JP5137429B2 - Dielectric porcelain and capacitor - Google Patents

Dielectric porcelain and capacitor Download PDF

Info

Publication number
JP5137429B2
JP5137429B2 JP2007068614A JP2007068614A JP5137429B2 JP 5137429 B2 JP5137429 B2 JP 5137429B2 JP 2007068614 A JP2007068614 A JP 2007068614A JP 2007068614 A JP2007068614 A JP 2007068614A JP 5137429 B2 JP5137429 B2 JP 5137429B2
Authority
JP
Japan
Prior art keywords
dielectric
mol
dielectric ceramic
capacitor
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007068614A
Other languages
Japanese (ja)
Other versions
JP2008156202A (en
Inventor
勝義 山口
亮太 久木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007068614A priority Critical patent/JP5137429B2/en
Priority to TW096145838A priority patent/TW200844072A/en
Priority to CN200780043818XA priority patent/CN101541709B/en
Priority to PCT/JP2007/073060 priority patent/WO2008066119A1/en
Publication of JP2008156202A publication Critical patent/JP2008156202A/en
Priority to US12/475,273 priority patent/US8107219B2/en
Application granted granted Critical
Publication of JP5137429B2 publication Critical patent/JP5137429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チタン酸バリウムを主成分とする結晶粒子によって形成された誘電体磁器とそれを用いたコンデンサに関する。   The present invention relates to a dielectric ceramic made of crystal particles mainly composed of barium titanate and a capacitor using the dielectric ceramic.

現在、モバイルコンピュータや携帯電話をはじめとするデジタル方式の電子機器の普及が目覚ましく、近い将来、地上デジタル放送が全国に展開されようとしている。地上デジタル放送用の受信機であるデジタル方式の電子機器として液晶ディスプレイやプラズマディスプレイなどがあるが、これらデジタル方式の電子機器には多くのLSIが用いられている。   At present, the spread of digital electronic devices such as mobile computers and mobile phones is remarkable, and in the near future digital terrestrial broadcasting is going to be deployed nationwide. There are liquid crystal displays, plasma displays, and the like as digital electronic devices that are receivers for digital terrestrial broadcasting, and many LSIs are used for these digital electronic devices.

そのため、液晶ディスプレイやプラズマディスプレイなど、これらデジタル方式の電子機器を構成する電源回路にはバイパス用のコンデンサが数多く実装されているが、ここで用いられているコンデンサは高い静電容量を必要とする場合には高誘電率の積層セラミックコンデンサ(例えば、特許文献1を参照)が採用され、一方、低容量でも温度特性を重視する場合には容量変化率の小さい温度補償型の積層セラミックコンデンサ(例えば、特許文献2を参照)が採用されている。
特開2001−89231号公報 特開2001−294481号公報
Therefore, many bypass capacitors are mounted on the power supply circuits that make up these digital electronic devices such as liquid crystal displays and plasma displays, but the capacitors used here require high capacitance. In some cases, a high dielectric constant monolithic ceramic capacitor (see, for example, Patent Document 1) is adopted. On the other hand, when temperature characteristics are important even with a low capacitance, a temperature compensation type monolithic ceramic capacitor (eg, a small capacitance change rate) , See Patent Document 2).
JP 2001-89231 A JP 2001-294482 A

しかしながら、特許文献1に開示された高誘電率の積層セラミックコンデンサは、強誘電性を有する誘電体磁器の結晶粒子によって構成されているため比誘電率の温度変化率が大きく、かつ誘電分極を示すヒステリシスが大きいという不具合があった。   However, since the multilayer ceramic capacitor having a high dielectric constant disclosed in Patent Document 1 is composed of crystal grains of dielectric ceramic having ferroelectricity, the temperature change rate of relative permittivity is large and exhibits dielectric polarization. There was a problem of large hysteresis.

また、特許文献1に開示された強誘電性の誘電体磁器を用いて形成されたコンデンサでは、電源回路上において電気誘起歪に起因する“音鳴り”現象を発生させやすいことから、プラズマディスプレイなどに使用する際の障害となっていた。   In addition, a capacitor formed by using a ferroelectric dielectric ceramic disclosed in Patent Document 1 tends to generate a “sounding” phenomenon due to an electrically induced strain on a power supply circuit. It was an obstacle when using it.

一方、温度補償型の積層セラミックコンデンサは、それを構成する誘電体磁器が常誘電性であるため電界−誘電分極特性におけるヒステリシスが小さく、強誘電性特有の電気誘起歪が起こらないという利点があるものの、誘電体磁器の比誘電率が低いために蓄電能力が低くバイパスコンデンサとしての性能を満たさないという問題があった。   On the other hand, temperature compensated monolithic ceramic capacitors have the advantage that the dielectric porcelain constituting them is paraelectric, so that the hysteresis in the electric field-dielectric polarization characteristics is small, and the electrical induced strain peculiar to ferroelectricity does not occur However, since the dielectric ceramic has a low relative dielectric constant, there is a problem in that the storage capacity is low and the performance as a bypass capacitor is not satisfied.

従って、本発明は、高誘電率かつ安定な比誘電率の温度特性を示す誘電体磁器と、それを用いたコンデンサを提供することを目的とする。   Accordingly, an object of the present invention is to provide a dielectric ceramic exhibiting a temperature characteristic of a high dielectric constant and a stable relative dielectric constant, and a capacitor using the dielectric ceramic.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、立方晶系を主体とする結晶粒子と、該結晶粒子間に形成された粒界相とからなる誘電体磁器であって、バリウム1モルに対して、マグネシウムをMgO換算で0.01〜0.06モルの割合で、イットリウムをY換算で0.0015〜0.03モルの割合で、マンガンをMnO換算で0.0002〜0.03モルの割合で含有するとともに、前記チタン酸バリウム100質量部に対して、ニオブをNb換算で4.2〜33.3質量部含有し、かつ前記結晶粒子の平均粒径が0.05〜0.2μmであることを特徴とする。 The dielectric ceramic of the present invention is mainly composed of barium titanate, a cubic crystalline particles mainly composed of a dielectric ceramic consisting of a grain boundary phase and formed between the crystal grains, Ba Magnesium in an amount of 0.01 to 0.06 mol in terms of MgO, yttrium in a proportion of 0.0015 to 0.03 mol in terms of Y 2 O 3 , and manganese in terms of MnO with respect to 1 mol of lithium. .0002 to 0.03 mol in proportion to 100 parts by mass of barium titanate and 4.2 to 33.3 parts by mass of niobium in terms of Nb 2 O 5 , and The average particle size is 0.05 to 0.2 μm.

また、本発明のコンデンサは、上記誘電体磁器からなる誘電体層と導体層との積層体から構成されていることを特徴とする。   The capacitor of the present invention is characterized in that it is composed of a laminate of a dielectric layer made of the above dielectric ceramic and a conductor layer.

本発明の誘電体磁器によれば、チタン酸バリウムを主成分とする結晶粒子を有し、マグネシウム、イットリウム、マンガンおよびニオブを酸化物換算で上記の割合で含有するとともに、前記結晶粒子の平均粒径を0.05〜0.2μmとすることにより、従来の強誘電性を有する誘電体磁器よりも比誘電率の温度変化率が小さく、また、従来の常誘電性を有する誘電体磁器に比較して高誘電率であり、かつ安定な比誘電率の温度特性を示すとともに、自発分極の小さい誘電体磁器を得ることができる。   According to the dielectric ceramic of the present invention, it has crystal grains mainly composed of barium titanate, contains magnesium, yttrium, manganese and niobium in the above-mentioned ratio in terms of oxides, and the average grain of the crystal grains By making the diameter 0.05 to 0.2 μm, the temperature change rate of the relative permittivity is smaller than that of a conventional dielectric ceramic having ferroelectricity, and compared with a conventional dielectric ceramic having paraelectricity. Thus, a dielectric ceramic having a high dielectric constant and a stable relative dielectric constant temperature characteristic and a small spontaneous polarization can be obtained.

また、本発明のコンデンサによれば、誘電体層として、高誘電率かつ安定な比誘電率の温度特性を示し、自発分極の小さい上記誘電体磁器を適用することにより、従来のコンデンサよりも高容量かつ容量温度特性の安定なコンデンサを形成できる。その為、このコンデンサを電源回路に用いた場合、電気誘起歪に起因する“音鳴り”現象の発生を抑制できる。   Further, according to the capacitor of the present invention, the dielectric layer exhibits temperature characteristics of a high dielectric constant and a stable relative dielectric constant, and the dielectric ceramic having a small spontaneous polarization is applied, so that the dielectric layer is higher than the conventional capacitor. Capacitors with stable capacitance and temperature characteristics can be formed. For this reason, when this capacitor is used in a power supply circuit, it is possible to suppress the occurrence of a “sounding” phenomenon caused by electrically induced distortion.

本発明の誘電体磁器は、チタン酸バリウムを主成分として、これにマグネシウム、イットリウム、マンガンおよびニオブを含有するものであり、その含有量はバリウム1モルに対して、マグネシウムをMgO換算で0.01〜0.06モルの割合で、イットリウムをY換算で0.0015〜0.03モルの割合で、マンガンをMnO換算で0.0002〜0.03モルの割合で含有するとともに、前記チタン酸バリウム100質量部に対して、ニオブをNb換算で4.2〜33.3質量部含有することを特徴とする。 The dielectric porcelain of the present invention contains barium titanate as a main component and contains magnesium, yttrium, manganese and niobium. The content of magnesium is 0.000 in terms of MgO with respect to 1 mol of barium. While containing yttrium in a proportion of 0.0015 to 0.03 mol in terms of Y 2 O 3 and manganese in a proportion of 0.0002 to 0.03 mol in terms of MnO, in a proportion of 01 to 0.06 mol, Niobium is contained in an amount of 4.2 to 33.3 parts by mass in terms of Nb 2 O 5 with respect to 100 parts by mass of the barium titanate.

また、本発明の誘電体磁器では、誘電体磁器を構成する結晶粒子の平均粒径が0.05〜0.2μmであることが重要である。   In the dielectric ceramic according to the present invention, it is important that the average grain size of crystal grains constituting the dielectric ceramic is 0.05 to 0.2 μm.

上記組成および粒径の範囲であると、室温における比誘電率を250以上、125℃における比誘電率を230以上および25℃〜125℃間における比誘電率の温度係数((ε−ε25)/ε25(T−25))を絶対値で1000×10−6/℃以下にでき、電界−誘電分極特性におけるヒステリシスの小さい誘電体磁器を形成できるという利点がある。 When the composition and particle size are within the above ranges, the relative permittivity at room temperature is 250 or more, the relative permittivity at 125 ° C. is 230 or more, and the temperature coefficient of relative permittivity between 25 ° C. and 125 ° C. ((ε t −ε 25 ) / Ε 25 (T-25)) can be made to be 1000 × 10 −6 / ° C. or less in absolute value, and there is an advantage that a dielectric ceramic having a small hysteresis in electric field-dielectric polarization characteristics can be formed.

このような本発明の誘電体磁器は、チタン酸バリウムにマグネシウム、イットリウム、マンガンおよびニオブが固溶したもので、結晶構造が正方晶系で強誘電性を示すチタン酸バリウムに、マグネシウム、イットリウム、マンガンおよびニオブを固溶させるとともに、これらの成分が固溶したチタン酸バリウムを主成分とする結晶粒子の平均粒径を特定の範囲とすることで、当該結晶粒子の結晶構造が立方晶系を主体としたものとすることができる。これにより正方晶系の結晶構造に起因する強誘電性が低下し、常誘電性を高めることができ、常誘電性が増すことで自発分極を低減できる。   Such a dielectric porcelain of the present invention is a solid solution of barium titanate with magnesium, yttrium, manganese and niobium, and barium titanate having a tetragonal crystal structure and exhibiting ferroelectricity, magnesium, yttrium, In addition to solid solution of manganese and niobium, by making the average particle size of the crystal particles mainly composed of barium titanate in which these components are dissolved into a specific range, the crystal structure of the crystal particles is cubic. It can be the subject. As a result, the ferroelectricity due to the tetragonal crystal structure is lowered, the paraelectricity can be increased, and the spontaneous polarization can be reduced by increasing the paraelectricity.

また、チタン酸バリウムを主成分とする結晶粒子の結晶構造を立方晶系を主体とする結晶構造とすることで、比誘電率の変化率を示す曲線が−55℃〜125℃の温度範囲において平坦となり、いずれも電界−誘電分極特性におけるヒステリシスが小さくなる。そのため、比誘電率が250以上でも比誘電率の温度係数の小さい誘電体磁器を得ることができる。   Further, by making the crystal structure of the crystal grains mainly composed of barium titanate into a crystal structure mainly composed of a cubic system, a curve indicating a change rate of relative permittivity is in a temperature range of −55 ° C. to 125 ° C. In both cases, the hysteresis in the electric field-dielectric polarization characteristics is reduced. Therefore, even when the relative dielectric constant is 250 or more, a dielectric ceramic having a small relative dielectric constant temperature coefficient can be obtained.

即ち、上述した範囲でチタン酸バリウムに対して、マグネシウム、イットリウム、マンガンを所定量含有させると、室温(25℃)以上のキュリー温度を示し、比誘電率の温度係数が正の値を示す誘電体磁器となるが、このような誘電特性を示す誘電体磁器に対して、さらにNbを含有させた場合に、本発明の効果が大きく現れ、比誘電率の温度係数を小さくして温度特性を平坦化できる。この場合、比誘電率の変化率を示す曲線が−55℃〜125℃の温度範囲において室温を中心にして2つのピークを有するものとなる。 That is, when a predetermined amount of magnesium, yttrium and manganese is contained in barium titanate within the above-mentioned range, a dielectric having a Curie temperature of room temperature (25 ° C.) or higher and a positive temperature coefficient of relative dielectric constant is shown. However, when Nb 2 O 5 is further added to the dielectric ceramic exhibiting such dielectric characteristics, the effect of the present invention appears greatly, and the temperature coefficient of the relative permittivity is reduced. Temperature characteristics can be flattened. In this case, the curve indicating the change rate of the relative dielectric constant has two peaks centering on room temperature in the temperature range of −55 ° C. to 125 ° C.

ここで、ニオブはチタン酸バリウムを主成分とする結晶粒子の粗大化を抑制する働きをもち、チタン酸バリウム100質量部に対して、ニオブをNb換算で4.2〜33.3質量部含有することが重要である。 Here, niobium has a function of suppressing coarsening of crystal grains mainly composed of barium titanate, and niobium is converted to 4.2 to 33.3 in terms of Nb 2 O 5 with respect to 100 parts by mass of barium titanate. It is important to contain part by mass.

即ち、チタン酸バリウム100質量部に対するNbの含有量が4.2質量部よりも少ないと、誘電体磁器の比誘電率が高いものの、比誘電率の温度係数が大きいものとなり、一方、チタン酸バリウム100質量部に対するNbの含有量が33.3質量部よりも多いと、25℃における比誘電率が250よりも低くなり、また、125℃における比誘電率が230未満となるためである。 That is, when the content of Nb 2 O 5 with respect to 100 parts by mass of barium titanate is less than 4.2 parts by mass, although the dielectric constant of the dielectric ceramic is high, the temperature coefficient of the dielectric constant is large, When the content of Nb 2 O 5 with respect to 100 parts by mass of barium titanate is more than 33.3 parts by mass, the relative dielectric constant at 25 ° C. is lower than 250, and the relative dielectric constant at 125 ° C. is less than 230. It is because it becomes.

また、マグネシウム、イットリウム、マンガンの含有量は、バリウム1モルに対して、マグネシウムをMgO換算で0.01〜0.06モルの割合で、イットリウムをY換算で0.0015〜0.03モルの割合で、マンガンをMnO換算で0.0002〜0.03モルの割合で含有することが重要である。 The contents of magnesium, yttrium, and manganese are 0.01 to 0.06 mol in terms of MgO and 0.0015 to 0.005 in terms of Y 2 O 3 with respect to 1 mol of barium. It is important that manganese is contained in a proportion of 0.0002 to 0.03 mol in terms of MnO in a proportion of 03 mol.

即ち、バリウム1モルに対するマグネシウムの含有量がMgO換算で0.01モルより少ない場合または0.06モルより多い場合には、誘電体磁器の比誘電率の温度係数が大きくなるからであり、また、バリウム1モルに対するイットリウムの含有量がY換算で0.0015モルよりも少ない場合または0.03モルよりも多い場合には、誘電体磁器の比誘電率は高いものの、比誘電率の温度係数が大きくなるからであり、さらにバリウム1モルに対するマンガンの含有量がMnO換算で0.0002モルよりも少ない場合または0.03モルよりも多い場合には、誘電体磁器の比誘電率の温度係数が大きくなるからである。 That is, when the content of magnesium with respect to 1 mol of barium is less than 0.01 mol or more than 0.06 mol in terms of MgO, the temperature coefficient of the dielectric constant of the dielectric ceramic increases, and When the content of yttrium with respect to 1 mol of barium is less than 0.0015 mol in terms of Y 2 O 3 or more than 0.03 mol, the dielectric constant of the dielectric ceramic is high, but the relative permittivity When the content of manganese with respect to 1 mol of barium is less than 0.0002 mol or more than 0.03 mol in terms of MnO, the relative permittivity of the dielectric ceramic is increased. This is because the temperature coefficient increases.

さらに、本発明の誘電体磁器はチタン酸バリウムを主成分とする結晶粒子の平均粒径が0.05〜0.2μmであることが重要である。   Furthermore, in the dielectric ceramic according to the present invention, it is important that the average particle diameter of crystal grains mainly composed of barium titanate is 0.05 to 0.2 μm.

即ち、チタン酸バリウムを主成分とする結晶粒子の平均粒径を0.05〜0.2μmとすることで、そのチタン酸バリウムを主成分とする結晶粒子が立方晶系を主体とする結晶構造となり、電界−誘電分極特性におけるヒステリシスが小さく常誘電性に近い特性を示すものにでき、チタン酸バリウムを主成分とする結晶粒子の平均粒径が0.05μmよりも小さい場合には、配向分極の寄与が無くなるため誘電体磁器の比誘電率が低下し、一方、結晶粒子の平均粒径が0.2μmよりも大きい場合には、X線回折による測定において正方晶系の結晶相が見られ誘電体磁器の比誘電率の温度係数が大きくなるからである。なお、立方晶系を主体とする結晶構造とは、立方晶系のチタン酸バリウムの最も強いピークである(110)面の回折ピークの強度が異相の回折ピークの強度よりも大きい状態をいう。   That is, by setting the average particle size of the crystal particles mainly composed of barium titanate to 0.05 to 0.2 μm, the crystal particles mainly composed of cubic system of the crystal particles mainly composed of barium titanate. When the average particle size of the crystal grains mainly composed of barium titanate is smaller than 0.05 μm, the hysteresis in the electric field-dielectric polarization characteristics is small and the characteristics are close to paraelectric properties. The relative permittivity of the dielectric porcelain is reduced because the contribution of the above is lost. On the other hand, when the average grain size of the crystal grains is larger than 0.2 μm, a tetragonal crystal phase is observed in the measurement by X-ray diffraction. This is because the temperature coefficient of the dielectric constant of the dielectric ceramic increases. Note that the crystal structure mainly composed of a cubic system means a state in which the intensity of the diffraction peak of the (110) plane, which is the strongest peak of cubic barium titanate, is larger than the intensity of the diffraction peak of a different phase.

また、本発明では、電界−誘電分極特性において0Vでの分極電荷を20nC/cm以下にできるという点で、結晶粒子の平均粒径は0.14〜0.18μmがより望ましい。 In the present invention, the average grain size of the crystal grains is more preferably 0.14 to 0.18 μm in that the polarization charge at 0 V can be 20 nC / cm 2 or less in the electric field-dielectric polarization characteristics.

また、好ましいニオブ、マグネシウム、イットリウムおよびマンガンの含有量としては、バリウム1モルに対するマグネシウムがMgO換算で0.017〜0.06モル、イットリウムがY換算で0.005〜0.01モル、マンガンがMnO換算で0.01〜0.03モルの割合でそれぞれ含み、ニオブがチタン酸バリウム100質量部に対してNb換算で6.3〜15.6質量部の範囲で含有するとともに、バリウム1モルに対するチタン比が0.97〜0.98であるものが良く、この範囲の誘電体磁器は、25℃における比誘電率を400以上、125℃における比誘電率を380以上、比誘電率の温度係数を絶対値で400×10−6/℃以下にすることが可能になる。 Further, preferable niobium, magnesium, yttrium and manganese contents are as follows: magnesium is 0.017 to 0.06 mol in terms of MgO with respect to 1 mol of barium, and yttrium is 0.005 to 0.01 mol in terms of Y 2 O 3. , Manganese is contained in a ratio of 0.01 to 0.03 mol in terms of MnO, and niobium is contained in a range of 6.3 to 15.6 parts by mass in terms of Nb 2 O 5 with respect to 100 parts by mass of barium titanate. In addition, the titanium ratio with respect to 1 mole of barium is preferably 0.97 to 0.98, and the dielectric ceramic in this range has a relative dielectric constant of 400 or more at 25 ° C. and a relative dielectric constant of 125 or more at 125 ° C. Thus, the temperature coefficient of the relative permittivity can be made to be 400 × 10 −6 / ° C. or less in absolute value.

次に、本発明の誘電体磁器の製法について説明する。先ず、素原料粉末として、純度がいずれも99%以上のBaCO粉末とTiO粉末、MgO粉末、Y粉末および炭酸マンガン粉末を用いる。これらの素原料粉末を、チタン酸バリウムを構成するバリウム1モルに対して、MgOを0.01〜0.06モルの割合で、Yを0.0015〜0.03モルの割合で、炭酸マンガンを0.0002〜0.03モルの割合で配合する。 Next, a method for manufacturing the dielectric ceramic according to the present invention will be described. First, BaCO 3 powder, TiO 2 powder, MgO powder, Y 2 O 3 powder, and manganese carbonate powder each having a purity of 99% or more are used as the raw material powder. These raw material powders are composed of 0.01 to 0.06 mol of MgO and 0.0015 to 0.03 mol of Y 2 O 3 with respect to 1 mol of barium constituting barium titanate. , Manganese carbonate is blended at a ratio of 0.0002 to 0.03 mol.

次に、上記した素原料粉末の混合物を湿式混合し、乾燥させた後、温度900〜1100℃で仮焼し、粉砕する。このとき仮焼粉末の結晶構造が立方晶系を主体とするものとなるように粒成長させることにより常誘電性に近い比誘電率の温度特性を維持した高誘電率の誘電体磁器を得ることが可能になる。   Next, the above mixture of raw material powders is wet-mixed and dried, and then calcined at a temperature of 900 to 1100 ° C. and pulverized. At this time, a dielectric ceramic having a high dielectric constant maintaining a temperature characteristic of a dielectric constant close to paraelectricity is obtained by growing grains so that the crystal structure of the calcined powder is mainly composed of a cubic system. Is possible.

次いで、この仮焼粉末100質量部に対してNb粉末を4.0〜32質量部の割合で混合する。この後、混合粉末をペレット状に成形し、大気中で1150℃〜1250℃の温度範囲で焼成を行うことにより本発明の誘電体磁器を得ることができる。ここで、焼成温度が1150℃よりも低い場合には結晶粒子の粒成長と緻密化が抑えられるため密度が低いものとなり、一方、焼成温度が1250℃よりも高い場合には結晶粒子が粒成長しすぎてしまうおそれがある。 Next, Nb 2 O 5 powder is mixed at a ratio of 4.0 to 32 parts by mass with respect to 100 parts by mass of the calcined powder. Then, the dielectric ceramic of this invention can be obtained by shape | molding mixed powder in the shape of a pellet and baking in the temperature range of 1150 degreeC-1250 degreeC in air | atmosphere. Here, when the firing temperature is lower than 1150 ° C., the grain growth and densification of the crystal grains are suppressed, so that the density is low. On the other hand, when the firing temperature is higher than 1250 ° C., the crystal grains grow. There is a risk of doing too much.

次に、図1は本発明のコンデンサの例を示す断面模式図である。本発明の誘電体磁器を用いて、以下のようなコンデンサを形成できる。   Next, FIG. 1 is a schematic sectional view showing an example of the capacitor of the present invention. The following capacitor can be formed using the dielectric ceramic of the present invention.

本発明のコンデンサはコンデンサ本体10の端部に外部電極12が設けられたものであり、また、コンデンサ本体10は誘電体層13と内部電極層である導体層14とが交互に積層された積層体1から構成されている。そして、誘電体層13は上述した本発明の誘電体磁器によって形成されることが重要である。この場合、導体層14は高積層化しても製造コストを抑制できるという点でNiやCuなどの卑金属が望ましく、特に、本発明のコンデンサを構成する誘電体層13との同時焼成を図るという点でNiがより望ましい。この導体層14の厚みは平均で1μm以下が好ましい。   The capacitor of the present invention has an external electrode 12 provided at the end of the capacitor body 10, and the capacitor body 10 is a laminate in which dielectric layers 13 and conductor layers 14 as internal electrode layers are alternately laminated. It is composed of a body 1. It is important that the dielectric layer 13 is formed by the above-described dielectric ceramic of the present invention. In this case, a base metal such as Ni or Cu is desirable in that the manufacturing cost can be suppressed even if the conductor layer 14 is highly laminated, and particularly, simultaneous firing with the dielectric layer 13 constituting the capacitor of the present invention is intended. Ni is more desirable. The conductor layer 14 preferably has an average thickness of 1 μm or less.

また、このようなコンデンサを作製する場合には、上述した混合粉末をグリーンシートに成形するとともに、導体層14となる導体ペーストを調製して前記グリーンシートの表面に印刷した後積層し焼成して積層体1を形成する。しかる後、積層体1の端面にさらに導体ペーストを印刷して焼成し、外部電極2を形成することによりコンデンサを得ることができる。   In the case of producing such a capacitor, the above-mentioned mixed powder is formed into a green sheet, a conductor paste to be a conductor layer 14 is prepared, printed on the surface of the green sheet, laminated and fired. The laminated body 1 is formed. Thereafter, a conductor paste is further printed on the end face of the laminate 1 and fired to form the external electrode 2, whereby a capacitor can be obtained.

本発明の誘電体磁器を以下のように作製した。まず、いずれも純度が99.9%のBaCO粉末、TiO粉末、MgO粉末、Y粉末、炭酸マンガン粉末を用意し、表1に示す割合で調合し混合粉末を調製した。なお、表1に示すMg、YおよびMnの量はそれぞれMgO、YおよびMnOに相当する量である。TiはBa1モルに対するモル比である。 The dielectric ceramic according to the present invention was produced as follows. First, BaCO 3 powder, TiO 2 powder, MgO powder, Y 2 O 3 powder, and manganese carbonate powder each having a purity of 99.9% were prepared and mixed at a ratio shown in Table 1 to prepare a mixed powder. The amounts of Mg, Y and Mn shown in Table 1 are amounts corresponding to MgO, Y 2 O 3 and MnO, respectively. Ti is a molar ratio relative to 1 mol of Ba.

次に、混合粉末を温度1000℃にて仮焼して仮焼粉末を作製した後、得られた仮焼粉末を粉砕した。この後、仮焼粉末100質量部に対して、純度99.9%のNb粉末を表1に示す割合で混合した。この後、混合粉末を造粒し、直径16.5mm、厚さ1mmの形状のペレット状に成形した。 Next, the mixed powder was calcined at a temperature of 1000 ° C. to prepare a calcined powder, and the obtained calcined powder was pulverized. Thereafter, Nb 2 O 5 powder having a purity of 99.9% was mixed at a ratio shown in Table 1 with respect to 100 parts by mass of the calcined powder. Thereafter, the mixed powder was granulated and formed into pellets having a diameter of 16.5 mm and a thickness of 1 mm.

次に、各組成のペレットを10個ずつ、大気中にて、表1に示す温度で焼成した。誘電体磁器の平均粒径は誘電体磁器の破断面を研磨した後、走査型電子顕微鏡を用いて内部組織の写真を撮り、次いで、その写真に映し出されている結晶粒子の輪郭を画像処理し、各粒子を円と見立ててその直径を求め、平均化して求めた。写真の倍率は約30000倍とし、観察点数は各試料3点とし、その平均値を求めた。   Next, 10 pellets of each composition were fired at a temperature shown in Table 1 in the air. The average grain size of the dielectric ceramic is obtained by polishing the fracture surface of the dielectric ceramic, taking a picture of the internal structure using a scanning electron microscope, and then processing the contours of the crystal grains shown in the photograph. Each particle was regarded as a circle, and the diameter was obtained and averaged. The magnification of the photograph was about 30000 times, the number of observation points was 3 for each sample, and the average value was obtained.

焼成後の試料の表面にインジウム・ガリウムの導体層を印刷した。作製した誘電体磁器であるこれらの試料はLCRメーター4284Aを用いて周波数1.0kHz、入力信号レベル1.0Vにて静電容量を測定し、試料の直径と厚みおよび導体層の面積から比誘電率を算出した。また、比誘電率の温度係数を25〜125℃の範囲で測定した。これらの測定は試料数を各10個とし、その平均値を求めた。   An indium gallium conductor layer was printed on the surface of the fired sample. These samples, which are dielectric ceramics, were measured for capacitance using an LCR meter 4284A at a frequency of 1.0 kHz and an input signal level of 1.0 V, and the relative dielectric constant was determined from the diameter and thickness of the sample and the area of the conductor layer. The rate was calculated. Moreover, the temperature coefficient of the dielectric constant was measured in the range of 25 to 125 ° C. In these measurements, the number of samples was 10 and the average value was obtained.

また、得られた誘電体磁器について電気誘起歪の大きさを誘電分極の測定によって求めた。この場合、電圧を±1250Vの範囲で変化させた時の、0Vにおける電荷量(残留分極)の値で評価した。また、試料の組成分析はICP分析もしくは原子吸光分析により行った。この場合、得られた誘電体磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。   Moreover, the magnitude | size of the electrically induced distortion was calculated | required by the measurement of dielectric polarization about the obtained dielectric ceramic. In this case, the evaluation was based on the value of the charge amount (residual polarization) at 0 V when the voltage was changed in the range of ± 1250 V. The composition analysis of the sample was performed by ICP analysis or atomic absorption analysis. In this case, the obtained dielectric porcelain mixed with boric acid and sodium carbonate and dissolved in hydrochloric acid is first subjected to qualitative analysis of the elements contained in the dielectric porcelain by atomic absorption spectrometry, and then specified. The diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.

表1に調製組成、仮焼粉末の平均粒径および焼成温度を、表2に焼成後の結晶粒子の平均粒径と特性の結果を示す。   Table 1 shows the preparation composition, the average particle size of the calcined powder, and the firing temperature, and Table 2 shows the results of the average particle size and characteristics of the crystal particles after firing.

ここで、表1におけるNbの添加量は仮焼粉末100質量部に対する割合である。一方、表2におけるNbの含有量は誘電体磁器中におけるチタン酸バリウム100質量部に対する割合である。また、表2に示すMg、YおよびMnの量は酸化物換算量である。なお、表2において、比誘電率の温度変化の曲線の欄において○を付してないものは2つのピークがみられなかった試料を、分極電荷の欄において○を付してないものは分極電荷が20nC/cm以下ではない試料を示すことを意味する。

Figure 0005137429
Here, the addition amount of Nb 2 O 5 in Table 1 is a ratio with respect to 100 parts by mass of the calcined powder. On the other hand, the content of Nb 2 O 5 in Table 2 is a ratio with respect to 100 parts by mass of barium titanate in the dielectric ceramic. The amounts of Mg, Y and Mn shown in Table 2 are oxide equivalent amounts. In Table 2, samples without a circle in the column of the relative dielectric constant temperature change curve indicate samples in which two peaks are not observed, and samples without a circle in the polarization charge column indicate polarization. It is meant to indicate a sample whose charge is not less than 20 nC / cm 2 .
Figure 0005137429

Figure 0005137429
Figure 0005137429

表2の結果から明らかなように、本発明の誘電体磁器である試料No.2〜7、10〜13、16〜19、21〜25、27、28、30、33および34では、25℃における比誘電率が250以上、125℃における比誘電率が230以上であり、25〜125℃における比誘電率の温度係数が絶対値で1000×10−6/℃以下であった。 As is clear from the results in Table 2, the sample No. In 2-7, 10-13, 16-19, 21-25, 27, 28, 30, 33, and 34, the relative dielectric constant at 25 ° C. is 250 or more, the relative dielectric constant at 125 ° C. is 230 or more, and 25 The temperature coefficient of the relative dielectric constant at ˜125 ° C. was 1000 × 10 −6 / ° C. or less in absolute value.

特に、MgOを0.017〜0.06モル、Yを0.005〜0.01モル、MnOを0.01〜0.03モル、主成分であるチタン酸バリウム100質量部に対するNbの含有量が6.3〜15.6質量部であり、バリウム1モルに対するチタン比を0.97〜0.98である試料No.3〜5、11、12、17〜19、24、25、27、33および34では、25℃における比誘電率が400以上、125℃における比誘電率が380以上、比誘電率の温度係数が絶対値で400×10−6/℃以下であり、比誘電率の変化率を示す曲線が−55℃〜125℃の温度範囲において2つのピークを有し、かつ電界−誘電分極特性の測定において大きなヒステリシスが見られなかった。ヒステリシスの見られない試料は分極電荷が0Vにおいて20nC/cm以下であった。 In particular, 0.017 to 0.06 mol of MgO, 0.005 to 0.01 mol of Y 2 O 3 , 0.01 to 0.03 mol of MnO, and Nb relative to 100 parts by mass of barium titanate as the main component. Sample No. 2 having a content of 2 O 5 of 6.3 to 15.6 parts by mass and a titanium ratio with respect to 1 mol of barium of 0.97 to 0.98. 3 to 5, 11, 12, 17 to 19, 24, 25, 27, 33 and 34, the relative dielectric constant at 25 ° C. is 400 or more, the relative dielectric constant at 125 ° C. is 380 or more, and the temperature coefficient of the relative dielectric constant is In the measurement of the electric field-dielectric polarization characteristics, the absolute value is 400 × 10 −6 / ° C. or less, the curve indicating the change rate of the relative dielectric constant has two peaks in the temperature range of −55 ° C. to 125 ° C. There was no significant hysteresis. The sample in which no hysteresis was observed had a polarization charge of 20 nC / cm 2 or less at 0V.

これらの試料から選択した試料No.4の誘電体磁器のX線回折図を図2に、同試料の比誘電率の変化を示すグラフを図3に、同試料の電界−誘電分極特性を図4にそれぞれ示す。試料No.4の誘電体磁器は図2〜図4に見られるように、結晶構造が立方晶系を主体とするものであり、また、比誘電率の温度特性が25℃を中心に2つのピークを有し、比誘電率の変化率が小さく、さらに、電界−誘電分極特性のヒステリシスが小さいものであった。また、他の試料についても結晶構造が立方晶系を主体とするものであり、また、比誘電率の変化率が小さいものであった。   Sample No. selected from these samples. FIG. 2 shows an X-ray diffraction diagram of the dielectric ceramic No. 4, FIG. 3 shows a graph showing a change in relative permittivity of the sample, and FIG. 4 shows an electric field-dielectric polarization characteristic of the sample. Sample No. As shown in FIGS. 2 to 4, the dielectric ceramic of No. 4 has a cubic crystal structure as a main component, and the temperature characteristics of the relative permittivity have two peaks centering on 25 ° C. In addition, the change rate of the relative dielectric constant was small, and the hysteresis of the electric field-dielectric polarization characteristics was small. The other samples also have a crystal structure mainly composed of a cubic system, and the change rate of the relative permittivity is small.

これに対して、本発明の範囲外の試料では、25℃における比誘電率が200未満であるか、または誘電分極にヒステリシスがあり、比誘電率の温度係数が絶対値で1000×10−6/℃よりも大きいものであった。 On the other hand, in a sample outside the scope of the present invention, the relative dielectric constant at 25 ° C. is less than 200, or there is hysteresis in dielectric polarization, and the temperature coefficient of relative dielectric constant is 1000 × 10 −6 in absolute value. It was larger than / ° C.

本発明のコンデンサの例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the capacitor | condenser of this invention. 本発明の誘電体磁器のX線回折図の代表例である(試料No.4)。It is a typical example of the X-ray diffraction pattern of the dielectric ceramic of the present invention (Sample No. 4). 本発明の誘電体磁器についての比誘電率の変化率を示すグラフである(試料No.4、試料No.33および試料No.34)。It is a graph which shows the change rate of the dielectric constant about the dielectric material ceramic of this invention (sample No. 4, sample No. 33, and sample No. 34). 本発明の誘電体磁器について求めた誘電分極(V−Q)特性の代表例である(試料No.4)。It is a typical example of the dielectric polarization (VQ) characteristic calculated | required about the dielectric material ceramic of this invention (sample No. 4).

符号の説明Explanation of symbols

1 積層体
10 コンデンサ本体
13 誘電体層
14 導体層
DESCRIPTION OF SYMBOLS 1 Laminated body 10 Capacitor main body 13 Dielectric layer 14 Conductor layer

Claims (2)

チタン酸バリウムを主成分とし、立方晶系を主体とする結晶粒子と、該結晶粒子間に形成された粒界相とからなる誘電体磁器であって、バリウム1モルに対して、マグネシウムをMgO換算で0.01〜0.06モルの割合で、イットリウムをY換算で0.0015〜0.03モルの割合で、マンガンをMnO換算で0.0002〜0.03モルの割合で含有するとともに、前記チタン酸バリウム100質量部に対して、ニオブをNb換算で4.2〜33.3質量部含有し、かつ前記結晶粒子の平均粒径が0.05〜0.2μmであることを特徴とする誘電体磁器。 Barium titanate as a main component, and crystal grains mainly composed of cubic, a dielectric ceramic consisting of a grain boundary phase and formed between the crystal grains, with respect to bar helium 1 mole of magnesium Of MgO in a proportion of 0.01 to 0.06 mol, yttrium in a proportion of 0.0015 to 0.03 mol in terms of Y 2 O 3 and manganese in a proportion of 0.0002 to 0.03 mol in terms of MnO. While contained in a ratio, with respect to 100 parts by mass of the barium titanate, niobium is contained in an amount of 4.2 to 33.3 parts by mass in terms of Nb 2 O 5 , and the average grain size of the crystal grains is 0.05 to A dielectric ceramic characterized by being 0.2 μm. 請求項1に記載の誘電体磁器からなる誘電体層と導体層との積層体から構成されていることを特徴とするコンデンサ。   A capacitor comprising a laminate of a dielectric layer made of the dielectric ceramic according to claim 1 and a conductor layer.
JP2007068614A 2006-11-29 2007-03-16 Dielectric porcelain and capacitor Active JP5137429B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007068614A JP5137429B2 (en) 2006-11-29 2007-03-16 Dielectric porcelain and capacitor
TW096145838A TW200844072A (en) 2006-11-29 2007-11-29 Dielectric ceramic and capacitor
CN200780043818XA CN101541709B (en) 2006-11-29 2007-11-29 Dielectric ceramic and capacitor
PCT/JP2007/073060 WO2008066119A1 (en) 2006-11-29 2007-11-29 Dielectric ceramic and capacitor
US12/475,273 US8107219B2 (en) 2006-11-29 2009-05-29 Dielectric ceramic and capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006321797 2006-11-29
JP2006321797 2006-11-29
JP2007068614A JP5137429B2 (en) 2006-11-29 2007-03-16 Dielectric porcelain and capacitor

Publications (2)

Publication Number Publication Date
JP2008156202A JP2008156202A (en) 2008-07-10
JP5137429B2 true JP5137429B2 (en) 2013-02-06

Family

ID=39657553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068614A Active JP5137429B2 (en) 2006-11-29 2007-03-16 Dielectric porcelain and capacitor

Country Status (2)

Country Link
JP (1) JP5137429B2 (en)
CN (1) CN101541709B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114619A1 (en) * 2007-03-16 2008-09-25 Kyocera Corporation Dielectric ceramic and capacitor
TWI412505B (en) * 2009-03-12 2013-10-21 Hanwha Chemical Corp Fine barium titanate based composite oxide
KR100955802B1 (en) * 2009-07-21 2010-05-06 한화케미칼 주식회사 Process for preparing fine barium titanate based composite oxide
KR20130036594A (en) * 2011-10-04 2013-04-12 삼성전기주식회사 Dielectric composition and ceramic electronic component comprising the same
CN105612013A (en) 2013-10-08 2016-05-25 昭和电工株式会社 Niobium granulated powder production method
US11046473B2 (en) 2018-07-17 2021-06-29 The Procter And Gamble Company Blow molded article with visual effects
CN112867674B (en) 2018-10-19 2023-07-04 宝洁公司 Blow molded multilayer article
JP2022526631A (en) 2019-04-11 2022-05-25 ザ プロクター アンド ギャンブル カンパニー Blow molded product with visual effect

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612917A (en) * 1992-06-26 1994-01-21 Teika Corp Dielectric porcelain and its manufacture
JP3567759B2 (en) * 1998-09-28 2004-09-22 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor
JP3942776B2 (en) * 1999-10-20 2007-07-11 ローム株式会社 Dielectric composition
JP4320549B2 (en) * 2003-01-06 2009-08-26 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitor
JP2006008498A (en) * 2004-05-21 2006-01-12 Tdk Corp Ceramic raw material powder, method for production the same, dielectric ceramic composition, electronic component and laminated ceramic capacitor
JP4203452B2 (en) * 2004-06-28 2009-01-07 Tdk株式会社 Manufacturing method of multilayer ceramic capacitor
JP4782552B2 (en) * 2005-11-28 2011-09-28 京セラ株式会社 Dielectric porcelain

Also Published As

Publication number Publication date
JP2008156202A (en) 2008-07-10
CN101541709B (en) 2012-11-21
CN101541709A (en) 2009-09-23

Similar Documents

Publication Publication Date Title
JP5069695B2 (en) Dielectric porcelain and capacitor
JP5039039B2 (en) Dielectric porcelain and capacitor
JP5137429B2 (en) Dielectric porcelain and capacitor
WO2009131221A1 (en) Laminated ceramic capacitor
JP5108779B2 (en) Dielectric porcelain and capacitor
US20120162854A1 (en) Multilayer ceramic capacitor
JP5185924B2 (en) Dielectric porcelain and capacitor
JP5204770B2 (en) Dielectric porcelain and capacitor
JP4931697B2 (en) Dielectric porcelain and capacitor
JP5094572B2 (en) Multilayer ceramic capacitor
JP4949220B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5142649B2 (en) Dielectric porcelain and capacitor
JP2016160131A (en) Dielectric composition and electronic component
JP4959634B2 (en) Dielectric porcelain and capacitor
WO2009147893A1 (en) Dielectric ceramic and capacitor
JP4960203B2 (en) Dielectric porcelain and capacitor
JP2011068524A (en) Laminated ceramic capacitor
JP5289239B2 (en) Dielectric porcelain and capacitor
JP5137430B2 (en) Dielectric porcelain and capacitor
JP5142666B2 (en) Dielectric porcelain and capacitor
JP5137431B2 (en) Dielectric porcelain and capacitor
JP5142651B2 (en) Dielectric porcelain and capacitor
JP5142665B2 (en) Dielectric porcelain and capacitor
JP4949219B2 (en) Dielectric porcelain and capacitor
JP5295083B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R150 Certificate of patent or registration of utility model

Ref document number: 5137429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3