structure of a sealed battery, and more specifically, a sealing structure in which a sealing lid member that closes an opening formed in a part of a battery case is welded to a peripheral portion of the opening, and the sealing structure The present invention relates to a battery having

近年、リチウムイオン電池、ニッケル水素電池その他の種類の密閉型の二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池を構成する密閉型電池は、車両搭載用の高出力電源として好ましく用いられるものとして期待されている。
かかる密閉型電池の一例として、正極電極と負極電極とをセパレータを介して捲回した捲回電極体を拉げさせて扁平形状にしたもの(或いはシート状の正極電極、負極電極及びセパレータを積層して成る扁平な積層電極体でもよい。)を、対応する扁平な角型形状の金属製電池ケースに収容し、次いでケース開口面に蓋をして封口(密閉)することにより構成される角型形状の密閉型電池が挙げられる。
通常、この種の密閉型電池には、上記電極体を収容するための開口面とは異なる少なくとも一つの開口部が形成されている。かかる開口部の典型例として電解液の注液口が挙げられる。即ち、この種の密閉型電池では、電極体を収容して上記ケース開口面を封口した後、注液口から所定の電解液をケース内に注入する。そして電解液の注入完了後、当該開口部(注液口)に蓋部材を取り付け、典型的にはレーザービーム溶接で開口部周縁に蓋部材を溶接することによって当該開口部(注液口)を封止している。特許文献1及び2には、電池ケースの注液口周縁に所定形状の蓋部材(封口部材)を溶接することによって注液口を封止することに関する従来技術の一例がそれぞれ記載されている。
In recent years, lithium ion batteries, nickel metal hydride batteries, and other types of sealed secondary batteries have become increasingly important as power sources for vehicles or power sources for personal computers and portable terminals. In particular, a sealed battery constituting a lithium ion battery that is lightweight and has a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle.
As an example of such a sealed battery, a rolled electrode body obtained by winding a positive electrode and a negative electrode with a separator interposed between them is flattened (or a sheet-like positive electrode, negative electrode and separator are laminated). A flat laminated electrode body may be housed in a corresponding flat rectangular metal battery case, and then the case opening surface is covered and sealed (sealed). For example, a sealed battery of a mold shape is used.
Usually, this type of sealed battery is formed with at least one opening different from an opening for accommodating the electrode body. A typical example of such an opening is an electrolyte injection port. That is, in this type of sealed battery, after the electrode body is accommodated and the case opening surface is sealed, a predetermined electrolytic solution is injected into the case from the liquid injection port. After the injection of the electrolytic solution is completed, a lid member is attached to the opening (liquid injection port), and the opening (liquid injection port) is typically welded to the periphery of the opening by laser beam welding. It is sealed. Patent Documents 1 and 2 each describe an example of the prior art relating to sealing a liquid injection port by welding a lid member (sealing member) having a predetermined shape around the liquid injection port periphery of the battery case.

特開2006−324108号公報JP 2006-324108 A 特開2000−21437号公報JP 2000-21437 A

上記注液口のような開口部は、電池製造プロセスの過程で封止された後、換言すれば密閉型電池(商品)が構築された後は、永久的に当該封止が維持されている必要がある。このため、開口部を塞ぐための蓋状部材(以下「封止蓋部材」という。)を当該開口部周縁に溶接するにあたっては、溶接量を適当に制御することが重要となる。すなわち、溶接量が少なすぎると、封止蓋部材と開口部周縁との境界に隙間が生じて溶接不良の要因となり好ましくない。一方、溶接量が多すぎるとエネルギーコストの無駄であるとともに溶接時の熱によってケース本体やケース内の電池構成部品(電極体等)に悪影響を及ぼす虞があるため好ましくない。また、溶接量を適当に制御することに関しては、当該電池の使用時において発生し得るケースの形態変化も考慮することが重要である。
例えば、リチウムイオン電池を構成する密閉型電池の場合、密閉された電池ケース内で何らかの原因でガスが発生した際に電池ケースが外方に膨らむことが生じ得るが、このような場合にも上記封止状態が維持され得るように封止蓋部材と開口部周縁とが溶接されており、しかも上記溶接時の熱による影響が大きくなるような無駄で過剰な溶接量とはならないように溶接量を制御することが重要である。しかし、上記特許文献に記載されるような従来技術では、そのような配慮はなされていない。
After the opening such as the liquid injection port is sealed in the course of the battery manufacturing process, in other words, after the sealed battery (product) is constructed, the sealing is permanently maintained. There is a need. For this reason, when welding a lid-like member for closing the opening (hereinafter referred to as “sealing lid member”) to the periphery of the opening, it is important to appropriately control the welding amount. That is, if the amount of welding is too small, a gap is generated at the boundary between the sealing lid member and the periphery of the opening, which is a disadvantage in welding failure. On the other hand, if the amount of welding is too large, it is not preferable because energy costs are wasted and the heat during welding may adversely affect the case body and battery components (electrode bodies, etc.) in the case. In addition, regarding the appropriate control of the welding amount, it is important to take into account the form change of the case that may occur when the battery is used.
For example, in the case of a sealed battery constituting a lithium ion battery, the battery case may bulge outward when a gas is generated for some reason in the sealed battery case. The sealing lid member and the peripheral edge of the opening are welded so that the sealed state can be maintained, and the welding amount is not so large as to be a wasteful and excessive welding amount that increases the influence of heat during the welding. It is important to control. However, such consideration is not made in the prior art described in the above-mentioned patent documents.

そこで本発明は、上述した従来の課題を解決するべく創出された発明であり、その目的とするところは、上述したような角型形状の密閉型電池のケースに設けられた開口部の周縁に封止蓋部材を過不足なく溶接して当該開口部を封止した構造を有する密閉型電池を提供することである。また、そのような密閉型電池を提供するために、電池ケースに設けられた開口部の周縁に封止蓋部材を過不足なく溶接して当該開口部を封止する方法と該方法を実施して所望の密閉型電池を製造する方法を提供することを他の目的とする。   Therefore, the present invention is an invention created to solve the above-described conventional problems, and the object of the present invention is at the periphery of the opening provided in the case of the square-shaped sealed battery as described above. It is an object of the present invention to provide a sealed battery having a structure in which a sealing lid member is welded without excess or deficiency and the opening is sealed. In order to provide such a sealed battery, a method for sealing the opening by welding a sealing lid member to the periphery of the opening provided in the battery case without excess or deficiency is performed. It is another object of the present invention to provide a method for manufacturing a desired sealed battery.

本発明によって提供される一つの態様の電池は、正極および負極を構成する扁平形状の電極体と該電極体を収容する密閉された角型ケースとを備える密閉型電池である。上記角型ケースは上記扁平形状電極体に対応する扁平な形状に形成されている。また、該ケースにおける該扁平形状電極体の幅広面に対向するケース幅広面に隣接するいずれかの矩形状ケース面(即ち、一対の長辺と一対の短辺とにより構成される長方形状のケース面)には少なくとも一つの開口部が形成されている。その開口部には該開口部を塞ぐように封止蓋部材が取り付けられ、該開口部の周縁に該封止蓋部材が溶接されることによって該開口部の封止が実現されている。
そして、ここで開示される密閉型電池では、上記封止蓋部材と上記開口部周縁部分との溶接は、上記矩形状ケース面の長辺側に面する部位における溶接深さが該矩形状ケース面の短辺側に面する部位における溶接深さよりも深くなるように行われていることを特徴とする。
A battery according to one aspect provided by the present invention is a sealed battery including a flat electrode body that constitutes a positive electrode and a negative electrode, and a sealed square case that houses the electrode body. The rectangular case is formed in a flat shape corresponding to the flat electrode body. Further, any rectangular case surface adjacent to the wide surface of the case facing the wide surface of the flat electrode body in the case (that is, a rectangular case constituted by a pair of long sides and a pair of short sides) At least one opening is formed in the surface. A sealing lid member is attached to the opening so as to close the opening, and the opening is sealed by welding the sealing lid member to the periphery of the opening.
In the sealed battery disclosed herein, the welding between the sealing lid member and the peripheral edge portion of the opening has a welding depth at a portion facing the long side of the rectangular case surface. It is characterized by being carried out so that it may become deeper than the welding depth in the site | part which faces the short side of a surface.

かかる構成の密閉型電池は、上記形状の角型ケースを備えるとともに、その幅広面以外の矩形状ケース面(例えば、電極体収容後のケース本体の開口面を塞ぐ矩形プレート状のケース蓋により構成される面)に開口部を有し、且つ、該開口部を封止蓋部材が封止する封止構造を溶接により実現する形態において、上記矩形状ケース面の長辺側に面する部位における溶接深さ(即ち溶接部位における表面(典型的にはビードの表面)から溶接により組織に変化がみられる部分の底までの深さをいう。)が該矩形状ケース面の短辺側に面する部位における溶接深さよりも深くなるように部位毎に溶接量(特に深さ方向における溶接の程度:溶け込み深さ)を異ならせていることを特徴とする。   The sealed battery having such a configuration includes a rectangular case having the above shape and a rectangular case surface other than the wide surface (for example, a rectangular plate-like case lid that closes the opening surface of the case body after housing the electrode body) In a portion facing the long side of the rectangular case surface in a form in which the sealing structure in which the sealing lid member seals the opening portion is realized by welding. The welding depth (that is, the depth from the surface at the welding site (typically the surface of the bead) to the bottom of the portion where the structure is changed by welding) is the surface on the short side of the rectangular case surface. The welding amount (particularly the degree of welding in the depth direction: the penetration depth) is different for each part so as to be deeper than the welding depth at the part to be welded.

本発明者は、矩形状ケース面に開口部(典型的には注液口)を形成し、該開口部の周縁に封止蓋部材を溶接する場合において、構築された電池の充放電時に何らかの原因でケース内圧が上昇してケースが外方に膨らむ場合に生じる応力の発生状況について検討した。その結果、何らかの原因でケース内圧が上昇してケースが外方に膨らむような場合に、矩形状ケース面の長辺に沿う方向(長軸方向)には応力が集中し難く、反対に、矩形状ケース面の短辺に沿う方向(短軸方向)には応力が集中しやすいことを解明した(後述する図8〜9参照)。
このことにより、ここで開示される密閉型電池では、上記応力集中が生じる部位(即ち矩形状ケース面の短辺に沿う方向(短軸方向)に存在する矩形状ケース面の長辺側に面する部位)において、充分な溶接深さを確保し、その一方、上記応力が集中し難い部位(即ち矩形状ケース面の長辺に沿う方向(長軸方向)に存在する矩形状ケース面の短辺側に面する部位)においては、相対的に溶接深さを低減して無意味な過剰溶接を回避している。
このように本発明によると、上述した角型形状の密閉型電池のケースに設けられた開口部の周縁に封止蓋部材を過不足なく溶接することが実現される。このため、エネルギーコストの無駄を省き、過剰溶接時の過剰発熱が電池構成部材(ケース本体、電極体、電解質等)に及ぼす悪影響を未然に防止し、信頼性の高い密閉型電池を提供することができる。
The inventor forms an opening (typically, a liquid injection port) on the rectangular case surface, and welds a sealing lid member to the periphery of the opening. We investigated the occurrence of stress when the internal pressure of the case increased and the case expanded outward. As a result, when the case internal pressure rises for some reason and the case bulges outward, the stress is less likely to concentrate in the direction along the long side of the rectangular case surface (long axis direction). It was clarified that stress tends to concentrate in the direction along the short side of the shape case surface (short axis direction) (see FIGS. 8 to 9 described later).
Thus, in the sealed battery disclosed here, the surface is formed on the long side of the rectangular case surface that exists in the portion where the stress concentration occurs (that is, the direction along the short side of the rectangular case surface (short axis direction)). A sufficient depth of welding, while the stress does not easily concentrate on the short side of the rectangular case surface in the direction along the long side (long axis direction) of the rectangular case surface. In the part facing the side), the welding depth is relatively reduced to avoid meaningless excessive welding.
As described above, according to the present invention, it is possible to weld the sealing lid member to the peripheral edge of the opening provided in the case of the above-described square-shaped sealed battery without excess or deficiency. For this reason, waste of energy costs is eliminated, and adverse effects of excessive heat generation during excessive welding on battery components (case body, electrode body, electrolyte, etc.) are prevented, and a highly reliable sealed battery is provided. Can do.

ここで開示される密閉型電池の好ましい一態様では、上記開口部は上記矩形状ケース面の表面から凹んだ凹部と該凹部の中心部分に形成されたケース内外に通じる貫通孔とから構成されている。また、上記封止蓋部材は、少なくともその一部が上記開口部の凹部に嵌め込まれて配置されている。そして、上記封止蓋部材の上記凹部に嵌め込まれた部分における周縁と、該周縁に接する上記矩形状ケース面の上記凹部の外周部分とが互いに溶接されていることを特徴とする。
かかる態様の密閉型電池によると、より安定して封止蓋部材を溶接することができる。
In a preferred aspect of the sealed battery disclosed herein, the opening is composed of a recess recessed from the surface of the rectangular case surface and a through-hole formed in the center of the recess that communicates with the inside and outside of the case. Yes. Further, at least a part of the sealing lid member is fitted in the recess of the opening. And the periphery in the part inserted in the said recessed part of the said sealing lid member and the outer peripheral part of the said recessed part of the said rectangular case surface which contact | connects this periphery are welded mutually.
According to the sealed battery of this aspect, the sealing lid member can be welded more stably.

また、ここで開示される密閉型電池の好ましい他の一態様では、上記溶接深さが相対的に深い上記矩形状ケース面の長辺側に面する部位は、上記開口部の中心から該長辺への仮想垂線を引いた場合の該仮想垂線の両側45°またはそれ以上の角度ずつの合計90°またはそれ以上の範囲に属する部位として規定される。且つ、上記溶接深さが相対的に浅い上記矩形状ケース面の短辺側に面する部位は、上記開口部の中心から該短辺への仮想垂線を引いた場合の該仮想垂線の両側45°またはそれ以下の角度ずつの合計90°またはそれ以下の範囲に属する部位として規定される。
かかる態様の密閉型電池によると、上記ケース内圧上昇時のケースの外方への膨らみに起因する応力の発生に好適に対応した溶接深さの制御が実現されている。
Further, in another preferable aspect of the sealed battery disclosed herein, the portion facing the long side of the rectangular case surface having a relatively large welding depth extends from the center of the opening to the long side. When a virtual perpendicular to the side is drawn, the region is defined as a part belonging to a total range of 90 ° or more at an angle of 45 ° or more on both sides of the virtual perpendicular. And the part which faces the short side of the rectangular case surface where the welding depth is relatively shallow is the both sides 45 of the virtual perpendicular when the virtual perpendicular to the short side is drawn from the center of the opening. It is defined as a part belonging to a total range of 90 ° or less at an angle of 0 ° or less.
According to the sealed battery of this aspect, the control of the welding depth is suitably realized that suitably corresponds to the generation of stress due to the outward swelling of the case when the case internal pressure increases.

また、ここで開示される密閉型電池の好ましい他の一態様では、上記封止蓋部材と上記開口部周縁部分との溶接は、上記封止蓋部材の全周に亘ってビームを照射していくビーム溶接により行われている。そして、上記ビーム照射による溶接に基づき上記封止蓋部材の全周に形成された一続きの溶接ビード(即ち溶接痕)において、該ビーム照射による溶接開始時期に形成された該ビードの先端領域と該溶接の終末時期に形成された該ビートの終端領域の重なり合った部分(即ちビーム照射のオーバーラップ部分)が、上記矩形状ケース面の短辺側に面する部位に形成されていることを特徴とする。
このようにビーム溶接(典型的にはレーザービーム溶接)におけるビームがオーバーラップする部分(即ち溶接の度合いが比較的不安定になり得る部分)を上記応力集中が生じ難い部位である上記矩形状ケース面の短辺側に面する部位におくことにより、ケース内圧上昇時に応力が集中する部位である上記矩形状ケース面の長辺側に面する部位の充分な溶接を安定的に行うことができる。
In another preferred embodiment of the sealed battery disclosed herein, welding of the sealing lid member and the peripheral edge portion of the opening is performed by irradiating a beam over the entire circumference of the sealing lid member. It is done by continuous beam welding. Then, in a continuous weld bead (that is, a welding mark) formed on the entire circumference of the sealing lid member based on the welding by the beam irradiation, a tip region of the bead formed at the welding start time by the beam irradiation; The overlapping portion of the end region of the beat formed at the end of welding (that is, the overlapping portion of the beam irradiation) is formed at a portion facing the short side of the rectangular case surface. And
As described above, the rectangular case is a portion where the stress concentration is unlikely to occur in a portion where the beams overlap in beam welding (typically laser beam welding) (that is, a portion where the degree of welding may be relatively unstable). By placing the portion facing the short side of the surface, it is possible to stably perform sufficient welding of the portion facing the long side of the rectangular case surface, which is a portion where stress concentrates when the case internal pressure increases. .

好ましくは、記開口部は上記電池ケース内に電解液を注入するための注液口である。本発明によると、上記ケース内圧が上昇した際に注液口が不用意に開放されないことを保証する注液口周縁と封止蓋部材との溶接を過不足無く行うことができる。
また、好ましくは、本発明は、ここで開示される密閉型電池として、リチウム二次電池(典型的にはリチウムイオン電池)を構成する電池を提供する。リチウム二次電池は、電池ケース内部においてガスが発生してケース内圧が上昇し易く、本発明を適用する対象として好適である。
Preferably, the opening is a liquid inlet for injecting an electrolyte into the battery case. According to the present invention, it is possible to perform the welding of the liquid injection port periphery and the sealing lid member, which ensures that the liquid injection port is not opened carelessly when the internal pressure of the case rises, without excess or deficiency.
Also preferably, the present invention provides a battery constituting a lithium secondary battery (typically a lithium ion battery) as the sealed battery disclosed herein. A lithium secondary battery is suitable as an object to which the present invention is applied because gas is easily generated inside the battery case and the internal pressure of the case tends to increase.

ここで開示される密閉型電池は、溶接にかかるエネルギーコストを削減しつつ過不足のない溶接により開口部を確実に封止することを実現した開口部(例えば注液口)封止構造を備えており、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用することができる。従って本発明は、ここで開示されるいずれかの密閉型電池(典型的には当該密閉型電池複数個が相互に電気的に接続された組電池)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。   The sealed battery disclosed here includes an opening (for example, a liquid injection port) sealing structure that realizes the sealing of the opening by welding without excess or deficiency while reducing the energy cost for welding. In particular, it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, the present invention provides a vehicle (typically an automobile) that includes, as a power source, any of the sealed batteries disclosed herein (typically, an assembled battery in which a plurality of the sealed batteries are electrically connected to each other). , In particular, vehicles equipped with electric motors such as hybrid vehicles, electric vehicles, fuel cell vehicles.

また、本発明は他の側面として、ここで開示される電池を製造する方法を提供する。即ち、ここで開示される製造方法は、
正極および負極を構成する扁平形状の電極体と、該扁平形状電極体に対応する扁平な形状に形成され該電極体を収容する角型ケースとを備え、該ケースにおける該扁平形状電極体の幅広面に対向するケース幅広面に隣接するいずれかの矩形状ケース面に少なくとも一つの開口部が形成され、該開口部に該開口部を塞ぐように封止蓋部材が取り付けられた構成の密閉型電池を製造する方法であって、上記開口部の周縁に上記封止蓋部材を溶接することによって該開口部を封止することを包含し、ここで上記封止蓋部材と上記開口部周縁部分との溶接を、上記矩形状ケース面の長辺側に面する部位における溶接深さが該矩形状ケース面の短辺側に面する部位における溶接深さよりも深くなるように行うことを特徴とする方法である。
Moreover, this invention provides the method of manufacturing the battery disclosed here as another aspect. That is, the manufacturing method disclosed here is:
A flat electrode body constituting a positive electrode and a negative electrode, and a rectangular case formed in a flat shape corresponding to the flat electrode body and containing the electrode body, the width of the flat electrode body in the case A sealed type in which at least one opening is formed in any rectangular case surface adjacent to the wide surface of the case facing the surface, and a sealing lid member is attached to the opening so as to close the opening. A method of manufacturing a battery comprising sealing the opening by welding the sealing lid member to the periphery of the opening, wherein the sealing lid member and the opening peripheral portion And welding so that the welding depth at the portion facing the long side of the rectangular case surface is deeper than the welding depth at the portion facing the short side of the rectangular case surface. It is a method to do.

また、ここで開示される好ましい一態様の製造方法では、上記開口部は、上記矩形状ケース面の表面から凹んだ凹部と該凹部の中心部分に形成されたケース内外に通じる貫通孔とから構成されており、ここで上記封止蓋部材を少なくともその一部が上記開口部の凹部に嵌め込んで配置し、上記封止蓋部材の上記凹部に嵌め込まれた部分における周縁と、該周縁に接する上記矩形状ケース面の上記凹部の外周部分とを互いに溶接することを特徴とする。
また、さらに好ましい一態様の製造方法では、上記溶接深さが相対的に深い上記矩形状ケース面の長辺側に面する部位を、上記開口部の中心から該長辺への仮想垂線を引いた場合の該仮想垂線の両側45°またはそれ以上の角度ずつの合計90°またはそれ以上の範囲に属する部位として規定し、且つ、
上記溶接深さが相対的に浅い上記矩形状ケース面の短辺側に面する部位を、上記開口部の中心から該短辺への仮想垂線を引いた場合の該仮想垂線の両側45°またはそれ以下の角度ずつの合計90°またはそれ以下の範囲に属する部位として規定することを特徴とする。
In the manufacturing method according to a preferred aspect disclosed herein, the opening includes a recess recessed from the surface of the rectangular case surface and a through-hole formed in the center of the recess that communicates with the inside and outside of the case. Here, at least a part of the sealing lid member is fitted in the concave portion of the opening, and the peripheral edge of the portion of the sealing lid member fitted in the concave portion is in contact with the peripheral edge. The outer peripheral portion of the concave portion of the rectangular case surface is welded to each other.
In a further preferred aspect of the manufacturing method, a virtual perpendicular from the center of the opening to the long side is drawn on a portion facing the long side of the rectangular case surface having a relatively large welding depth. And a region belonging to a total range of 90 ° or more at an angle of 45 ° or more on both sides of the imaginary perpendicular line, and
45 ° on both sides of the imaginary perpendicular when the imaginary perpendicular to the short side is drawn from the center of the opening to the portion facing the short side of the rectangular case surface where the welding depth is relatively shallow It is defined as a portion belonging to a total range of 90 ° or less at each angle smaller than that.

また、ここで開示される好ましい他の一態様の製造方法では、上記封止蓋部材と上記開口部周縁部分との溶接を、上記封止蓋部材の全周に亘ってビームを照射していくビーム溶接によって実行する。そして、上記ビーム照射による溶接に基づき上記封止蓋部材の全周に形成された一続きの溶接ビードにおいて、該ビーム照射による溶接開始時期に形成された該ビードの先端領域と該溶接の終末時期に形成された該ビートの終端領域の重なり合った部分が、上記矩形状ケース面の短辺側に面する部位に形成されるように上記ビーム溶接を行うことを特徴とする。
上述したような製造方法によって、ここで開示される封止構造を備えた密閉型電池を提供することができる。
Further, in another preferable aspect of the manufacturing method disclosed herein, the sealing lid member and the peripheral portion of the opening are welded with a beam over the entire circumference of the sealing lid member. Perform by beam welding. And in the continuous weld bead formed on the entire circumference of the sealing lid member based on the welding by the beam irradiation, the tip end region of the bead formed at the welding start time by the beam irradiation and the end time of the welding The beam welding is performed so that the overlapping portion of the end region of the beat formed on the short side of the rectangular case surface is formed.
By the manufacturing method as described above, a sealed battery provided with the sealing structure disclosed herein can be provided.

一実施形態に係る密閉型電池を模式的に示す斜視図である。1 is a perspective view schematically showing a sealed battery according to an embodiment. 一実施形態に係る電極体および電極端子を示す模式的側面図である。It is a typical side view showing the electrode body and electrode terminal concerning one embodiment. 一実施形態に係る密閉型電池の矩形状ケース面(ケース蓋体)に設けられた開口部(注液口)の封止構造を模式的に示す平面図である。It is a top view which shows typically the sealing structure of the opening part (injection port) provided in the rectangular-shaped case surface (case cover body) of the sealed battery which concerns on one Embodiment. 一実施形態に係る密閉型電池の矩形状ケース面(ケース蓋体)に設けられた開口部(注液口)の封止構造を模式的に示す断面図である。It is sectional drawing which shows typically the sealing structure of the opening part (liquid injection port) provided in the rectangular-shaped case surface (case cover body) of the sealed battery which concerns on one Embodiment. 図3における一部破断のV−V線断面図である。It is the VV sectional view taken on the line in FIG. 図3における一部破断のVI−VI線断面図である。It is the VI-VI sectional view taken on the line in FIG. 一実施形態に係る開口部(注液口)の周縁と封止蓋部材との溶接において溶接深さの異なる部位を説明する平面図である。It is a top view explaining the site | part from which the welding depth differs in welding with the periphery of the opening part (injection port) which concerns on one Embodiment, and a sealing lid member. ケース内圧の上昇時に、矩形状ケース面の短辺に沿う方向(短軸方向)に当該ケース面が外方に膨らむ(湾曲する)状態を模式的に説明する図である。It is a figure which illustrates typically the state where the case surface expands outward (curves) in the direction along the short side (short axis direction) of the rectangular case surface when the case internal pressure increases. ケース内圧の上昇時に、矩形状ケース面の長辺に沿う方向(長軸方向)に当該ケース面が外方に膨らむ(湾曲する)状態を模式的に説明する図である。It is a figure which illustrates typically the state where the said case surface swells outward (curves) in the direction (long axis direction) along the long side of a rectangular case surface at the time of a case internal pressure rise. 開口部(注液口)の周縁と封止蓋部材とをビーム溶接する場合の好適な実施形態を模式的に説明する図である。It is a figure which illustrates typically suitable embodiment in the case of carrying out beam welding of the periphery of an opening part (liquid injection port), and a sealing lid member. 本発明の一実施形態に係る密閉型電池を搭載した車両を模式的に示す側面図である。1 is a side view schematically showing a vehicle equipped with a sealed battery according to an embodiment of the present invention.

以下、本発明の好適な実施形態を図面を参照しつつ説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば電極体の構築方法や当該電極体を構築するために使用する材料、ビーム溶接を行う場合の条件等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
特に限定することを意図したものではないが、以下では捲回タイプの電極体(以下「捲回電極体」という。)と非水電解液とを角形(箱形)のケースに収容した形態の密閉型リチウム二次電池(リチウムイオン電池)を例として説明する。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化する。
Preferred embodiments of the present invention will be described below with reference to the drawings. In addition, matters other than matters specifically mentioned in the present specification and matters necessary for the implementation of the present invention (for example, a method for constructing an electrode body, a material used for constructing the electrode body, and beam welding are performed. The case conditions and the like) can be grasped as design matters of those skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
Although not intended to be particularly limited, in the following, a wound type electrode body (hereinafter referred to as a “wound electrode body”) and a non-aqueous electrolyte are accommodated in a rectangular (box-shaped) case. A sealed lithium secondary battery (lithium ion battery) will be described as an example. Note that the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, members / parts having the same action are denoted by the same reference numerals, and redundant description is omitted or simplified.

本実施形態に係るリチウムイオン電池10は、図2に示すような扁平形状の捲回電極体30が、図示しない液状電解質(電解液)とともに、捲回電極体30の形状に対応する図1に示すような扁平な角型形状の電池ケース(即ち外装容器)20に収容された構成を有する。
ケース20は、一端(本実施形態に係る電池10の通常の使用状態における上側の端部に相当する。)に開口部を有する箱形(すなわち有底四角筒状)のケース本体21と、その開口部に取り付けられて該開口部を塞ぐ矩形状プレート部材からなる蓋体(ケース構成部品)22とから構成される。かかる蓋体22がケース本体21の開口部周縁に溶接されることにより、扁平形状の捲回電極体30の幅広面に対向する一対のケース幅広面23と、該ケース幅広面23に隣接する4つの矩形状ケース面22,24(即ち、そのうちの一つの矩形状ケース面は蓋体22により構成される。)との六面体形状のケース20が構成される。特に制限するものではないが、この種の角型電池の六面体形状ケースの好適なサイズとして、ケース本体21及び蓋体22の長辺側の長さ:約80〜150mm(ここでは約110mm)、ケース本体21及び蓋体22の短辺側の長さ(即ちケースの厚み):約10〜25mm(ここでは約14mm)、ケース本体21の高さ:約70〜120mm(ここでは約90mm)を例示することができる。
In the lithium ion battery 10 according to the present embodiment, a flat wound electrode body 30 as shown in FIG. 2 corresponds to the shape of the wound electrode body 30 together with a liquid electrolyte (electrolytic solution) not shown in FIG. It has the structure accommodated in the battery case (namely, exterior container) 20 of a flat square shape as shown.
The case 20 has a box-shaped (that is, a bottomed rectangular tube-like) case main body 21 having an opening at one end (corresponding to the upper end in the normal use state of the battery 10 according to the present embodiment), It is comprised from the cover body (case component) 22 which consists of a rectangular-shaped plate member attached to an opening part and obstruct | occludes this opening part. The lid body 22 is welded to the periphery of the opening of the case body 21, so that a pair of case wide surfaces 23 facing the wide surface of the flat wound electrode body 30, and the case wide surfaces 23 adjacent to the case wide surfaces 23. A hexahedral case 20 with two rectangular case surfaces 22 and 24 (that is, one of the rectangular case surfaces is constituted by a lid 22) is formed. Although it does not restrict | limit in particular, As a suitable size of the hexahedral shape case of this kind of square battery, the length of the long side of the case main body 21 and the cover body 22: about 80-150 mm (here about 110 mm), The length of the short side of the case body 21 and the lid body 22 (that is, the thickness of the case): about 10 to 25 mm (here about 14 mm), and the height of the case body 21: about 70 to 120 mm (here about 90 mm) It can be illustrated.

ケース20の材質は、従来の密閉型電池で使用されるものと同じであればよく、特に制限はない。軽量で熱伝導性の良い金属材料を主体に構成されたケース20が好ましく、このような金属製材料としてアルミニウム、ステンレス鋼、ニッケルめっき鋼等が例示される。本実施形態に係るケース20(具体的には本体21および蓋体22)はアルミニウム若しくはアルミニウムを主体とする合金によって構成されている。
また、ケース20(本体21および蓋体22)の厚みは、特に限定されないが、車載用の密閉型電池を構成する場合、0.3mm〜2mm程度が適当であり、0.5mm〜1mm程度(ここでは約0.8mm〜0.9mm)が好ましい。
The material of the case 20 may be the same as that used in the conventional sealed battery, and is not particularly limited. A case 20 mainly composed of a metal material that is lightweight and has good thermal conductivity is preferable. Examples of such a metal material include aluminum, stainless steel, and nickel-plated steel. The case 20 (specifically, the main body 21 and the lid body 22) according to the present embodiment is made of aluminum or an alloy mainly composed of aluminum.
Further, the thickness of the case 20 (the main body 21 and the lid body 22) is not particularly limited, but in the case of constituting a vehicle-mounted sealed battery, about 0.3 mm to 2 mm is appropriate, and about 0.5 mm to 1 mm ( Here, about 0.8 mm to 0.9 mm) is preferable.

図1及び図3に示すように、蓋体(矩形状ケース面)22には、外部接続用の正極端子14および負極端子16が固定されている。それらの電極端子14,16の一端(外側端)はケース(蓋体22)の外方に突出しており、他端(内側端)は電極体30の正極32および負極34とそれぞれ電気的に接続されている。
蓋体(矩形状ケース面)22の電極端子14,16の間に位置する部分の幅方向の中央部には、ケース20の内圧が所定レベル(例えば設定開弁圧0.3〜1.0MPa程度)以上に上昇した場合に該内圧を開放するように構成された薄肉の安全弁40と、本実施形態に係る開口部としての注液口50が形成されている。注液口50には封止蓋部材60が被せられ、さらに該封止蓋部材60が該注液口50の周縁に溶接されている。このことにより、該注液口50の封止(密閉)が行われている。かかる封止構造の詳細については後述する。
As shown in FIGS. 1 and 3, a positive terminal 14 and a negative terminal 16 for external connection are fixed to a lid (rectangular case surface) 22. One end (outer end) of the electrode terminals 14 and 16 protrudes outward from the case (lid body 22), and the other end (inner end) is electrically connected to the positive electrode 32 and the negative electrode 34 of the electrode body 30, respectively. Has been.
At the center in the width direction of the portion located between the electrode terminals 14 and 16 of the lid (rectangular case surface) 22, the internal pressure of the case 20 is at a predetermined level (for example, a set valve opening pressure of 0.3 to 1.0 MPa). A thin safety valve 40 configured to release the internal pressure when the pressure rises above, and a liquid injection port 50 as an opening according to the present embodiment are formed. The liquid filling port 50 is covered with a sealing lid member 60, and the sealing lid member 60 is welded to the periphery of the liquid filling port 50. As a result, the liquid injection port 50 is sealed (sealed). Details of the sealing structure will be described later.

図2に示すように、捲回電極体30は通常のリチウムイオン電池の捲回電極体と同様、長尺シート状の正極(正極シート)32および負極(負極シート)34を計二枚の長尺シート状のセパレータ(セパレータシート)36とともに積層して長手方向に捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される。具体的には、正極シート32と負極シート34とは幅方向に位置をややずらしてセパレータシートの幅方向の一端および他端から該シート32,34の幅方向の一端がそれぞれはみ出すように積層された状態で捲回される。その結果として、捲回電極体30の捲回軸方向の一方および他方の端部には、正極シート32の幅方向の一端が捲回コア部31(すなわち正極シート32と負極シート34とセパレータシートとが密に捲回された部分)から外方にはみ出した部分と、負極シート34の幅方向の一端が捲回コア部31から外方にはみ出した部分とがそれぞれ形成されている。該はみ出し部に電極端子14,16が結合される。   As shown in FIG. 2, the wound electrode body 30 includes a long sheet-like positive electrode (positive electrode sheet) 32 and a negative electrode (negative electrode sheet) 34 in total, like the wound electrode body of a normal lithium ion battery. It is produced by laminating together with a sheet-like separator (separator sheet) 36 and winding it in the longitudinal direction, and then crushing the obtained winding body from the side direction and causing it to be ablated. Specifically, the positive electrode sheet 32 and the negative electrode sheet 34 are stacked so that the positions in the width direction are slightly shifted and one end in the width direction of the sheets 32 and 34 protrudes from one end and the other end in the width direction of the separator sheet. It is wound in the state. As a result, one end in the width direction of the positive electrode sheet 32 is disposed at one end and the other end in the winding axis direction of the wound electrode body 30 (that is, the positive electrode sheet 32, the negative electrode sheet 34, and the separator sheet). And a portion where one end in the width direction of the negative electrode sheet 34 protrudes outward from the wound core portion 31 is formed. The electrode terminals 14 and 16 are coupled to the protruding portion.

かかる捲回電極体30を構成する材料および部材自体は、従来のリチウムイオン電池に備えられる電極体と同様でよく、特に制限はない。例えば正極シート32は、長尺状の正極集電体(例えばアルミニウム箔)の上に正極活物質層が形成された構成であり得る。この正極活物質層の形成に用いる正極活物質としては、従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、LiMn、LiCoO、LiNiO等のリチウム遷移金属酸化物が挙げられる。負極シート34は、長尺状の負極集電体(例えば銅箔)の上に負極活物質層が形成された構成であり得る。この負極活物質層の形成に用いる負極活物質としては、従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム遷移金属酸化物、リチウム遷移金属窒化物等が挙げられる。上記セパレータシートの好適例としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。 The material and the member constituting the wound electrode body 30 may be the same as the electrode body provided in the conventional lithium ion battery, and are not particularly limited. For example, the positive electrode sheet 32 may have a configuration in which a positive electrode active material layer is formed on a long positive electrode current collector (for example, an aluminum foil). As the positive electrode active material used for forming this positive electrode active material layer, one or two or more materials conventionally used in lithium ion batteries can be used without particular limitation. Preferable examples include lithium transition metal oxides such as LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 . The negative electrode sheet 34 may have a configuration in which a negative electrode active material layer is formed on a long negative electrode current collector (for example, a copper foil). As the negative electrode active material used for forming this negative electrode active material layer, one or two or more materials conventionally used in lithium ion batteries can be used without particular limitation. Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, lithium transition metal oxides, lithium transition metal nitrides, and the like. Preferable examples of the separator sheet include those made of a porous polyolefin resin.

液状電解質(電解液)としては、従来からリチウムイオン電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,3−ジオキソラン等からなる群から選択された一種または二種以上を用いることができる。また、上記支持塩としては、例えば、LiPF,LiBF,LiAsF,LiCFSO,LiCSO,LiN(CFSO,LiC(CFSO等のリチウム塩を用いることができる。本実施形態では、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば質量比1:1)にLiPFを約1mol/リットルの濃度で含有させた電解液を用いている。なお、電解液の代わりに固体状やゲル状の電解質を採用してもよい。 As the liquid electrolyte (electrolytic solution), the same non-aqueous electrolytic solution conventionally used in lithium ion batteries can be used without particular limitation. Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxolane, and the like. One kind or two or more kinds selected from the group can be used. Examples of the supporting salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and the like. Lithium salts can be used. In this embodiment, an electrolytic solution in which LiPF 6 is contained in a mixed solvent of ethylene carbonate and diethyl carbonate (for example, a mass ratio of 1: 1) at a concentration of about 1 mol / liter is used. A solid or gel electrolyte may be used instead of the electrolytic solution.

上記のような構成の各部材を備えるリチウムイオン電池10を製造する好適な一態様につき簡単に説明する。
まず、正負の電極端子14,16の外側端を蓋体22から外方に突出させて、該端子14,16を蓋体22に固定する。それらの端子14,16の内側端を、捲回電極体30の正極32および負極34に接続(例えば溶接)することにより、蓋体22と電極体30とを結合する。そして、蓋体22に結合された電極体30をケース本体21の開口部から内部に収めるようにして該開口部に蓋体22を被せ、蓋体22とケース本体21との合わせ目を例えば電子ビームやレーザービームを照射するビーム溶接(典型的にはレーザービーム溶接)により封止する。
次いで、注液口(開口部)50からケース20内に電解液を注入する。その後、注液口50に封止蓋部材(キャップ)60を被せて溶接することにより注液口50を封止する。
このようにして密閉型リチウムイオン電池10を製造(構築)することができる。なお、電池の構築プロセス自体は本発明を特徴付けるものではないため、これ以上の詳細な説明は省略する。以下、本実施形態に係る注液口50の封止構造について図面を参照しつつ詳細に説明する。
A preferred embodiment for manufacturing the lithium ion battery 10 including the members having the above-described configuration will be briefly described.
First, the outer ends of the positive and negative electrode terminals 14 and 16 are projected outward from the lid body 22, and the terminals 14 and 16 are fixed to the lid body 22. By connecting (for example, welding) the inner ends of the terminals 14 and 16 to the positive electrode 32 and the negative electrode 34 of the wound electrode body 30, the lid body 22 and the electrode body 30 are coupled. Then, the electrode body 30 coupled to the lid body 22 is placed inside the opening of the case body 21 so that the lid body 22 is covered with the opening, and the joint between the lid body 22 and the case body 21 is, for example, electronic Sealing is performed by beam welding (typically laser beam welding) that irradiates a beam or a laser beam.
Next, an electrolytic solution is injected into the case 20 from the liquid injection port (opening) 50. Thereafter, the liquid injection port 50 is sealed by covering the liquid injection port 50 with a sealing lid member (cap) 60 and welding.
In this way, the sealed lithium ion battery 10 can be manufactured (constructed). In addition, since the battery construction process itself does not characterize the present invention, further detailed description is omitted. Hereinafter, the sealing structure of the liquid injection port 50 according to the present embodiment will be described in detail with reference to the drawings.

図4は、図3に示す注液口50とその周縁部位の構造を示す断面図である。この図に示すように、本実施形態に係る開口部である注液口50は、本実施形態に係る電池ケース20における矩形状ケース上面に相当する蓋体22の中央寄りに形成された該蓋体22の外表面から円形に凹んだ凹部52と、該凹部52の中心部分に形成されたケース内外に通じる貫通孔51とから構成されている。凹部52の内底面のうち貫通孔51に接する周縁部分52Aは全周に亘って肉厚に形成されており、該肉厚部分52Aと、凹部52の側壁との間に後述する封止蓋部材60の一部を配置する装着溝52Bが環状に形成されている。蓋体22の表面の凹部52の外周部分には、凹部52と同心円状に環状溝58が形成されている。
なお、ケース(ここでは蓋体22)の表面からの凹部52の深さは、特に限定されないが、ケース(蓋体)の肉厚の概ね1/3〜1/2程度が好ましい(ここでは例えば0.4mm)。また、特に限定するものではないが、本実施形態に係る凹部52の直径は概ね7〜8mmである。
4 is a cross-sectional view showing the structure of the liquid injection port 50 shown in FIG. 3 and the peripheral portion thereof. As shown in this figure, the liquid injection port 50 which is an opening according to the present embodiment is a lid formed near the center of the lid 22 corresponding to the upper surface of the rectangular case in the battery case 20 according to the present embodiment. A concave portion 52 that is circularly recessed from the outer surface of the body 22 and a through hole 51 that is formed in the central portion of the concave portion 52 and communicates with the inside and outside of the case. Of the inner bottom surface of the recess 52, a peripheral edge portion 52 </ b> A that is in contact with the through hole 51 is formed to be thick over the entire circumference, and a sealing lid member described later between the thick portion 52 </ b> A and the side wall of the recess 52. A mounting groove 52B in which a part of 60 is disposed is formed in an annular shape. An annular groove 58 is formed concentrically with the recess 52 in the outer peripheral portion of the recess 52 on the surface of the lid 22.
The depth of the recess 52 from the surface of the case (here, the lid body 22) is not particularly limited, but is preferably about 1/3 to 1/2 of the thickness of the case (lid body) (here, for example, 0.4 mm). Moreover, although it does not specifically limit, the diameter of the recessed part 52 which concerns on this embodiment is 7-8 mm in general.

一方、本実施形態に係る封止蓋部材60は、図1及び図4に示すように、円形の鉢(深皿)状に形成された本体部64と、該本体部64の周縁から外方に延伸する取付フランジ部62とから構成されるハット形状に形成された部材である。特に限定するものではないが、本実施形態に係る封止蓋部材60の直径は凹部52の直径に対応して概ね7〜8mmであり、本体部64の直径は概ね5〜6mmである。
而して、図4に示すように、封止蓋部材60は、上記凹部52(詳しくは装着溝52B)に取付フランジ部62が嵌め込まれるようにして注液口50上に配置される。なお、図4に示すように、本実施形態においては、凹部52に装着された際の封止蓋部材60の取付フランジ部62の上面と、蓋体(矩形状ケース面)22の凹部52周縁の上面とが面一(同じ高さ)になるように設計されている。このことによって、精度のよい信頼性の高い溶接を行うことができる。
そして、封止蓋部材60の取付フランジ部62における周縁と、該周縁に接する蓋体22の凹部52の外周部分とを全周に亘って互いに溶接する。このことによって、注液口50(即ち上記貫通孔51)を封止蓋部材60によって完全に封止(密閉)することができる。
なお、封止蓋部材60の肉厚は、特に限定されないが、ケース(蓋体22)の肉厚の概ね1/3〜1/2程度(例えば0.3mm〜0.5mm)が好ましい。特に取付フランジ部62は凹部52に嵌り込んだ際に上記のように面一となることが好ましいため、凹部52深さと同等の肉厚が好ましい(ここでは例えば0.4mm)。
On the other hand, as shown in FIGS. 1 and 4, the sealing lid member 60 according to the present embodiment includes a main body portion 64 formed in a circular bowl (deep dish) shape, and outward from the periphery of the main body portion 64. It is the member formed in the hat shape comprised from the attachment flange part 62 extended | stretched to (3). Although not particularly limited, the diameter of the sealing lid member 60 according to the present embodiment is approximately 7 to 8 mm corresponding to the diameter of the recess 52, and the diameter of the main body 64 is approximately 5 to 6 mm.
Thus, as shown in FIG. 4, the sealing lid member 60 is disposed on the liquid injection port 50 so that the mounting flange portion 62 is fitted into the recess 52 (specifically, the mounting groove 52 </ b> B). As shown in FIG. 4, in the present embodiment, the upper surface of the mounting flange portion 62 of the sealing lid member 60 and the periphery of the concave portion 52 of the lid (rectangular case surface) 22 when mounted in the concave portion 52. It is designed to be flush with the upper surface (the same height). As a result, accurate and reliable welding can be performed.
And the periphery in the attachment flange part 62 of the sealing lid member 60 and the outer peripheral part of the recessed part 52 of the cover body 22 which contact | connects this periphery are mutually welded over a perimeter. Thus, the liquid injection port 50 (that is, the through hole 51) can be completely sealed (sealed) by the sealing lid member 60.
The thickness of the sealing lid member 60 is not particularly limited, but is preferably about 1/3 to 1/2 (for example, 0.3 mm to 0.5 mm) of the thickness of the case (lid 22). In particular, since the mounting flange portion 62 is preferably flush with the recess 52 when fitted into the recess 52, a thickness equivalent to the depth of the recess 52 is preferable (here, 0.4 mm, for example).

次に、本実施形態に係る溶接の態様について図面を参照しつつ説明する。図3におけるV−V線断面図である図5ならびにVI−VI線断面図である図6に示すように、本実施形態においては、上述したように溶接深さ(溶け込み深さ)を部位毎に異ならせており、充分でありながら過不足のないエネルギーコストに優れる溶接を実現している。
具体的には、図5と図6との比較から明らかなように、図3のV−V線断面で示す部位(領域)、換言すれば蓋面(矩形状ケース面)22の短辺側に面する部位における溶接部72は、その溶接深さ(溶け込み深さ)が相対的に浅くなるように形成されている。他方、図3のVI−VI線断面で示す部位(領域)、換言すれば蓋面(矩形状ケース面)22の長辺側に面する部位における溶接部74は、その溶接深さ(溶け込み深さ)が相対的に深くなるように形成されている。
Next, the welding mode according to this embodiment will be described with reference to the drawings. As shown in FIG. 5 which is a sectional view taken along line VV in FIG. 3 and FIG. 6 which is a sectional view taken along line VI-VI, in this embodiment, the welding depth (penetration depth) is set for each part as described above. This makes it possible to achieve welding that is sufficient, but that is free of excess and deficiency and has excellent energy costs.
Specifically, as is clear from a comparison between FIG. 5 and FIG. 6, the portion (region) shown by the VV line cross section of FIG. 3, in other words, the short side of the lid surface (rectangular case surface) 22. The welded portion 72 at the portion facing the surface is formed so that the welding depth (penetration depth) becomes relatively shallow. On the other hand, the welding part 74 in the site | part (area | region) shown in the VI-VI line cross section of FIG. 3, in other words, the site | part which faces the long side of the cover surface (rectangular case surface) 22, is the welding depth (penetration depth). Is) relatively deep.

好ましくは、図7に示すように、溶接深さ(溶け込み深さ)を相対的に深くする部位(領域)は、注液口(開口部)50の中心から蓋体(矩形状ケース面)22の両方の長辺に仮想垂線L1を引いた場合の該仮想垂線L1の両側45°またはそれ以上の角度ずつの合計90°またはそれ以上の角度範囲(ここでは90°)に属する図中符号Dで示す溶接領域(部位)として規定することができる。また、溶接深さ(溶け込み深さ)を相対的に浅くする部位(領域)は、注液口(開口部)50の中心から蓋体(矩形状ケース面)22の両方の短辺に仮想垂線L2を引いた場合の該仮想垂線L2の両側45°またはそれ以下の角度ずつの合計90°またはそれ以下の角度範囲(ここでは90°)に属する図中符号Sで示す溶接領域(部位)として規定することができる。なお、上記S領域とD領域は、溶接深さの好ましい領域を大まかに示すものであって、その境界を厳密に制限するものではない。例えば、S領域とD領域の境界付近は図5に示す溶接部位(浅い)72と図6に示す溶接部位(深い)74の間の中間的な溶接深さであってもよい。また、D領域の角度範囲(各90°以上)とS領域の角度範囲(各90°以下)との割合は、ケースの形状に応じて異なり得る。典型的には、D領域の角度範囲は、長辺に面する両方向に90°以上120°以下に設定され得、S領域の角度範囲は、短辺に面する両方向に60°以上90°以下に設定され得る。
以下、図5と図6に示す夫々の部位において上記のように溶接深さを異ならせる理由を図面を参照しつつ説明する。
Preferably, as shown in FIG. 7, the portion (region) for relatively increasing the welding depth (penetration depth) is the lid (rectangular case surface) 22 from the center of the liquid injection port (opening) 50. In the figure, the reference sign D belongs to a total angle range of 90 ° or more (90 ° in this case) of 45 ° or more on both sides of the virtual perpendicular L1 when the virtual perpendicular L1 is drawn on both long sides. It can prescribe | regulate as a welding area | region (part) shown by. Further, a region (region) where the welding depth (penetration depth) is relatively shallow is a virtual perpendicular from the center of the liquid injection port (opening) 50 to both short sides of the lid (rectangular case surface) 22. As a welding region (part) indicated by symbol S in the drawing belonging to an angle range of 90 ° or less (90 ° in this case) of 45 ° or less on both sides of the virtual perpendicular line L2 when L2 is drawn Can be prescribed. Note that the S region and the D region roughly indicate a preferable region of the welding depth, and do not strictly limit the boundary. For example, the vicinity of the boundary between the S region and the D region may be an intermediate welding depth between the welded part (shallow) 72 shown in FIG. 5 and the welded part (deep) 74 shown in FIG. Further, the ratio between the angle range of the D region (each 90 ° or more) and the angle range of the S region (each 90 ° or less) may be different depending on the shape of the case. Typically, the angle range of the D region can be set to 90 ° or more and 120 ° or less in both directions facing the long side, and the angle range of the S region is 60 ° or more and 90 ° or less in both directions facing the short side. Can be set to
Hereinafter, the reason why the welding depth is changed as described above in each part shown in FIGS. 5 and 6 will be described with reference to the drawings.

図8は蓋体(矩形状ケース面)22の短辺に沿う方向(短軸方向)の模式的断面図であり、図9は蓋体(矩形状ケース面)22の長辺に沿う方向(長軸方向)の模式的断面図である。なお、これらは説明図であり、図中の各部材の縮尺や形状を正確に示す必要がないため上述した各図面に記載のものと一致させていない。
本実施形態に係る電池が例えば充放電時に何らかの原因によりケース20内でガスが発生してケース内圧が高まった場合には、図8の下部に記載のとおり、蓋体22は短辺に沿う方向に大きく湾曲し、ケース外方に大きく膨れる傾向にある。このような湾曲が発生すると、蓋体(矩形状ケース面)22の短辺に沿う方向(短軸方向)にある溶接部、つまり蓋体22の長辺側に面する部位(即ち図7のD領域)には比較的大きい応力集中が生じる。従って、この部位(領域)においては、充分な溶接量、具体的には溶接深さ(溶け込み深さ)を確保した溶接を行うことが望まれる。
FIG. 8 is a schematic cross-sectional view in the direction along the short side (short axis direction) of the lid (rectangular case surface) 22, and FIG. 9 is the direction along the long side of the lid (rectangular case surface) 22 ( It is a typical sectional view of (long axis direction). In addition, these are explanatory drawings, and since it is not necessary to accurately show the scale and shape of each member in the drawing, they do not coincide with those described in each drawing.
When the battery according to the present embodiment generates gas in the case 20 due to some cause during charge / discharge, for example, and the internal pressure of the case increases, the lid 22 is in the direction along the short side as shown in the lower part of FIG. It tends to be greatly curved and bulge outward from the case. When such bending occurs, the welded portion in the direction (short axis direction) along the short side of the lid (rectangular case surface) 22, that is, the portion facing the long side of the lid 22 (that is, in FIG. 7). A relatively large stress concentration occurs in the (D region). Therefore, it is desired to perform welding with a sufficient welding amount, specifically, a welding depth (penetration depth) in this part (region).

他方、図9の下部に記載のとおり、何らかの原因によりケース20内でガスが発生してケース内圧が高まった場合において蓋体22の長辺に沿う方向への湾曲の程度は、上述した短辺に沿う方向の湾曲ほどには大きくない。結果、当該方向への応力集中は生じ難い。このため、蓋体22の長辺側に面する部位(図7のD領域)で行われるほどの溶接深さは蓋体22の短辺側に面する部位(図7のS領域)では必要なく、より浅い溶接深さで充分である。
このように矩形状のケース面に設けられた開口部の周縁に封止蓋部材を溶接する場合の溶接量(溶接深さ)を、ケース内圧上昇時の当該ケース面の変形(湾曲)の程度に応じて長辺に面する側(典型的には上記D領域)と短辺に面する側(典型的には上記S領域)とで異ならせることにより、電池使用時のケース内圧上昇時にも対応した強固な封止(溶接)構造を実現しつつ、過不足のない溶接の実施によってエネルギーコストの削減を実現することもできる。また、過剰な溶接時の熱により電池構成部品がダメージを受けることを未然に防止することができる。
On the other hand, as described in the lower part of FIG. 9, when gas is generated in the case 20 for some reason and the internal pressure of the case is increased, the degree of bending in the direction along the long side of the lid 22 is the short side described above. Is not as large as the curvature in the direction along. As a result, stress concentration in that direction is unlikely to occur. For this reason, a welding depth sufficient to be performed at a portion facing the long side of the lid body 22 (region D in FIG. 7) is necessary at a portion facing the short side of the lid body 22 (region S in FIG. 7). A shallower welding depth is sufficient.
The amount of welding (welding depth) when the sealing lid member is welded to the periphery of the opening provided on the rectangular case surface in this way is the degree of deformation (curvature) of the case surface when the case internal pressure increases. Depending on the side facing the long side (typically the above-mentioned D region) and the side facing the short side (typically the above-mentioned S region). While realizing a corresponding strong sealing (welding) structure, it is possible to reduce energy costs by carrying out welding without excess or deficiency. Further, it is possible to prevent the battery components from being damaged by excessive heat during welding.

なお、実際の電池で実施する溶接深さは、対象電池の種類や形状(特にケースの厚みやケース面の長辺と短辺の長さの比率)によって異なり得るため、特定できないが、本実施形態においては、上記S領域で0.15〜0.2mm程度、上記D領域で0.25〜0.4mm程度が適当である。
D領域の平均溶接深さとS領域の平均溶接深さとの関係:S/Dが、0.5以上0.9以下(より好ましくは0.6以上0.8以下)となるのが適当である。
また、好ましくは、封止蓋部材60(ここでは取付フランジ部62)の厚みよりは浅くなるように溶接深さを設定する。これにより、溶接深さが深くなりすぎることによるケースのダメージを防止することができる。
It should be noted that the actual welding depth of the battery can vary depending on the type and shape of the target battery (especially the thickness of the case and the ratio of the long side to the short side of the case). In the form, about 0.15 to 0.2 mm in the S region and about 0.25 to 0.4 mm in the D region are appropriate.
Relationship between the average welding depth in the D region and the average welding depth in the S region: S / D is suitably 0.5 or more and 0.9 or less (more preferably 0.6 or more and 0.8 or less). .
Preferably, the welding depth is set to be shallower than the thickness of the sealing lid member 60 (here, the mounting flange portion 62). Thereby, damage to the case due to the welding depth becoming too deep can be prevented.

以上のような溶接深さを異ならせながら封止蓋部材60の周縁(ここでは取付フランジ部62)と、該周縁に接する蓋体22の凹部52の外周部分とを全周に亘って互いに溶接する手段としては種々の溶接手段が挙げられるが、好ましくは、レーザービーム溶接、電子ビーム溶接等のビーム溶接を行う。大気圧条件下、低コストで行うことができるという観点からレーザービーム溶接が好ましい。
具体的には、図10に示すように、適当なビーム(例えばYAGレーザーやCOレーザー等のレーザービーム)を封止蓋部材60と注液口50(凹部52)の周縁部分との境界に照射し、該照射部位を移動させつつ封止蓋部材60の周縁の全周に亘ってビーム照射を行う。図中の符号Bは、当該ビーム溶接により封止蓋部材60の全周に形成された一続きの溶接部位(溶接痕即ち溶接ビード)Bを示している。
このとき、照射するビームのパワー、一地点当たりの照射時間等を照射部位毎に適宜コントロールすることによって、溶接深さ(溶接量)を変化させることができる。かかる溶接の強さの制御方法自体は、従来法にすぎず本発明を特徴付けるものではないため、詳細な説明(レーザー照射装置その他の溶接用の道具の取扱い方法等)は省略する。
While the welding depth as described above is varied, the peripheral edge of the sealing lid member 60 (here, the mounting flange portion 62) and the outer peripheral portion of the concave portion 52 of the lid body 22 in contact with the peripheral edge are welded to each other over the entire circumference. Various welding means can be used as the means for performing the welding, but beam welding such as laser beam welding or electron beam welding is preferably performed. Laser beam welding is preferred from the viewpoint that it can be performed at low cost under atmospheric pressure conditions.
Specifically, as shown in FIG. 10, an appropriate beam (for example, a laser beam such as a YAG laser or a CO 2 laser) is applied to the boundary between the sealing lid member 60 and the peripheral portion of the liquid injection port 50 (recess 52). Irradiation is performed, and beam irradiation is performed over the entire circumference of the periphery of the sealing lid member 60 while moving the irradiation site. A symbol B in the drawing indicates a continuous welded portion (weld mark or weld bead) B formed on the entire circumference of the sealing lid member 60 by the beam welding.
At this time, the welding depth (welding amount) can be changed by appropriately controlling the power of the irradiated beam, the irradiation time per point, and the like for each irradiation site. Since the welding strength control method itself is merely a conventional method and does not characterize the present invention, a detailed description (such as a method of handling a laser irradiation apparatus or other welding tool) is omitted.

上記のようなビーム照射を封止蓋部材60の周縁の全周に亘って行う場合において、図10に示すように、ビーム照射による溶接開始時期に形成されたビード先端領域と該溶接の終末時期に形成された該ビードの終端領域の重なり合った部分(即ち、図中の符号OVで示すオーバーラップ部分)が、蓋体(矩形状ケース面)22の短辺側に面する部位(即ち上記S領域)に形成されるようにビーム溶接を行うことが好ましい。
このような形態でビーム照射を行うことによって、溶接の度合いが比較的不安定になり得るビーム照射オーバーラップ部分OVを上記応力集中が生じ難い部位である蓋体22の短辺側に面する部位(即ち上記S領域)におくことにより、ケース内圧上昇時に応力が集中する部位である蓋体22の長辺側に面する部位(即ち上記D領域)の充分な溶接を安定的に行うことができる。
In the case where the beam irradiation as described above is performed over the entire periphery of the sealing lid member 60, as shown in FIG. 10, the bead tip region formed at the welding start time by the beam irradiation and the end time of the welding are formed. The portion where the end region of the bead formed on (i.e., the overlap portion indicated by the symbol OV in the drawing) faces the short side of the lid (rectangular case surface) 22 (i.e., the above S). It is preferable to perform beam welding so as to be formed in the region.
By performing the beam irradiation in such a form, the beam irradiation overlap portion OV that may be relatively unstable in the degree of welding is a portion that faces the short side of the lid 22 that is a portion where the stress concentration hardly occurs. By placing in (that is, the S region), it is possible to stably perform sufficient welding of the portion facing the long side of the lid 22 (that is, the D region), where stress is concentrated when the case internal pressure increases. it can.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、電池の種類は上述したリチウムイオン電池に限られず、電極体構成材料や電解質が異なる種々の内容の電池、例えばリチウム金属やリチウム合金を負極とするリチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池であってもよい。
また、ここで開示される密閉型電池は、信頼性の高い注液口その他の開口部の封止構造を有するため、特に自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用され得る。従って、図11に模式的に示すように、密閉型電池10(典型的には当該電池10を複数電気的に接続して形成される組電池)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車等のような電動機を備える自動車)100を提供する。
As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, the type of battery is not limited to the above-described lithium ion battery, but batteries having various contents with different electrode body constituent materials and electrolytes, for example, lithium secondary batteries having a negative electrode made of lithium metal or lithium alloy, nickel hydrogen batteries, nickel cadmium It may be a battery.
Moreover, since the sealed battery disclosed here has a highly reliable sealing structure for the liquid injection port and other openings, it is particularly suitable for use as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Can be done. Therefore, as schematically shown in FIG. 11, a vehicle (typically an automobile) including a sealed battery 10 (typically, a battery pack formed by electrically connecting a plurality of the batteries 10) as a power source. In particular, an automobile 100 including an electric motor such as a hybrid car or an electric car is provided.

10 密閉型電池(リチウムイオン電池)
20 ケース
21 ケース本体
22 蓋体(矩形状ケース面)
30 捲回電極体
32 正極
34 負極
40 安全弁
50 注液口(開口部)
51 貫通孔
52 凹部
60 封止蓋部材
64 本体部
62 取付フランジ部
72 溶接部位(浅)
74 溶接部位(深)
100 車両
L1,L2 仮想垂線
S 溶接領域(浅)
D 溶接領域(深)
B ビード
OV ビードのオーバーラップ部分
10 Sealed battery (lithium ion battery)
20 Case 21 Case body 22 Lid (rectangular case surface)
30 Winding electrode body 32 Positive electrode 34 Negative electrode 40 Safety valve 50 Injection port (opening)
51 Through-hole 52 Recessed portion 60 Sealing lid member 64 Main body portion 62 Mounting flange portion 72 Welded portion (shallow)
74 Welded part (depth)
100 Vehicle L1, L2 Virtual perpendicular S Welding area (shallow)
D Welding area (depth)
Overlap part of B bead OV bead

Claims (11)

正極および負極を構成する扁平形状の電極体と該電極体を収容する密閉された角型ケースとを備える密閉型電池であって、
前記角型ケースは前記扁平形状電極体に対応する扁平な形状に形成されており、該ケースにおける該扁平形状電極体の幅広面に対向するケース幅広面に隣接するいずれかの矩形状ケース面には、少なくとも一つの開口部が形成されており、
前記開口部には該開口部を塞ぐように封止蓋部材が取り付けられ、該開口部の周縁に該封止蓋部材が溶接されることによって該開口部の封止が実現されており、
ここで前記封止蓋部材と前記開口部周縁部分との溶接は、前記矩形状ケース面の長辺側に面する部位における溶接深さが該矩形状ケース面の短辺側に面する部位における溶接深さよりも深くなるように行われていることを特徴とする、密閉型電池。
A sealed battery comprising a flat electrode body that constitutes a positive electrode and a negative electrode, and a sealed square case that houses the electrode body,
The rectangular case is formed in a flat shape corresponding to the flat electrode body, and is formed on any rectangular case surface adjacent to the wide case surface of the case facing the wide surface of the flat electrode body. Is formed with at least one opening,
A sealing lid member is attached to the opening so as to close the opening, and the sealing of the opening is realized by welding the sealing lid member to the periphery of the opening.
Here, the welding between the sealing lid member and the peripheral edge portion of the opening is performed at a portion where the welding depth at the portion facing the long side of the rectangular case surface faces the short side of the rectangular case surface. A sealed battery, characterized in that the battery is deeper than the welding depth.
前記開口部は、前記矩形状ケース面の表面から凹んだ凹部と該凹部の中心部分に形成されたケース内外に通じる貫通孔とから構成されており、
前記封止蓋部材は、少なくともその一部が前記開口部の凹部に嵌め込まれて配置されており、
ここで前記封止蓋部材の前記凹部に嵌め込まれた部分における周縁と、該周縁に接する前記矩形状ケース面の前記凹部の外周部分とが互いに溶接されていることを特徴とする、請求項1に記載の密閉型電池。
The opening is composed of a recess recessed from the surface of the rectangular case surface and a through-hole communicating with the inside and outside of the case formed in the central portion of the recess,
The sealing lid member is disposed such that at least a part thereof is fitted in the recess of the opening,
2. The peripheral edge of the portion of the sealing lid member fitted into the concave portion and the outer peripheral portion of the concave portion of the rectangular case surface in contact with the peripheral edge are welded to each other. The sealed battery according to 1.
前記溶接深さが相対的に深い前記矩形状ケース面の長辺側に面する部位は、前記開口部の中心から該長辺への仮想垂線を引いた場合の該仮想垂線の両側45°またはそれ以上の角度ずつの合計90°またはそれ以上の範囲に属する部位として規定され、且つ、
前記溶接深さが相対的に浅い前記矩形状ケース面の短辺側に面する部位は、前記開口部の中心から該短辺への仮想垂線を引いた場合の該仮想垂線の両側45°またはそれ以下の角度ずつの合計90°またはそれ以下の範囲に属する部位として規定されることを特徴とする、請求項1または2に記載の密閉型電池。
The part facing the long side of the rectangular case surface having a relatively large welding depth is 45 ° on both sides of the virtual normal when the virtual normal to the long side is drawn from the center of the opening. Defined as a part belonging to a total range of 90 ° or more at each higher angle, and
The portion facing the short side of the rectangular case surface having a relatively small welding depth is 45 ° on both sides of the virtual perpendicular when the virtual perpendicular to the short side is drawn from the center of the opening. 3. The sealed battery according to claim 1, wherein the sealed battery is defined as a portion belonging to a total range of 90 ° or less at a smaller angle.
前記封止蓋部材と前記開口部周縁部分との溶接は、前記封止蓋部材の全周に亘ってビームを照射していくビーム溶接により行われており、
ここで前記ビーム照射による溶接に基づき前記封止蓋部材の全周に形成された一続きの溶接ビードにおいて、該ビーム照射による溶接開始時期に形成された該ビードの先端領域と該溶接の終末時期に形成された該ビートの終端領域の重なり合った部分が、前記矩形状ケース面の短辺側に面する部位に形成されていることを特徴とする、請求項1〜3のいずれかに記載の密閉型電池。
The welding of the sealing lid member and the peripheral edge portion of the opening is performed by beam welding in which a beam is irradiated over the entire circumference of the sealing lid member.
Here, in a continuous weld bead formed on the entire circumference of the sealing lid member based on the welding by the beam irradiation, the tip end region of the bead formed at the welding start time by the beam irradiation and the end time of the welding The overlapped portion of the end region of the beat formed in is formed in a portion facing the short side of the rectangular case surface, according to any one of claims 1 to 3. Sealed battery.
前記開口部は前記電池ケース内に電解液を注入するための注液口であることを特徴とする、請求項1〜4のいずれかに記載の密閉型電池。   The sealed battery according to claim 1, wherein the opening is a liquid injection port for injecting an electrolytic solution into the battery case. リチウム二次電池を構成することを特徴とする、請求項1〜5のいずれかに記載の密閉型電池。   The sealed battery according to claim 1, which constitutes a lithium secondary battery. 請求項1〜6のいずれかに記載の密閉型電池を備える車両。   A vehicle comprising the sealed battery according to claim 1. 正極および負極を構成する扁平形状の電極体と、該扁平形状電極体に対応する扁平な形状に形成され該電極体を収容する角型ケースとを備え、該ケースにおける該扁平形状電極体の幅広面に対向するケース幅広面に隣接するいずれかの矩形状ケース面に少なくとも一つの開口部が形成され、該開口部に該開口部を塞ぐように封止蓋部材が取り付けられた構成の密閉型電池を製造する方法であって、
前記開口部の周縁に前記封止蓋部材を溶接することによって該開口部を封止することを包含し、
ここで前記封止蓋部材と前記開口部周縁部分との溶接を、前記矩形状ケース面の長辺側に面する部位における溶接深さが該矩形状ケース面の短辺側に面する部位における溶接深さよりも深くなるように行うことを特徴とする、密閉型電池製造方法。
A flat electrode body constituting a positive electrode and a negative electrode, and a rectangular case formed in a flat shape corresponding to the flat electrode body and containing the electrode body, the width of the flat electrode body in the case A sealed type in which at least one opening is formed in any rectangular case surface adjacent to the wide surface of the case facing the surface, and a sealing lid member is attached to the opening so as to close the opening. A method of manufacturing a battery comprising:
Including sealing the opening by welding the sealing lid member to the periphery of the opening;
Here, welding between the sealing lid member and the peripheral edge portion of the opening is performed at a portion where the welding depth at the portion facing the long side of the rectangular case surface faces the short side of the rectangular case surface. A method for producing a sealed battery, wherein the method is performed so as to be deeper than a welding depth.
前記開口部は、前記矩形状ケース面の表面から凹んだ凹部と該凹部の中心部分に形成されたケース内外に通じる貫通孔とから構成されており、
ここで前記封止蓋部材を少なくともその一部が前記開口部の凹部に嵌め込んで配置し、
前記封止蓋部材の前記凹部に嵌め込まれた部分における周縁と、該周縁に接する前記矩形状ケース面の前記凹部の外周部分とを互いに溶接することを特徴とする、請求項8に記載の密閉型電池製造方法。
The opening is composed of a recess recessed from the surface of the rectangular case surface and a through-hole communicating with the inside and outside of the case formed in the central portion of the recess,
Here, at least a part of the sealing lid member is fitted in the concave portion of the opening, and is arranged.
The hermetic seal according to claim 8, wherein a peripheral edge of a portion of the sealing lid member fitted into the concave portion and a peripheral portion of the concave portion of the rectangular case surface in contact with the peripheral edge are welded to each other. Type battery manufacturing method.
前記溶接深さが相対的に深い前記矩形状ケース面の長辺側に面する部位を、前記開口部の中心から該長辺への仮想垂線を引いた場合の該仮想垂線の両側45°またはそれ以上の角度ずつの合計90°またはそれ以上の範囲に属する部位として規定し、且つ、
前記溶接深さが相対的に浅い前記矩形状ケース面の短辺側に面する部位を、前記開口部の中心から該短辺への仮想垂線を引いた場合の該仮想垂線の両側45°またはそれ以下の角度ずつの合計90°またはそれ以下の範囲に属する部位として規定することを特徴とする、請求項8または9に記載の密閉型電池製造方法。
45 ° on both sides of the virtual perpendicular when the virtual perpendicular to the long side is drawn from the center of the opening to the portion facing the long side of the rectangular case surface where the welding depth is relatively deep or Defined as a part belonging to a total range of 90 ° or more at each angle, and
45 ° on both sides of the virtual perpendicular when the virtual perpendicular to the short side is drawn from the center of the opening to the portion facing the short side of the rectangular case surface where the welding depth is relatively shallow The method for manufacturing a sealed battery according to claim 8 or 9, characterized in that it is defined as a portion belonging to a total range of 90 ° or less at each angle smaller than that.
前記封止蓋部材と前記開口部周縁部分との溶接を、前記封止蓋部材の全周に亘ってビームを照射していくビーム溶接によって実行し、
ここで前記ビーム照射による溶接に基づき前記封止蓋部材の全周に形成された一続きの溶接ビードにおいて、該ビーム照射による溶接開始時期に形成された該ビードの先端領域と該溶接の終末時期に形成された該ビートの終端領域の重なり合った部分が、前記矩形状ケース面の短辺側に面する部位に形成されるように前記ビーム溶接を行うことを特徴とする、請求項8〜10のいずれかに記載の密閉型電池製造方法。
The welding of the sealing lid member and the peripheral edge portion of the opening is performed by beam welding in which a beam is irradiated over the entire circumference of the sealing lid member,
Here, in a continuous weld bead formed on the entire circumference of the sealing lid member based on the welding by the beam irradiation, the tip end region of the bead formed at the welding start time by the beam irradiation and the end time of the welding The beam welding is performed so that the overlapping portion of the end region of the beat formed on the short side of the rectangular case surface is formed. The sealed battery manufacturing method according to any one of the above.
JP2009140847A 2009-06-12 2009-06-12 Sealed battery, method for manufacturing the same, and vehicle including the battery Active JP5365856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009140847A JP5365856B2 (en) 2009-06-12 2009-06-12 Sealed battery, method for manufacturing the same, and vehicle including the battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009140847A JP5365856B2 (en) 2009-06-12 2009-06-12 Sealed battery, method for manufacturing the same, and vehicle including the battery

Publications (2)

Publication Number Publication Date
JP2010287457A true JP2010287457A (en) 2010-12-24
JP5365856B2 JP5365856B2 (en) 2013-12-11

Family

ID=43543004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009140847A Active JP5365856B2 (en) 2009-06-12 2009-06-12 Sealed battery, method for manufacturing the same, and vehicle including the battery

Country Status (1)

Country Link
JP (1) JP5365856B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137236A1 (en) * 2011-04-01 2012-10-11 トヨタ自動車株式会社 Electricity storage device
JP2015219962A (en) * 2014-05-14 2015-12-07 トヨタ自動車株式会社 Method of manufacturing hermetically sealed battery
JP2019145376A (en) * 2018-02-22 2019-08-29 株式会社ブルーエナジー Power storage element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190657A (en) * 1997-09-24 1999-04-06 Denso Corp Square pressure-resistant case and its welding method
JPH11111246A (en) * 1997-08-06 1999-04-23 Toshiba Corp Sealed battery and manufacture thereof
JP2000021437A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd Manufacture of sealed battery
JP2003282030A (en) * 2002-03-25 2003-10-03 Sanyo Electric Co Ltd Manufacturing method of square type battery
JP2006260883A (en) * 2005-03-16 2006-09-28 Toyota Motor Corp Sealed electricity storage and manufacturing method thereof
JP2007157350A (en) * 2005-11-30 2007-06-21 Sanyo Electric Co Ltd Method of manufacturing sealed battery
JP2007207453A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Manufacturing method of square sealed battery
JP2007294308A (en) * 2006-04-26 2007-11-08 Gs Yuasa Corporation:Kk Manufacturing method of sealed battery
JP2007317577A (en) * 2006-05-27 2007-12-06 Hitachi Maxell Ltd Sealed battery
JP2009146719A (en) * 2007-12-13 2009-07-02 Hitachi Maxell Ltd Sealed battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111246A (en) * 1997-08-06 1999-04-23 Toshiba Corp Sealed battery and manufacture thereof
JPH1190657A (en) * 1997-09-24 1999-04-06 Denso Corp Square pressure-resistant case and its welding method
JP2000021437A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd Manufacture of sealed battery
JP2003282030A (en) * 2002-03-25 2003-10-03 Sanyo Electric Co Ltd Manufacturing method of square type battery
JP2006260883A (en) * 2005-03-16 2006-09-28 Toyota Motor Corp Sealed electricity storage and manufacturing method thereof
JP2007157350A (en) * 2005-11-30 2007-06-21 Sanyo Electric Co Ltd Method of manufacturing sealed battery
JP2007207453A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Manufacturing method of square sealed battery
JP2007294308A (en) * 2006-04-26 2007-11-08 Gs Yuasa Corporation:Kk Manufacturing method of sealed battery
JP2007317577A (en) * 2006-05-27 2007-12-06 Hitachi Maxell Ltd Sealed battery
JP2009146719A (en) * 2007-12-13 2009-07-02 Hitachi Maxell Ltd Sealed battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137236A1 (en) * 2011-04-01 2012-10-11 トヨタ自動車株式会社 Electricity storage device
KR101330890B1 (en) 2011-04-01 2013-11-18 도요타지도샤가부시키가이샤 Electric storage apparatus
JP5382205B2 (en) * 2011-04-01 2014-01-08 トヨタ自動車株式会社 Power storage device
US8822050B2 (en) 2011-04-01 2014-09-02 Toyota Jidosha Kabushiki Kaisha Electric storage apparatus
JP2015219962A (en) * 2014-05-14 2015-12-07 トヨタ自動車株式会社 Method of manufacturing hermetically sealed battery
JP2019145376A (en) * 2018-02-22 2019-08-29 株式会社ブルーエナジー Power storage element
JP7089895B2 (en) 2018-02-22 2022-06-23 株式会社ブルーエナジー Power storage element

Also Published As

Publication number Publication date
JP5365856B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
CN107710459B (en) Battery and battery pack
JP4881409B2 (en) Sealed battery
JP4359857B1 (en) Square battery
JP4470124B2 (en) battery
JP6538650B2 (en) Cylindrical sealed battery
US8986877B2 (en) Battery having flat terminals
CN104956516B (en) Enclosed-type battery
JP5207046B2 (en) Sealed battery and manufacturing method thereof
CN104956515B (en) Enclosed-type battery
JP4759075B2 (en) Sealed battery and vehicle equipped with the sealed battery
JP4210961B1 (en) Battery with battery case and sealing plate
CN106030855A (en) Cylindrical sealed battery and battery pack
JP2013033661A (en) Single cell and battery pack
KR101116533B1 (en) Secondary battery and method of manufacturing the same
JP2009048968A (en) Enclosed battery
US20150194640A1 (en) Secondary cell
JP4412610B2 (en) Lithium secondary battery
JP2011171078A (en) Square battery and manufacturing method thereof
JP5365856B2 (en) Sealed battery, method for manufacturing the same, and vehicle including the battery
JP2009037818A (en) Battery
JP2009048963A (en) Battery and its manufacturing method
JP2017188338A (en) Secondary battery
JP2013114991A (en) Secondary battery
JP6601342B2 (en) Lithium air battery
JP6796264B2 (en) Manufacturing method of sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R151 Written notification of patent or utility model registration

Ref document number: 5365856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151