JP2007154029A - Polyamide-imide resin - Google Patents

Polyamide-imide resin Download PDF

Info

Publication number
JP2007154029A
JP2007154029A JP2005350725A JP2005350725A JP2007154029A JP 2007154029 A JP2007154029 A JP 2007154029A JP 2005350725 A JP2005350725 A JP 2005350725A JP 2005350725 A JP2005350725 A JP 2005350725A JP 2007154029 A JP2007154029 A JP 2007154029A
Authority
JP
Japan
Prior art keywords
mol
acid
polyamide
imide resin
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005350725A
Other languages
Japanese (ja)
Inventor
Tadashi Inukai
忠司 犬飼
Masanori Nakamura
匡徳 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2005350725A priority Critical patent/JP2007154029A/en
Publication of JP2007154029A publication Critical patent/JP2007154029A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material having high heat-resistance and excellent mechanical strength and thermal dimensional stability and suitable as a flexible circuit board, endless belt for printer and copying machine and separator for non-aqueous secondary battery and electric double layer capacitor. <P>SOLUTION: The problem is solved by using naphthalenediamine (diisocyanate) as an essential component and substituting a part of preferably trimellitic anhydride of acid component with 3,3',4,4'-benzophenonetetracarboxylic acid anhydride and/or 3,3',4,4'-biphenyltetracarboxylic acid anhydride. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は新規なポリアミドイミド樹脂に関する。特に、耐熱性や機械的強度、熱膨張係数が小さく熱寸法安定性に優れ、フレキシブルプリント回路版やTAB用絶縁基材、多層プリント基板、プリンター用シームレスベルト、リチウムイオン二次電池セパレーター用多孔膜などに有用なポリアミドイミド樹脂に関する。   The present invention relates to a novel polyamideimide resin. In particular, heat resistance, mechanical strength, thermal expansion coefficient is small and excellent in thermal dimensional stability, flexible printed circuit board, insulating substrate for TAB, multilayer printed circuit board, seamless belt for printer, porous membrane for lithium ion secondary battery separator The present invention relates to a polyamide-imide resin useful for such as

現在、フレキシブルプリント回路版の絶縁フィルムには耐熱性や機械的強度に優れるポリイミド樹脂が広く応用されている。しかしながらポリイミド樹脂は溶剤に溶解しないため前駆体であるポリアミック酸の状態で成膜した後、通常400℃以上の高温で加熱、閉環する必要があることやポリアミック酸が不安定なため冷蔵保管する必要があるなどの問題があった。一方、ポリアミドイミド樹脂はN−メチルー2−ピロリドンなどの極性溶剤に溶解するため保存安定性に優れ、300℃以下の温度で乾燥できるため生産性に優れるが、耐熱性や熱寸法安定性に劣るためその用途は限られていた。
しかしながら近年、電子・情報産業の高度化、軽薄短小化に伴い、熱寸法安定性に優れた回路基板やプリンターの転写ベルトに高耐熱性と寸法安定性に優れ且つ生産性の良い耐熱樹脂への要求がますます強くなっている。
Currently, polyimide resins having excellent heat resistance and mechanical strength are widely applied to insulating films for flexible printed circuit boards. However, since polyimide resin does not dissolve in a solvent, it must be heated and closed at a high temperature of 400 ° C or higher after film formation in the state of polyamic acid, which is a precursor, and refrigerated storage is necessary because polyamic acid is unstable. There were problems such as. On the other hand, polyamideimide resin is excellent in storage stability because it is dissolved in a polar solvent such as N-methyl-2-pyrrolidone, and is excellent in productivity because it can be dried at a temperature of 300 ° C. or less, but is inferior in heat resistance and thermal dimensional stability. Therefore, its use was limited.
However, in recent years, with the advancement of electronics and information industry, and the reduction in size and weight, circuit boards and printer transfer belts with excellent thermal dimensional stability can be used as heat resistant resins with high heat resistance, excellent dimensional stability and good productivity. The demand is getting stronger.

本発明はポリアミドイミド樹脂の上記欠点を改良して、耐熱性や熱寸法安定性及び機械的強度に優れ、回路板絶縁基材やプリンター用シームレスベルト、耐熱多孔膜に有用な樹脂を提供することを目的とする。   The present invention improves the above-mentioned drawbacks of polyamide-imide resin, and provides a resin that is excellent in heat resistance, thermal dimensional stability and mechanical strength, and useful for circuit board insulating substrates, seamless belts for printers, and heat-resistant porous membranes. With the goal.

本発明者は上記目的を達成するために、鋭意検討を重ねた結果、本発明に到達した。即ち本発明はアミン残基にナフタレン骨格を含有し、ガラス転移温度が350℃以上、熱膨張係数が30ppm以下で引っ張り弾性率が4500MPa以上のポリアミドイミド樹脂に関するものである。   As a result of intensive studies to achieve the above object, the present inventor has reached the present invention. That is, the present invention relates to a polyamide-imide resin containing a naphthalene skeleton in an amine residue, having a glass transition temperature of 350 ° C. or higher, a thermal expansion coefficient of 30 ppm or less, and a tensile elastic modulus of 4500 MPa or more.

本発明は、樹脂骨格に剛直なナフタレン構造を導入することによって、耐熱性や強靭性を向上させて熱膨張係数を低下させ高密度配線に適したフレキシブルプリント回路版、寸法安定性に優れたプリンター用定着ベルト、中間転写ベルトやリチウムイオン二次電池用耐熱セパレーターに有用な材料を提供できる。   The present invention introduces a rigid naphthalene structure into a resin skeleton, thereby improving heat resistance and toughness, reducing the thermal expansion coefficient, and a flexible printed circuit board suitable for high-density wiring, and a printer with excellent dimensional stability. Materials useful for fixing belts, intermediate transfer belts and heat-resistant separators for lithium ion secondary batteries can be provided.

以下本発明を詳細に説明する。
一般に、ポリアミドイミド樹脂の合成はトリメリット酸クロリドまたは無水物とジアミンまたはジイソシアネートをN−メチルー2−ピロリドンなどの極性有機溶剤中で室温または加熱下攪拌することにより容易に製造することができる。
The present invention will be described in detail below.
In general, the polyamideimide resin can be easily synthesized by stirring trimellitic acid chloride or anhydride and diamine or diisocyanate in a polar organic solvent such as N-methyl-2-pyrrolidone at room temperature or under heating.

本発明のポリアミドイミド系樹脂の合成に用いられる酸成分は主としてトリメリット酸無水物であるが、その一部を他の多塩基酸またはその無水物に置き換えることができる。例えば、ピロメリット酸、ビフェニルテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ビフェニルエーテルテトラカルボン酸、エチレングリコールアンヒドロビストリメリテート、プロピレングリコールアンヒドロビストリメリテート等のテトラカルボン酸及びこれらの無水物を共重合することによって達成される。これらの中では反応性、耐熱性、寸法安定性などの点から、3,3’、4,4’−ベンゾフェノンテトラカルボン酸無水物、3,3’、4,4’−ビフェニルテトラカルボン酸無水物が好ましい。   Although the acid component used for the synthesis of the polyamideimide resin of the present invention is mainly trimellitic anhydride, a part thereof can be replaced with other polybasic acid or anhydride thereof. For example, tetracarboxylic acids such as pyromellitic acid, biphenyl tetracarboxylic acid, biphenyl sulfone tetracarboxylic acid, benzophenone tetracarboxylic acid, biphenyl ether tetracarboxylic acid, ethylene glycol anhydrobis trimellitate, propylene glycol anhydro bis trimellitate and the like This is accomplished by copolymerizing the anhydrides. Among these, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic acid anhydride are preferable in terms of reactivity, heat resistance, dimensional stability, and the like. Things are preferred.

トリメリット酸無水物と3,3’、4,4’−ベンゾフェノンテトラカルボン酸無水物、3,3’、4,4’−ビフェニルテトラカルボン酸無水物とを用いる場合の比率はトリメリット酸無水物が50〜80モル%、ベンゾフェノンテトラカルボン酸無水物が10〜40モル%、3,3’、4,4’−ビフェニルテトラカルボン酸無水物が0〜30モル%の範囲が好ましい。トリメリット酸無水物が50モル%以下、3,3’、4,4’−ベンゾフェノンテトラカルボン酸無水物が40モル%以上、3,3’、4,4’−ビフェニルテトラカルボン酸無水物が30モル%以上では耐熱性は向上するが、熱膨張係数がむしろ低下したり、溶剤溶解性が低下して成型加工性が悪くなる。また、トリメリット酸無水物が80モル%以上では耐熱性や寸法安定性が本目的に対して不足する。   The ratio of trimellitic anhydride to 3,3 ′, 4,4′-benzophenonetetracarboxylic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic anhydride is trimellitic anhydride Preferably, the product is in the range of 50 to 80 mol%, benzophenone tetracarboxylic anhydride is 10 to 40 mol%, and 3,3 ', 4,4'-biphenyltetracarboxylic anhydride is 0 to 30 mol%. Trimellitic anhydride is 50 mol% or less, 3,3 ′, 4,4′-benzophenone tetracarboxylic anhydride is 40 mol% or more, 3,3 ′, 4,4′-biphenyltetracarboxylic anhydride is If it is 30 mol% or more, the heat resistance is improved, but the thermal expansion coefficient is rather lowered, or the solvent solubility is lowered and the moldability is deteriorated. Further, when the trimellitic anhydride is 80 mol% or more, heat resistance and dimensional stability are insufficient for this purpose.

また、本発明のポリアミドイミド樹脂の特性を損なわない範囲でシュウ酸、アジピン酸、マロン酸、セバチン酸、アゼライン酸、ドデカンジカルボン酸、ジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリル−ブタジエン)、ジカルボキシポリ(スチレンーブタジエン)等の脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、4,4’−ジシクロヘキシルメタンジカルボン酸、ダイマー酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。これらの中では各種基材への密着性や溶剤溶解性の点からはダイマー酸やアクリロニトリルブタジエン系ジカルボン酸が好ましい。   In addition, oxalic acid, adipic acid, malonic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, dicarboxypolybutadiene, dicarboxypoly (acrylonitrile-butadiene), dicarboxypoly, as long as the properties of the polyamideimide resin of the present invention are not impaired. Aliphatic dicarboxylic acids such as (styrene-butadiene), 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 4,4′-dicyclohexylmethanedicarboxylic acid, alicyclic dicarboxylic acids such as dimer acid, terephthalic acid And aromatic dicarboxylic acids such as isophthalic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid and naphthalenedicarboxylic acid. Among these, dimer acid and acrylonitrile butadiene dicarboxylic acid are preferable from the viewpoint of adhesion to various base materials and solvent solubility.

また、酸成分の一部をグリコールに置き換えてウレタン基を分子内に導入することもできる。グリコールとしてはエチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサンジオール等のアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコールや上記ジカルボン酸の1種又は2種以上と上記グリコールの1種又は2種以上とから合成される末端水酸基のポリエステル等が挙げられ、これらの中では基材への密着性や溶剤溶解性の点からポリエチレングリコール、末端水酸基のポリエステルが好ましい。また、これらの数平均分子量は500以上が好ましく、1000以上がより好ましい。上限は特に限定されないが8000未満が好ましい。   In addition, a urethane group can be introduced into the molecule by replacing part of the acid component with glycol. Examples of glycols include alkylene glycols such as ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, and hexanediol, polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, and one or more of the above dicarboxylic acids. And a terminal hydroxyl group polyester synthesized from one or more of the above-mentioned glycols. Among these, polyethylene glycol and a terminal hydroxyl group polyester are preferable in terms of adhesion to a substrate and solvent solubility. . Moreover, these number average molecular weights are preferably 500 or more, and more preferably 1000 or more. The upper limit is not particularly limited, but is preferably less than 8000.

本発明のポリアミドイミド樹脂の合成に用いられるジアミン(ジイソシアネート)成分は、ナフタレンジアミン(ジイソシアネート)が必須である。但し、本発明の目的を損なわない範囲でエチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等の脂肪族ジアミン及びこれらのジイソシアネート、1,4−シクロヘキサンジアミン、1,3−シクロヘキサンジアミン、ジシクロヘキシルメタンジアミン等の脂環族ジアミン及びこれらのジイソシアネート、m−フェニレンジアミン、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、ベンジジン、3,3‘−ジメチルベンジジン、キシリレンジアミン、等の芳香族ジアミン及びこれらのジイソシアネート等が挙げられ、これらの中では反応性、コスト、溶剤溶解性の点からジアミノジフェニルメタン、3,3’−ジメチルベンジジン、イソホロンジアミン、ジシクロヘキシルメタンジアミン及びこれらのジイソシアネートが好ましい。
ナフタレンジアミン(ジイソシアネート)以外のジアミン(ジイソシアネート)は全体の50モル%以下、好ましくは30モル%以下である。50モル%以上では耐熱性や寸法安定性が低下する。
Naphthalenediamine (diisocyanate) is essential for the diamine (diisocyanate) component used in the synthesis of the polyamideimide resin of the present invention. However, aliphatic diamines such as ethylenediamine, propylenediamine, and hexamethylenediamine and alicyclic rings such as these diisocyanates, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, and dicyclohexylmethanediamine, as long as the object of the present invention is not impaired. Diamines and their diisocyanates, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, benzidine, 3,3′-dimethyl Examples thereof include aromatic diamines such as benzidine and xylylenediamine, and diisocyanates thereof. Among these, diaminodiphenylmethane, 3,3′-dimethylbenzidine, and the like in terms of reactivity, cost, and solvent solubility. Isophorone diamine, dicyclohexylmethane diamines and these diisocyanates are preferred.
Diamine (diisocyanate) other than naphthalenediamine (diisocyanate) is 50 mol% or less, preferably 30 mol% or less of the total. If it is 50 mol% or more, the heat resistance and dimensional stability are lowered.

本発明に用いるポリイミド系樹脂はN,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン、γ−ブチロラクトン等の極性溶剤中、室温又は60〜200℃に加熱しながら攪拌することで容易に製造することができる。この場合、必要に応じてトリエチルアミン、ジエチレントリアミン等のアミン類、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、ナトリウムメトキシド等のアルカリ金属塩等を触媒として用いることもできる。   The polyimide resin used in the present invention is heated at room temperature or 60 to 200 ° C. in a polar solvent such as N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, and γ-butyrolactone. It can be easily produced by stirring while stirring. In this case, amines such as triethylamine and diethylenetriamine, alkali metal salts such as sodium fluoride, potassium fluoride, cesium fluoride, sodium methoxide, and the like can be used as a catalyst as necessary.

本発明のナフタレン構造が導入されたポリアミドイミド樹脂はその剛直な構造に基づき、従来のポリアミドイミド樹脂に比べて高いガラス転移温度及び低い熱膨張係数を示し、耐熱性や寸法安定性が大きく改良されている。
従って、本発明のポリアミドイミド樹脂は高密度配線基板の絶縁材料に、本ポリアミドイミド樹脂に導電材を配合した溶液から成型されたシームレスベルトはプリンターの転写ベルトに、また本ポリアミドイミド樹脂溶液から湿式製膜して得られる多孔膜はリチウムイオン二次電池やキャパシタ用耐熱セパレーター等に好適な材料となる。
The polyamide-imide resin with the naphthalene structure of the present invention is based on its rigid structure, and exhibits a high glass transition temperature and a low coefficient of thermal expansion compared to conventional polyamide-imide resins, greatly improving heat resistance and dimensional stability. ing.
Therefore, the polyamide-imide resin of the present invention is wet from the polyamide-imide resin solution, the seamless belt molded from the solution in which the conductive material is mixed with the polyamide-imide resin as the insulating material of the high-density wiring board, and from the polyamide-imide resin solution. The porous film obtained by film formation is a suitable material for lithium ion secondary batteries, heat-resistant separators for capacitors, and the like.

以下、実施例で本発明を更に詳細に説明するが、本発明はこれらの実施例で制限されるものではない。
尚、実施例中の測定値は以下の方法で測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by these Examples.
In addition, the measured value in an Example was measured with the following method.

(1)対数粘度
ポリアミドイミド樹脂溶液を水中に投入、凝固させ、十分洗浄した後70℃で10 時間以上乾燥させたサンプル0.5gを100mlのNーメチルー2−ピロリドン に室温で溶解させた溶液をウベローデ粘度管を用いて30℃の恒温槽中で測定した 。
(2)引っ張り強伸度
ポリエステルフィルム上に樹脂溶液を塗布、100℃で10分間乾燥した後剥離し て金枠に固定して更に、250℃で1時間乾燥した約30μmのフィルムを東洋ボ ールドウイン社のテンシロンを用いて、引っ張り速度20mm/分で測定した。
(3)ガラス転移温度
引っ張り強伸度測定に用いたフィルムをアイテイ計測制御社製動的粘弾性測定装置 DVA−220を用いて、昇温速度5℃/分、周波数110Hzで測定した損失弾 性率の変曲点をガラス転移温度とした。
(4)熱膨張係数
引っ張り強伸度測定に用いたフィルムを理学社製熱機械特性測定装置Thermoflex を用い、昇温速度5℃/分で測定したときの100℃〜200℃間の寸法変化率を 熱膨張係数とした。
(5)吸水率
引っ張り試験の用いたフィルム約1gを25℃の水中に24時間浸漬したあと
表面の水分をふき取った後電子天秤で精秤する。(W1)次に同じサンプルを1 20℃の熱風乾燥機で1時間乾燥し、乾燥デシケータ中に30分静置した後再度 精秤する。(W0)吸水率は次式から求めた。
吸水率(%)=100×(W1−W0)/W1
(6)膜厚
SONY社製μメーターを用いて測定した。
(7)グロス
無端ベルトの表面に堀場製作所製グロスチェッカー(IG−320)を直接押し当 てて測定した。
(8)表面抵抗
無端ベルトを15cm□に切り取り、横河ヒューレットパッカード社HIGH R ESISTANCE METERを用いて室温で測定した。
(9)MIT
JIS C5016に準拠した測定装置を用い、幅10mmの無端ベルトに加重1 kg、先端R=0.38mmの条件で測定し、破断するまでの屈曲回数を求めた。
(10)透気度
約5cm□の多孔膜をテスター産業社製透気度測定装置を用いて室温で測定した。
(1) Logarithmic viscosity A solution obtained by dissolving a polyamideimide resin solution in water, coagulating it, thoroughly washing it and then drying it at 70 ° C. for 10 hours or more in 100 ml of N-methyl-2-pyrrolidone at room temperature. It measured in a 30 degreeC thermostat using an Ubbelohde viscosity tube.
(2) Tensile strength and elongation A resin solution is applied on a polyester film, dried at 100 ° C for 10 minutes, then peeled off, fixed to a metal frame, and further dried at 250 ° C for 1 hour to obtain a Toyo Boldwin film. Measurement was performed at a pulling speed of 20 mm / min using a Tensilon of the company.
(3) Glass transition temperature Loss elasticity measured using a dynamic viscoelasticity measuring device DVA-220 manufactured by IT Measurement Control Co., Ltd. at a heating rate of 5 ° C./min and a frequency of 110 Hz. The inflection point of the rate was taken as the glass transition temperature.
(4) Thermal expansion coefficient Dimensional change rate between 100 ° C. and 200 ° C. when the film used for measuring tensile strength and elongation was measured at a temperature rising rate of 5 ° C./min using a thermomechanical property measuring device Thermoflex manufactured by Rigaku Corporation. Was the coefficient of thermal expansion.
(5) Water absorption rate About 1 g of the film used in the tensile test was immersed in water at 25 ° C. for 24 hours, and then water on the surface was wiped off and precisely weighed with an electronic balance. (W1) Next, the same sample is dried with a hot air dryer at 120 ° C. for 1 hour, left in a desiccator for 30 minutes, and then weighed again. (W0) The water absorption was obtained from the following equation.
Water absorption (%) = 100 × (W1-W0) / W1
(6) Film thickness It measured using the micrometer made from SONY.
(7) Gloss Gloss checker (IG-320) manufactured by Horiba Seisakusho was directly pressed against the surface of the endless belt.
(8) Surface resistance The endless belt was cut into 15 cm square and measured at room temperature using Yokogawa Hewlett Packard's HIGH R EISTANCE METER.
(9) MIT
Using a measuring device compliant with JIS C5016, an endless belt having a width of 10 mm was measured under the conditions of a weight of 1 kg and a tip R = 0.38 mm, and the number of flexing until breaking was obtained.
(10) Air Permeability A porous film of about 5 cm □ was measured at room temperature using a tester industry air permeability measuring device.

[実施例1]
冷却管、窒素ガス導入管と攪拌機のついたフラスコにトリメリット酸無水物(TMA)0.7モル、3,3’、4,4’―ベンゾフェノンテトラカルボン酸無水物(BTDA)0.3モル、ナフタレンジイソシアネート(NDI)1モルとジアザビシクロウンデセン(DBU)0.01モルを固形分濃度が15%となるようにN−メチルー2−ピロリドン(NMP)と共に仕込み、80℃で約3時間反応させた。得られたポリアミドイミド樹脂の特性を表1に示す。
[Example 1]
Trimellitic anhydride (TMA) 0.7 mol, 3,3 ′, 4,4′-benzophenone tetracarboxylic anhydride (BTDA) 0.3 mol in a flask equipped with a condenser, nitrogen gas inlet tube and stirrer , 1 mol of naphthalene diisocyanate (NDI) and 0.01 mol of diazabicycloundecene (DBU) were charged together with N-methyl-2-pyrrolidone (NMP) to a solid content concentration of 15%, and at 80 ° C. for about 3 hours. Reacted. The properties of the obtained polyamideimide resin are shown in Table 1.

[実施例2]
実施例1において、TMA0.7モル、BTDA0.2モル、3,3、’、4,4’−ビフェニルテトラカルボン酸無水物(BPDA)0.1モル、NDIを1モル、BDU0.01モルとした以外は実施例1と同じ条件で重合した。得られたポリアミドイミド樹脂の特性を表1に示す。
[Example 2]
In Example 1, 0.7 mol of TMA, 0.2 mol of BTDA, 3,3 ′, 4,4′-biphenyltetracarboxylic anhydride (BPDA) 0.1 mol, 1 mol of NDI, 0.01 mol of BDU Polymerization was carried out under the same conditions as in Example 1 except that. The properties of the obtained polyamideimide resin are shown in Table 1.

[実施例3]
実施例1において、TMA0.6モル、BTDA0.4モル、NDI1モル、DBU0.01モルとした以外は実施例1と同じ条件で重合した。得られたポリアミドイミド樹脂の特性を表1に示す。
[Example 3]
In Example 1, it polymerized on the same conditions as Example 1 except having set it as TMA0.6 mol, BTDA0.4 mol, NDI1 mol, DBU0.01 mol. The properties of the obtained polyamideimide resin are shown in Table 1.

[実施例4]
実施例1において、ジイソシアネート成分をNDI0.7モル、3,3’−ジメチルー4,4’ジイソシアネートジメチル0.3モル%とした以外は実施例1と同じ条件で重合した。得られたポリアミドイミド樹脂の特性を表1に示す。
[Example 4]
In Example 1, polymerization was performed under the same conditions as in Example 1 except that the diisocyanate component was 0.7 mol of NDI and 0.3 mol% of 3,3′-dimethyl-4,4 ′ diisocyanate dimethyl. The properties of the obtained polyamideimide resin are shown in Table 1.

[実施例5]
実施例1のポリアミドイミド樹脂溶液を1/2oz圧延銅箔に膜厚が12.5μmとなるように塗布、100℃で10分乾燥後直径3インチのアルミ管にポリアミドイミド樹脂面を外層になるように固定して更に280℃で30分乾燥した。得られた銅張り積層版はカールがなく、密着力は1.2kg/cm、300℃×1分の半田浴に浸漬しても剥離や膨れが見られず、エッチングフィルムの150℃×30分処理後の収縮率は0.004%と寸法安定性に優れていた。
[Example 5]
The polyamideimide resin solution of Example 1 was applied to a 1/2 oz rolled copper foil so that the film thickness was 12.5 μm, dried at 100 ° C. for 10 minutes, and then the polyamideimide resin surface was an outer layer on an aluminum tube having a diameter of 3 inches. And then dried at 280 ° C. for 30 minutes. The obtained copper-clad laminate has no curl, adhesion is 1.2 kg / cm, and it is not peeled or swollen even when immersed in a solder bath at 300 ° C. for 1 minute. The shrinkage after the treatment was 0.004%, which was excellent in dimensional stability.

[実施例6]
実施例2のポリアミドイミド樹脂溶液100部にカーボンブラック(コロンビアンカーボン社のコンダクテックスSC)を5部配合して3本ロールミルで混練りした溶液をアルミ製の円筒状金型内に吹きつけ流延し、回転させながら150℃で30分、更に280℃で1時間乾燥させたあと、金型から剥離して厚みが90μmのベルトを得た。このベルトのMITは550回と機械的耐久性に優れ、グロスは125%、表面抵抗は5.3×1011Ω/□と表面が平滑で、電気特性に優れたプリンター及び複写機用転写ベルトが製造できた。
[Example 6]
100 parts of the polyamideimide resin solution of Example 2 and 5 parts of carbon black (Conductex SC from Colombian Carbon) were mixed and kneaded with a three-roll mill, and the solution was sprayed into an aluminum cylindrical mold. The belt was dried and rotated at 150 ° C. for 30 minutes and further at 280 ° C. for 1 hour, and then peeled from the mold to obtain a belt having a thickness of 90 μm. This belt has excellent mechanical durability of 550 times, gloss is 125%, surface resistance is 5.3 × 1011 Ω / □, and the surface is smooth, producing transfer belts for printers and copiers with excellent electrical characteristics. did it.

[実施例7]
実施例2のポリアミドイミド樹脂溶液100部に分子量400のポリエチレングリコール10部を配合した溶液を100μmのポリエステルフィルム上にギャップ50μmのアプリケータで塗布、NMPが20%の水溶液に室温で1分浸漬した後ポリエステルフィルムから剥離、水洗して室温で乾燥した。得られた多孔膜は空孔率は65%、透気度は122秒でプロピレンカーボネート浴に室温で20時間浸漬しても外観は殆ど変わらず、リチウムイオン二次電池や非水系電気二重層キャパシタのセパレーターに好適であった。
[Example 7]
A solution obtained by blending 10 parts of polyethylene glycol having a molecular weight of 400 with 100 parts of the polyamideimide resin solution of Example 2 was applied onto a 100 μm polyester film with an applicator having a gap of 50 μm, and immersed in an aqueous solution with 20% NMP at room temperature for 1 minute. The polyester film was peeled off, washed with water and dried at room temperature. The obtained porous film has a porosity of 65%, an air permeability of 122 seconds, and the appearance hardly changes even when immersed in a propylene carbonate bath at room temperature for 20 hours, and is a lithium ion secondary battery or a non-aqueous electric double layer capacitor. It was suitable for the separator.

[比較例1]
実施例1でトリメリット酸無水物を1モル、ジフェニルメタン4,4‘−ジイソシアネート1モルとした以外は実施例1と同じ条件でポリアミドイミド樹脂を合成した。得られたポリアミドイミド樹脂の特性を表1に示す。
[Comparative Example 1]
A polyamideimide resin was synthesized under the same conditions as in Example 1 except that 1 mol of trimellitic anhydride and 1 mol of diphenylmethane 4,4′-diisocyanate were used in Example 1. The properties of the obtained polyamideimide resin are shown in Table 1.

[比較例2]
実施例1の酸成分をTMA0.3モル、BTDAを0.7モルとした以外は実施例1と同じ条件で重合した。この溶液は重合の進行に伴って溶液が濁り、NMPに溶解しなかった。
[Comparative Example 2]
Polymerization was carried out under the same conditions as in Example 1 except that the acid component of Example 1 was changed to 0.3 mol of TMA and 0.7 mol of BTDA. As the polymerization progressed, the solution became cloudy and did not dissolve in NMP.

[比較例3]
比較例1のポリアミドイミド樹脂を用いて、実施例5と同じ条件で銅張り積層板を作成したが、カールが強く、エッチングフィルムの150℃×30分処理後の収縮率が0.12%と高く寸法安定性が不十分であった。
[Comparative Example 3]
A copper-clad laminate was prepared using the polyamideimide resin of Comparative Example 1 under the same conditions as in Example 5. However, the curl was strong and the shrinkage after etching at 150 ° C. for 30 minutes was 0.12%. High dimensional stability was insufficient.

[比較例4]
比較例1のポリアミドイミド樹脂を用いて実施例6と同じ方法で無端ベルトを作成した。このベルトのMITは122回で耐久性が悪く実用が困難であった。
[Comparative Example 4]
An endless belt was prepared in the same manner as in Example 6 using the polyamideimide resin of Comparative Example 1. The belt had a MIT of 122 times, and its durability was poor and practical use was difficult.

Figure 2007154029
Figure 2007154029

本発明のポリアミドイミド樹脂は機械的特性や電気特性、耐熱性、寸法安定性に優れるため、フレキシブル回路板の絶縁基材やプリンターや複写機用無端ベルト、非水系二次電池や電気二重層キャパシタ用の多孔膜に有用な材料を提供できる。   The polyamide-imide resin of the present invention is excellent in mechanical properties, electrical properties, heat resistance, and dimensional stability. Therefore, the insulating base material for flexible circuit boards, endless belts for printers and copying machines, non-aqueous secondary batteries, and electric double layer capacitors. Useful materials can be provided for porous membranes.

Claims (5)

アミン残基にナフタレン骨格を含有し、ガラス転移温度が350℃以上、熱膨張係数が30ppm以下で引っ張り弾性率が4500MPa以上のポリアミドイミド樹脂。   A polyamide-imide resin containing a naphthalene skeleton in an amine residue, having a glass transition temperature of 350 ° C. or more, a thermal expansion coefficient of 30 ppm or less, and a tensile elastic modulus of 4500 MPa or more. 酸成分がトリメリット酸50〜80モル%、3,3’、4,4’―ビフェニルテトラカルボン酸0〜30モル%、3,3’、4,4’−ベンゾフェノンテトラカルボン酸10〜40モル%からなる請求項1に記載の溶剤可溶性ポリアミドイミド樹脂。   Acid component is trimellitic acid 50-80 mol%, 3,3 ', 4,4'-biphenyltetracarboxylic acid 0-30 mol%, 3,3', 4,4'-benzophenone tetracarboxylic acid 10-40 mol The solvent-soluble polyamideimide resin according to claim 1, comprising: 請求項1または2に記載のポリアミドイミド樹脂を用いた回路基板。   A circuit board using the polyamide-imide resin according to claim 1. 請求項1または2に記載のポリアミドイミド樹脂を用いたシームレスベルト。   A seamless belt using the polyamide-imide resin according to claim 1. 請求項1または2に記載のポリアミドイミド樹脂を用いた多孔膜。   A porous film using the polyamide-imide resin according to claim 1.
JP2005350725A 2005-12-05 2005-12-05 Polyamide-imide resin Withdrawn JP2007154029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350725A JP2007154029A (en) 2005-12-05 2005-12-05 Polyamide-imide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350725A JP2007154029A (en) 2005-12-05 2005-12-05 Polyamide-imide resin

Publications (1)

Publication Number Publication Date
JP2007154029A true JP2007154029A (en) 2007-06-21

Family

ID=38238804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350725A Withdrawn JP2007154029A (en) 2005-12-05 2005-12-05 Polyamide-imide resin

Country Status (1)

Country Link
JP (1) JP2007154029A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053216A (en) * 2008-08-27 2010-03-11 Dic Corp Thermosetting resin composition
JP2013206560A (en) * 2012-03-27 2013-10-07 Tdk Corp Nonaqueous secondary battery separator
US9522995B2 (en) 2011-10-18 2016-12-20 Jsr Corporation Protective film and composition for preparing the same, slurry, and electrical storage device
JPWO2015108114A1 (en) * 2014-01-16 2017-03-23 ユニチカ株式会社 Polyamideimide solution, porous polyamideimide film, and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177200A (en) * 1999-12-17 2001-06-29 Toyobo Co Ltd Flexible printed-wiring board and its manufacturing method
WO2003072639A1 (en) * 2002-02-26 2003-09-04 Toyo Boseki Kabushiki Kaisha Polyamide-imide resin, flexible metal-clad laminate, and flexible printed wiring board
JP2003261768A (en) * 2002-03-12 2003-09-19 Hitachi Chem Co Ltd Semiconductive tubular polyamide-imide film and method for producing the same
JP2005285740A (en) * 2004-03-03 2005-10-13 Toyobo Co Ltd Porous membrane, its manufacturing method, and lithium ion secondary battery using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177200A (en) * 1999-12-17 2001-06-29 Toyobo Co Ltd Flexible printed-wiring board and its manufacturing method
WO2003072639A1 (en) * 2002-02-26 2003-09-04 Toyo Boseki Kabushiki Kaisha Polyamide-imide resin, flexible metal-clad laminate, and flexible printed wiring board
JP2003261768A (en) * 2002-03-12 2003-09-19 Hitachi Chem Co Ltd Semiconductive tubular polyamide-imide film and method for producing the same
JP2005285740A (en) * 2004-03-03 2005-10-13 Toyobo Co Ltd Porous membrane, its manufacturing method, and lithium ion secondary battery using it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053216A (en) * 2008-08-27 2010-03-11 Dic Corp Thermosetting resin composition
US9522995B2 (en) 2011-10-18 2016-12-20 Jsr Corporation Protective film and composition for preparing the same, slurry, and electrical storage device
JP2013206560A (en) * 2012-03-27 2013-10-07 Tdk Corp Nonaqueous secondary battery separator
JPWO2015108114A1 (en) * 2014-01-16 2017-03-23 ユニチカ株式会社 Polyamideimide solution, porous polyamideimide film, and method for producing the same
JP2017122243A (en) * 2014-01-16 2017-07-13 ユニチカ株式会社 Polyamide imide solution, porous polyamide imide film, and method for producing the same
KR20180075695A (en) * 2014-01-16 2018-07-04 유니티카 가부시끼가이샤 Polyamide imide solution, porous polyamide imide film, and methods for producing same
KR101874728B1 (en) * 2014-01-16 2018-07-04 유니티카 가부시끼가이샤 Polyamide imide solution, porous polyamide imide film, and methods for producing same
CN109971174A (en) * 2014-01-16 2019-07-05 尤尼吉可株式会社 Polyamideimide solution, stephanoporate polyamide acid imide film and its manufacturing method
KR102127586B1 (en) 2014-01-16 2020-06-26 유니티카 가부시끼가이샤 Polyamide imide solution, porous polyamide imide film, and methods for producing same

Similar Documents

Publication Publication Date Title
JP6936239B2 (en) Polyimide film, copper-clad laminate and circuit board
JP5834930B2 (en) Polyimide precursor aqueous solution composition and method for producing polyimide precursor aqueous solution composition
US20070009751A1 (en) Polyamic acid resin composition modified with laminate nanometer silica sheet and polyimide prepared therefrom
JP4757575B2 (en) Laminate for wiring board
JP2009091573A (en) Polyimide film producing method, and polyamic acid solution composition
JP5510545B2 (en) Method for producing polyimide film laminate, polyimide film laminate
TW200416264A (en) Polyimide film and laminate having metal layer the same
JP4757864B2 (en) Laminated body for flexible printed wiring board
KR101077405B1 (en) Laminate for wiring board
JP2005325329A (en) Polyamide-imide resin, resin composition and metal-clad laminated body using the same resin or resin composition
JP2007154029A (en) Polyamide-imide resin
JP4640409B2 (en) Metal-clad laminate
JP4901509B2 (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
JP4642664B2 (en) Laminate for wiring board
JP2009028993A (en) Laminate for wiring substrate
JP5368143B2 (en) Polyimide metal laminate and method for producing the same
JP5428172B2 (en) Method for producing polyimide film
JPWO2020022129A1 (en) Metal-clad laminate and circuit board
JP4796687B2 (en) Adhesive composition
JPH02208324A (en) Low-permittivity sheet, and laminate and multilayer circuit board prepared by using same sheet
JP7120870B2 (en) Method for producing polyimide film and method for producing metal-clad laminate
JP2021054062A (en) Polyimide film, metal-clad laminate and circuit board
JP2008031448A (en) Manufacturing method of polyimide film and manufacturing method of laminated plate
CN111093323A (en) Circuit substrate and preparation method thereof
JP2005200435A (en) Polyimide film, and metal laminated plate obtained using polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A761 Written withdrawal of application

Effective date: 20110511

Free format text: JAPANESE INTERMEDIATE CODE: A761