JP2007150095A - Imaging device and its manufacturing method - Google Patents

Imaging device and its manufacturing method Download PDF

Info

Publication number
JP2007150095A
JP2007150095A JP2005344358A JP2005344358A JP2007150095A JP 2007150095 A JP2007150095 A JP 2007150095A JP 2005344358 A JP2005344358 A JP 2005344358A JP 2005344358 A JP2005344358 A JP 2005344358A JP 2007150095 A JP2007150095 A JP 2007150095A
Authority
JP
Japan
Prior art keywords
film
charge transfer
solid
imaging device
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005344358A
Other languages
Japanese (ja)
Inventor
Yoshisuke Abe
善亮 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005344358A priority Critical patent/JP2007150095A/en
Publication of JP2007150095A publication Critical patent/JP2007150095A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging device and its manufacturing method capable of materializing low smearing without causing the difficulty in a manufacturing process. <P>SOLUTION: On a substrate 11, an imaging device 10 comprises a photoelectric converter 30, a charge transfer 40 provided with an electric charge transmission electrode 13 for transmitting an electric charge made to generate in the photoelectric converter 30, an antireflection film 17 for covering the electric charge transmission electrode 13, and a light shielding film 16 which covers the charge transfer 40 and constitutes the opening on the photoelectric converter 30. An opening 17a which is a part excluding the upper side of the electric charge transmission electrode 13, and carries out an opening on the photoelectric converter 30, is formed in the antireflection film 17. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体撮像素子及び固体撮像素子の製造方法に関し、特に、シンター処理工程の際に発生する水素ガスの通路を確保し、固体撮像素子の微細化に関する。   The present invention relates to a solid-state imaging device and a method for manufacturing the solid-state imaging device, and particularly relates to miniaturization of a solid-state imaging device by securing a passage of hydrogen gas generated during a sintering process.

近年、固体撮像素子においては、ギガピクセル以上まで撮像画素数の増加が進んでおり、画素領域の微細化も高まる一方である。このような状況の中で、フォトダイオードで構成される光電変換部上には反射防止用の高屈折率膜を形成し、低スミア化のために、受光領域の周りはタングステン遮光膜で被覆した構造が提案されている(特許文献1)。   In recent years, in solid-state imaging devices, the number of imaging pixels has increased to more than gigapixels, and the miniaturization of pixel areas is also increasing. Under such circumstances, a high-refractive-index film for reflection prevention is formed on the photoelectric conversion part composed of photodiodes, and the light-receiving area is covered with a tungsten light-shielding film to reduce smear. A structure has been proposed (Patent Document 1).

従来の固体撮像素子は、図8に断面構造の要部の一例を示すように、シリコン基板1表面にゲート絶縁膜2(ボトム酸化膜2aと窒化シリコン膜2bと酸化シリコン膜2cからなる。)を介して電荷転送電極3が形成され、該電荷転送電極3の上層に絶縁膜5を介して窒化シリコン膜などの反射防止膜7が形成されている。また、反射防止膜7の上層に、光電変換部上に開口6aを有する遮光膜6が形成されている。   The conventional solid-state imaging device has a gate insulating film 2 (consisting of a bottom oxide film 2a, a silicon nitride film 2b, and a silicon oxide film 2c) on the surface of the silicon substrate 1, as shown in FIG. A charge transfer electrode 3 is formed through the insulating film 5 and an antireflection film 7 such as a silicon nitride film is formed over the charge transfer electrode 3 through an insulating film 5. In addition, a light shielding film 6 having an opening 6 a on the photoelectric conversion portion is formed on the antireflection film 7.

特開平8−316448号公報JP-A-8-316448

ところで、反射防止膜7と遮光膜6との間には、酸化膜8が形成されている。ここで、反射防止膜7には、シンター処理(未結合手終端処理)を行う際に発生した水素ガスを通過させるため、電荷転送電極3の上方の位置に開口部7aが形成されている。この構成では、酸化膜8の厚さ分だけ遮光膜6と反射防止膜7との間にギャップgを確保する必要があり、固体撮像素子の更なる微細化を図るうえで一定の制約となってしまっていた。遮光膜6と反射防止膜7との間のギャップgが大きくなればスミアが悪化してしまう。一方で、酸化膜8を形成せずに反射防止膜7上に遮光膜6を形成しギャップgがない構成とすると、水素ガスの通過が妨げられることでシンター処理の効果が低下するとともに、画素領域の微細化に伴なって高い加工精度が必要となり、製造プロセスの難易度が高くなる点で改善の余地があった。   Incidentally, an oxide film 8 is formed between the antireflection film 7 and the light shielding film 6. Here, an opening 7 a is formed in the antireflection film 7 at a position above the charge transfer electrode 3 in order to allow hydrogen gas generated during the sintering process (unbonded hand termination process) to pass therethrough. In this configuration, it is necessary to secure a gap g between the light-shielding film 6 and the antireflection film 7 by the thickness of the oxide film 8, which is a certain limitation for further miniaturization of the solid-state imaging device. It was. When the gap g between the light shielding film 6 and the antireflection film 7 is increased, smear is deteriorated. On the other hand, when the light-shielding film 6 is formed on the antireflection film 7 without forming the oxide film 8 and the gap g is not formed, the effect of the sintering process is reduced because the passage of hydrogen gas is hindered, and the pixel As the area becomes finer, high processing accuracy is required, and there is room for improvement in that the difficulty of the manufacturing process increases.

本発明は、上記事情に鑑みてなされたもので、その目的は、製造プロセスの難易度を上げることなく、低スミアを実現できる固体撮像素子及び固体撮像素子の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid-state imaging device and a manufacturing method of the solid-state imaging device capable of realizing low smear without increasing the difficulty of the manufacturing process.

本発明の上記目的は、基板上に、光電変換部と、前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部と、前記電荷転送電極を被覆する反射防止膜と、前記電荷転送部を覆い、前記光電変換部上で開口した遮光膜とを備えた固体撮像素子であって、前記反射防止膜には、前記電荷転送電極上を除く部位で且つ前記光電変換部上で開口する開口部が形成されていることを特徴とする固体撮像素子によって達成される。   An object of the present invention is to provide a photoelectric transfer unit on a substrate, a charge transfer unit including a charge transfer electrode that transfers charges generated in the photoelectric conversion unit, and an antireflection film that covers the charge transfer electrode. And a light-shielding film covering the charge transfer unit and opening on the photoelectric conversion unit, wherein the antireflection film includes a portion other than the charge transfer electrode and the photoelectric conversion This is achieved by a solid-state imaging device characterized in that an opening is formed on the part.

また、本発明の上記目的は、基板上に、光電変換部と、前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部と、前記電荷転送電極を被覆する反射防止膜と、前記電荷転送部を覆い、前記光電変換部上で開口した遮光膜とを備えた固体撮像素子の製造方法であって、前記反射防止膜における、前記電荷転送電極上を除く部位で且つ前記光電変換部上で開口部を形成することを特徴とする固体撮像素子の製造方法によって達成される。   Another object of the present invention is to provide a photoelectric transfer unit on a substrate, a charge transfer unit including a charge transfer electrode that transfers charges generated in the photoelectric conversion unit, and a reflection that covers the charge transfer electrode. A solid-state imaging device manufacturing method comprising: an anti-reflection film; and a light-shielding film that covers the charge transfer unit and is opened on the photoelectric conversion unit, wherein the anti-reflection film includes a portion excluding the charge transfer electrode. And it is achieved by the manufacturing method of the solid-state image sensor characterized by forming an opening part on the said photoelectric conversion part.

本発明に係る固体撮像素子の構成では、反射防止膜の開口部が、光電変換部上における遮光膜が開口した部位に位置するように形成されている。すると、遮光膜と反射防止膜に酸化膜を形成しない構成としても、シンター処理を施す際に発生した水素ガスが開口部を流通することが妨げられることが回避できるとともに、シンター処理の効果が抑制されてしまうことがない。このように、開口部の位置を変えることで、遮光膜と反射防止膜との間に酸化膜を形成しないで、遮光膜と反射防止膜との間の距離を小さくすることが可能となり、低スミア化を実現することができる。また、このような固体撮像素子を製造する場合には、開口部の位置を変えてパターニングすればよく、他の製造プロセスは従来と同様の手順を行えばよいため、製造プロセスの難易度が高くなることがない。   In the configuration of the solid-state imaging device according to the present invention, the opening of the antireflection film is formed so as to be located at a portion where the light shielding film is opened on the photoelectric conversion unit. Then, even if the oxide film is not formed on the light shielding film and the antireflection film, it is possible to avoid that the hydrogen gas generated during the sintering process is prevented from flowing through the opening, and the effect of the sintering process is suppressed. It will never be done. Thus, by changing the position of the opening, it is possible to reduce the distance between the light shielding film and the antireflection film without forming an oxide film between the light shielding film and the antireflection film. Smearing can be realized. Further, when manufacturing such a solid-state imaging device, patterning is performed by changing the position of the opening, and the other manufacturing processes only have to perform the same procedure as the conventional one, so the difficulty of the manufacturing process is high. Never become.

本発明によれば、製造プロセスの難易度を上げることなく、低スミアを実現できる固体撮像素子及び固体撮像素子の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a solid-state image sensor and solid-state image sensor which can implement | achieve low smear can be provided, without raising the difficulty of a manufacturing process.

以下、本発明の実施形態を図面に基づいて詳しく説明する。
図1は、本発明に係る固体撮像素子の平面図である。図2は、図1の固体撮像素子のA−A線を矢印方向の状態を示す断面図である。
本実施形態の固体撮像素子10は、図2に示すように、シリコン基板11の表面にはpウェル層31が形成されている。pウェル層31内に、p領域30aとn領域30bとが形成され、これらがpn接合を形成している。p領域30aとn領域30bとが、光電変換部として機能するフォトダイオード30を構成している。このフォトダイオード30で発生した信号電荷は、n領域30bに蓄積される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a plan view of a solid-state imaging device according to the present invention. FIG. 2 is a cross-sectional view showing the state of the solid-state imaging device in FIG.
In the solid-state imaging device 10 of the present embodiment, a p-well layer 31 is formed on the surface of the silicon substrate 11 as shown in FIG. A p region 30a and an n region 30b are formed in the p well layer 31, and these form a pn junction. The p region 30a and the n region 30b constitute a photodiode 30 that functions as a photoelectric conversion unit. The signal charge generated in the photodiode 30 is accumulated in the n region 30b.

フォトダイオード30の右方には、少し離間してn領域からなる電荷転送チャネル33が形成される。n領域30bと電荷転送チャネル33の間のpウェル層31に電荷読み出し領域34が形成され、電荷転送部40を構成している。   On the right side of the photodiode 30, a charge transfer channel 33 composed of an n region is formed at a slight distance. A charge readout region 34 is formed in the p-well layer 31 between the n region 30 b and the charge transfer channel 33, and constitutes a charge transfer unit 40.

電荷転送部40は、複数のフォトダイオード列の各々に対応してシリコン基板1表面部の列方向に形成された複数本の電荷転送チャネル33と、電荷転送チャネル33の上層に形成された電荷転送電極13と、フォトダイオード30で発生した電荷を電荷転送チャネル33に読み出すための電荷読み出し領域34とを含む。   The charge transfer unit 40 includes a plurality of charge transfer channels 33 formed in the column direction of the surface portion of the silicon substrate 1 corresponding to each of the plurality of photodiode columns, and a charge transfer formed in the upper layer of the charge transfer channel 33. It includes an electrode 13 and a charge readout region 34 for reading out the charge generated in the photodiode 30 to the charge transfer channel 33.

シリコン基板11表面にはゲート酸化膜12が形成されている。ゲート酸化膜12は、図示しないが、ボトム酸化膜と窒化シリコン膜と酸化シリコン膜との3層からなる多層構造膜(いわゆる、ONO膜)である。   A gate oxide film 12 is formed on the surface of the silicon substrate 11. Although not shown, the gate oxide film 12 is a multilayer structure film (so-called ONO film) composed of three layers of a bottom oxide film, a silicon nitride film, and a silicon oxide film.

電荷読み出し領域34と電荷転送チャネル33の上には、ゲート酸化膜2を介して、電荷転送電極13が形成される。電荷転送電極13の間は酸化シリコン膜などからなる電極間絶縁膜14が形成されている。   A charge transfer electrode 13 is formed on the charge readout region 34 and the charge transfer channel 33 via the gate oxide film 2. An interelectrode insulating film 14 made of a silicon oxide film or the like is formed between the charge transfer electrodes 13.

垂直転送チャネル33の右側にはp領域からなるチャネルストップ32が設けられ、隣接するフォトダイオード30との分離がなされている。 A channel stop 32 made of a p + region is provided on the right side of the vertical transfer channel 33, and is separated from the adjacent photodiode 30.

電荷転送電極13の上層には酸化シリコン膜とプラズマ窒化シリコン膜との2層膜などで構成された絶縁膜15が形成されている。また、絶縁膜15の上層には、窒化シリコン膜などからなる反射防止膜17が形成されている。   On the charge transfer electrode 13, an insulating film 15 composed of a two-layer film of a silicon oxide film and a plasma silicon nitride film is formed. An antireflection film 17 made of a silicon nitride film or the like is formed on the insulating film 15.

反射防止膜17の上層に、フォトダイオード30上に開口16aを有し、タングステン膜からなる遮光膜16が形成される。   A light shielding film 16 made of a tungsten film having an opening 16 a on the photodiode 30 is formed on the antireflection film 17.

遮光膜16の上層には、中間層として、BPSG(borophospho silicate glass)からなる平坦化膜72と、P−SiNからなる絶縁膜(いわゆる、パッシベーション膜)73と、透明樹脂等からなる下側平坦化膜74とが形成されている。また、中間層は、下側平坦化膜74の上層に形成されたカラーフィルタ50G,50Bと、カラーフィルタ50G,50B上に形成された、絶縁性の透明樹脂等からなる上側平坦化膜61とを有している。カラーフィルタ50Gは緑色フィルタ層であり、カラーフィルタ50Bは青色フィルタ層であって、更に、図示しないが赤色フィルタ層が形成されている。また、カラーフィルタには、図示しないフィルタ分離領域が形成されていてもよい。   On the upper side of the light shielding film 16, as a middle layer, a flattening film 72 made of BPSG (borophosphosilicate glass), an insulating film (so-called passivation film) 73 made of P-SiN, and a lower flattening made of transparent resin or the like. A chemical film 74 is formed. The intermediate layer includes color filters 50G and 50B formed on the upper planarization film 74, and an upper planarization film 61 made of an insulating transparent resin and the like formed on the color filters 50G and 50B. have. The color filter 50G is a green filter layer, the color filter 50B is a blue filter layer, and further, although not shown, a red filter layer is formed. The color filter may have a filter separation region (not shown).

中間層の上側表面には、マイクロレンズ60が設けられる。   A microlens 60 is provided on the upper surface of the intermediate layer.

固体撮像素子10は、フォトダイオード30で発生した信号電荷がn領域30bに蓄積され、ここに蓄積された信号電荷が、電荷転送チャネル33によって列方向に転送され、転送された信号電荷が図示しない水平電荷転送路(HCCD)によって行方向に転送され、転送された信号電荷に応じた色信号が図示しないアンプから出力されるように構成されている。すなわち、固体撮像素子10は、シリコン基板11上に、光電変換部、電荷転送部、HCCD、及びアンプを含む領域である固体撮像素子部と、固体撮像素子の周辺回路(PAD部等)が形成される領域である周辺回路部とが形成された構成である。   In the solid-state imaging device 10, signal charges generated in the photodiode 30 are accumulated in the n region 30b, and the accumulated signal charges are transferred in the column direction by the charge transfer channel 33, and the transferred signal charges are not illustrated. The signal is transferred in the row direction by a horizontal charge transfer path (HCCD), and a color signal corresponding to the transferred signal charge is output from an amplifier (not shown). That is, the solid-state image sensor 10 is formed on a silicon substrate 11 with a solid-state image sensor unit that is a region including a photoelectric conversion unit, a charge transfer unit, an HCCD, and an amplifier, and a peripheral circuit (PAD unit or the like) of the solid-state image sensor. In this configuration, a peripheral circuit portion that is a region to be formed is formed.

固体撮像素子10は、反射防止膜17に、遮光膜16の開口16aにおいて、少なくとも一部が開口する開口部17aが形成されている。従来の固体撮像素子では、反射防止膜の開口部が電荷転送電極上に形成されていたが、本実施形態の固体撮像素子10では、電荷転送電極13上を除く領域に開口部17aが形成されている。そして、電荷転送電極13を被覆する反射防止膜17の直ぐ上に、酸化膜等を形成することなく、遮光膜16が形成されている。   In the solid-state imaging device 10, an opening 17 a is formed in the antireflection film 17 so that at least a part of the opening 16 a of the light shielding film 16 is opened. In the conventional solid-state imaging device, the opening of the antireflection film is formed on the charge transfer electrode. However, in the solid-state imaging device 10 of this embodiment, the opening 17a is formed in a region other than on the charge transfer electrode 13. ing. A light shielding film 16 is formed immediately above the antireflection film 17 covering the charge transfer electrode 13 without forming an oxide film or the like.

遮光膜16の開口16aにおいて、反射防止膜17の開口部17aが開口する部位(以下、水素パス)Wは、シリコン基板11の界面にシンター処理を行う際に、発生する水素を逃がす機能を有している。   In the opening 16 a of the light shielding film 16, a portion (hereinafter referred to as a hydrogen path) W where the opening 17 a of the antireflection film 17 opens has a function of releasing generated hydrogen when performing a sintering process on the interface of the silicon substrate 11. is doing.

次に、本発明に係る固体撮像素子の製造方法の一実施形態を説明する。図3から図7は、本実施形態の固体撮像素子の製造手順の一部を示す断面図である。なお、以下に説明する実施形態において、すでに説明した部材などと同等な構成・作用を有する部材等については、図中に同一符号又は相当符号を付すことにより、説明を簡略化或いは省略する。   Next, an embodiment of a method for manufacturing a solid-state imaging device according to the present invention will be described. 3 to 7 are cross-sectional views showing a part of the manufacturing procedure of the solid-state imaging device of the present embodiment. In the embodiments described below, members having the same configuration / action as those already described are denoted by the same or corresponding reference numerals in the drawings, and description thereof is simplified or omitted.

固体撮像素子10は、反射防止膜17を形成する際に、その開口部17aが遮光膜16の開口16aの位置とする点で、従来の固体撮像素子とは相違する。なお、本実施形態の固体撮像素子のシリコン基板11の構成、中間層及びマイクロレンズ60の形成の手順は従来の固体撮像素子と同様の製造プロセスであるため、図示せず、説明を省略する。   The solid-state imaging device 10 is different from the conventional solid-state imaging device in that the opening 17a is positioned at the opening 16a of the light shielding film 16 when the antireflection film 17 is formed. Note that the configuration of the silicon substrate 11 of the solid-state image pickup device of the present embodiment, the procedure for forming the intermediate layer, and the microlens 60 are the same manufacturing processes as those of the conventional solid-state image pickup device.

最初に、図3に示すように、フォトダイオード30が形成されたシリコン基板11上に、フィールド酸化膜12を形成する。フィールド酸化膜12は、上述したように、ボトム酸化膜と窒化シリコン膜と酸化シリコン膜との3層からなる多層構造膜とする。   First, as shown in FIG. 3, the field oxide film 12 is formed on the silicon substrate 11 on which the photodiode 30 is formed. As described above, the field oxide film 12 is a multilayer structure film composed of three layers of a bottom oxide film, a silicon nitride film, and a silicon oxide film.

続いて、図4に示すように、フィールド酸化膜12上に、PHとNとを添加したSiHを反応性ガスとして用いた減圧CVD法により、第1のアモルファスシリコン膜を成膜する。その後、第1のアモルファスシリコン膜をパターニングし、第1の電極を形成する。なお、図示しないが、第1の電極表面を熱酸化することにより膜厚15nm程度の酸化シリコン膜を形成してもよい。同様に第2のアモルファスシリコン膜を形成、パターニングし、第2の電極を形成する。本実施形態の固体撮像素子10は、第1の電極と第2の電極とが単層において並列された単層電極構造を有している。これら第1の電極及び第2の電極を電荷転送電極13とする。 Subsequently, as shown in FIG. 4, a first amorphous silicon film is formed on the field oxide film 12 by a low pressure CVD method using SiH 4 added with PH 3 and N 2 as a reactive gas. . Thereafter, the first amorphous silicon film is patterned to form a first electrode. Although not shown, a silicon oxide film having a thickness of about 15 nm may be formed by thermally oxidizing the surface of the first electrode. Similarly, a second amorphous silicon film is formed and patterned to form a second electrode. The solid-state imaging device 10 of the present embodiment has a single-layer electrode structure in which a first electrode and a second electrode are arranged in a single layer. These first electrode and second electrode are referred to as a charge transfer electrode 13.

電荷転送電極13を形成した後、該電荷転送電極13の上層には、酸化シリコン膜とプラズマ窒化シリコン膜との2層膜などで構成された絶縁膜15を形成する。   After the charge transfer electrode 13 is formed, an insulating film 15 composed of a two-layer film of a silicon oxide film and a plasma silicon nitride film is formed on the charge transfer electrode 13.

絶縁膜15を形成した後、図5に示すように、絶縁膜15上の全面にCVD法又はイオンドーピングによって高屈折率材料である窒化シリコン膜からなる膜厚30nm程度の反射防止膜17を形成する。   After forming the insulating film 15, as shown in FIG. 5, an antireflection film 17 having a film thickness of about 30 nm made of a silicon nitride film which is a high refractive index material is formed on the entire surface of the insulating film 15 by CVD or ion doping. To do.

次に、図6に示すように、フォトリソグラフィ工程によって反射防止膜17に開口部17aを形成する。このとき、開口部17aが、電荷転送電極13上を除く部位で且つフォトダイオード30(光電変換部)上に位置するように、所定のパターンを有するマスクを使用し、露光、現像を行う。   Next, as shown in FIG. 6, an opening 17a is formed in the antireflection film 17 by a photolithography process. At this time, exposure and development are performed using a mask having a predetermined pattern so that the opening 17a is located on the photodiode 30 (photoelectric conversion unit) except for the portion on the charge transfer electrode 13.

反射防止膜17を形成した後、タングステン薄膜からなる遮光膜16を、電荷転送部40を覆うように形成する。遮光膜16は、フォトダイオード30上を除く領域に形成されており、フォトダイオード30上に開口16aが設けられる。   After the antireflection film 17 is formed, a light shielding film 16 made of a tungsten thin film is formed so as to cover the charge transfer portion 40. The light shielding film 16 is formed in a region except on the photodiode 30, and an opening 16 a is provided on the photodiode 30.

反射防止膜17の開口部17aの寸法は特に限定されないが、少なくとも一部が遮光膜16の開口16aにおいて開口するように構成する。この開口した部位が、シリコン基板11のシンター処理時における水素パスとして機能する。   The size of the opening 17 a of the antireflection film 17 is not particularly limited, but at least a part of the opening 17 a is configured to open at the opening 16 a of the light shielding film 16. This opened portion functions as a hydrogen path when the silicon substrate 11 is sintered.

本実施形態によれば、固体撮像素子10は、反射防止膜17の開口部17aが、フォトダイオード30(光電変換部)上における、遮光膜16の開口16aにおいて開口する位置に形成されている。すると、遮光膜16と反射防止膜17との間に酸化膜を形成しない構成としても、シリコン基板11にシンター処理を施す際に発生した水素ガスが開口部17aを流通することが妨げられることが回避できるとともに、シンター処理の効果が抑制されてしまうことがない。このように、反射防止膜17の開口部17aを形成する位置を変えることで、遮光膜16と反射防止膜17との間に酸化膜を形成しない構成として、遮光膜16と反射防止膜17との間の距離を小さくすることが可能となり、低スミア化を実現することができる。また、このような固体撮像素子10を製造する場合には、開口部17aの位置を変えてパターニングすればよく、他の製造プロセスは従来と同様の手順を行えばよいため、製造プロセスの難易度が高くなることがない。   According to this embodiment, the solid-state imaging device 10 is formed at a position where the opening 17a of the antireflection film 17 is opened at the opening 16a of the light shielding film 16 on the photodiode 30 (photoelectric conversion unit). As a result, even if an oxide film is not formed between the light shielding film 16 and the antireflection film 17, the hydrogen gas generated when the silicon substrate 11 is subjected to the sintering process may be prevented from flowing through the opening 17a. This can be avoided and the effect of the sintering process is not suppressed. Thus, by changing the position where the opening 17a of the antireflection film 17 is formed, an oxide film is not formed between the light shielding film 16 and the antireflection film 17, so that the light shielding film 16 and the antireflection film 17 It is possible to reduce the distance between the two, and it is possible to achieve a low smear. Moreover, when manufacturing such a solid-state image sensor 10, the position of the opening 17a may be changed and patterning may be performed, and other manufacturing processes may be performed in the same manner as in the conventional method. Will not be high.

本発明に係る固体撮像素子の構成を示す平面図である。It is a top view which shows the structure of the solid-state image sensor which concerns on this invention. 図1の固体撮像素子のA−A線の矢印方向視した状態を示す断面図である。It is sectional drawing which shows the state which looked at the arrow direction of the AA line of the solid-state image sensor of FIG. 本発明に係る固体撮像素子の製造手順の一部を示す断面図である。It is sectional drawing which shows a part of manufacturing procedure of the solid-state image sensor concerning this invention. 本発明に係る固体撮像素子の製造手順の一部を示す断面図である。It is sectional drawing which shows a part of manufacturing procedure of the solid-state image sensor concerning this invention. 本発明に係る固体撮像素子の製造手順の一部を示す断面図である。It is sectional drawing which shows a part of manufacturing procedure of the solid-state image sensor concerning this invention. 本発明に係る固体撮像素子の製造手順の一部を示す断面図である。It is sectional drawing which shows a part of manufacturing procedure of the solid-state image sensor concerning this invention. 本発明に係る固体撮像素子の製造手順の一部を示す断面図である。It is sectional drawing which shows a part of manufacturing procedure of the solid-state image sensor concerning this invention. 従来の固体撮像素子の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional solid-state image sensor.

符号の説明Explanation of symbols

10 固体撮像素子
11 シリコン基板
13 電荷転送電極
16 遮光膜
17 反射防止膜
17a (反射防止膜の)開口部
30 光電変換部(フォトダイオード)
DESCRIPTION OF SYMBOLS 10 Solid-state image sensor 11 Silicon substrate 13 Charge transfer electrode 16 Light shielding film 17 Antireflection film 17a (Antireflection film) opening 30 Photoelectric conversion part (photodiode)

Claims (2)

基板上に、光電変換部と、
前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部と、
前記電荷転送電極を被覆する反射防止膜と、
前記電荷転送部を覆い、前記光電変換部上で開口した遮光膜とを備えた固体撮像素子であって、
前記反射防止膜には、前記電荷転送電極上を除く部位で且つ前記光電変換部上で開口する開口部が形成されていることを特徴とする固体撮像素子。
On the substrate, a photoelectric conversion unit,
A charge transfer unit including a charge transfer electrode for transferring charges generated in the photoelectric conversion unit;
An antireflection film covering the charge transfer electrode;
A solid-state imaging device including a light-shielding film that covers the charge transfer unit and is opened on the photoelectric conversion unit;
The solid-state image pickup device, wherein the antireflection film is formed with an opening that is open on the photoelectric conversion portion and at a portion other than the charge transfer electrode.
基板上に、光電変換部と、
前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部と、
前記電荷転送電極を被覆する反射防止膜と、
前記電荷転送部を覆い、前記光電変換部上で開口した遮光膜とを備えた固体撮像素子の製造方法であって、
前記反射防止膜における、前記電荷転送電極上を除く部位で且つ前記光電変換部上で開口部を形成することを特徴とする固体撮像素子の製造方法。
On the substrate, a photoelectric conversion unit,
A charge transfer unit including a charge transfer electrode for transferring charges generated in the photoelectric conversion unit;
An antireflection film covering the charge transfer electrode;
A method of manufacturing a solid-state imaging device that includes a light-shielding film that covers the charge transfer unit and is opened on the photoelectric conversion unit,
A method of manufacturing a solid-state imaging device, wherein an opening is formed on a portion of the antireflection film except on the charge transfer electrode and on the photoelectric conversion portion.
JP2005344358A 2005-11-29 2005-11-29 Imaging device and its manufacturing method Pending JP2007150095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344358A JP2007150095A (en) 2005-11-29 2005-11-29 Imaging device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344358A JP2007150095A (en) 2005-11-29 2005-11-29 Imaging device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007150095A true JP2007150095A (en) 2007-06-14

Family

ID=38211107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344358A Pending JP2007150095A (en) 2005-11-29 2005-11-29 Imaging device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007150095A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230008446A (en) * 2021-07-07 2023-01-16 주식회사 디비하이텍 Image sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230008446A (en) * 2021-07-07 2023-01-16 주식회사 디비하이텍 Image sensor
KR102642229B1 (en) * 2021-07-07 2024-02-29 주식회사 디비하이텍 Image sensor

Similar Documents

Publication Publication Date Title
US7579209B2 (en) Image sensor and fabricating method thereof
US7741667B2 (en) CMOS image sensor for improving the amount of light incident a photodiode
JP2007150087A (en) Solid-state imaging element and its manufacturing method
JP2010093081A (en) Solid-state imaging device and method for manufacturing the same
US9608021B2 (en) Image sensor and method for manufacturing thereof
JP2004047682A (en) Solid-state image pickup device
JP4696104B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP2007088057A (en) Solid-state imaging element and manufacturing method thereof
JP2007305683A (en) Solid state image sensing element and method for manufacturing the same
JP2009049117A (en) Method of forming color filter of solid-state image pickup device, solid-state image pickup device, and pattern mask set for solid-state image pickup device
JP2008066409A (en) Solid-state imaging apparatus, and its manufacturing method
JP2005033074A (en) Solid state imaging device and its manufacturing method
JP2006202907A (en) Image pickup element
JP2007150095A (en) Imaging device and its manufacturing method
JP2007067212A (en) Solid-state imaging device and method of manufacturing same
JP2007188964A (en) Solid-state imaging device and its manufacturing method
JP2007201163A (en) Solid-state imaging element, and manufacturing method thereof
JP2007194359A (en) Solid state imaging element, and manufacturing method thereof
JP2008135636A (en) Solid-state imaging element, and its manufacturing method
JP7008054B2 (en) Photoelectric converters and equipment
JP2008028101A (en) Solid-state imaging element and its manufacturing method
JP4751717B2 (en) Manufacturing method of solid-state imaging device
JP2008041847A (en) Solid state imaging apparatus
JP2007012677A (en) Solid state image sensor and its fabrication process
JP2006319133A (en) Color filter, manufacturing method thereof, solid-state imaging element, and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126