JP4782552B2 - Dielectric porcelain - Google Patents

Dielectric porcelain Download PDF

Info

Publication number
JP4782552B2
JP4782552B2 JP2005342870A JP2005342870A JP4782552B2 JP 4782552 B2 JP4782552 B2 JP 4782552B2 JP 2005342870 A JP2005342870 A JP 2005342870A JP 2005342870 A JP2005342870 A JP 2005342870A JP 4782552 B2 JP4782552 B2 JP 4782552B2
Authority
JP
Japan
Prior art keywords
dielectric
present
barium titanate
range
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005342870A
Other languages
Japanese (ja)
Other versions
JP2007145649A (en
Inventor
勇介 東
大輔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005342870A priority Critical patent/JP4782552B2/en
Publication of JP2007145649A publication Critical patent/JP2007145649A/en
Application granted granted Critical
Publication of JP4782552B2 publication Critical patent/JP4782552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Description

本発明は誘電体磁器に関し、特に、低AC電界領域においても高誘電率を保持し、AC電圧依存性の小さい誘電体磁器に関する。   The present invention relates to a dielectric ceramic, and more particularly to a dielectric ceramic having a high dielectric constant even in a low AC electric field region and having a small AC voltage dependency.

近年、小型、高容量の積層セラミックコンデンサは、内部電極層にニッケルなどの卑金属が用いられ、そのため誘電体層はチタン酸バリウム系の誘電体材料が多く用いられているが(例えば、特許文献1参照)、このチタン酸バリウム系の誘電体材料は、予めチタン酸バリウムを合成した後に、この主成分粉末に対して希土類元素、酸化マグネシウムおよび酸化マンガンなどの添加剤が所定量加えられ、これらの添加剤は焼結後においてもチタン酸バリウムやチタン酸バリウムカルシウムの結晶粒子の粒界近傍や粒界に存在し、その結晶構造はコア・シェル構造を取るものとされている。   In recent years, a small-sized, high-capacity monolithic ceramic capacitor uses a base metal such as nickel for the internal electrode layer. Therefore, a dielectric layer is often made of a barium titanate-based dielectric material (for example, Patent Document 1). This barium titanate-based dielectric material is prepared by previously synthesizing barium titanate and then adding a predetermined amount of additives such as rare earth elements, magnesium oxide and manganese oxide to the main component powder. Even after sintering, the additive is present in the vicinity or at the grain boundaries of the crystal grains of barium titanate and barium calcium titanate, and the crystal structure is assumed to have a core-shell structure.

ここで、コア・シェル構造とは結晶粒子の内部をコアとし、その周囲をシェルとしたときに、コア部が強誘電性を示す正方晶を基本的な結晶構造とし、一方、シェル部は常誘電性を示す立方晶を主体とした二重構造を有するものを言う。
特開平11−322414号公報
Here, the core-shell structure is a basic crystal structure of a tetragonal crystal in which the core portion exhibits ferroelectricity when the inside of the crystal grain is a core and the periphery thereof is a shell, while the shell portion is always a regular crystal structure. It has a double structure mainly composed of cubic crystals showing dielectric properties.
JP-A-11-322414

近年、ICなどの負荷は低電圧/大電流化の傾向にあり、そのためICの近傍に配置されるデカップリングコンデンサは高容量化とともに動作電圧の低電圧化が要求されている。   In recent years, loads such as ICs tend to be low voltage / large current, and therefore decoupling capacitors arranged in the vicinity of ICs are required to have high capacity and low operating voltage.

上記チタン酸バリウム系誘電体材料は上述のように高誘電率用途としては有用な誘電体材料であるが、この材料は比誘電率のAC電圧依存性が大きく、また、動作電圧を低く設定したときに得られる比誘電率の低下が大きいために、このような誘電体材料を用いて積層セラミックコンデンサを形成しても所望の静電容量が得られない。または、IC動作に応じて変動するAC電圧に対して安定した静電容量の出力が得にくいという問題があった。   As described above, the barium titanate-based dielectric material is a dielectric material useful for high dielectric constant applications. However, this material has a large relative dielectric constant AC voltage dependency, and has a low operating voltage. Due to the large decrease in the relative dielectric constant sometimes obtained, even if a multilayer ceramic capacitor is formed using such a dielectric material, a desired capacitance cannot be obtained. Alternatively, there is a problem that it is difficult to obtain a stable capacitance output with respect to an AC voltage that varies according to the IC operation.

従って本発明は、比誘電率についてAC電圧依存性の小さい誘電体磁器を提供することを目的とする。   Therefore, an object of the present invention is to provide a dielectric porcelain having a small dielectric constant AC voltage dependency.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、副成分として希土類元素、マグネシウムおよびマンガンを含むペロブスカイト型の結晶構造を有し、組成式(Ba1−yRE)(Ti1−a−bMga0Mn)O(RE:希土類元素)で表したとき、各々の範囲が0.06≦y≦0.09、0.03≦a≦0.045、0.012≦b≦0.018であるとともに、前記ペロブスカイト型の結晶構造における格子定数比c/aが1.001〜1.004であることを特徴とする。
The dielectric ceramic of the present invention has a perovskite-type crystal structure containing barium titanate as a main component and rare earth elements, magnesium and manganese as subcomponents, and has a composition formula (Ba 1-y RE y ) (Ti 1- a 0 -b Mg a0 Mn b) O 3 (RE: when the table with a rare earth element), each of the range 0.06 ≦ y ≦ 0.09,0.03 ≦ a 0 ≦ 0.045,0.012 ≦ b ≦ 0.018, and the lattice constant ratio c / a in the perovskite crystal structure is 1.001 to 1.004 .

また上記誘電体磁器では、(2)キュリー温度が−50℃〜+50℃の範囲であることが望ましい。
In the above dielectric ceramic, (2) key Jury temperature is preferably in the range of -50 ℃ ~ + 50 ℃.

本願発明によれば、主成分であるチタン酸バリウムに対して、副成分として希土類元素、マグネシウムおよびマンガンを多く固溶させて、格子定数比c/aが1.001〜1.004の範囲になるほどに立方晶性を高め、キュリー点を−50℃〜50℃の範囲とすることにより、比誘電率についてAC電圧依存性の小さい誘電体磁器を得ることができる。   According to the present invention, a large amount of rare earth elements, magnesium and manganese are dissolved in the main component, barium titanate, and the lattice constant ratio c / a is in the range of 0.001 to 1.004. Thus, by increasing the cubic crystallinity and setting the Curie point in the range of −50 ° C. to 50 ° C., it is possible to obtain a dielectric ceramic having a low AC voltage dependency with respect to the relative dielectric constant.

本願発明の誘電体磁器について詳細に説明する。本願発明の誘電体磁器はチタン酸バリウムを主成分とし、副成分として希土類元素、マグネシウムおよびマンガンを固溶させたものである。   The dielectric ceramic according to the present invention will be described in detail. The dielectric ceramic of the present invention is composed of barium titanate as the main component and rare earth elements, magnesium and manganese as solid components.

主成分であるチタン酸バリウム系の誘電体材料としては高誘電率かつ低誘電損失という点で純粋系であるBaTiOが好適であり、また、この他に、前記BaTiOにSr、Caなどのアルカリ土類を固溶させたBa1−xTiO(M:Sr、Ca x=0.001〜0.05)で表される固溶系のチタン酸バリウムカルシウムを用いることもできる。 As the main component of the barium titanate-based dielectric material, BaTiO 3 which is pure in terms of high dielectric constant and low dielectric loss is suitable, and besides this, BaTiO 3 such as Sr, Ca, etc. A solid solution barium calcium titanate represented by Ba 1-x M x TiO 3 (M: Sr, Ca x = 0.001 to 0.05) in which an alkaline earth solution is dissolved can also be used.

次に、主成分であるチタン酸バリウムに固溶させる各種添加物の含有量は、組成式(Ba1−yRE)(Ti1−a−bMga0Mn)O(RE:希土類元素)で表され、各々の範囲が0.06≦y≦0.09、0.03≦a≦0.045、0.012≦b≦0.018の範囲であることを特徴とする。
Next, the content of various additives to be dissolved in the main component, barium titanate, is as follows: composition formula (Ba 1-y RE y ) (Ti 1-a 0 -b Mg a0 Mn b ) O 3 (RE: Each range is 0.06 ≦ y ≦ 0.09, 0.03 ≦ a 0 ≦ 0.045, 0.012 ≦ b ≦ 0.018. .

各種添加剤の組成とその効果について説明すると、上記組成式において希土類元素の組成範囲は0.06≦y≦0.09であることが重要である。この組成範囲であると、チタン酸バリウム系誘電体材料における比誘電率のAC電圧依存性を小さくすることができるとともに、耐還元性および高信頼性を得ることできるという利点がある。
The composition of various additives and the effects thereof will be described. In the above composition formula, it is important that the composition range of the rare earth element is 0.06 ≦ y ≦ 0.09. Within this composition range, the AC voltage dependency of the relative dielectric constant of the barium titanate-based dielectric material can be reduced, and reduction resistance and high reliability can be obtained.

一方、希土類元素の固溶量が上記組成範囲から外れる場合には比誘電率のAC電圧依存性が大きくなるとともに、特に、上記yが0.06より少ない場合は耐還元性が低下し、また、0.09より多い場合には希土類元素が析出し比誘電率が低下する。   On the other hand, when the solid solution amount of the rare earth element is out of the composition range, the AC voltage dependency of the relative dielectric constant becomes large. In particular, when y is less than 0.06, the reduction resistance decreases, , More than 0.09, rare earth elements are precipitated and the relative dielectric constant is lowered.

希土類元素としてはY、Dy、Ho、Vなどから選ばれる少なくとも1種の酸化物が好ましいが、比誘電率の向上および高絶縁性という点でYが特に望ましい。 As the rare earth element, at least one oxide selected from Y 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , V 2 O 5 and the like is preferable, but Y is improved in terms of improvement in relative dielectric constant and high insulation. 2 O 3 is particularly desirable.

次に、上記組成式においてマグネシウム(Mg)の組成範囲は0.03≦a≦0.045であることが重要である。この組成範囲であると上記希土類元素と同じように、チタン酸バリウム系誘電体材料における比誘電率のAC電圧依存性を小さくすることができるとともに、誘電体磁器のキュリー点を低温化できるという利点がある。 Next, in the above composition formula, it is important that the composition range of magnesium (Mg) is 0.03 ≦ a 0 ≦ 0.045. In this composition range, as in the case of the rare earth element, the AC voltage dependency of the relative dielectric constant of the barium titanate dielectric material can be reduced, and the Curie point of the dielectric ceramic can be lowered. There is.

これに対して、マグネシウムの組成が上記組成範囲から外れる場合には比誘電率のAC電圧依存性が大きくなるとともに、上記aが0.03より少ない場合ではキュリー点が高くAC電圧の依存性が増大する。また、0.045より多い場合には、強誘電性が損なわれ、誘電率が低下してしまう。
In contrast, with the set configuration of magnesium AC voltage dependency increases the dielectric constant when outside the above composition range, depending of high AC voltage is Curie point when the a 0 is less than 0.03 Increase. On the other hand, when it exceeds 0.045, the ferroelectricity is impaired and the dielectric constant is lowered.

次に、上記組成式においてマンガン(Mn)の組成範囲は0.012≦b≦0.018であることが重要である。この組成範囲であると、誘電体磁器の耐還元性を高めて高い信頼性を得ることができる。   Next, in the above composition formula, it is important that the composition range of manganese (Mn) is 0.012 ≦ b ≦ 0.018. Within this composition range, the reduction resistance of the dielectric ceramic can be increased and high reliability can be obtained.

これに対して、マンガン(Mn)の組成が上記組成範囲から外れる場合には比誘電率のAC電圧依存性が大きくなるとともに、上記bが0.012より少ない場合、耐還元性が低下する。bが0.018より多い場合には比誘電率が低下する。
In contrast, with the set configuration of manganese (Mn) is AC voltage dependency increases the dielectric constant when outside the above composition range, if the b is less than 0.012, reduction resistance is lowered . When b is more than 0.018, the relative dielectric constant decreases.

本願発明の誘電体磁器の副成分上記組成式のようにチタン酸バリウム中のBaサイトおよびTiサイトのいずれかのサイトに固溶するものとして表されるものの、実際、こ
れらアルカリ土類金属元素(M)、希土類元素(RE)、マグネシウム(Mg)およびマンガン(Mn)の各成分は誘電体磁器中に含まれ、チタン酸バリウムに固溶していれば本願の所望の目的を達成することができるものであり、上記組成式に表されるようなBaやTiの各サイトに選択的に固溶する必要はないものである。
Subcomponent of the dielectric ceramic of the present invention, although expressed as a solid solution in one of the sites of Ba site and the Ti site in the barium titanate as the above composition formula, in fact, these alkaline earth metal Each component of the element (M), rare earth element (RE), magnesium (Mg), and manganese (Mn) is contained in the dielectric porcelain and achieves the desired object of the present application if it is dissolved in barium titanate. Therefore, it is not necessary to selectively dissolve at each site of Ba and Ti as represented by the above composition formula.

そして、上述した組成を有する本願発明の誘電体磁器は、その格子定数比c/aが1.001〜1.004の範囲である。本願発明の誘電体磁器はこのように格子定数比c/aが立方晶に近いものであることから、結晶粒子の構造も明確にコア・シェル構造を取るものではない。
Then, the dielectric ceramic of the present invention having the composition described above, the lattice constant ratio c / a is area by der of 1.001 to 1.004. Since the dielectric constant of the present invention has a lattice constant ratio c / a close to a cubic crystal as described above, the crystal grain structure does not clearly take a core-shell structure.

そのため本願発明の誘電体磁器のキュリー温度が−50〜+50℃の範囲に存在することになり、室温付近における強誘電性が弱められ、こうして比誘電率のAC依存性を小さくできる。   Therefore, the Curie temperature of the dielectric ceramic according to the present invention is in the range of −50 to + 50 ° C., the ferroelectricity near room temperature is weakened, and thus the AC dependence of the relative permittivity can be reduced.

本願発明の誘電体磁器について検証した結果をもとにさらに詳細に説明する。本願発明の誘電体磁器を調製する場合、出発原料として、いずれも純度が99.9%のBaCOと、TiOと、希土類元素としてYを用い、MgOとMnCOとを用意し、BaTiOを主成分とする誘電体材料を調製した。 Further detailed description will be given based on the result of verification of the dielectric ceramic of the present invention. When preparing the dielectric ceramic of the present invention, the starting materials are BaCO 3 with a purity of 99.9%, TiO 2 , Y 2 O 3 as the rare earth element, and MgO and MnCO 3 are prepared. A dielectric material mainly composed of BaTiO 3 was prepared.

次いで、上記した金属酸化物や炭酸化合物を所定の割合でボールミル中にて水を溶媒として混合し、乾燥させた。次に、混合粉末を900〜1050℃の温度で2時間程度仮焼を行った。次に、仮焼粉末をボールミル中で解砕し、所定の粒径に調整された仮焼後のチタン酸バリウム系の誘電体粉末を得た。次に、この仮焼後のチタン酸バリウム系の誘電体粉末を直径16.5mm、厚み1mmの寸法を有するペレット状に成形し、1300〜1500℃の温度、大気雰囲気中にて2時間の焼成を行った。   Next, the above metal oxide and carbonic acid compound were mixed at a predetermined ratio in a ball mill using water as a solvent and dried. Next, the mixed powder was calcined at a temperature of 900 to 1050 ° C. for about 2 hours. Next, the calcined powder was pulverized in a ball mill to obtain a calcined barium titanate-based dielectric powder adjusted to a predetermined particle size. Next, the calcined barium titanate-based dielectric powder is formed into pellets having a diameter of 16.5 mm and a thickness of 1 mm, and fired at a temperature of 1300 to 1500 ° C. for 2 hours in an air atmosphere. Went.

なお、比較例の試料として、表1に示した本発明の範囲外の試料の他に、コア・シェル構造を有する従来のチタン酸バリウム系粉末を調製し、本願発明に係る試料と同じ条件にて焼結体の試料を作製した(図3(b)に示す試料5)。なお、コア・シェル構造を有する従来のチタン酸バリウム系粉末は予め合成したチタン酸バリウム粉末に対してY、MgOおよびMnCO を添加して調製した。その組成はBaTiO=98.5モル、Y=0.75モル、MgO=0.75モル、MnO=0.30モルとした。
In addition to the samples outside the scope of the present invention shown in Table 1, as a sample for the comparative example, a conventional barium titanate-based powder having a core / shell structure was prepared and subjected to the same conditions as the sample according to the present invention. Thus, a sintered body sample was prepared (sample 5 shown in FIG. 3B). A conventional barium titanate powder having a core / shell structure was prepared by adding Y 2 O 3 , MgO and MnCO 3 to a barium titanate powder synthesized in advance. The composition was BaTiO 3 = 98.5 mol, Y 2 O 3 = 0.75 mol, MgO = 0.75 mol, and MnO = 0.30 mol.

次に、得られた試料について次の特性評価を行った。結晶構造はCukα線のX線回折装置を用いて回折角20〜60°の範囲にて測定を行った。   Next, the following characteristics evaluation was performed about the obtained sample. The crystal structure was measured using a Cukα X-ray diffractometer in a diffraction angle range of 20 to 60 °.

比誘電率は得られたペレット状試料の両主面にIn−Gaを塗布し、東陽テクニカ社強誘電体評価装置を用いて、周波数100Hz、AC電圧依存性は50〜2000Vrmsの範囲にて測定した。   The relative dielectric constant was measured by applying In-Ga to both principal surfaces of the obtained pellet-like sample, and using a Toyo Technica ferroelectric evaluation device, with a frequency of 100 Hz and AC voltage dependence in the range of 50 to 2000 Vrms. did.

比誘電率の温度特性はHP社4291Aインピーダンスアナライザを用いて、周波数1kHz,AC電圧1Vrms、温度−55〜150℃の範囲にて測定した。表1に組成と比誘電率のAC変化率、格子定数比c/aおよびキュリー温度を示した。

Figure 0004782552
The temperature characteristics of the relative permittivity were measured using HP 4291A impedance analyzer in the range of frequency 1 kHz, AC voltage 1 Vrms, temperature −55 to 150 ° C. Table 1 shows the AC change rate of the composition and relative permittivity, the lattice constant ratio c / a, and the Curie temperature.
Figure 0004782552

本願発明の組成範囲に調製した試料2、3では比誘電率のAC電圧依存性が−4.82%〜1.6%であり、格子定数比c/aが1.001〜1.0029、キュリー温度が−25〜25℃であった。   In Samples 2 and 3 prepared in the composition range of the present invention, the AC voltage dependence of the dielectric constant is −4.82% to 1.6%, and the lattice constant ratio c / a is 1.001 to 1.0029, The Curie temperature was −25 to 25 ° C.

これに対して、本願発明の範囲外の試料である試料1および4では、比誘電率のAC電圧依存性が370%〜695%であり、格子定数c/a比が1.0055および1.0073と本願発明の試料よりも大きく、キュリー温度も65℃および87℃と大きい。   On the other hand, in samples 1 and 4 which are samples outside the scope of the present invention, the AC voltage dependence of the dielectric constant is 370% to 695%, and the lattice constant c / a ratio is 1.0055 and 1. 0073 is larger than the sample of the present invention, and the Curie temperatures are also as high as 65 ° C. and 87 ° C.

図1は本願発明の誘電体磁器および本発明の範囲外の組成を有する誘電体磁器についての温度特性を示している。本願発明の誘電体磁器(図1中の試料2、3)ではキュリー点が70℃以下である。図2は比誘電率のAC電圧依存性を示すグラフであり、図3はAC電圧0.1V/μmでの誘電率で規格化したAC電圧に対する変化率(以下の計算式)を示すグラフである。   FIG. 1 shows temperature characteristics of a dielectric ceramic according to the present invention and a dielectric ceramic having a composition outside the range of the present invention. In the dielectric ceramic of the present invention (samples 2 and 3 in FIG. 1), the Curie point is 70 ° C. or less. FIG. 2 is a graph showing the AC voltage dependence of the relative permittivity, and FIG. 3 is a graph showing the rate of change (the following calculation formula) with respect to the AC voltage normalized by the permittivity at an AC voltage of 0.1 V / μm. is there.

変化率=(ε(AC1V/μm)−ε(0.1V/μm))/ε(0.1V/μm)
表1および図1、2、3の結果から明らかなように、本発明の誘電体磁器(表1中の試料2、3)では、チタン酸バリウム系の誘電体磁器においてc/a=1.001〜1.0029であり正方晶性が抑えられた結晶構造を有するものである。これにより、低AC電圧領域における比誘電率(AC電圧0.1V/μm)が2000以上であり、比誘電率のAC電圧に対する変化率が20%以下であった。なお、試料5はコア・シェル構造を有する本発明の範囲外の誘電体磁器の場合である。
Rate of change = (ε (AC1V / μm) −ε (0.1V / μm)) / ε (0.1V / μm)
As is apparent from the results of Table 1 and FIGS. 1, 2, and 3, in the dielectric ceramic according to the present invention (samples 2 and 3 in Table 1), c / a = 1. The crystal structure is 001 to 1.0029 and the tetragonal crystallinity is suppressed. Thereby, the relative dielectric constant (AC voltage 0.1 V / μm) in the low AC voltage region was 2000 or more, and the rate of change of the relative dielectric constant with respect to the AC voltage was 20% or less. Sample 5 is a case of a dielectric ceramic having a core / shell structure outside the scope of the present invention.

図3(a)は本発明に係る誘電体磁器である試料3の回折角20〜60°におけるX線回折図である。本発明の誘電体磁器は回折角20〜60°におけるX線回折図で見る限り、その結晶構造はピーク分離が小さく正方晶性が抑制された結晶構造を有する。   FIG. 3A is an X-ray diffraction diagram at a diffraction angle of 20 to 60 ° of the sample 3 which is a dielectric ceramic according to the present invention. As long as the dielectric ceramic of the present invention is seen in an X-ray diffraction diagram at a diffraction angle of 20 to 60 °, the crystal structure has a crystal structure with small peak separation and suppressed tetragonality.

これに対して、予め合成したチタン酸バリウム粉末に本発明で規定する各種添加元素を加えた場合(試料5)においては、図3(b)からわかるようにX線回折図における回折角44〜46°のピークにはピーク分離が見られ、コア部のチタン酸バリウムに起因する正方晶性が高い結晶構造を持ち、AC電圧依存性が350%であった。   On the other hand, when various additive elements defined in the present invention are added to the barium titanate powder synthesized in advance (sample 5), as can be seen from FIG. Peak separation was observed at the 46 ° peak, the crystal structure was highly tetragonal due to barium titanate in the core, and the AC voltage dependency was 350%.

また、希土類元素やマグネシウムおよびマンガンなどの添加物固溶量が本発明の範囲外の試料(試料1および4)では、正方晶性が高く、AC電圧依存性が大きいか、常誘電体となり比誘電率が低いものとなった。   In addition, in the samples (samples 1 and 4) in which the amount of additive solid solution such as rare earth elements, magnesium and manganese is outside the range of the present invention, the tetragonality is high and the AC voltage dependency is large, or a paraelectric material is used. The dielectric constant was low.

本発明の誘電体磁器および本発明の範囲外の組成を有する誘電体磁器についての温度特性を示すグラフである。It is a graph which shows the temperature characteristic about the dielectric material ceramic which has the composition outside the range of the dielectric material ceramic of this invention, and this invention. 本発明の誘電体磁器および本発明の範囲外の組成を有する誘電体磁器についての試料1〜4の比誘電率の温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the dielectric constant of the samples 1-4 about the dielectric material ceramic of this invention, and the dielectric material ceramic which has a composition outside the range of this invention. (a)本発明範囲内の試料3の20〜60°までのX線回折図、(b) 本発明範囲外に相当するコア・シェル構造を有し、コア部がチタン酸バリウムである試料5の20〜60°までのX線回折図である。(A) X-ray diffraction pattern of Sample 3 within the scope of the present invention up to 20 to 60 °, (b) Sample 5 having a core-shell structure corresponding to outside the scope of the present invention, and the core portion being barium titanate It is an X-ray diffraction diagram of 20 to 60 degrees.

Claims (2)

チタン酸バリウムを主成分とし、副成分として希土類元素、マグネシウムおよびマンガンを含むペロブスカイト型の結晶構造を有し、組成式(Ba1−yRE)(Ti1−a
−bMga0Mn)O(RE:希土類元素)で表したとき、各々の範囲が0.06
≦y≦0.09、0.03≦a≦0.045、0.012≦b≦0.018であるとともに、前記ペロブスカイト型の結晶構造における格子定数比c/aが1.001〜1.004であることを特徴とする誘電体磁器。
It has a perovskite-type crystal structure containing barium titanate as a main component and rare earth elements, magnesium and manganese as subcomponents, and has a composition formula (Ba 1-y RE y ) (Ti 1-a
0 -b Mg a0 Mn b) O 3 (RE: when the table with a rare earth element), each of the ranges 0.06
≦ y ≦ 0.09, 0.03 ≦ a 0 ≦ 0.045, 0.012 ≦ b ≦ 0.018, and the lattice constant ratio c / a in the perovskite crystal structure is 1.001 to 1 A dielectric porcelain characterized by .004 .
キュリー温度が−50℃〜+50℃の範囲である請求項1記載の誘電体磁器。 The dielectric ceramic of claim 1 Symbol placement Curie temperature is in the range of -50 ℃ ~ + 50 ℃.
JP2005342870A 2005-11-28 2005-11-28 Dielectric porcelain Expired - Fee Related JP4782552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342870A JP4782552B2 (en) 2005-11-28 2005-11-28 Dielectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342870A JP4782552B2 (en) 2005-11-28 2005-11-28 Dielectric porcelain

Publications (2)

Publication Number Publication Date
JP2007145649A JP2007145649A (en) 2007-06-14
JP4782552B2 true JP4782552B2 (en) 2011-09-28

Family

ID=38207501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342870A Expired - Fee Related JP4782552B2 (en) 2005-11-28 2005-11-28 Dielectric porcelain

Country Status (1)

Country Link
JP (1) JP4782552B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050863A1 (en) * 2006-10-27 2008-05-02 Kyocera Corporation Dielectric ceramic and capacitor
JP5137430B2 (en) * 2007-03-23 2013-02-06 京セラ株式会社 Dielectric porcelain and capacitor
JP5137431B2 (en) * 2007-03-23 2013-02-06 京セラ株式会社 Dielectric porcelain and capacitor
JP5137429B2 (en) * 2006-11-29 2013-02-06 京セラ株式会社 Dielectric porcelain and capacitor
JP5142649B2 (en) * 2007-09-27 2013-02-13 京セラ株式会社 Dielectric porcelain and capacitor
JP5142651B2 (en) * 2007-09-27 2013-02-13 京セラ株式会社 Dielectric porcelain and capacitor
JP5142665B2 (en) * 2007-10-26 2013-02-13 京セラ株式会社 Dielectric porcelain and capacitor
JP5142666B2 (en) * 2007-10-26 2013-02-13 京セラ株式会社 Dielectric porcelain and capacitor
JP5800408B2 (en) * 2008-02-05 2015-10-28 株式会社村田製作所 Multilayer ceramic capacitor
JP4959634B2 (en) * 2008-03-26 2012-06-27 京セラ株式会社 Dielectric porcelain and capacitor
JP5094572B2 (en) * 2008-03-26 2012-12-12 京セラ株式会社 Multilayer ceramic capacitor
WO2010098033A1 (en) * 2009-02-27 2010-09-02 株式会社村田製作所 Dielectric ceramic and laminated ceramic capacitor
JP5234035B2 (en) 2010-03-24 2013-07-10 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitors
JP5733313B2 (en) 2010-09-17 2015-06-10 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof
CN103597562B (en) 2011-08-23 2016-07-06 株式会社村田制作所 The manufacture method of laminated ceramic capacitor and laminated ceramic capacitor
JP2022151231A (en) 2021-03-26 2022-10-07 太陽誘電株式会社 Ceramic electronic component and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825795B2 (en) * 1986-10-21 1996-03-13 京セラ株式会社 Non-reducing dielectric ceramic composition
JP3227859B2 (en) * 1993-01-08 2001-11-12 株式会社村田製作所 Non-reducing dielectric ceramic composition
JP3334606B2 (en) * 1997-07-23 2002-10-15 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor
JP3391268B2 (en) * 1998-01-20 2003-03-31 株式会社村田製作所 Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method
JP3091192B2 (en) * 1998-07-29 2000-09-25 ティーディーケイ株式会社 Dielectric porcelain composition and electronic component
JP2000327414A (en) * 1999-05-24 2000-11-28 Murata Mfg Co Ltd Reduction resistant dielectric ceramic and laminated ceramic capacitor
JP2002050536A (en) * 2000-07-31 2002-02-15 Murata Mfg Co Ltd Reduction-resistant dielectric ceramic and laminated ceramic capacitor
JP4446324B2 (en) * 2001-09-27 2010-04-07 株式会社村田製作所 Dielectric porcelain composition and capacitor using the same

Also Published As

Publication number Publication date
JP2007145649A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4782552B2 (en) Dielectric porcelain
JP5108779B2 (en) Dielectric porcelain and capacitor
TWI399767B (en) Dielectric ceramics and capacitors
JP2014189465A (en) Dielectric ceramic composition and dielectric element
CN110828167B (en) Multilayer ceramic capacitor
JP5137429B2 (en) Dielectric porcelain and capacitor
JPWO2008132902A1 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3275799B2 (en) Dielectric porcelain composition
JP2015137194A (en) Dielectric ceramic composition, dielectric element, electronic component and laminated electronic component
JP6467648B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP2008174413A (en) Dielectric porcelain composition and electronic component
JP4931697B2 (en) Dielectric porcelain and capacitor
JP4949220B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5094011B2 (en) Dielectric porcelain
JP4710574B2 (en) Dielectric porcelain composition and electronic component
JP5142649B2 (en) Dielectric porcelain and capacitor
KR20170078064A (en) Dielectric composition and multilayer ceramic capacitor comprising the same
JP4652595B2 (en) Dielectric porcelain with excellent temperature characteristics
JP5289239B2 (en) Dielectric porcelain and capacitor
JP5142666B2 (en) Dielectric porcelain and capacitor
JP2006176388A (en) Dielectric ceramic and method of manufacturing the same
JP3438261B2 (en) Non-reducing dielectric porcelain composition
JP5137430B2 (en) Dielectric porcelain and capacitor
JP2006165259A (en) Dielectric porcelain and laminated electronic part
JP2007153710A (en) Dielectric porcelain composition and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees