JP2007153636A - Dielectric porcelain - Google Patents

Dielectric porcelain Download PDF

Info

Publication number
JP2007153636A
JP2007153636A JP2005347749A JP2005347749A JP2007153636A JP 2007153636 A JP2007153636 A JP 2007153636A JP 2005347749 A JP2005347749 A JP 2005347749A JP 2005347749 A JP2005347749 A JP 2005347749A JP 2007153636 A JP2007153636 A JP 2007153636A
Authority
JP
Japan
Prior art keywords
crystal grains
dielectric constant
dielectric
ratio
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005347749A
Other languages
Japanese (ja)
Other versions
JP5094011B2 (en
Inventor
Yasuyo Kamigaki
耕世 神垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005347749A priority Critical patent/JP5094011B2/en
Publication of JP2007153636A publication Critical patent/JP2007153636A/en
Application granted granted Critical
Publication of JP5094011B2 publication Critical patent/JP5094011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric porcelain having a high dielectric constant even if the main crystal particle is a fine particle. <P>SOLUTION: The dielectric porcelain is provided with a crystal particle represented by compositional formula of Ba<SB>100-x</SB>M<SB>x</SB>TiO<SB>3</SB>(M=Ca, Er, Tb, Sm, x=0.05-0.2), wherein by allowing the barium titanate-based dielectric material to have such a composition, the ratio of R(M)/R(O) lies in a range of 0.686-0.764 when R(M) is designated to be an ionic radius of M and R(O) is designated to be an ionic radius of oxygen, wherein the ionic radii fall in such a range that the ratio of the number of main crystal particles having a domain structure caused by the spontaneous polarization against the number of the total main crystal particles in a field of view of a transmission electron microscope image where at least 10 or more of a plurality of main crystal particles exist becomes 50% or higher. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、誘電体磁器に関し、特に、微粒でありながら高誘電率の結晶粒子を有する誘電体磁器に関する。   The present invention relates to a dielectric ceramic, and more particularly, to a dielectric ceramic having fine particles and crystal grains having a high dielectric constant.

近年、電子機器の小型化、高性能化に伴い、積層セラミックコンデンサの小型化、大容量化の要求が高まってきている。このような要求に応えるために、積層セラミックコンデンサ(MLC)においては、誘電体層を薄層化することにより静電容量を高めると共に、積層数を大きくすることにより、小型・高容量化が図られている。   In recent years, with the miniaturization and high performance of electronic devices, there has been an increasing demand for miniaturization and large capacity of multilayer ceramic capacitors. In order to meet such demands, in multilayer ceramic capacitors (MLC), the dielectric layer is made thinner to increase the capacitance, and by increasing the number of layers, the size and capacity can be reduced. It has been.

ここで、誘電体層を構成する結晶粒子に関し、例えば、特許文献1によれば、高誘電率の誘電体材料として従来より用いられているBaTiOに代わり、このBaTiOのBaサイトにCa成分を固溶させた組成式Ba1−xTiO(M=Ca)で表される誘電体材料が提案されている。
特開2000−58377号公報
Here, regarding the crystal particles constituting the dielectric layer, for example, according to Patent Document 1, instead of BaTiO 3 conventionally used as a dielectric material having a high dielectric constant, a Ca component is added to the Ba site of this BaTiO 3. A dielectric material represented by a composition formula Ba 1-x M x TiO 3 (M = Ca) in which is dissolved is proposed.
JP 2000-58377 A

しかしながら、特許文献1に開示されたBa1−xTiO(M=Ca)系の誘電体材料は0.003≦x≦0.22で平均粒径が0.5μm程度の場合には最高3360という高い比誘電率が得られるものの、この誘電体材料の組成のまま結晶粒子を微粒化すると比誘電率が極端に低下してしまうという問題があった。 However, the Ba 1-x M x TiO 3 (M = Ca) -based dielectric material disclosed in Patent Document 1 is 0.003 ≦ x ≦ 0.22 and the average particle size is about 0.5 μm. Although a high relative dielectric constant of 3360 at the maximum can be obtained, there is a problem that when the crystal grains are atomized with the composition of the dielectric material, the relative dielectric constant is extremely lowered.

従って本発明は、微粒の結晶粒子であっても高誘電率のチタン酸バリウム系の結晶粒子を具備する誘電体磁器を提供することを目的とする。   Accordingly, an object of the present invention is to provide a dielectric ceramic comprising barium titanate-based crystal particles having a high dielectric constant even if they are fine crystal particles.

本願発明の誘電体磁器は、組成式がBa1−xTiO(MはCa、Er、TbおよびSmから選ばれる1種、x=0.0005〜0.002)で表される結晶粒子を具備することを特徴とする。 The dielectric ceramic of the present invention is a crystal whose composition formula is represented by Ba 1-x M x TiO 3 (M is one selected from Ca, Er, Tb and Sm, x = 0.005 to 0.002). It is characterized by comprising particles.

また上記誘電体磁器では、前記組成式で表される結晶粒子の平均粒径が0.1〜0.2μmの範囲であること、前記結晶粒子が少なくとも10個以上存在する視野における透過電子顕微鏡像内の全結晶粒子数に対して自発分極に起因するドメイン構造を有する結晶粒子数の割合が50%以上であること、そのような誘電体磁器にあっては比誘電率のAC電界依存性が1.4倍以上であることが望ましい。   In the dielectric ceramic, the average particle size of the crystal particles represented by the composition formula is in the range of 0.1 to 0.2 μm, and a transmission electron microscope image in a field where at least 10 or more of the crystal particles are present. The ratio of the number of crystal grains having a domain structure resulting from spontaneous polarization to the total number of crystal grains is 50% or more. In such a dielectric ceramic, the relative permittivity has an AC electric field dependency. It is desirable that it is 1.4 times or more.

本願発明の誘電体磁器は、組成式が、Ba1−xTiO(MはCa、Er、TbおよびSmから選ばれる1種、x=0.0005〜0.002)で表されるものであり、この場合、Mのイオン半径をR(M)、酸素のイオン半径をR(O)とすると、R(M)/R(O)比が0.686〜0.764の範囲となり、このようなイオン半径の範囲であれば、結晶粒子が少なくとも10個以上存在する視野における透過電子顕微鏡像内の全結晶粒子数に対して自発分極に起因するドメイン構造を有する結晶粒子数の割合が50%以上となる。 The dielectric ceramic of the present invention has a composition formula represented by Ba 1-x M x TiO 3 (M is one selected from Ca, Er, Tb and Sm, x = 0.005 to 0.002). In this case, if the ionic radius of M is R (M) and the ionic radius of oxygen is R (O), the ratio of R (M) / R (O) is in the range of 0.686 to 0.764. In such a range of ionic radii, the ratio of the number of crystal grains having a domain structure resulting from spontaneous polarization to the total number of crystal grains in a transmission electron microscope image in a field where at least 10 crystal grains exist Is 50% or more.

そのため本願発明の誘電体材料は比誘電率の高いAC依存性を有するものとなり、例え結晶粒子の平均粒径が0.1〜0.2μmの範囲であっても高誘電率を達成でき、誘電体層が薄層化された小型高容量の積層セラミックコンデンサに好適となる。   Therefore, the dielectric material of the present invention has AC dependency with a high relative dielectric constant, and can achieve a high dielectric constant even if the average particle diameter of crystal grains is in the range of 0.1 to 0.2 μm. This is suitable for a small-sized and high-capacity monolithic ceramic capacitor having a thin body layer.

本願発明の誘電体磁器は、Ba1−xTiO(MはCa、Er、TbおよびSmから選ばれる1種、x=0.0005〜0.002)で表わされる結晶粒子を具備することを特徴とする。 The dielectric ceramic of the present invention comprises crystal grains represented by Ba 1-x M x TiO 3 (M is one selected from Ca, Er, Tb and Sm, x = 0.005 to 0.002). It is characterized by that.

Mは、高誘電率および比誘電率のAC電界依存性がより高いという点で、特に、CaおよびTbがより好ましい。CaおよびTbを固溶させたものはドメイン構造を有する結晶粒子の存在割合が60%以上となり、誘電体磁器中において高誘電率となる結晶粒子の存在割合を高くできるためである。   In particular, M is more preferably Ca or Tb in that the high dielectric constant and the relative dielectric constant have a higher AC electric field dependency. The reason why Ca and Tb are dissolved is that the existence ratio of crystal grains having a domain structure is 60% or more, and the existence ratio of crystal grains having a high dielectric constant in a dielectric ceramic can be increased.

上記組成においてxは0.0005〜0.001がより望ましい。xが0.0005以上であると微粒の結晶粒子に対して固溶する元素によりドメイン領域を高められるという利点がある。xが0.001以下であると、チタン酸バリウム結晶粒子中に多くのドメイン構造を形成できるという利点がある。xが0.0005より低い場合にはチタン酸バリウムへの元素の固溶量が少なくなり結晶粒子がドメイン構造を形成できなくなり低誘電率となる。xが0.002より多いとチタン酸バリウムの結晶粒子においてドメイン構造を有する結晶粒子を多く形成できないことから低い比誘電率となる。   In the above composition, x is more preferably 0.0005 to 0.001. When x is 0.0005 or more, there is an advantage that the domain region can be enhanced by an element that dissolves in fine crystal grains. When x is 0.001 or less, there is an advantage that many domain structures can be formed in the barium titanate crystal particles. When x is lower than 0.0005, the solid solution amount of the element in barium titanate decreases, and the crystal grains cannot form a domain structure, resulting in a low dielectric constant. When x is more than 0.002, since a large number of crystal grains having a domain structure cannot be formed in the barium titanate crystal grains, the dielectric constant is low.

また、本願発明に係る結晶粒子の平均粒径は0.1〜0.2μmの範囲であること望ましい。結晶粒子の平均粒径が0.1μm以上、特に、0.15μm以上であると、結晶粒子の正方晶性が高まり高誘電率化でき、また比誘電率のAC電界依存性を高められるという利点がある。結晶粒子の平均粒径が0.2μm以下であると、誘電体層を薄層化しても多数の粒界を形成できることから粒界による絶縁性の向上に寄与できるという利点がある。   The average particle size of the crystal particles according to the present invention is preferably in the range of 0.1 to 0.2 μm. When the average particle size of the crystal particles is 0.1 μm or more, particularly 0.15 μm or more, the tetragonal nature of the crystal particles can be increased, the dielectric constant can be increased, and the dependency of the relative permittivity on the AC electric field can be increased. There is. If the average grain size of the crystal grains is 0.2 μm or less, a large number of grain boundaries can be formed even if the dielectric layer is thinned, so that there is an advantage that it is possible to contribute to the improvement of insulation by the grain boundaries.

本願発明の誘電体磁器の組成によれば、Mのイオン半径をR(M)、酸素のイオン半径をR(O)としたときに、R(M)/R(O)比が0.686〜0.764の範囲となる。   According to the composition of the dielectric ceramic of the present invention, when the ion radius of M is R (M) and the ion radius of oxygen is R (O), the ratio of R (M) / R (O) is 0.686. It becomes the range of -0.764.

このイオン半径比については以下のように説明できる。即ち、本願発明の誘電体磁器が分類されるイオン結晶においては、陽イオンと陰イオンの半径比は幾何学的に計算でき理論的イオン半径比が与えられる。イオン半径比が理論的イオン半径比より小さい場合は、共有結合性が要求され、ある値より小さいイオンは安定に格子に入る事が出来ない。R(M)/R(O)が0.686より小さい場合においては、立方晶(もしくは正方晶)ペロブスカイト構造として不安定の為、固溶が困難となり、所望の固溶体を形成することが困難となる。   This ion radius ratio can be explained as follows. That is, in an ionic crystal in which the dielectric ceramic according to the present invention is classified, the radius ratio between the cation and the anion can be calculated geometrically, and a theoretical ion radius ratio is given. When the ion radius ratio is smaller than the theoretical ion radius ratio, covalent bonding is required, and ions smaller than a certain value cannot stably enter the lattice. When R (M) / R (O) is smaller than 0.686, the cubic (or tetragonal) perovskite structure is unstable, so that it is difficult to form a solid solution and it is difficult to form a desired solid solution. Become.

一方、R(M)/R(O)が0.764より大きい場合は、容易に固溶置換し、結晶格子に入るが、イオン結合性が大きい為、置換の効果が少なく、変位分極を向上させることが困難である。   On the other hand, when R (M) / R (O) is greater than 0.764, it is easily replaced by solid solution and enters the crystal lattice. However, since the ionic bond is large, the substitution effect is small and the displacement polarization is improved. It is difficult to do.

上記イオン半径比を持つ元素によってチタン酸バリウムの一部を置換すると、理論的イオン半径比より小さいイオンの為、共有結合性が発生し、自発分極を誘起しやすくなる。   When a part of barium titanate is replaced by the element having the ionic radius ratio, since the ions are smaller than the theoretical ionic radius ratio, the covalent bond is generated and the spontaneous polarization is easily induced.

また、イオン半径の小さな元素が導入される事で、局所的な歪場を発生し、結晶格子が変形しやすく、そのため結晶構造の対称性が低下しやすくなり、自発分極の発生を容易にする。格子変形を伴う自発分極の向上により粒径が小さな粒子であってもドメイン構造を容易に生成する。なお本願発明に係る元素Mのイオン半径はペロブスカイト構造に基づき12配位のイオン半径(例えば、セラミックスの化学 応用化学シリーズ2(柳田著 丸善株式会社)より示される)である。   In addition, by introducing an element with a small ion radius, a local strain field is generated, and the crystal lattice is easily deformed. Therefore, the symmetry of the crystal structure is easily lowered, and the generation of spontaneous polarization is facilitated. . Even if the particle size is small, the domain structure can be easily generated by improving the spontaneous polarization accompanied by lattice deformation. The ionic radius of the element M according to the present invention is a 12-coordinate ionic radius based on the perovskite structure (for example, shown by Ceramic Applied Chemistry Series 2 (by Yanagida, Maruzen Co., Ltd.)).

また、上述した元素の置換量については、いずれも少量でよく、このような少量の置換による歪場により自発分極を誘起できる。置換量が多い場合は、相転移の振る舞いまで変えてしまい、高誘電率と平坦な温度特性を実現できなくなる。   In addition, any of the above-described element substitution amounts may be small, and spontaneous polarization can be induced by a strain field caused by such a small substitution. When the substitution amount is large, the behavior of the phase transition is changed, and a high dielectric constant and a flat temperature characteristic cannot be realized.

図1は、本願発明の誘電体磁器について、透過電子顕微鏡観察において見られる自発分極に起因するドメイン構造を有する結晶粒子を表した模式図である。   FIG. 1 is a schematic view showing crystal grains having a domain structure resulting from spontaneous polarization observed in a transmission electron microscope, with respect to the dielectric ceramic of the present invention.

そして、本願発明の誘電体磁器は、上述のように、チタン酸バリウムに対して上記イオン半径比の元素を極微量固溶置換することにより、結晶粒子1が少なくとも10個以上存在する視野における透過電子顕微鏡像内の全結晶粒子数に対して自発分極に起因するドメイン構造3を有する結晶粒子数の割合を50%以上とすることができ、このため本願発明では、微粒であっても高い比誘電率が得られ、さらには比誘電率のAC電界依存性が1.4倍以上にまで大きくできるという効果が得られる。   The dielectric ceramic according to the present invention, as described above, transmits in a field of view where at least 10 crystal grains 1 are present by substituting the element having the ionic radius ratio with barium titanate in a very small amount as a solid solution. The ratio of the number of crystal grains having the domain structure 3 resulting from spontaneous polarization to the total number of crystal grains in the electron microscope image can be 50% or more. A dielectric constant can be obtained, and further, an effect that the AC electric field dependency of the relative dielectric constant can be increased to 1.4 times or more can be obtained.

この結果、上述した本願発明の誘電体磁器を誘電体層として用いると、その高い比誘電率ならびに比誘電率の高いAC依存性に起因して、より薄層、高積層化される積層セラミックコンデンサに好適なものとなる。   As a result, when the above-described dielectric ceramic of the present invention is used as a dielectric layer, the multilayer ceramic capacitor can be made thinner and highly laminated due to its high relative permittivity and high AC dependency of relative permittivity. It is suitable for.

作製したチタン酸バリウム原料粉末の組成と合成温度を表1に示した。表1に示すように、BaCO、TiO、SrCO、CaCOおよび各種希土類元素の酸化物を組成式(Ba1−x)TiOに基づいて所定量混合し、直径5mmのジルコニアボールとIPAを溶媒として用いて、15時間混合し、乾燥粉体を表1に示す温度で2時間、大気中1050℃での熱処理を行った。 Table 1 shows the composition and synthesis temperature of the prepared barium titanate raw material powder. As shown in Table 1, BaCO 3 , TiO 2 , SrCO 3 , CaCO 3 and oxides of various rare earth elements are mixed in a predetermined amount based on the composition formula (Ba 1-x M x ) TiO 3 , and zirconia having a diameter of 5 mm is obtained. The balls and IPA were used as solvents and mixed for 15 hours, and the dry powder was heat treated at 1050 ° C. in the atmosphere for 2 hours at the temperature shown in Table 1.

用いたチタン酸バリウム系合成原料の平均粒径、焼結助剤とその添加量、焼成温度および誘電体磁器の特性を表2に示した。焼結助剤としてBaSiOをチタン酸バリウム系合成原料100質量部に対して1.2質量部添加して用いた。なお本実施例では、従来のニッケル内部電極コンデンサ用の誘電体磁器に用いられているMgO、YおよびMnCOを主結晶粒子の粒成長や耐還元性を高めるために用いた。チタン酸バリウム系粉末100質量部に対してMgOは0.2質量部、Yは0.5質量部、MnCOは0.16質量部とした。 Table 2 shows the average particle diameter of the barium titanate-based synthetic raw material used, the sintering aid and its addition amount, the firing temperature, and the characteristics of the dielectric ceramic. As a sintering aid, 1.2 parts by mass of BaSiO 3 was added to 100 parts by mass of the barium titanate synthetic raw material. In this example, MgO, Y 2 O 3 and MnCO 3 used in conventional dielectric ceramics for nickel internal electrode capacitors were used to increase the grain growth and reduction resistance of the main crystal grains. MgO was 0.2 parts by mass, Y 2 O 3 was 0.5 parts by mass, and MnCO 3 was 0.16 parts by mass with respect to 100 parts by mass of the barium titanate powder.

次に、上記混合粉末を直径5mmのジルコニアボールを用いて、溶媒としてトルエンとアルコールとの混合溶媒を添加し湿式混合した。   Next, the mixed powder was wet-mixed by adding a mixed solvent of toluene and alcohol as a solvent using zirconia balls having a diameter of 5 mm.

次いで、湿式混合した粉末にポリビニルブチラール樹脂およびトルエン・アルコールの混合溶媒を添加し、同じく直径5mmのジルコニアボールを用いて湿式混合して、直径16mm、厚み1mmのタブレット状に成形し、これを還元雰囲気中にて焼成して試料を作製した。この条件は、昇温速度が300℃/hの昇温速度で、水素−窒素中、表2に示す温度にて2時間とし、続いて300℃/hの降温速度で1000℃まで冷却し、窒素雰囲気中1000℃で4時間再酸化処理をし、300℃/hの降温速度で冷却し、試料である誘電体磁器を作製した。   Next, a mixed solvent of polyvinyl butyral resin and toluene / alcohol is added to the wet-mixed powder, and wet-mixed using the same zirconia balls with a diameter of 5 mm to form a tablet with a diameter of 16 mm and a thickness of 1 mm. A sample was prepared by firing in an atmosphere. This condition is that the rate of temperature increase is 300 ° C./h, the temperature shown in Table 2 is 2 hours in hydrogen-nitrogen, and then cooled to 1000 ° C. at a rate of temperature decrease of 300 ° C./h. A re-oxidation treatment was performed at 1000 ° C. for 4 hours in a nitrogen atmosphere, and the sample was cooled at a temperature decrease rate of 300 ° C./h to produce a dielectric ceramic as a sample.

次に、上記誘電体磁器を構成する結晶粒子の平均粒径は走査型電子顕微鏡(SEM)により求めた。研磨面をエッチングし、電子顕微鏡写真内の結晶粒子を任意に20個選択し、インターセプト法により各結晶粒子の最大径を求め、それらの平均値(D50)を求めた。   Next, the average particle diameter of the crystal particles constituting the dielectric ceramic was determined by a scanning electron microscope (SEM). The polished surface was etched, 20 crystal particles in the electron micrograph were arbitrarily selected, the maximum diameter of each crystal particle was determined by the intercept method, and the average value (D50) was determined.

次に、上記誘電体磁器を厚さ400μmに研磨加工し、試料上下面にスパッタ法によりAu電極を形成した。電気特性は、LCRメータを用いて−25℃〜85℃の温度範囲で、AC:1V、測定周波数:1kHzの条件で静電容量を測定し比誘電率を算出した。   Next, the dielectric ceramic was polished to a thickness of 400 μm, and Au electrodes were formed on the upper and lower surfaces of the sample by sputtering. For the electrical characteristics, the relative dielectric constant was calculated by measuring the capacitance under the conditions of AC: 1 V and measurement frequency: 1 kHz in the temperature range of −25 ° C. to 85 ° C. using an LCR meter.

比誘電率の温度変化率TCCを、下記式:TCC(%)={ε(T)−ε(20℃)}×100/ε(20℃)より求めた。20℃を基準温度としている。   The temperature change rate TCC of the relative dielectric constant was determined from the following formula: TCC (%) = {ε (T) −ε (20 ° C.)} × 100 / ε (20 ° C.). The reference temperature is 20 ° C.

また、比誘電率のAC電圧依存性は、バーチャルグランド方式による分極−電界曲線を100Hzにて測定し、曲線の傾きから誘電率を算出し求めた。   Further, the AC voltage dependence of the relative permittivity was obtained by measuring a polarization-electric field curve by a virtual ground method at 100 Hz and calculating the permittivity from the slope of the curve.

結晶粒子におけるドメインの存在は、透過型電子顕微鏡観察における明視野像観察において、電子線に対する試料面の傾きを変える事で、同一視野内での観察条件を変え、ドメインの存在割合を求めた。結果を表2に示した。

Figure 2007153636
The presence of domains in crystal grains was determined by changing the observation conditions in the same field of view by changing the tilt of the sample surface with respect to the electron beam in bright field image observation in transmission electron microscope observation. The results are shown in Table 2.
Figure 2007153636

Figure 2007153636
Figure 2007153636

表2の結果から明らかなように、イオン半径比が0.664の元素を固溶させたチタン酸バリウム系原料を用いた試料No.12においては、ドメインの存在割合が22%と小さく、AC電界増大における比誘電率増大率が小さかった。この為、AC電界1V/μmでの比誘電率は2350と小さくなった。また、イオン半径比が0.8の元素で置換したチタン酸バリウム系原料を用いた試料No.13においては、ドメイン構造を示す結晶粒子の存在割合が17%と小さく、またAC電界増大における比誘電率増大率が小さく、AC電界1V/μmでの比誘電率は2400と小さかった。   As is apparent from the results in Table 2, the sample No. using a barium titanate-based material in which an element having an ionic radius ratio of 0.664 was dissolved. In No. 12, the existence ratio of the domain was as small as 22%, and the relative dielectric constant increase rate when the AC electric field was increased was small. For this reason, the relative dielectric constant at an AC electric field of 1 V / μm was as small as 2350. Sample No. using a barium titanate-based raw material substituted with an element having an ionic radius ratio of 0.8. In No. 13, the abundance ratio of the crystal grains showing the domain structure was as small as 17%, the relative dielectric constant increase rate when the AC electric field was increased, and the relative dielectric constant when the AC electric field was 1 V / μm was as low as 2400.

固溶成分がLaである試料No.14ではドメイン構造を示す結晶粒子の存在割合が13%と低く、比誘電率が2800と低く、この場合、比誘電率の温度特性も−20%および−25%と大きかった。   Sample No. with a solid solution component of La. In No. 14, the existence ratio of crystal grains having a domain structure was as low as 13% and the relative dielectric constant was as low as 2800. In this case, the temperature characteristics of the relative dielectric constant were as large as −20% and −25%.

また、固溶成分がSrである試料No.15においてもドメイン構造を示す結晶粒子の存在割合が15%と低く、比誘電率が2150と低かった。   Sample No. whose solid solution component is Sr. Also in No. 15, the existence ratio of the crystal grains showing the domain structure was as low as 15%, and the relative dielectric constant was as low as 2150.

また、チタン酸バリウムに置換元素を加えない磁器においては、試料No.16にあるように、ドメイン構造を示す結晶粒子の存在割合が15%と小さく、比誘電率も1900と小さかった。   For porcelain in which no substitution element is added to barium titanate, sample no. As shown in FIG. 16, the existence ratio of the crystal particles showing the domain structure was as small as 15% and the relative dielectric constant was as small as 1900.

また、添加元素量の多い試料No.17においては、比誘電率の温度特性が変化し、温度変化率が−12%および−32%と大きかった。   In addition, sample No. In No. 17, the temperature characteristic of the relative dielectric constant was changed, and the temperature change rate was as large as −12% and −32%.

これに対して、イオン半径比が0.686〜0.764である元素を固溶したチタン酸バリウム系原料を用いた本願発明の誘電体磁器である試料No.1〜11においては、ドメインの存在割合が56%以上であり、何れも比誘電率が2700以上であり、また、比誘電率のAC電界依存性が1.4倍と大きく、且つ比誘電率の温度変化率も±10%以下と優れたものであった。   On the other hand, Sample No. which is a dielectric ceramic of the present invention using a barium titanate-based raw material in which an element having an ionic radius ratio of 0.686 to 0.764 is dissolved. 1 to 11, the existence ratio of the domain is 56% or more, the relative dielectric constant is 2700 or more, the AC electric field dependence of the relative dielectric constant is as large as 1.4 times, and the relative dielectric constant The rate of change in temperature was also as excellent as ± 10% or less.

特に、結晶粒子の平均粒径が0.15〜0.2μmの範囲の試料No.1〜4、7〜8、10、11では、比誘電率のAC電界依存性が1.6倍と大きく比誘電率が3000以上となり、かつ比誘電率の温度特性が−8%以内と小さいものであった。   In particular, sample Nos. In which the average particle size of the crystal particles is in the range of 0.15 to 0.2 μm. In 1-4, 7-8, 10, and 11, the AC electric field dependence of the relative permittivity is as large as 1.6 times, the relative permittivity is 3000 or more, and the temperature characteristics of the relative permittivity is as low as −8% or less. It was a thing.

本願発明の誘電体磁器について、透過電子顕微鏡観察において見られる自発分極に起因するドメイン構造を有する結晶粒子を表した模式図である。It is the schematic diagram showing the crystal grain which has the domain structure resulting from the spontaneous polarization seen in transmission electron microscope observation about the dielectric material ceramic of this invention.

符号の説明Explanation of symbols

1 結晶粒子
3 ドメイン構造
1 Crystal grain 3 Domain structure

Claims (4)

組成式がBa1−xTiO(MはCa、Er、TbおよびSmから選ばれる1種、x=0.0005〜0.002)で表される結晶粒子を具備することを特徴とする誘電体磁器。 Characterized by comprising crystal grains represented by the composition formula Ba 1-x M x TiO 3 (M is one selected from Ca, Er, Tb and Sm, x = 0.005 to 0.002). Dielectric porcelain. 前記結晶粒子の平均粒径が0.1〜0.2μmの範囲である請求項1に記載の誘電体磁器。 The dielectric ceramic according to claim 1, wherein an average particle diameter of the crystal particles is in a range of 0.1 to 0.2 μm. 前記結晶粒子が少なくとも10個以上存在する視野における透過電子顕微鏡像内の全結晶粒子数に対して自発分極に起因するドメイン構造を有する結晶粒子数の割合が50%以上である請求項1または2に記載の誘電体磁器。 The ratio of the number of crystal grains having a domain structure due to spontaneous polarization to the total number of crystal grains in a transmission electron microscope image in a field of view in which at least 10 crystal grains are present is 50% or more. Dielectric porcelain described in 1. 比誘電率のAC電界依存性が1.4倍以上である請求項1乃至3のうちいずれかに記載の誘電体磁器。 4. The dielectric ceramic according to claim 1, wherein the AC electric field dependency of the dielectric constant is 1.4 times or more.
JP2005347749A 2005-12-01 2005-12-01 Dielectric porcelain Active JP5094011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347749A JP5094011B2 (en) 2005-12-01 2005-12-01 Dielectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347749A JP5094011B2 (en) 2005-12-01 2005-12-01 Dielectric porcelain

Publications (2)

Publication Number Publication Date
JP2007153636A true JP2007153636A (en) 2007-06-21
JP5094011B2 JP5094011B2 (en) 2012-12-12

Family

ID=38238458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347749A Active JP5094011B2 (en) 2005-12-01 2005-12-01 Dielectric porcelain

Country Status (1)

Country Link
JP (1) JP5094011B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210693A (en) * 2013-04-17 2014-11-13 サムソン エレクトロ−メカニックス カンパニーリミテッド.Samsung Electro−Mechanics Co.,Ltd. Dielectric magnetic composition, multilayer ceramic capacitor using the same, and method for manufacturing multilayer ceramic capacitor
US10515760B1 (en) 2018-08-09 2019-12-24 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor with dielectric layers including dielectric grains having a core-shell structure
JP2020196659A (en) * 2019-05-31 2020-12-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition and laminated ceramic electronic component including the same
CN112687790A (en) * 2019-10-17 2021-04-20 太阳诱电株式会社 Piezoelectric ceramic, method for producing same, and piezoelectric element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314224A (en) * 2004-03-30 2005-11-10 Nippon Chemicon Corp Dielectric ceramic composition and electronic component
JP2006298680A (en) * 2005-04-18 2006-11-02 Taiyo Yuden Co Ltd Dielectric ceramic and laminated ceramic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314224A (en) * 2004-03-30 2005-11-10 Nippon Chemicon Corp Dielectric ceramic composition and electronic component
JP2006298680A (en) * 2005-04-18 2006-11-02 Taiyo Yuden Co Ltd Dielectric ceramic and laminated ceramic capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210693A (en) * 2013-04-17 2014-11-13 サムソン エレクトロ−メカニックス カンパニーリミテッド.Samsung Electro−Mechanics Co.,Ltd. Dielectric magnetic composition, multilayer ceramic capacitor using the same, and method for manufacturing multilayer ceramic capacitor
US10515760B1 (en) 2018-08-09 2019-12-24 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor with dielectric layers including dielectric grains having a core-shell structure
US10748709B2 (en) 2018-08-09 2020-08-18 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor with dielectric layers including dielectric grains having a core-shell structure
JP2020196659A (en) * 2019-05-31 2020-12-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition and laminated ceramic electronic component including the same
US11328868B2 (en) 2019-05-31 2022-05-10 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition and multi-layer ceramic electronic component using the same
JP7156606B2 (en) 2019-05-31 2022-10-19 サムソン エレクトロ-メカニックス カンパニーリミテッド. Dielectric porcelain composition and multilayer ceramic electronic component containing the same
CN112687790A (en) * 2019-10-17 2021-04-20 太阳诱电株式会社 Piezoelectric ceramic, method for producing same, and piezoelectric element
JP7406952B2 (en) 2019-10-17 2023-12-28 太陽誘電株式会社 Piezoelectric ceramics and their manufacturing method, and piezoelectric elements
US11937510B2 (en) 2019-10-17 2024-03-19 Taiyo Yuden Co., Ltd. Piezoelectric ceramics and their manufacturing methods, and piezoelectric device

Also Published As

Publication number Publication date
JP5094011B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP6102410B2 (en) Dielectric porcelain composition and dielectric element
JP4782552B2 (en) Dielectric porcelain
JP4920520B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor using the same
JP5108779B2 (en) Dielectric porcelain and capacitor
JP6316985B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP2021004172A (en) Dielectric porcelain composition and multilayer ceramic capacitor containing the same
JP5137429B2 (en) Dielectric porcelain and capacitor
JP2014029978A (en) Multilayer ceramic capacitor
JPWO2015056558A1 (en) All solid-state capacitor
KR20070070260A (en) Dielectric ceramic and multilayer ceramic capacitor
JP5094011B2 (en) Dielectric porcelain
JP4931697B2 (en) Dielectric porcelain and capacitor
JP2005022890A (en) Dielectric porcelain and laminated electronic component
KR20220052768A (en) Dielectric material and device comprising the same
KR102222606B1 (en) Dielectric composition and multilayer ceramic capacitor comprising the same
JP6402652B2 (en) Dielectric composition and electronic component
JP2002265260A (en) Dielectric ceramic and lamination type electronic part
JP6102405B2 (en) Dielectric porcelain composition and dielectric element
JP4954135B2 (en) Dielectric ceramic composition, manufacturing method thereof, and dielectric ceramic capacitor
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3595146B2 (en) Dielectric porcelain
JP2006176388A (en) Dielectric ceramic and method of manufacturing the same
JP2005281066A (en) Dielectric ceramic and multilayer ceramic capacitor
JP2002226263A (en) Dielectric ceramic and laminated ceramic capacitor
US11031181B2 (en) Dielectric composition and multilayer capacitor comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3