JP2007148294A - Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus - Google Patents
Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus Download PDFInfo
- Publication number
- JP2007148294A JP2007148294A JP2005346209A JP2005346209A JP2007148294A JP 2007148294 A JP2007148294 A JP 2007148294A JP 2005346209 A JP2005346209 A JP 2005346209A JP 2005346209 A JP2005346209 A JP 2005346209A JP 2007148294 A JP2007148294 A JP 2007148294A
- Authority
- JP
- Japan
- Prior art keywords
- group
- photosensitive member
- substituent
- electrophotographic photosensitive
- intermediate layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
本発明は、電子写真感光体、プロセスカートリッジ及び電子写真装置に関し、詳しくは中間層に特定の熱可塑性樹脂と電子輸送化合物を有する電子写真感光体、該電子写真感光体を備えたプロセスカートリッジ及び電子写真装置に関する。 The present invention relates to an electrophotographic photosensitive member, a process cartridge, and an electrophotographic apparatus, and more specifically, an electrophotographic photosensitive member having a specific thermoplastic resin and an electron transport compound in an intermediate layer, a process cartridge and an electronic device including the electrophotographic photosensitive member. The present invention relates to a photographic apparatus.
従来より、電子写真感光体としては、セレン、酸化亜鉛及び硫化カドミウム等の無機光導電性化合物を主成分とする無機感光体が広く用いられてきた。近年では、特許文献1〜特許文献5等に見られるように、有機系光導電性物質を樹脂等で結着した正孔輸送層(電荷輸送層)及び電荷発生層の2つの機能分離させた層を有する積層型有機系電子写真感光体に関して様々な提案がなされている。なかでも電荷発生層上に電荷輸送層を設けた層構成を有する電子写真感光体は、耐久性に優れており、現在では主流となっている。例えば特許文献6にはトリアリルピラゾリンを含有する電荷移動層を有する感光体、特許文献7にはペリレン顔料の誘導体からなる電荷発生層と3−プロピレンとホルムアルデヒドの縮合体からなる電荷移動層とからなる感光体等が開示されている。また、ジスアゾ顔料又はトリスアゾ顔料を電荷発生物質として用いた電子写真感光体として特許文献8や特許文献9等がある。更に有機光導電性化合物はその化合物によって電子写真感光体の感光波長域を自由に選択することが可能である。例えば、アゾ系の有機顔料に関していえば特許文献10や特許文献11に開示された物質は可視領域で高感度を示すものが開示されており、また特許文献12や特許文献13に開示された物質は赤外領域にまで感度を有しているものもある。 Conventionally, as an electrophotographic photoreceptor, inorganic photoreceptors mainly composed of an inorganic photoconductive compound such as selenium, zinc oxide and cadmium sulfide have been widely used. In recent years, as seen in Patent Documents 1 to 5 and the like, the two functions of a hole transport layer (charge transport layer) and a charge generation layer in which an organic photoconductive substance is bound with a resin or the like are separated. Various proposals have been made regarding laminated organic electrophotographic photoreceptors having layers. In particular, an electrophotographic photosensitive member having a layer structure in which a charge transport layer is provided on a charge generation layer is excellent in durability and is currently mainstream. For example, Patent Document 6 discloses a photoreceptor having a charge transfer layer containing triallylpyrazoline, Patent Document 7 discloses a charge generation layer formed of a derivative of perylene pigment, and a charge transfer layer formed of a condensate of 3-propylene and formaldehyde. A photoconductor and the like are disclosed. Further, as an electrophotographic photoreceptor using a disazo pigment or a trisazo pigment as a charge generating substance, there are Patent Document 8 and Patent Document 9. Further, the organic photoconductive compound can freely select the photosensitive wavelength range of the electrophotographic photosensitive member depending on the compound. For example, with regard to azo-based organic pigments, the substances disclosed in Patent Document 10 and Patent Document 11 are those that exhibit high sensitivity in the visible region, and the substances disclosed in Patent Document 12 and Patent Document 13 Some have sensitivity even in the infrared region.
これらの電荷発生物質のうち、赤又は赤外領域に感度を有する電荷発生物質は、近年の進歩の著しいレーザービームプリンターやLEDプリンター等に使用されその需要頻度は高くなってきている。従来より赤外領域に感度を有する電荷発生物質として銅フタロシアニン(特許文献14)や無金属フタロシアニン等が挙げられるが、今日の高感度化には不十分であった。更に、特許文献15等では、積層型有機電子写真感光体において、電荷発生層に有機アクセプターを添加することにより高感度化をはかることを提案されているが、十分とはいえるものではなかった。近年の高感度に対応できる電荷発生物質としてオキシチタニウムフタロシアニン顔料(特許文献16や特許文献17)、ガリウムフタロシアニン顔料(特許文献18や特許文献19)やクロロガリウムフタロシアニン顔料(特許文献20や特許文献21)等が注目されている。 Of these charge generation materials, charge generation materials having sensitivity in the red or infrared region are used in laser beam printers, LED printers, and the like that have made remarkable progress in recent years. Conventionally, copper phthalocyanine (Patent Document 14), metal-free phthalocyanine, and the like are listed as charge generating substances having sensitivity in the infrared region, but they are insufficient for increasing the sensitivity today. Further, in Patent Document 15 and the like, it has been proposed to increase sensitivity by adding an organic acceptor to the charge generation layer in the laminated organic electrophotographic photosensitive member, but this is not sufficient. Oxytitanium phthalocyanine pigments (Patent Literature 16 and Patent Literature 17), gallium phthalocyanine pigments (Patent Literature 18 and Patent Literature 19) and chlorogallium phthalocyanine pigments (Patent Literature 20 and Patent Literature 21) as charge generation materials that can cope with high sensitivity in recent years. ) Etc. are attracting attention.
しかしながら、今日の電子写真技術の発展は著しく、電子写真感光体に求められる特性に対しても非常に高度な技術が要求されている。例えば、プロセススピードは年々早くなり、帯電特性、感度や耐久安定性等が求められるようになってきている。特に、近年ではカラー化に代表されるように高画質化が叫ばれ、白黒画像が文字中心の画像だったものが、カラー化により、写真に代表されるハーフトーン画像やベタ画像が多くなっており、それらの画像品質は年々高まる一方である。特に、画像1枚の中で光が照射された部分が次回転目にハーフトーン画像において前記光照射部分のみの濃度が濃くなる現象、所謂ポジゴースト画像、逆に前記部分の濃度が薄くなる、所謂ネガゴースト、等に対する許容範囲が、白黒プリンターや白黒複写機の許容範囲に比べると格段に厳しくなってきている。これらのゴースト画像は、高感度な電荷発生物質を用いることにより、キャリアーの絶対数が多く、正孔が正孔輸送層中に注入した後の電子が電荷発生層中に残り易く、メモリーとなるためと考えられ、特にガリウムフタロシアニンのような高感度な電荷発生物質として用いた場合に顕著な現象となる。 However, the development of today's electrophotographic technology is remarkable, and very advanced technology is required for the characteristics required for electrophotographic photoreceptors. For example, the process speed is increasing year by year, and charging characteristics, sensitivity, durability stability, and the like have been demanded. In particular, in recent years, high-quality images have been screamed as typified by colorization, and black-and-white images that have been character-centered have become more and more halftone images and solid images typified by photographs. Their image quality is increasing year by year. In particular, a phenomenon in which the light-irradiated portion of one image is darkened only in the light-irradiated portion in the halftone image at the next rotation, a so-called positive ghost image, on the contrary, the density of the portion is lightened. The permissible range for so-called negative ghosts and the like has become much stricter than the permissible range for black and white printers and black and white copiers. These ghost images use a highly sensitive charge generation material, so that the absolute number of carriers is large, and electrons after holes are injected into the hole transport layer are likely to remain in the charge generation layer, resulting in a memory. This is considered to be a remarkable phenomenon particularly when used as a highly sensitive charge generating material such as gallium phthalocyanine.
一方、低コスト化や小型化も年々進化していき、クリーナーレスや前露光レス等のレス化技術も要求されることが多くなってきている。特に、前露光に関しては、白黒レーザープリンターや白黒複写機においては、現在でも既に搭載されていないことが多く、カラープリンターやカラー複写機においても前露光を搭載しないものが増えてくることは容易に想像できることである。従って、前露光のないカラー機におけるゴースト画像のレベルは、白黒プリンターや白黒複写機で許容されていたレベルよりも数段のレベルUPが必要となる。 On the other hand, cost reduction and miniaturization are evolving year by year, and there is an increasing demand for less technology such as cleaner-less and pre-exposure-less. In particular, with regard to pre-exposure, black and white laser printers and black-and-white copiers are often not already installed, and it is easy to increase the number of color printers and color copiers that do not have pre-exposure. It can be imagined. Therefore, the level of the ghost image in the color machine without pre-exposure needs to be several levels higher than the level allowed by the black and white printer or black and white copier.
ゴースト低減の提案として、中間層に多環キノン、ペリレン等を含有させた例(特許文献22)、メタロセン化合物と電子吸引性化合物、メラミン樹脂を用いた例(特許文献23)、金属酸化物微粒子とシランカップリング剤を用いた例(特許文献24)、シランカップリング剤で表面処理した金属酸化物微粒子を用いた例(特許文献25)等が発表されているが、これも上記のような厳しいゴーストレベルに効果があるものではなかった。また、中間層にビニルフェノールを用い、黒ポチ、カブリ等の防ぐ例(特許文献26)、基盤の表面欠陥や電位低下を抑制した例(特許文献27)等が開示されているが、いずれも上記のようなゴーストレベルに効果があるものではなかった。 Examples of proposals for reducing ghosts include an example in which polycyclic quinone and perylene are contained in the intermediate layer (Patent Document 22), an example using a metallocene compound and an electron-withdrawing compound, a melamine resin (Patent Document 23), and metal oxide fine particles And an example using a silane coupling agent (Patent Document 24), an example using metal oxide fine particles surface-treated with a silane coupling agent (Patent Document 25), etc. It was not effective for severe ghost levels. In addition, an example in which vinylphenol is used for the intermediate layer to prevent black spots, fog, etc. (Patent Document 26), an example in which surface defects on the substrate and potential decrease are suppressed (Patent Document 27), etc. are disclosed. The above ghost level was not effective.
また上記ゴースト現象は、導電性の基体上に直接感光層を形成した場合に比較し、中間層を用いた感光体において特に発現し易い。つまり、基体の欠陥に起因する感光体の特性低下、白抜けや黒点を防ぐために用いられた中間層が逆に新たなゴーストという画像欠陥を招いていると考えられる。 Further, the ghost phenomenon is particularly likely to occur in a photoconductor using an intermediate layer as compared with a case where a photosensitive layer is formed directly on a conductive substrate. In other words, it is considered that the intermediate layer used for preventing the deterioration of the characteristics of the photosensitive member due to the defect of the substrate, the white spot and the black spot causes an image defect called a new ghost.
以上のように、前露光のないプリンターや複写機、特にカラー機においての厳しいゴーストレベル、を満足する電子写真感光体が望まれている。
本発明の目的は、以上の事情に鑑みてなされたもので、今までにない厳しいレベルのゴースト画像を達成する電子写真感光体、該電子写真感光体を備えたプロセスカートリッジ及び電子写真装置を提供することである。 An object of the present invention has been made in view of the above circumstances, and provides an electrophotographic photosensitive member that achieves an unprecedented level of ghost images, a process cartridge including the electrophotographic photosensitive member, and an electrophotographic apparatus. It is to be.
本発明に従って、導電性支持体上に電子輸送化合物を含む中間層、電荷発生層、正孔輸送物質を含む正孔輸送層をこの順に有する積層型電子写真感光体であって、該中間層が、アルキレン主鎖及びヒドロキシアリール基を側鎖にもつ単位ユニットを含む熱可塑性樹脂及び電子輸送化合物を含む中間層塗工液より形成されたことを特徴とする電子写真感光体が提供される。 According to the present invention, there is provided a laminated electrophotographic photoreceptor having, in this order, an intermediate layer containing an electron transport compound, a charge generation layer, and a hole transport layer containing a hole transport material on a conductive support, An electrophotographic photoreceptor characterized in that it is formed from an intermediate layer coating solution containing a thermoplastic resin containing a unit unit having an alkylene main chain and a hydroxyaryl group as a side chain and an electron transport compound is provided.
また、本発明に従って、上記電子写真感光体を備えたプロセスカートリッジ及び電子写真装置が提供される。 In addition, according to the present invention, a process cartridge and an electrophotographic apparatus provided with the electrophotographic photosensitive member are provided.
本発明によれば、今までにない厳しいレベルのゴースト画像を達成する電子写真感光体、該電子写真感光体を備えたプロセスカートリッジ及び電子写真装置を提供することが可能となった。 According to the present invention, it is possible to provide an electrophotographic photosensitive member that achieves an unprecedented level of ghost images, a process cartridge and an electrophotographic apparatus including the electrophotographic photosensitive member.
以下、本発明の電子写真用感光体について詳細に説明する。 Hereinafter, the electrophotographic photoreceptor of the present invention will be described in detail.
本発明に用いられる導電性支持体としては、アルミニウム、ニッケル、銅、金、鉄等の金属又は合金、ポリエステル、ポリカーボネート、ポリイミド、ガラス等の絶縁性支持体上にアルミニウム、銀、金等の金属あるいは酸化インジウム、酸化スズ等の導電性材料の薄膜を形成したもの、カーボンや導電性フィラーを樹脂中に分散し導電性を付与したもの等が例示できる。これらの支持体表面は、電気的特性改善あるいは密着性改善のために、陽極酸化等の電気化学的な処理を行った支持体や、導電性支持体表面をアルカリリン酸塩あるいはリン酸やタンニン酸を主成分とする酸性水溶液に金属塩の化合物又はフッ素化合物の金属塩を溶解してなる溶液で化学処理を施したものを用いることもできる。 As the conductive support used in the present invention, a metal or alloy such as aluminum, nickel, copper, gold or iron, a metal such as aluminum, silver or gold on an insulating support such as polyester, polycarbonate, polyimide or glass. Or what formed the thin film of electroconductive materials, such as an indium oxide and a tin oxide, what disperse | distributed carbon and the electroconductive filler in resin, and gave the electroconductivity etc. can be illustrated. The surface of these supports is a support that has been subjected to an electrochemical treatment such as anodization to improve electrical properties or adhesion, and the surface of a conductive support is alkali phosphate, phosphoric acid or tannin. It is also possible to use a solution obtained by chemical treatment with a solution obtained by dissolving a metal salt compound or a fluorine compound metal salt in an acidic aqueous solution containing an acid as a main component.
また、単一波長のレーザー光等を用いたプリンターに本電子写真感光体を用いる場合には、干渉縞を抑制するために導電性支持体はその表面を適度に粗しておくことが必要である。具体的には、上記支持体表面をホーニング、ブラスト、切削、電界研磨等の処理をした支持体もしくはアルミニウム及びアルミニウム合金上に導電性金属酸化物及び結着樹脂からなる導電性皮膜を有する支持体を用いることが必要である。 In addition, when the electrophotographic photosensitive member is used in a printer using a single wavelength laser beam or the like, the surface of the conductive support needs to be appropriately roughened in order to suppress interference fringes. is there. Specifically, a support having a surface treated with honing, blasting, cutting, electropolishing, or the like, or a support having a conductive film made of a conductive metal oxide and a binder resin on aluminum and an aluminum alloy. Must be used.
ホーニング処理としては、乾式及び湿式での処理方法があるがいずれを用いてもよい。湿式ホーニング処理は、水等の液体に粉末状の研磨剤を懸濁させ、高速度で支持体表面に吹き付けて粗面化する方法であり、表面粗さは吹き付け圧力、速度、研磨剤の量、種類、形状、大きさ、硬度、比重及び懸濁温度等により制御することができる。同様に、乾式ホーニング処理は、研磨剤をエアーにより、高速度で導電性支持体表面に吹き付けて粗面化する方法であり、湿式ホーニング処理と同じように表面粗さを制御することができる。これら湿式又は乾式ホーニング処理に用いる研磨剤としては、炭化ケイ素、アルミナ、鉄及びガラスビーズ等の粒子が挙げられる。 As the honing treatment, there are dry and wet treatment methods, and any of them may be used. The wet honing treatment is a method in which a powdery abrasive is suspended in a liquid such as water and sprayed onto the surface of the support at a high speed to roughen the surface. The surface roughness is the spray pressure, speed, and amount of abrasive. It can be controlled by the type, shape, size, hardness, specific gravity, suspension temperature and the like. Similarly, the dry honing process is a method in which an abrasive is sprayed onto the surface of the conductive support with air at a high speed to roughen the surface, and the surface roughness can be controlled in the same manner as the wet honing process. Examples of the abrasive used for the wet or dry honing treatment include particles such as silicon carbide, alumina, iron, and glass beads.
導電性金属酸化物及び結着樹脂からなる導電性皮膜をアルミニウムやアルミニウム合金の支持体に塗布し導電性支持体とする方法では、導電性皮膜中にはフィラーとして、導電性微粒子からなる粉体を含有する。この方法では、微粒子を皮膜中に分散させることでレーザー光を乱反射させ干渉縞を防ぐと共に塗布前の支持体の傷や突起等を隠蔽する効果もある。微粒子には酸化チタンや硫酸バリウム等が用いられ、必要によってはこの微粒子に酸化錫等で導電性被覆層を設けることにより、フィラーとして適切な比抵抗としている。導電性微粒子粉体の比抵抗は0.1〜1000Ω・cmが好ましく、更には1〜1000Ω・cmが好ましい。粉体比抵抗は三菱化学社製の抵抗測定装置ロレスタAP(Loresta Ap)を用いて測定した。測定対象の粉体は、500kg/cm2の圧力で固めてコイン状のサンプルとして上記測定装置に装着した。微粒子の平均粒径は0.05〜1.0μmが好ましく、更には0.07〜0.7μmが好ましい。微粒子の平均粒径は遠心沈降法により測定した値である。フィラーの含有量は、導電性皮膜層に対して1.0〜90質量%が好ましく、更には5.0〜80質量%が好ましい。被覆層には、必要に応じてフッ素あるいはアンチモンを含有してもよい。 In a method in which a conductive film made of a conductive metal oxide and a binder resin is applied to a support of aluminum or aluminum alloy to form a conductive support, a powder made of conductive fine particles is used as a filler in the conductive film. Containing. This method has the effect of dispersing the fine particles in the film to diffusely reflect the laser beam to prevent interference fringes and conceal the scratches and protrusions of the support before coating. Titanium oxide, barium sulfate, or the like is used for the fine particles. If necessary, a conductive coating layer is provided on the fine particles with tin oxide or the like, so that a specific resistance suitable as a filler is obtained. The specific resistance of the conductive fine particle powder is preferably 0.1 to 1000 Ω · cm, more preferably 1 to 1000 Ω · cm. The specific resistance of the powder was measured using a resistance measuring device Loresta AP (Loresta Ap) manufactured by Mitsubishi Chemical Corporation. The powder to be measured was hardened at a pressure of 500 kg / cm 2 and attached to the measuring device as a coin sample. The average particle size of the fine particles is preferably 0.05 to 1.0 μm, more preferably 0.07 to 0.7 μm. The average particle diameter of the fine particles is a value measured by a centrifugal sedimentation method. The content of the filler is preferably 1.0 to 90% by mass, and more preferably 5.0 to 80% by mass with respect to the conductive film layer. The coating layer may contain fluorine or antimony as necessary.
導電性皮膜に用いられるバインダー樹脂としては、例えば、フェノール樹脂、ポリウレタン、ポリアミド、ポリイミド、ポリアミドイミド、ポリアミド酸、ポリビニールアセタール、エポキシ樹脂、アクリル樹脂、メラミン樹脂あるいはポリエステル等が好ましい。これらの樹脂は単独でも、二種以上を組み合わせて用いてもよい。これらの樹脂は、支持体に対する接着性が良好であると共に、使用するフィラーの分散性を向上させ、かつ成膜後の耐溶剤性が良好である。上記樹脂の中でも特にフェノール樹脂、ポリウレタン及びポリアミド酸が好ましい。 As the binder resin used for the conductive film, for example, phenol resin, polyurethane, polyamide, polyimide, polyamideimide, polyamic acid, polyvinyl acetal, epoxy resin, acrylic resin, melamine resin, or polyester is preferable. These resins may be used alone or in combination of two or more. These resins have good adhesion to the support, improve the dispersibility of the filler used, and have good solvent resistance after film formation. Among the above resins, phenol resin, polyurethane and polyamic acid are particularly preferable.
導電性皮膜は、例えば浸漬あるいはマイヤーバー等による溶剤塗布で形成することができる。導電性皮膜の厚みは0.1〜30μmが好ましく、更には0.5〜20μmが好ましい。また、導電性皮膜の体積抵抗率は1013Ω・cm以下が好ましく、更には1012Ω・cm以下105Ω・cm以上が好ましい。本発明において、体積抵抗率はアルミニウム板上に測定対象の導電性皮膜を塗布し、更にこの皮膜上に金の薄膜を形成して、アルミニウム板と金薄膜の両電極間を流れる電流値をpAメーターで測定して求めた。導電性皮膜には、被覆層を有する硫酸バリウム微粒子からなる粉体以外に、酸化亜鉛や酸化チタン等の粉体からなるフィラーを含有してもよい。更に、表面性を高めるためにレベリング剤を添加してもよい。 The conductive film can be formed, for example, by dipping or solvent application with a Meyer bar or the like. The thickness of the conductive film is preferably from 0.1 to 30 μm, more preferably from 0.5 to 20 μm. The volume resistivity of the conductive film is preferably 10 13 Ω · cm or less, more preferably 10 12 Ω · cm or less and 10 5 Ω · cm or more. In the present invention, the volume resistivity is obtained by applying a conductive film to be measured on an aluminum plate, further forming a gold thin film on the film, and calculating the current value flowing between both electrodes of the aluminum plate and the gold thin film as pA. It was determined by measuring with a meter. The conductive film may contain a filler made of powder such as zinc oxide or titanium oxide in addition to the powder made of barium sulfate fine particles having a coating layer. Furthermore, a leveling agent may be added to enhance the surface property.
導電性支持体の形状は、特に制約はなく必要に応じて板状、ドラム状又はベルト状のものが用いられる。 The shape of the conductive support is not particularly limited, and a plate, drum, or belt is used as necessary.
本発明に用いられる中間層は、少なくともアルキレン主鎖及びヒドロキシアリール基を側鎖に持つ単位ユニットを含む熱可塑性樹脂及び電子輸送化合物を含む中間層塗工液より形成される。電子輸送化合物は、サイクリックボルタンメトリーの還元電位測定において還元及び酸化ピークが観測されるものであり、より好ましくは両ピーク電流値が同等なものがよい。また、電子輸送化合物は特に下記式(1)〜(4)に示される構造の化合物が好ましい。 The intermediate layer used in the present invention is formed from an intermediate layer coating solution containing an electron transport compound and a thermoplastic resin containing a unit unit having at least an alkylene main chain and a hydroxyaryl group in the side chain. The electron transport compound is one in which reduction and oxidation peaks are observed in the reduction potential measurement of cyclic voltammetry, and more preferably, both peak current values are equivalent. The electron transport compound is particularly preferably a compound having a structure represented by the following formulas (1) to (4).
式中、X1〜X4はそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基又は置換基を有してもよいアルキル基を示す。R1及びR2はそれぞれ独立にエーテル基で中断されていてもよいアルキル基、エーテル基で中断されていてもよいアルケニル基、複素環基;アルキル基、アルケニル基、ニトロ基、ハロゲン基、ハロゲン置換アルキル基を有してもよいアリール基又はアルキル基、アルケニル基、ニトロ基、ハロゲン基、ハロゲン置換アルキル基を有してもよいアラルキル基、アルキル基で置換されたカルボニル基、アルキル基で置換されたスルホニル基を示す。 Wherein indicates the X 1 to X 4 each independently represent a hydrogen atom, a halogen group, a nitro group, which may have a an optionally substituted alkoxy group or an optionally substituted alkyl group. R 1 and R 2 are each independently an alkyl group which may be interrupted by an ether group, an alkenyl group which may be interrupted by an ether group, a heterocyclic group; an alkyl group, an alkenyl group, a nitro group, a halogen group, halogen Substituted with an aryl group or alkyl group which may have a substituted alkyl group, an alkenyl group, a nitro group, a halogen group, an aralkyl group which may have a halogen-substituted alkyl group, a carbonyl group substituted with an alkyl group, or an alkyl group Represents a substituted sulfonyl group.
式中、Z1及びZ2はそれぞれ独立に酸素、C(CN)2基又はN−R(Rは置換基を有してもよいアリール基又はアルキル基)を示す。X11〜X18はそれぞれ独立に水素原子、水酸基、ハロゲン原子、ニトロ基、トリフルオロアルキル基、カルボキシル基、アミノ基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキル基、置換基を有してもよいカルボニル基、置換基を有してもよいエステル基又は置換基を有してもよいアリール基を示す。 In the formula, Z 1 and Z 2 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent). X 11 to X 18 may each independently have a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, a trifluoroalkyl group, a carboxyl group, an amino group, an alkoxy group that may have a substituent, or a substituent. An alkyl group, an optionally substituted carbonyl group, an optionally substituted ester group or an optionally substituted aryl group is shown.
式中、Z11及びZ12はそれぞれ独立に酸素、C(CN)2基又はN−R(Rは置換基を有してもよいアリール基又はアルキル基)を示す。X21〜X26はそれぞれ独立に水素原子、水酸基、ハロゲン原子、ニトロ基、トリフルオロアルキル基、カルボキシル基、アミノ基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキル基、置換基を有してもよいカルボニル基、置換基を有してもよいエステル基又は置換基を有してもよいアリール基を示す。 In the formula, Z 11 and Z 12 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent). X 21 to X 26 each independently have a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, a trifluoroalkyl group, a carboxyl group, an amino group, an alkoxy group that may have a substituent, or a substituent. An alkyl group, an optionally substituted carbonyl group, an optionally substituted ester group or an optionally substituted aryl group is shown.
式中、Z21及びZ22はそれぞれ独立に酸素、C(CN)2基又はN−R(Rは置換基を有してもよいアリール基又はアルキル基)を示す。X31〜X36はそれぞれ独立に水素原子、水酸基、ハロゲン原子、ニトロ基、トリフルオロアルキル基、カルボキシル基、アミノ基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキル基、置換基を有してもよいカルボニル基、置換基を有してもよいエステル基又は置換基を有してもよいアリール基を示す。 In the formula, Z 21 and Z 22 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent). X 31 to X 36 each independently have a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, a trifluoroalkyl group, a carboxyl group, an amino group, an alkoxy group that may have a substituent, or a substituent. An alkyl group, an optionally substituted carbonyl group, an optionally substituted ester group or an optionally substituted aryl group is shown.
電子輸送化合物と共に中間層を形成する熱可塑性樹脂は、下記式(5)で示されるアルキレン主鎖及びヒドロキシアリール基を側鎖にもつ単位構造を含む熱可塑性樹脂であり、式(5)単独のホモポリマーでもその他公知のビニルモノマーとの共重合体でもよい。 The thermoplastic resin that forms the intermediate layer together with the electron transport compound is a thermoplastic resin containing a unit structure having an alkylene main chain and a hydroxyaryl group in the side chain represented by the following formula (5). It may be a homopolymer or a copolymer with other known vinyl monomers.
式中、R3〜R5はそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキル基又はアリール基を示す。R6はそれぞれ独立にエーテル基で中断されていてもよいアルキル基、エーテル基で中断されていてもよいアルケニル基、複素環基;アルキル基、アルケニル基、ニトロ基、ハロゲン基、ハロゲン置換アルキル基を有してもよいアリール基又はアルキル基、アルケニル基、ニトロ基、ハロゲン基、ハロゲン置換アルキル基を有してもよいアラルキル基を示し、炭素数0〜20が好ましい。炭素数0の場合は以下に示すアリール基Aはアルキレン主鎖に結合する。Aは置換基を有してもよいフェニレン基、ナフチレン基、アントリレン基又はフェナントリレン基等の芳香族炭化水素を示す。mは1以上の整数。 In formula, R < 3 > -R < 5 > shows a hydrogen atom, a halogen group, a nitro group, the alkoxy group which may have a substituent, the alkyl group which may have a substituent, or an aryl group each independently. R 6 is independently an alkyl group which may be interrupted by an ether group, an alkenyl group which may be interrupted by an ether group, a heterocyclic group; an alkyl group, an alkenyl group, a nitro group, a halogen group, a halogen-substituted alkyl group Represents an aralkyl group which may have an aryl group or an alkyl group, an alkenyl group, a nitro group, a halogen group or a halogen-substituted alkyl group, which may have an alkyl group, and preferably has 0 to 20 carbon atoms. In the case of 0 carbon atoms, the aryl group A shown below is bonded to the alkylene main chain. A represents an aromatic hydrocarbon such as a phenylene group, a naphthylene group, an anthrylene group or a phenanthrylene group which may have a substituent. m is an integer of 1 or more.
前記ヒドロキシアリール基のアリール基は、フェニル基であることが好ましい。 The aryl group of the hydroxyaryl group is preferably a phenyl group.
また、上記に加え更にイソシアネート化合物を含んだ場合、より好ましいゴースト画像低減効果が得られる。詳細は不明であるが中間層形成時に一部がヒドロキシアリール基含有樹脂と架橋反応を起こすことで電子輸送化合物の存在状態が変化することが影響していると思われる。 Further, when an isocyanate compound is further contained in addition to the above, a more preferable ghost image reduction effect can be obtained. Although details are unknown, it is thought that the presence of the electron transport compound changes due to a partial crosslinking reaction with the hydroxyaryl group-containing resin during the formation of the intermediate layer.
イソシアネート化合物としては、トリレンジイソシアネート、メタキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニレンイソシアネート等の芳香族イソシアネート化合物;上記イソシアネートの水添化物、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート化合物;及びこれらのイソシアネート化合物のイソシアネート基をフェノール、ケトキシム、芳香族第2級アミン、第3級アルコール、アミド、ラクタム、複素環化合物、亜硫酸塩等でブロックしたブロックイソシアネート化合物等が挙げられる。また、上記イソシアネート化合物は2量体〜5量体の形で用いることもできる。 Isocyanate compounds include aromatic isocyanate compounds such as tolylene diisocyanate, metaxylylene diisocyanate, diphenylmethane diisocyanate, and polymethylene polyphenylene isocyanate; hydrogenated products of the above isocyanates, aliphatic isocyanate compounds such as hexamethylene diisocyanate; and these isocyanate compounds. And a blocked isocyanate compound in which the isocyanate group is blocked with phenol, ketoxime, aromatic secondary amine, tertiary alcohol, amide, lactam, heterocyclic compound, sulfite or the like. Moreover, the said isocyanate compound can also be used with the form of a dimer-a pentamer.
式(1)〜(4)で示される電子輸送化合物は、中間層全体に対して5〜95質量%が好ましく、より好ましくは25〜80質量%の範囲、更に好ましくは31〜70質量%である。 The electron transport compound represented by the formulas (1) to (4) is preferably 5 to 95% by mass, more preferably 25 to 80% by mass, and still more preferably 31 to 70% by mass with respect to the entire intermediate layer. is there.
また、添加する化合物はいずれの構造でも効果はあるが還元電位−0.25〜−0.65V(対SCE)の化合物がより好ましい。還元電位はアセトニトリル中、支持電解質としてテトラブチルアンモニウムパークロレート、白金電極を用い、掃印速度50mV/sで行った。上記材料は、適当な溶剤に溶解して塗布され、中間層の膜厚は0.05〜5μmが好ましく、特には0.3〜3μmが適当である。 The compound to be added is effective in any structure, but a compound having a reduction potential of −0.25 to −0.65 V (vs. SCE) is more preferable. The reduction potential was performed in acetonitrile at a sweep rate of 50 mV / s using tetrabutylammonium perchlorate and a platinum electrode as the supporting electrolyte. The above-mentioned material is dissolved and applied in a suitable solvent, and the thickness of the intermediate layer is preferably 0.05 to 5 μm, particularly 0.3 to 3 μm.
次に、上記一般式(1)〜(4)で示される電子輸送化合物の例を次の表1〜表4に挙げるがこれらに限定されるわけではない。 Next, examples of the electron transport compounds represented by the general formulas (1) to (4) are listed in the following Tables 1 to 4, but are not limited thereto.
本発明に用いられる電荷発生物質として、ピリリウム系染料、チオピリリウム系染料、フタロシアニン系顔料、アントアントロン系顔料、ジベンズピレンキノン系顔料、ピラトロン系顔料、アゾ系顔料、インジゴ系顔料、キナクリドン系顔料及びキノシアニン系染料等が挙げられる。フタロシアニン化合物には、無金属フタロシアニンや、オキシチタニウムフタロシアニン、ヒドロキシフタロシアニン、及びクロロガリウム等のハロゲン化ガリウムフタロシアニン等が挙げられる。詳細は明らかではないが、本発明においてガリウムフタロシアニン、特にヒドロキシガリウムフタロシアニンを用いた場合、特に好ましいゴースト抑制効果が得られた。 Examples of the charge generating material used in the present invention include pyrylium dyes, thiopyrylium dyes, phthalocyanine pigments, anthanthrone pigments, dibenzpyrenequinone pigments, pyratron pigments, azo pigments, indigo pigments, quinacridone pigments, and And quinocyanine dyes. Examples of the phthalocyanine compound include metal-free phthalocyanine, oxytitanium phthalocyanine, hydroxyphthalocyanine, and gallium halide phthalocyanine such as chlorogallium. Although details are not clear, in the present invention, when gallium phthalocyanine, particularly hydroxygallium phthalocyanine is used, a particularly preferable ghost suppressing effect is obtained.
上記電荷発生層には、フタロシアニン化合物以外の電荷発生物質を、全電荷発生物質に対して50質量%まで含有させることも可能である。例えば、セレン−テルル、ピリリウム、チアピリリウム系染料、アントアントロン、ジベンズピレンキノン、トリスアゾ、シアニン、ジスアゾ、モノアゾ、インジゴ、キナクリドン及び非対称キノシアニン系の各顔料等が挙げられる。 The charge generation layer may contain a charge generation material other than the phthalocyanine compound up to 50 mass% with respect to the total charge generation material. Examples thereof include selenium-tellurium, pyrylium, thiapyrylium dyes, anthanthrone, dibenzpyrenequinone, trisazo, cyanine, disazo, monoazo, indigo, quinacridone, and asymmetric quinocyanine pigments.
電荷発生層は、前記電荷発生物質を質量比で0.3〜4倍量のバインダー樹脂及び溶剤と共にホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター、ロールミル又は液衝突型高速分散機等を使用して十分分散し、その後分散液中に電子搬送性化合物を添加した溶液を塗布、乾燥させて形成される。 The charge generation layer is a homogenizer, ultrasonic dispersion, ball mill, vibration ball mill, sand mill, attritor, roll mill, or liquid collision type high-speed disperser together with the charge generation material in a mass ratio of 0.3 to 4 times the binder resin and solvent. And the like, and then a solution obtained by adding an electron transporting compound to the dispersion is applied and dried.
バインダー樹脂としては、ブチラール樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルメタクリレート樹脂、ポリビニルアクリレート樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリウレタン樹脂、シリコーン樹脂、アルキッド樹脂、エポキシ樹脂、セルロース樹脂及びメラミン樹脂等が挙げられるが、これらに限定されるものではない。特に、ブチラール樹脂が好ましい。電荷発生層の膜厚は5μm以下が好ましく、特には0.1〜2μmが好ましい。 As binder resin, butyral resin, polyester resin, polycarbonate resin, polyarylate resin, polystyrene resin, polyvinyl methacrylate resin, polyvinyl acrylate resin, polyvinyl acetate resin, polyvinyl chloride resin, polyamide resin, polyurethane resin, silicone resin, alkyd resin , Epoxy resin, cellulose resin, melamine resin, and the like, but are not limited thereto. In particular, a butyral resin is preferred. The thickness of the charge generation layer is preferably 5 μm or less, particularly preferably 0.1 to 2 μm.
電荷発生層の上には正孔輸送層が形成される。正孔輸送層は主として正孔輸送物質とバインダー樹脂とを溶剤中に溶解させた塗料を塗布、乾燥して形成する。用いられる正孔輸送物質としては、トリアリールアミン系化合物、ヒドラゾン化合物、スチルベン化合物、ピラゾリン系化合物、オキサゾール系化合物、トリアリルメタン系化合物及びチアゾール系化合物等が挙げられる。 A hole transport layer is formed on the charge generation layer. The hole transport layer is formed by applying and drying a paint in which a hole transport material and a binder resin are dissolved in a solvent. Examples of the hole transport material used include triarylamine compounds, hydrazone compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, triallylmethane compounds, and thiazole compounds.
バインダー樹脂としては、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルメタクリレート樹脂、ポリビニルアクリレート樹脂、ポリアミド樹脂、ポリウレタン樹脂、シリコーン樹脂、アルキッド樹脂、エポキシ樹脂、セルロース樹脂及びメラミン樹脂等が挙げられるが、下記式(6)で示される構造単位を有するポリアリレート樹脂を用いた場合に特に好ましいゴースト抑制効果が得られた。 Examples of the binder resin include polyester resin, polycarbonate resin, polyarylate resin, polystyrene resin, polyvinyl methacrylate resin, polyvinyl acrylate resin, polyamide resin, polyurethane resin, silicone resin, alkyd resin, epoxy resin, cellulose resin, and melamine resin. However, a particularly preferable ghost suppression effect was obtained when a polyarylate resin having a structural unit represented by the following formula (6) was used.
下記式(6)で示される構造単位を有するポリアリレート樹脂は、単独であるいはポリカーボネート樹脂、ポリエステル樹脂、ポリメタクリル酸エステル、ポリスチレン樹脂、アクリル樹脂、ポリアミド樹脂等の樹脂、ポリ−N−ビニルカルバゾールやポリビニルアントラセンのような有機光導電性ポリマー等と混合して用いることが好ましい。 The polyarylate resin having a structural unit represented by the following formula (6) may be used alone or as a resin such as polycarbonate resin, polyester resin, polymethacrylic ester, polystyrene resin, acrylic resin, polyamide resin, poly-N-vinylcarbazole, It is preferable to use a mixture with an organic photoconductive polymer such as polyvinyl anthracene.
式中、X40は炭素原子又は単結合(この際のR15及びR16は無し)を示し、R11〜R14は水素原子、ハロゲン原子、置換されてもよいアルキル基又はアリール基を示し、R15及びR16は水素原子、ハロゲン原子、置換されてもよいアルキル基、アリール基又はR15とR16が結合することによって形成されるアルキリデン基を示し、R17〜R20は水素原子、ハロゲン原子、置換されてもよいアルキル基又はアリール基を示す。 In the formula, X 40 represents a carbon atom or a single bond (in this case, R 15 and R 16 are absent), and R 11 to R 14 represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group or an aryl group. , R 15 and R 16 represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an aryl group, or an alkylidene group formed by combining R 15 and R 16 , and R 17 to R 20 represent a hydrogen atom. , A halogen atom, an optionally substituted alkyl group or an aryl group.
バインダー樹脂の重量平均分子量は、5万〜20万が好ましく、更には10万〜18万が好ましい。重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィー(東ソー(株)製「HLC−8120」)を用いて分子量分布を測定し、ポリスチレン換算で計算した。 The weight average molecular weight of the binder resin is preferably 50,000 to 200,000, and more preferably 100,000 to 180,000. The weight average molecular weight was determined by measuring the molecular weight distribution using gel permeation chromatography (“HLC-8120” manufactured by Tosoh Corporation) and calculating the polystyrene equivalent.
測定は、展開溶媒としてテトラヒドロフラン(THF)を用い、樹脂試料の0.1質量%溶液について、カラムとして排除限界分子量(ポリスチレン換算)4×106のカラム(東ソー(株)製「TSKgel SuperHM−N」)、検出器としてRIを用いて、カラム温度40℃、インジェクション量20μl、流速1.0ml/分の条件で行った。 For the measurement, tetrahydrofuran (THF) was used as a developing solvent, and a 0.1 mass% solution of a resin sample was used as a column with an exclusion limit molecular weight (polystyrene conversion) 4 × 10 6 column (“TSKgel SuperHM-N” manufactured by Tosoh Corporation). ”), Using RI as a detector, under conditions of a column temperature of 40 ° C., an injection amount of 20 μl, and a flow rate of 1.0 ml / min.
正孔輸送物質は質量比で0.5〜2倍量のバインダー樹脂と組み合わされ、塗布、乾燥して正孔輸送層を形成する。正孔輸送層の膜厚は、5〜30μmが好ましく、更には8〜19μmが好ましい。 The hole transport material is combined with a binder resin in an amount of 0.5 to 2 times by mass, and applied and dried to form a hole transport layer. The film thickness of the hole transport layer is preferably 5 to 30 μm, more preferably 8 to 19 μm.
正孔輸送層には、その他、ヒンダードフェノール類やヒンダードアミン類等の酸化防止剤、シリコーンオイル、シリコーンオイル粒子及びフッ素原子含有樹脂粒子等の潤滑性材料、シリコーン玉等の膜強度補強材等を添加してもよい。これらを含有した塗工液を電荷発生層上に塗布し、乾燥して、正孔輸送層が得られる。 In addition to the hole transport layer, antioxidants such as hindered phenols and hindered amines, lubricating materials such as silicone oil, silicone oil particles and fluorine atom-containing resin particles, and film strength reinforcing materials such as silicone balls. It may be added. A coating liquid containing these is applied onto the charge generation layer and dried to obtain a hole transport layer.
また、本発明においては、正孔輸送層上に保護層を設けてもよい。保護層を構成する材料としては、ポリエステル、ポリアクリレート、ポリエチレン、ポリスチレン、ポリブタジエン、ポリカーボネート、ポリアミド、ポリプロピレン、ポリイミド、ポリアミドイミド、ポリサルホン、ポリアクリルエーテル、ポリアセタール、フェノール、アクリル、シリコーン、エポキシ、ユリア、アリル、アルキッド、ブチラール、フェノキシ、ホスファゼン、アクリル変性エポキシ、アクリル変性ウレタン及びアクリル変性ポリエステル樹脂等が挙げられる。保護層の膜厚は、0.2〜10μmであることが好ましい。 In the present invention, a protective layer may be provided on the hole transport layer. The material constituting the protective layer is polyester, polyacrylate, polyethylene, polystyrene, polybutadiene, polycarbonate, polyamide, polypropylene, polyimide, polyamideimide, polysulfone, polyacryl ether, polyacetal, phenol, acrylic, silicone, epoxy, urea, allyl. Alkyd, butyral, phenoxy, phosphazene, acrylic-modified epoxy, acrylic-modified urethane, and acrylic-modified polyester resin. The thickness of the protective layer is preferably 0.2 to 10 μm.
以上の各層には、クリーニング性や耐摩耗性等の改善のために、ポリ四フッ化エチレン、ポリフッ化ビニリデン、フッ素系グラフトポリマー、シリコーン系グラフトポリマー、フッ素系ブロックポリマー、シリコーン系ブロックポリマー及びシリコーン系オイル等の潤滑剤を含有させてもよい。更に、耐候性を向上させる目的で、酸化防止剤等の添加物を加えてもよい。 Each of the above layers has a polytetrafluoroethylene, polyvinylidene fluoride, a fluorine-based graft polymer, a silicone-based graft polymer, a fluorine-based block polymer, a silicone-based block polymer, and a silicone for improving cleaning properties and abrasion resistance. You may contain lubricants, such as system oil. Furthermore, an additive such as an antioxidant may be added for the purpose of improving the weather resistance.
また、保護層には、抵抗制御の目的で、導電性酸化スズ及び導電性酸化チタニウム等の導電性粉体を分散してもよい。 Further, conductive powder such as conductive tin oxide and conductive titanium oxide may be dispersed in the protective layer for the purpose of resistance control.
図1に本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成を示す。 FIG. 1 shows a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
図1において、1はドラム状の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度(プロセススピード)をもって回転駆動される。電子写真感光体1は、回転過程において、一次帯電手段3によりその周面に正又は負の所定電位の均一帯電を受け、次いで、原稿からの反射光であるスリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強度変調された露光光4を受ける。こうして電子写真感光体1の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。 In FIG. 1, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is rotationally driven around a shaft 2 in a direction indicated by an arrow with a predetermined peripheral speed (process speed). In the rotation process, the electrophotographic photosensitive member 1 is subjected to uniform charging at a predetermined positive or negative potential on its peripheral surface by the primary charging unit 3, and then, for example, slit exposure or laser beam scanning exposure that is reflected light from the original. The exposure light 4 intensity-modulated in response to the time-series electric digital image signal of the target image information output from the exposure means (not shown) is received. In this way, electrostatic latent images corresponding to the target image information are sequentially formed on the peripheral surface of the electrophotographic photoreceptor 1.
形成された静電潜像は、次いで現像手段5内の荷電粒子(トナー)で正規現像又は反転現像により可転写粒子像(トナー像)として顕画化され、不図示の給紙部から電子写真感光体1と転写手段6との間に電子写真感光体1の回転と同期して取り出されて給送された転写材7に、電子写真感光体1の表面に形成担持されているトナー像が転写手段6により順次転写されていく。この時、転写手段にはバイアス電源(不図示)からトナーの保有電荷とは逆極性のバイアス電圧が印加される。 The formed electrostatic latent image is visualized as a transferable particle image (toner image) by regular development or reversal development with charged particles (toner) in the developing means 5 and is electrophotographic from a paper supply unit (not shown). A toner image formed and carried on the surface of the electrophotographic photosensitive member 1 is transferred to the transfer material 7 which is taken out and fed between the photosensitive member 1 and the transfer unit 6 in synchronization with the rotation of the electrophotographic photosensitive member 1. The images are sequentially transferred by the transfer means 6. At this time, a bias voltage having a polarity opposite to the charge held in the toner is applied to the transfer means from a bias power source (not shown).
トナー画像の転写を受けた転写材7(最終転写材(紙やフィルム等)の場合)は、電子写真感光体面から分離されて像定着手段8へ搬送されてトナー像の定着処理を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。転写材7が一次転写材(中間転写材等)の場合は、複数次の転写工程の後に定着処理を受けてプリントアウトされる。 The transfer material 7 (in the case of a final transfer material (such as paper or film)) that has received the transfer of the toner image is separated from the electrophotographic photosensitive member surface, conveyed to the image fixing means 8, and subjected to a toner image fixing process. Printed out of the apparatus as an image formed product (print, copy). When the transfer material 7 is a primary transfer material (intermediate transfer material or the like), it is printed out after a fixing process after a plurality of transfer processes.
トナー像転写後の電子写真感光体1の表面は、クリーニング手段9によって転写残りトナー等の付着物の除去を受けて清浄面化される。近年、クリーナレスシステムも研究され、転写残りトナーを直接、現像器等で回収することもできる。 The surface of the electrophotographic photosensitive member 1 after the transfer of the toner image is cleaned by removing the deposits such as residual toner by the cleaning means 9. In recent years, a cleanerless system has been studied, and the transfer residual toner can be directly collected by a developing device or the like.
一次帯電手段3は、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器でも良く、ローラー形状、ブレード形状、ブラシ形状等の公知の形態が使用される接触型帯電器を用いても良い。接触型帯電器の部材の材料としては、導電性を付与した弾性体が一般的である。接触帯電部材に印加される電圧としては、直流電圧のみでも良く、直流電圧に交流電圧を重畳した振動電圧でも良い。ここで言う振動電圧とは、時間と共に周期的に電圧値が変化する電圧であり、交流電圧は、直流電圧のみ印加時における感光体の帯電開始電圧の2倍以上のピーク間電圧を有することが好ましい。 The primary charging unit 3 may be a scorotron charger or a corotron charger using corona discharge, or a contact type charger using a known form such as a roller shape, a blade shape, or a brush shape. As a material of the member of the contact charger, an elastic body imparted with conductivity is generally used. The voltage applied to the contact charging member may be only a DC voltage or an oscillating voltage obtained by superimposing an AC voltage on a DC voltage. The oscillating voltage referred to here is a voltage whose voltage value periodically changes with time, and the AC voltage has a peak-to-peak voltage that is at least twice the charging start voltage of the photosensitive member when only the DC voltage is applied. preferable.
本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段3、現像手段5及びクリーニング手段9の少なくとも1つを電子写真感光体1と共に一体に支持してカートリッジ化して、装置本体のレール等の案内手段12を用いて装置本体に着脱自在なプロセスカートリッジ11とすることができる。 In the present invention, among the above-described components such as the electrophotographic photosensitive member 1, the primary charging unit 3, the developing unit 5 and the cleaning unit 9, a plurality of components are housed in a container and integrally combined as a process cartridge. The process cartridge may be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. For example, at least one of the primary charging unit 3, the developing unit 5, and the cleaning unit 9 is integrally supported together with the electrophotographic photosensitive member 1 to form a cartridge, and is attached to and detached from the apparatus main body using the guide unit 12 such as a rail of the apparatus main body. A flexible process cartridge 11 can be obtained.
また、露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動又は液晶シャッターアレイの駆動等により照射される光である。 Further, when the electrophotographic apparatus is a copying machine or a printer, the exposure light 4 is reflected or transmitted light from the original, or the original is read by a sensor and converted into a signal, and a laser beam scanning performed according to this signal is performed. The light emitted by driving the LED array or the liquid crystal shutter array.
本発明の電子写真感光体は、電子写真複写機に利用するのみならず、レーザービームプリンター、LEDプリンター、FAX、液晶シャッター式プリンター等の電子写真装置一般に適応し得るが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用し得るものである。 The electrophotographic photosensitive member of the present invention can be applied not only to electrophotographic copying machines but also to general electrophotographic apparatuses such as laser beam printers, LED printers, FAX, liquid crystal shutter printers, etc. It can be widely applied to apparatuses such as applied displays, recording, light printing, plate making and facsimile.
ます、本発明に用いるヒドロキシガリウムフタロシアニンの製造例を示す。 First, an example of production of hydroxygallium phthalocyanine used in the present invention will be shown.
<製造例1>
o−フタロジニトリル73g、三塩化ガリウム25g、α−クロロナフタレン400mlを窒素雰囲気下200℃で4時間反応させた後、130℃で生成物を濾過した。得られた生成物をN,N−ジメチルホルムアミドを用いて130℃で1時間分散洗浄した後、濾過し、メタノールで洗浄後に乾燥し、クロロガリウムフタロシアニンを45g得た。
<Production Example 1>
After reacting 73 g of o-phthalodinitrile, 25 g of gallium trichloride and 400 ml of α-chloronaphthalene at 200 ° C. for 4 hours in a nitrogen atmosphere, the product was filtered at 130 ° C. The obtained product was dispersed and washed at 130 ° C. for 1 hour using N, N-dimethylformamide, filtered, washed with methanol and dried to obtain 45 g of chlorogallium phthalocyanine.
ここで得られたクロロガリウムフタロシアニン15gを10℃の濃硫酸450gに溶解させ、氷水2300g中に攪拌下に滴下して再析出させて濾過した。2%アンモニア水で分散洗浄後、イオン交換水で十分に水洗した後、濾別、乾燥してヒドロキシガリウムフタロシアニンを13g得た。顔料化工程としては、得られたヒドロキシガリウムフタロシアニン10g、N,N’−ジメチルホルムアミド300gを1mmφのガラスビーズ450gと共にミリング処理を室温(22℃)下、6時間行った。 15 g of the chlorogallium phthalocyanine obtained here was dissolved in 450 g of concentrated sulfuric acid at 10 ° C., dropped into 2300 g of ice water with stirring, reprecipitated and filtered. After being dispersed and washed with 2% aqueous ammonia and sufficiently washed with ion-exchanged water, it was filtered and dried to obtain 13 g of hydroxygallium phthalocyanine. In the pigmenting step, 10 g of the obtained hydroxygallium phthalocyanine and 300 g of N, N′-dimethylformamide were milled together with 450 g of 1 mmφ glass beads at room temperature (22 ° C.) for 6 hours.
この分散液により固形分を取り出し、メタノール、次いで水で十分に洗浄、乾燥してヒドロキシガリウムフタロシアニン結晶9.2gを得た。このヒドロキシガリウムフタロシアニンは、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.4°及び28.2°に強いピークを有していた。 The solid was taken out from this dispersion, washed thoroughly with methanol and then with water, and dried to obtain 9.2 g of hydroxygallium phthalocyanine crystals. This hydroxygallium phthalocyanine had strong peaks at 7.4 ° and 28.2 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction.
次に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例により限定されるものではない。なお、実施例中の「部」は質量部を表す。 EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. In addition, "part" in an Example represents a mass part.
(実施例1)
熱間押し出しにより得たA3003の外径φ30.5mm、内径φ28.5mm、長さ260.5mmアルミニウム素管(ED管)を準備した。
Example 1
A 3003 outer diameter φ30.5 mm, inner diameter φ28.5 mm, length 260.5 mm aluminum base pipe (ED pipe) obtained by hot extrusion was prepared.
酸化スズで形成された被覆層を有する硫酸バリウム微粒子からなる粉体(被覆率50質量%、粉体比抵抗700Ω・cm)120部とレゾール型フェノール樹脂(商品名:ブライオーフェンJ−325、大日本インキ化学工業(株)製、固形分70%)70部と2−メトキシ−1−プロパノール100部とからなる溶液を約20時間ボールミルで分散し、導電性粒子樹脂分散層用塗布液を調製した(この塗布液に含有するフィラーの平均粒径は0.22μmであった)。この液を外径φ29.92mm、内径φ28.5mm、長さ260mmのアルミニウムシリンダー上に浸漬コーティング法によって塗布し、140℃で30分間加熱硬化することにより、膜厚が15μmの導電性粒子樹脂分散層を形成し、これを導電性支持体とした。 120 parts of powder composed of fine particles of barium sulfate having a coating layer formed of tin oxide (coverage: 50 mass%, powder specific resistance: 700 Ω · cm) and resol type phenol resin (trade name: Bryofen J-325, large A solution consisting of 70 parts of Nippon Ink Chemical Co., Ltd. (solid content 70%) and 100 parts of 2-methoxy-1-propanol is dispersed with a ball mill for about 20 hours to prepare a coating solution for conductive particle resin dispersion layer. (The average particle size of the filler contained in this coating solution was 0.22 μm). This solution is applied onto an aluminum cylinder having an outer diameter of 29.92 mm, an inner diameter of 28.5 mm, and a length of 260 mm by a dip coating method, followed by heat curing at 140 ° C. for 30 minutes, thereby dispersing conductive particle resin having a thickness of 15 μm. A layer was formed and used as a conductive support.
上記導電性支持体上に表1の例示化合物E1−8を1部、ポリ(p−ヒドロキシスチレン)9部(商品名:マルカリンカー、丸善石油化学社製)とをDMF150部、メタノール100部とに溶解した溶液を浸漬塗布法で塗布し、90℃で5分間乾燥し、膜厚が0.4μmの中間層を形成した。 1 part of Exemplified Compound E1-8 in Table 1 and 9 parts of poly (p-hydroxystyrene) (trade name: Marcalinker, manufactured by Maruzen Petrochemical Co., Ltd.) on the conductive support are 150 parts of DMF and 100 parts of methanol. The solution dissolved in was applied by dip coating and dried at 90 ° C. for 5 minutes to form an intermediate layer having a thickness of 0.4 μm.
次に、電荷発生物質として製造例1に従って合成したヒドロキシガリウムフタロシアニン結晶20部、ポリビニルブチラール樹脂(商品名:BX−1、積水化学工業株式会社製)10部にシクロヘキサノン350部を加え、1mmφガラスビーズを用いたサンドミルで3時間分散し、これに酢酸エチル1200部を加えて希釈した。このときの電荷発生物質のCAPA−700(堀場製作所(株)製)による分散粒径は0.15μmであった。中間層上に、この電荷発生層用塗工液を浸漬塗布し、100℃で10分間乾燥して、膜厚が0.2μmの電荷発生層を形成した。 Next, 350 parts of cyclohexanone is added to 20 parts of a hydroxygallium phthalocyanine crystal synthesized according to Production Example 1 as a charge generation material and 10 parts of polyvinyl butyral resin (trade name: BX-1, manufactured by Sekisui Chemical Co., Ltd.), and 1 mmφ glass beads The mixture was dispersed for 3 hours with a sand mill using 1, and diluted with 1200 parts of ethyl acetate. At this time, the dispersed particle diameter of the charge generation material CAPA-700 (manufactured by Horiba, Ltd.) was 0.15 μm. On the intermediate layer, this charge generation layer coating solution was applied by dip coating and dried at 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.2 μm.
次に、下記構造式(7)で示される化合物7部、式(8)で示される化合物を1部、 Next, 7 parts of the compound represented by the following structural formula (7), 1 part of the compound represented by the formula (8),
及び、式(9)で示される構成単位を有するビスフェノールC型ポリアリレート樹脂(Mw110000)10部をモノクロルベンゼン50部/ジクロルメタン10部に混合溶媒に溶解し、正孔輸送層用塗料を調製した。この塗料を電荷発生層上に浸漬塗布法で塗布し、110℃で1時間乾燥して、膜厚18μmの正孔輸送層を形成した。こうして電子写真感光体を作製した。 And 10 parts of bisphenol C type polyarylate resin (Mw110000) having the structural unit represented by the formula (9) was dissolved in a mixed solvent in 50 parts of monochlorobenzene / 10 parts of dichloromethane to prepare a coating material for a hole transport layer. This paint was applied onto the charge generation layer by a dip coating method and dried at 110 ° C. for 1 hour to form a hole transport layer having a thickness of 18 μm. Thus, an electrophotographic photosensitive member was produced.
評価法としては、上記作製した電子写真感光体をヒューレットーパッカード(株)製カラーレーザープリンター、レーザージェット4600改造機(一次帯電:ローラー接触DC帯電、暗部電位−500V、プロセススピード100mm/秒、レーザー露光)を用いて、前露光を消した状態で、15℃/10%RHの環境下において、画像濃度4%画像において1000枚連続耐久後直後、ゴースト画像の評価を行った。ゴースト画像は、マゼンタ、シアン、イエロー、黒のそれぞれ単色で作製し、例えば、黒の場合は、図2に示すように、画像の先頭部に黒い四角の画像を出した後、1ドット桂馬パターンでハーフトーン画像を作製した。画像作製の順番は、1枚目にベタ白画像をとり、その後上記ゴースト画像を連続5枚とり、次に、ベタ黒画像を1枚とった後に再度ゴースト画像を5枚とり、計10枚のゴースト画像で評価を行った。ゴースト画像の評価は、桂馬パターン画像濃度とゴースト部の画像濃度との濃度差を、分光濃度計X−Rite504/508(X−Rite(株)製)で、1枚のゴースト画像で10点測定し、それら10点の平均をとり1枚の結果とし、前述の10枚のゴースト画像全てを同様に測定した。それらの平均値を求めた。この方法で、他の3色も同様に行い、それらの値の平均値で評価を行った。各色の測定結果は、分光濃度計X−Riteのマゼンタ、シアン、イエロー、黒のそれぞれの色の結果が表示されるが、画像の色と同じ色の値を測定値としている。 As an evaluation method, the produced electrophotographic photosensitive member is a color laser printer manufactured by Hewlett-Packard Co., Ltd., laser jet 4600 remodeling machine (primary charging: roller contact DC charging, dark part potential -500 V, process speed 100 mm / second, laser The ghost image was evaluated immediately after 1000 sheets of continuous durability in a 4% image density image in an environment of 15 ° C./10% RH with the pre-exposure removed. The ghost image is produced in a single color of magenta, cyan, yellow, and black. For example, in the case of black, as shown in FIG. A halftone image was prepared. The order of image production is to take a solid white image as the first image, then take five consecutive ghost images, then take one solid black image and then take five ghost images again for a total of ten images. Evaluation was performed using a ghost image. The evaluation of the ghost image is carried out by measuring the density difference between the Keima pattern image density and the image density of the ghost part with a spectral densitometer X-Rite 504/508 (manufactured by X-Rite Co., Ltd.) at 10 points with one ghost image. Then, the average of those 10 points was taken as one result, and all the above-mentioned 10 ghost images were measured in the same manner. Their average value was determined. By this method, the other three colors were similarly processed, and evaluation was performed using an average value of these values. As the measurement result of each color, the result of each color of magenta, cyan, yellow, and black of the spectral densitometer X-Rite is displayed, and the value of the same color as the image color is used as the measurement value.
(実施例2)
中間層を構成する例示化合物E1−8を2部、ポリ(p−ヒドロキシスチレン)を8部に変えた以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 2)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that 2 parts of the exemplified compound E1-8 constituting the intermediate layer and 8 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例3)
中間層を構成する例示化合物E1−8を3部、ポリ(p−ヒドロキシスチレン)を7部に変えた以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 3)
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that 3 parts of the exemplified compound E1-8 constituting the intermediate layer and 7 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例4)
中間層を構成する例示化合物E1−8を3.5部、ポリ(p−ヒドロキシスチレン)を6.5部に変えた以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
Example 4
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that 3.5 parts of Exemplified Compound E1-8 constituting the intermediate layer and 6.5 parts of poly (p-hydroxystyrene) were changed. Was evaluated.
(実施例5)
中間層を構成する例示化合物E1−8を5部、ポリ(p−ヒドロキシスチレン)を5部に変えた以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 5)
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that 5 parts of the exemplified compound E1-8 constituting the intermediate layer and 5 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例6)
中間層を構成する例示化合物E1−8を7部、ポリ(p−ヒドロキシスチレン)を3部に変えた以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 6)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that 7 parts of Exemplified Compound E1-8 constituting the intermediate layer and 7 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例7)
中間層を構成する例示化合物E1−8を8部、ポリ(p−ヒドロキシスチレン)を2部に変えた以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 7)
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that 8 parts of the exemplified compound E1-8 constituting the intermediate layer and 2 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例8)
導電性支持体上に表1記載の例示化合物E1−14を3部、ポリ(p−ヒドロキシスチレン)を7部とをDMF150部、メタノール100部とに溶解した溶液を浸漬塗布法で塗布した以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 8)
Except for applying a solution prepared by dissolving 3 parts of Exemplified Compound E1-14 listed in Table 1, 7 parts of poly (p-hydroxystyrene) and 150 parts of DMF and 100 parts of methanol on a conductive support by a dip coating method. Produced an electrophotographic photosensitive member in the same manner as in Example 1, and performed the same evaluation.
(実施例9)
中間層を構成する例示化合物E1−14を3.5部、ポリ(p−ヒドロキシスチレン)を6.5部に変えた以外は、実施例8と同様にして電子写真感光体を作製し、同様な評価を行った。
Example 9
An electrophotographic photosensitive member was prepared in the same manner as in Example 8 except that 3.5 parts of Exemplified Compound E1-14 constituting the intermediate layer and 6.5 parts of poly (p-hydroxystyrene) were changed. Was evaluated.
(実施例10)
中間層を構成する例示化合物E1−14を5部、ポリ(p−ヒドロキシスチレン)を5部に変えた以外は、実施例8と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 10)
An electrophotographic photosensitive member was produced in the same manner as in Example 8 except that 5 parts of the exemplified compound E1-14 constituting the intermediate layer and 5 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例11)
中間層を構成する例示化合物E1−14を7部、ポリ(p−ヒドロキシスチレン)を3部に変えた以外は、実施例8と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 11)
An electrophotographic photosensitive member was prepared in the same manner as in Example 8 except that 7 parts of the exemplified compound E1-14 constituting the intermediate layer and 7 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例12)
導電性支持体上に表1記載の例示化合物E1−14を3.5部、ポリ(p−ヒドロキシスチレン)を3.5部、2,4−トルエンジイソシアネートを3.5部とをDMF150部、メタノール100部とに溶解した溶液を浸漬塗布法で塗布した以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 12)
On the conductive support, 3.5 parts of Exemplified Compound E1-14 listed in Table 1, 3.5 parts of poly (p-hydroxystyrene), 3.5 parts of 2,4-toluene diisocyanate, 150 parts of DMF, An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that a solution dissolved in 100 parts of methanol was applied by a dip coating method, and the same evaluation was performed.
(実施例13)
中間層を構成する例示化合物E1−14を5部、ポリ(p−ヒドロキシスチレン)を2.5部、2,4−トルエンジイソシアネートを2.5部に変えた以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 13)
Except for changing the exemplified compound E1-14 constituting the intermediate layer to 5 parts, poly (p-hydroxystyrene) to 2.5 parts, and 2,4-toluene diisocyanate to 2.5 parts, the same as in Example 1. An electrophotographic photosensitive member was prepared and evaluated in the same manner.
(実施例14)
中間層を構成する例示化合物E1−14を7部、ポリ(p−ヒドロキシスチレン)を1部、2,4−トルエンジイソシアネートを2部に変えた以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 14)
The electrophotographic photosensitive member was the same as in Example 1 except that 7 parts of Exemplified Compound E1-14 constituting the intermediate layer, 1 part of poly (p-hydroxystyrene) and 2 parts of 2,4-toluene diisocyanate were changed. A body was prepared and evaluated in the same manner.
(実施例15)
導電性支持体上に表2記載の例示化合物E2−8を3.5部、ポリ(p−ヒドロキシスチレン)を6.5部とをDMF150部、メタノール100部とに溶解した溶液を浸漬塗布法で塗布した以外は、実施例1と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 15)
A solution obtained by dissolving 3.5 parts of Exemplified Compound E2-8 listed in Table 2, 6.5 parts of poly (p-hydroxystyrene) in 150 parts of DMF and 100 parts of methanol on a conductive support is applied by dip coating. An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the coating was applied, and the same evaluation was performed.
(実施例16)
中間層を構成する例示化合物E2−8を5部、ポリ(p−ヒドロキシスチレン)を5部に変えた以外は、実施例15と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 16)
An electrophotographic photosensitive member was produced in the same manner as in Example 15 except that 5 parts of the exemplified compound E2-8 constituting the intermediate layer and 5 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例17)
中間層を構成する例示化合物E2−8を例示化合物E2−18に変えた以外は、実施例15と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 17)
An electrophotographic photosensitive member was produced in the same manner as in Example 15 except that Exemplified Compound E2-8 constituting the intermediate layer was changed to Exemplified Compound E2-18, and the same evaluation was performed.
(実施例18)
中間層を構成する例示化合物E2−18を5部、ポリ(p−ヒドロキシスチレン)を5部に変えた以外は、実施例17と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 18)
An electrophotographic photosensitive member was produced in the same manner as in Example 17 except that 5 parts of the exemplified compound E2-18 constituting the intermediate layer and 5 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例19)
中間層を構成するポリ(p−ヒドロキシスチレン)を2.5部とし2,4−トルエンジイソシアネートを2.5部加えた以外は、実施例18と同様にして電子写真感光体を作製し、同様な評価を行った。
Example 19
An electrophotographic photosensitive member was prepared in the same manner as in Example 18 except that 2.5 parts of poly (p-hydroxystyrene) constituting the intermediate layer and 2.5 parts of 2,4-toluene diisocyanate were added. Was evaluated.
(実施例20)
中間層を構成するポリ(p−ヒドロキシスチレン)を1.5部とし2,4−トルエンジイソシアネートを3.5部加えた以外は、実施例18と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 20)
An electrophotographic photosensitive member was prepared in the same manner as in Example 18 except that 1.5 parts of poly (p-hydroxystyrene) constituting the intermediate layer and 3.5 parts of 2,4-toluene diisocyanate were added. Was evaluated.
(実施例21)
中間層を構成するポリ(p−ヒドロキシスチレン)をポリビニルナフトールに変えた以外は、実施例18と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 21)
An electrophotographic photosensitive member was produced in the same manner as in Example 18 except that poly (p-hydroxystyrene) constituting the intermediate layer was changed to polyvinyl naphthol, and the same evaluation was performed.
なお、ポリビニルナフトールは以下のように合成した。1−ビニル−4−アセトキシナフタレンを100gと、アゾビスイソブチロニトリルとを500mlの脱水テトラヒドロフラン中に溶解させ、反応溶液を十分に窒素置換した後に、80℃で18時間反応を行い、反応液を冷却後水中に注いだ。ポリビニルナフタレンは白色沈殿物として得た。 Polyvinyl naphthol was synthesized as follows. 100 g of 1-vinyl-4-acetoxynaphthalene and azobisisobutyronitrile were dissolved in 500 ml of dehydrated tetrahydrofuran, and the reaction solution was sufficiently purged with nitrogen, and then reacted at 80 ° C. for 18 hours. Was cooled and poured into water. Polyvinyl naphthalene was obtained as a white precipitate.
得られたポリビニルナフタレンを20%のジメチルアミノピリジンを含む500mlのメタノール中に分散させ、50℃で攪拌を行うことで、淡黄色である均一溶液を得た。この溶液を水中に注ぐことで白色のポリビニルナフトールを得た。テトラヒドロフラン/水から再沈殿を行い精製ポリビニルナフトール42gを得た。 The obtained polyvinyl naphthalene was dispersed in 500 ml of methanol containing 20% dimethylaminopyridine and stirred at 50 ° C. to obtain a light yellow uniform solution. This solution was poured into water to obtain white polyvinyl naphthol. Reprecipitation was performed from tetrahydrofuran / water to obtain 42 g of purified polyvinyl naphthol.
(実施例22)
中間層を構成するポリ(p−ヒドロキシスチレン)をポリビニルヒドロキシアントラセンに変えた以外は、実施例18と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 22)
An electrophotographic photosensitive member was produced in the same manner as in Example 18 except that the poly (p-hydroxystyrene) constituting the intermediate layer was changed to polyvinyl hydroxyanthracene, and the same evaluation was performed.
なお、ポリビニルヒドロキシアントラセンは以下のように合成した。9−ビニル−10−アセトキシアントラセンを140gと、アゾビスイソブチロニトリルとを500mlの脱水テトラヒドロフラン中に溶解させ、反応溶液を十分に窒素置換した後に、85℃で20時間反応を行い、反応液を冷却後水中に注いだ。ポリビニルナフタレンは白色沈殿物として得た。 Polyvinylhydroxyanthracene was synthesized as follows. After 140 g of 9-vinyl-10-acetoxyanthracene and azobisisobutyronitrile were dissolved in 500 ml of dehydrated tetrahydrofuran and the reaction solution was sufficiently purged with nitrogen, the reaction was carried out at 85 ° C. for 20 hours. Was cooled and poured into water. Polyvinyl naphthalene was obtained as a white precipitate.
得られたポリビニルナフタレンを20%のジメチルアミノピリジンを含む500mlのメタノール中に分散させ、50℃で撹拌を行うことで、淡黄色である均一溶液を得た。この溶液を水中に注ぐことで白色のポリビニルナフトールを得た。テトラヒドロフラン/水から再沈殿を行い精製ポリビニルナフトール50gを得た。 The obtained polyvinyl naphthalene was dispersed in 500 ml of methanol containing 20% dimethylaminopyridine, and stirred at 50 ° C. to obtain a light yellow uniform solution. This solution was poured into water to obtain white polyvinyl naphthol. Reprecipitation was performed from tetrahydrofuran / water to obtain 50 g of purified polyvinyl naphthol.
(実施例23)
中間層を構成する例示化合物E2−8を例示化合物E3−3に変えた以外は、実施例15と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 23)
An electrophotographic photosensitive member was produced in the same manner as in Example 15 except that the exemplified compound E2-8 constituting the intermediate layer was changed to the exemplified compound E3-3, and the same evaluation was performed.
(実施例24)
中間層を構成する例示化合物E3−3を5部、ポリ(p−ヒドロキシスチレン)を5部に変えた以外は、実施例23と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 24)
An electrophotographic photosensitive member was produced in the same manner as in Example 23 except that 5 parts of the exemplified compound E3-3 constituting the intermediate layer and 5 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例25)
中間層を構成する例示化合物E3−3を例示化合物E3−10に変えた以外は、実施例23と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 25)
An electrophotographic photosensitive member was produced in the same manner as in Example 23 except that Exemplified Compound E3-3 constituting the intermediate layer was changed to Exemplified Compound E3-10, and the same evaluation was performed.
(実施例26)
中間層を構成する例示化合物E3−10を5部、ポリ(p−ヒドロキシスチレン)を5部に変えた以外は、実施例23と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 26)
An electrophotographic photosensitive member was produced in the same manner as in Example 23 except that 5 parts of the exemplified compound E3-10 constituting the intermediate layer and 5 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. It was.
(実施例27)
中間層を構成する例示化合物E3−10を例示化合物E4−9に変えた以外は、実施例26と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 27)
An electrophotographic photosensitive member was produced in the same manner as in Example 26 except that Exemplified Compound E3-10 constituting the intermediate layer was changed to Exemplified Compound E4-9, and the same evaluation was performed.
(実施例28)
正孔輸送層用溶液のビスフェノールC型ポリアリレート樹脂をビスフェノールZ型ポリカーボネート樹脂(商品名:ユーピロンZ400、三菱エンジニヤリングプラスチックス株式会社製)に変えた以外は、実施例27と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 28)
Electrophotography in the same manner as in Example 27 except that the bisphenol C type polyarylate resin of the hole transport layer solution was changed to bisphenol Z type polycarbonate resin (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) A photoconductor was prepared and evaluated in the same manner.
(実施例29)
電荷発生物質としてCuKα特性X線回折におけるブラッグ角(2θ±0.2°)の9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニンを用いた以外は、実施例27と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 29)
Crystalline oxytitanium having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° of Bragg angles (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction as a charge generation material An electrophotographic photosensitive member was produced in the same manner as in Example 27 except that phthalocyanine was used, and the same evaluation was performed.
(実施例30)
中間層を構成する例示化合物E3−10を例示化合物E4−13に変えた以外は、実施例26と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 30)
An electrophotographic photosensitive member was produced in the same manner as in Example 26 except that the exemplified compound E3-10 constituting the intermediate layer was changed to the exemplified compound E4-13, and the same evaluation was performed.
(実施例31)
中間層を構成するポリ(p−ヒドロキシスチレン)を2.5部とし2,4−トルエンジイソシアネートを2.5部加えた以外は、実施例30と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 31)
An electrophotographic photosensitive member was prepared in the same manner as in Example 30 except that 2.5 parts of poly (p-hydroxystyrene) constituting the intermediate layer and 2.5 parts of 2,4-toluene diisocyanate were added. Was evaluated.
(実施例32)
中間層を構成するポリ(p−ヒドロキシスチレン)を1.5部とし2,4−トルエンジイソシアネートを3.5部加えた以外は、実施例30と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 32)
An electrophotographic photosensitive member was prepared in the same manner as in Example 30 except that 1.5 parts of poly (p-hydroxystyrene) constituting the intermediate layer and 3.5 parts of 2,4-toluene diisocyanate were added. Was evaluated.
(実施例33)
中間層を構成する例示化合物E3−3を下記構造式(E5)に変えた以外は、実施例24と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 33)
An electrophotographic photosensitive member was produced in the same manner as in Example 24 except that the exemplified compound E3-3 constituting the intermediate layer was changed to the following structural formula (E5), and the same evaluation was performed.
(実施例34)
中間層を構成する例示化合物E3−3を下記構造式(E6)に変えた以外は、実施例24と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 34)
An electrophotographic photosensitive member was produced in the same manner as in Example 24 except that the exemplified compound E3-3 constituting the intermediate layer was changed to the following structural formula (E6), and the same evaluation was performed.
(実施例35)
中間層を構成する式(E6)を3部、ポリ(p−ヒドロキシスチレン)を7部に変えた以外は、実施例34と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 35)
An electrophotographic photosensitive member was produced in the same manner as in Example 34 except that 3 parts of the formula (E6) constituting the intermediate layer and 7 parts of poly (p-hydroxystyrene) were changed, and the same evaluation was performed. .
(実施例36)
電荷発生物質としてCuKαの特性X線回折におけるブラッグ角(2θ±0.2°)の9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニンを用いた以外は、実施例35と同様にして電子写真感光体を作製し、同様な評価を行った。
(Example 36)
Crystalline oxy having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° of Bragg angles (2θ ± 0.2 °) in characteristic X-ray diffraction of CuKα as a charge generating material An electrophotographic photosensitive member was produced in the same manner as in Example 35 except that titanium phthalocyanine was used, and the same evaluation was performed.
(比較例1)
中間層塗工液として例示化合物E1−8を用いず、ポリ(p−ヒドロキシスチレン)を10部に変えた以外は、実施例1と同様にして電子写真感光体を作製し同様な評価を行った。
(Comparative Example 1)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1 except that the exemplified compound E1-8 was not used as the intermediate layer coating solution, and poly (p-hydroxystyrene) was changed to 10 parts. It was.
(比較例2)
中間層を構成するポリ(p−ヒドロキシスチレン)をポリスチレンに変えた以外は、実施例27と同様にして電子写真感光体を作製し、同様な評価を行った。
(Comparative Example 2)
An electrophotographic photosensitive member was produced in the same manner as in Example 27 except that poly (p-hydroxystyrene) constituting the intermediate layer was changed to polystyrene, and the same evaluation was performed.
(比較例3)
電荷発生物質としてCuKα特性X線回折におけるブラッグ角(2θ±0.2°)の9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニンを用いた以外は、比較例2と同様にして電子写真感光体を作製し、同様な評価を行った。
(Comparative Example 3)
Crystalline oxytitanium having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° of Bragg angles (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction as a charge generation material An electrophotographic photosensitive member was produced in the same manner as in Comparative Example 2 except that phthalocyanine was used, and the same evaluation was performed.
1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 転写材
8 定着手段
9 クリーニング手段
11 プロセスカートリッジ
12 案内手段
DESCRIPTION OF SYMBOLS 1 Electrophotographic photoreceptor 2 Axis 3 Charging means 4 Exposure light 5 Developing means 6 Transfer means 7 Transfer material 8 Fixing means 9 Cleaning means 11 Process cartridge 12 Guide means
Claims (12)
(式中、X1〜X4はそれぞれ独立に水素原子、ハロゲン基、ニトロ基、置換基を有してもよいアルコキシ基又は置換基を有してもよいアルキル基を示す。R1及びR2はそれぞれ独立にはエーテル基で中断されていてもよいアルキル基、エーテル基で中断されていてもよいアルケニル基、複素環基;アルキル基、アルケニル基、ニトロ基、ハロゲン基、ハロゲン置換アルキル基を有してもよいアリール基又はアルキル基、アルケニル基、ニトロ基、ハロゲン基、ハロゲン置換アルキル基を有してもよいアラルキル基、アルキル基で置換されたカルボニル基、アルキル基で置換されたスルホニル基を示す。)
(式中、Z1及びZ2はそれぞれ独立に酸素、C(CN)2基又はN−R(Rは置換基を有してもよいアリール基又はアルキル基)を示す。X11〜X18はそれぞれ独立に水素原子、水酸基、ハロゲン原子、ニトロ基、トリフルオロアルキル基、カルボキシル基、アミノ基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキル基、置換基を有してもよいカルボニル基、置換基を有してもよいエステル基又は置換基を有してもよいアリール基を示す)。
(式中、Z11及びZ12はそれぞれ独立に酸素、C(CN)2基又はN−R(Rは置換基を有してもよいアリール基又はアルキル基)を示す。X21〜X26はそれぞれ独立に水素原子、水酸基、ハロゲン原子、ニトロ基、トリフルオロアルキル基、カルボキシル基、アミノ基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキル基、置換基を有してもよいカルボニル基、置換基を有してもよいエステル基又は置換基を有してもよいアリール基を示す)。
(式中、Z21及びZ22はそれぞれ独立に酸素、C(CN)2基又はN−R(Rは置換基を有してもよいアリール基又はアルキル基)を示す。X31〜X36はそれぞれ独立に水素原子、水酸基、ハロゲン原子、ニトロ基、トリフルオロアルキル基、カルボキシル基、アミノ基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキル基、置換基を有してもよいカルボニル基、置換基を有してもよいエステル基又は置換基を有してもよいアリール基を示す)。 The electrophotographic photosensitive member according to claim 1 or 2, wherein the electron transport compound is represented by any one of the following formulas (1) to (4):
(Wherein, X 1 to X 4 each independently represent a hydrogen atom, a halogen group, a nitro group, an alkoxy group which may have a substituent or an alkyl group which may have a substituent. R 1 and R 4 2 are each independently an alkyl group optionally interrupted by an ether group, an alkenyl group optionally interrupted by an ether group, a heterocyclic group; an alkyl group, an alkenyl group, a nitro group, a halogen group, a halogen-substituted alkyl group Aryl group or alkyl group which may have, alkenyl group, nitro group, halogen group, aralkyl group which may have halogen-substituted alkyl group, carbonyl group substituted with alkyl group, sulfonyl substituted with alkyl group Group.)
(Wherein, Z 1 and Z 2 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent), X 11 to X 18. Each independently represents a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, a trifluoroalkyl group, a carboxyl group, an amino group, an alkoxy group which may have a substituent, an alkyl group which may have a substituent, or a substituent. A carbonyl group optionally having a substituent, an ester group optionally having a substituent, or an aryl group optionally having a substituent.
(Wherein Z 11 and Z 12 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent), X 21 to X 26. Each independently represents a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, a trifluoroalkyl group, a carboxyl group, an amino group, an alkoxy group which may have a substituent, an alkyl group which may have a substituent, or a substituent. A carbonyl group optionally having a substituent, an ester group optionally having a substituent, or an aryl group optionally having a substituent.
(In the formula, Z 21 and Z 22 each independently represent oxygen, C (CN) 2 group or N—R (R represents an aryl group or alkyl group which may have a substituent). X 31 to X 36. Each independently represents a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, a trifluoroalkyl group, a carboxyl group, an amino group, an alkoxy group which may have a substituent, an alkyl group which may have a substituent, or a substituent. A carbonyl group optionally having a substituent, an ester group optionally having a substituent, or an aryl group optionally having a substituent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005346209A JP4649321B2 (en) | 2005-11-30 | 2005-11-30 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005346209A JP4649321B2 (en) | 2005-11-30 | 2005-11-30 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007148294A true JP2007148294A (en) | 2007-06-14 |
JP2007148294A5 JP2007148294A5 (en) | 2009-01-15 |
JP4649321B2 JP4649321B2 (en) | 2011-03-09 |
Family
ID=38209729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005346209A Expired - Fee Related JP4649321B2 (en) | 2005-11-30 | 2005-11-30 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4649321B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008250082A (en) * | 2007-03-30 | 2008-10-16 | Canon Inc | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge, and electrophotographic equipment |
JP2008250084A (en) * | 2007-03-30 | 2008-10-16 | Canon Inc | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge, and electrophotographic equipment |
US20110143273A1 (en) * | 2009-11-02 | 2011-06-16 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP2014029501A (en) * | 2012-06-29 | 2014-02-13 | Canon Inc | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2014029500A (en) * | 2012-06-29 | 2014-02-13 | Canon Inc | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2014029502A (en) * | 2012-06-29 | 2014-02-13 | Canon Inc | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2014029485A (en) * | 2012-06-29 | 2014-02-13 | Canon Inc | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2014029479A (en) * | 2012-06-29 | 2014-02-13 | Canon Inc | Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and imide compound |
EP2796930A1 (en) | 2013-04-25 | 2014-10-29 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and imide compound |
JP2015092238A (en) * | 2013-10-01 | 2015-05-14 | 三菱化学株式会社 | Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming device |
CN104749908A (en) * | 2013-12-26 | 2015-07-01 | 佳能株式会社 | Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
CN104749909A (en) * | 2013-12-26 | 2015-07-01 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and imide compound |
JP2015143822A (en) * | 2013-12-26 | 2015-08-06 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2015143831A (en) * | 2013-12-26 | 2015-08-06 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2015143825A (en) * | 2013-12-26 | 2015-08-06 | キヤノン株式会社 | Electrophotographic photoreceptor, manufacturing method of the electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic device |
US9274443B2 (en) | 2013-09-30 | 2016-03-01 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
DE102015118108A1 (en) | 2014-10-24 | 2016-04-28 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US9335645B2 (en) | 2013-12-26 | 2016-05-10 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
JP2016164657A (en) * | 2015-02-27 | 2016-09-08 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge and electrophotographing device |
US9851648B2 (en) | 2015-06-25 | 2017-12-26 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
US10185237B2 (en) | 2013-07-12 | 2019-01-22 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, image forming apparatus, and polyarylate resin |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6702809B2 (en) * | 2016-06-21 | 2020-06-03 | キヤノン株式会社 | Electrophotographic photoreceptor, manufacturing method thereof, process cartridge, and electrophotographic apparatus |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02198451A (en) * | 1989-01-27 | 1990-08-06 | Konica Corp | Photosensitive body |
JPH04177359A (en) * | 1990-11-13 | 1992-06-24 | Ricoh Co Ltd | Electrophotographic sensitizer |
JPH05158267A (en) * | 1991-12-06 | 1993-06-25 | Canon Inc | Electrophotographic sensitive body, electrophotographic device and facsimile using the same |
JP2004093808A (en) * | 2002-08-30 | 2004-03-25 | Canon Inc | Image forming device |
JP2004258331A (en) * | 2003-02-26 | 2004-09-16 | Canon Inc | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus |
JP2005182040A (en) * | 2003-12-23 | 2005-07-07 | Xerox Corp | Image forming member |
JP2005189835A (en) * | 2003-12-01 | 2005-07-14 | Ricoh Co Ltd | Electrophotographic photoreceptor, method and apparatus of image formation, and process cartridge for image formation apparatus |
JP2005208619A (en) * | 2003-12-26 | 2005-08-04 | Canon Inc | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus |
-
2005
- 2005-11-30 JP JP2005346209A patent/JP4649321B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02198451A (en) * | 1989-01-27 | 1990-08-06 | Konica Corp | Photosensitive body |
JPH04177359A (en) * | 1990-11-13 | 1992-06-24 | Ricoh Co Ltd | Electrophotographic sensitizer |
JPH05158267A (en) * | 1991-12-06 | 1993-06-25 | Canon Inc | Electrophotographic sensitive body, electrophotographic device and facsimile using the same |
JP2004093808A (en) * | 2002-08-30 | 2004-03-25 | Canon Inc | Image forming device |
JP2004258331A (en) * | 2003-02-26 | 2004-09-16 | Canon Inc | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus |
JP2005189835A (en) * | 2003-12-01 | 2005-07-14 | Ricoh Co Ltd | Electrophotographic photoreceptor, method and apparatus of image formation, and process cartridge for image formation apparatus |
JP2005182040A (en) * | 2003-12-23 | 2005-07-07 | Xerox Corp | Image forming member |
JP2005208619A (en) * | 2003-12-26 | 2005-08-04 | Canon Inc | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008250082A (en) * | 2007-03-30 | 2008-10-16 | Canon Inc | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge, and electrophotographic equipment |
JP2008250084A (en) * | 2007-03-30 | 2008-10-16 | Canon Inc | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge, and electrophotographic equipment |
US20110143273A1 (en) * | 2009-11-02 | 2011-06-16 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US8632931B2 (en) * | 2009-11-02 | 2014-01-21 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP2014029502A (en) * | 2012-06-29 | 2014-02-13 | Canon Inc | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2014029500A (en) * | 2012-06-29 | 2014-02-13 | Canon Inc | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2014029501A (en) * | 2012-06-29 | 2014-02-13 | Canon Inc | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2014029485A (en) * | 2012-06-29 | 2014-02-13 | Canon Inc | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2014029479A (en) * | 2012-06-29 | 2014-02-13 | Canon Inc | Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, process cartridge, electrophotographic apparatus, and imide compound |
EP2796930A1 (en) | 2013-04-25 | 2014-10-29 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and imide compound |
US9141008B2 (en) | 2013-04-25 | 2015-09-22 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and imide compound |
US10185237B2 (en) | 2013-07-12 | 2019-01-22 | Mitsubishi Chemical Corporation | Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, image forming apparatus, and polyarylate resin |
US9274443B2 (en) | 2013-09-30 | 2016-03-01 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP2015092238A (en) * | 2013-10-01 | 2015-05-14 | 三菱化学株式会社 | Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming device |
JP2015143822A (en) * | 2013-12-26 | 2015-08-06 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
US9335645B2 (en) | 2013-12-26 | 2016-05-10 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
DE102014119498A1 (en) | 2013-12-26 | 2015-07-02 | Canon Kabushiki Kaisha | ELECTROPHOTOGRAPHIC PHOTOSENSITIVE ELEMENT, METHOD FOR PRODUCING AN ELECTROPHOTOGRAPHIC PHOTOSENSITIVE ELEMENT, PROCESS CARTRIDGE AND ELECTROPHOTOGRAPHIC APPARATUS |
JP2015143831A (en) * | 2013-12-26 | 2015-08-06 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
JP2015143825A (en) * | 2013-12-26 | 2015-08-06 | キヤノン株式会社 | Electrophotographic photoreceptor, manufacturing method of the electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic device |
EP2889688A1 (en) | 2013-12-26 | 2015-07-01 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and imide compound |
CN104749909A (en) * | 2013-12-26 | 2015-07-01 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and imide compound |
US9304416B2 (en) | 2013-12-26 | 2016-04-05 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
DE102014119498B4 (en) | 2013-12-26 | 2019-06-06 | Canon Kabushiki Kaisha | ELECTROPHOTOGRAPHIC PHOTOSENSITIVE ELEMENT, METHOD FOR PRODUCING AN ELECTROPHOTOGRAPHIC PHOTOSENSITIVE ELEMENT, PROCESS CARTRIDGE AND ELECTROPHOTOGRAPHIC APPARATUS |
JP2015143820A (en) * | 2013-12-26 | 2015-08-06 | キヤノン株式会社 | Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
CN104749908B (en) * | 2013-12-26 | 2019-05-03 | 佳能株式会社 | Electrophotographic photosensitive element, its production method, handle box and electronic photographing device |
US9477163B2 (en) | 2013-12-26 | 2016-10-25 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and imide compound |
CN104749909B (en) * | 2013-12-26 | 2019-02-22 | 佳能株式会社 | Electrophotographic photosensitive element, handle box, electronic photographing device and imide compound |
CN104749908A (en) * | 2013-12-26 | 2015-07-01 | 佳能株式会社 | Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US9760030B2 (en) | 2014-10-24 | 2017-09-12 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
DE102015118108A1 (en) | 2014-10-24 | 2016-04-28 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
DE102015118108B4 (en) | 2014-10-24 | 2020-01-09 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
JP2016164657A (en) * | 2015-02-27 | 2016-09-08 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge and electrophotographing device |
US9851648B2 (en) | 2015-06-25 | 2017-12-26 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP4649321B2 (en) | 2011-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4649321B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4859239B2 (en) | Method for producing electrophotographic photosensitive member | |
JP4971764B2 (en) | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JPH1020514A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP5147274B2 (en) | Novel imide compound and electrophotographic photosensitive member, process cartridge and electrophotographic apparatus using the same | |
JP5064815B2 (en) | Novel imide compound, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP3397585B2 (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JPH0973183A (en) | Electrophotographic photoreceptor, process cartridge provided with the same and electrophotographic device | |
JP4411232B2 (en) | Method for producing electrophotographic photosensitive member | |
JP2007193210A (en) | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP2007065164A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus | |
JP2006251487A5 (en) | ||
JP3382457B2 (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP4911711B2 (en) | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2011150247A (en) | Method for evaluating electrophotographic photoreceptor, electrophotographic photoreceptor satisfying the same and image forming apparatus including the same | |
JP3585197B2 (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JPH1020523A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JP2007256791A (en) | Electrophotographic photoreceptor | |
JP4709014B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4411231B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4402610B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JPH10115946A (en) | Electrophotgraphic photoreceptor, and process cartridge and electrophotographic device provided with this electrophotographic photoreceptor | |
JP3441888B2 (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JPH0962017A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JP2006243487A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081119 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081119 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090323 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20090427 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100617 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20100730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101213 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4649321 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |