JP2007147833A - Optical switching element and image display apparatus using the same - Google Patents

Optical switching element and image display apparatus using the same Download PDF

Info

Publication number
JP2007147833A
JP2007147833A JP2005339999A JP2005339999A JP2007147833A JP 2007147833 A JP2007147833 A JP 2007147833A JP 2005339999 A JP2005339999 A JP 2005339999A JP 2005339999 A JP2005339999 A JP 2005339999A JP 2007147833 A JP2007147833 A JP 2007147833A
Authority
JP
Japan
Prior art keywords
optical
light
displacement
optical surface
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005339999A
Other languages
Japanese (ja)
Inventor
Takashi Osone
隆志 大曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama Prefectural Government
Original Assignee
Okayama Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama Prefectural Government filed Critical Okayama Prefectural Government
Priority to JP2005339999A priority Critical patent/JP2007147833A/en
Publication of JP2007147833A publication Critical patent/JP2007147833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical switching element that materializes fast switching operation, a large light intensity ratio, and a clear projection pattern. <P>SOLUTION: In the optical switching element 1, there are arranged in the order as stated a transmitting-end optical surface 12 with a fixed position, a displacing optical surface 13 displaceable by a displacing means, and an incident-end optical surface 14 with a fixed position. There are also formed an optical path A between the transmitting-end optical surface 12 and the displacing optical surface 13 and an optical path B between the displacing optical surface 13 and the incident-end optical surface 14. By displacing the displacing optical surface 13 with the displacing means, the length of the optical paths A, B is increased/decreased through a reciprocal relation, varying interference of light of the optical paths A, B. Thus, the optical switching element 1 varies the light intensity of the transmitting light from the transmitting-end optical surface 12 against the incident light with which the incident-end optical surface 14 is irradiated, or the light intensity of the reflected light from the incident-end optical surface 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光の干渉作用を利用して、入射光に対する透過光又は反射光の光強度を変化させる光スイッチング素子と、この光スイッチング素子を用いた画像表示装置に関する。   The present invention relates to an optical switching element that changes the light intensity of transmitted light or reflected light with respect to incident light by using the interference action of light, and an image display device using the optical switching element.

画像表示装置は、液晶表示装置、プラズマ表示装置や有機EL(Electroluminescence)表示装置等、近年薄型化しつつある。これら薄型化された画像表示装置は、画素単位を構成する素子が個別にスイッチング動作(ON-OFF動作)することにより、画素単位で発色又は輝度を制御する。これから、動画の再生に際しては高速なスイッチング動作が可能なスイッチング素子が必要となる。また、膨大な数のスイッチング素子が用いられるため、装置全体としての使用電力を低減する目的から、各光スイッチング素子は動作電圧が低い(例えば10V以下)ことが望まれている。   In recent years, image display devices such as liquid crystal display devices, plasma display devices, and organic EL (Electroluminescence) display devices are becoming thinner. These thinned image display devices control color development or luminance in units of pixels by individually performing switching operations (ON-OFF operations) of elements constituting the units of pixels. Therefore, a switching element capable of high-speed switching operation is required for moving image reproduction. In addition, since an enormous number of switching elements are used, each optical switching element is desired to have a low operating voltage (for example, 10 V or less) for the purpose of reducing the power consumption of the entire apparatus.

高速なスイッチング動作と低い動作電圧とを両立するスイッチング素子として、MEMS(Micro Electro Mechanical Systems)技術を用いた光スイッチング素子が有望視されている。例えば、特許文献1は、こうしたマイクロマシン技術を用いたスイッチング素子や、前記光スイッチング素子を用いた画像表示素子を開示している。特許文献1に開示された透過型の光スイッチング素子の断面図を図14に示す。   As a switching element that achieves both high-speed switching operation and low operating voltage, an optical switching element using MEMS (Micro Electro Mechanical Systems) technology is promising. For example, Patent Document 1 discloses a switching element using such micromachine technology and an image display element using the optical switching element. FIG. 14 shows a cross-sectional view of a transmissive optical switching element disclosed in Patent Document 1. In FIG.

特許文献1が開示する光スイッチング素子91は、入射光に対して透明な基板911の上面に、導電性を有する透過側光学面912を形成している。変位光学面913は導電性を有し、透過側光学面912から所定の光経路の長さを隔てて形成している。ここで、「光経路」とは、平行に配置された各光学面を最短で結ぶ直交方向に光が通過する経路を意味する(以下、同じ)。変位光学面913は、透過側光学面912及び変位光学面913を電極として印加した電気信号が発生させる静電気力によって変位し、透過側光学面912及び変位光学面913間の光経路の長さを増減する。   In the optical switching element 91 disclosed in Patent Document 1, a transmission-side optical surface 912 having conductivity is formed on the upper surface of a substrate 911 that is transparent to incident light. The displacement optical surface 913 has conductivity and is formed with a predetermined optical path length from the transmission side optical surface 912. Here, the “light path” means a path through which light passes in the orthogonal direction connecting the optical surfaces arranged in parallel at the shortest (hereinafter the same). The displacement optical surface 913 is displaced by an electrostatic force generated by an electrical signal applied using the transmission optical surface 912 and the displacement optical surface 913 as electrodes, and the length of the optical path between the transmission optical surface 912 and the displacement optical surface 913 is increased. Increase or decrease.

透過側光学面912及び変位光学面913間の光経路の長さは、両者間に介在する透過側ストッパ透過面9121と、透過側間隙9123及び入射側間隙9143の厚みの合計である。ここで、透過側ストッパ透過面9121は、入射光に対して透明で屈折率が大きく、かつ誘電率の高い膜からなり、位置固定な透過側光学面912の上面に一体に形成している。透過側間隙9123は、前記透過側ストッパ透過面9121の上面に一体に形成する透過側スペーサ面9122により設定する。そして入射側間隙9143は、入射側スペーサ面9142により設定する。この光スイッチング素子91は、透過側光学面912及び変位光学面913間の光経路の長さを、透過側ストッパ透過面9121と、透過側間隙9123及び入射側間隙9143によって正確に設定できるだけでなく、変位光学面913の変位量を透過側間隙9123及び入射側間隙9143の範囲に制限することで、光経路の長さの増減を正確に規制して、光の干渉作用の変化を正確に切り替えることができる。   The length of the optical path between the transmission side optical surface 912 and the displacement optical surface 913 is the sum of the thicknesses of the transmission side stopper transmission surface 9121, the transmission side gap 9123, and the incident side gap 9143 interposed therebetween. Here, the transmission-side stopper transmission surface 9121 is made of a film that is transparent to incident light, has a high refractive index, and has a high dielectric constant, and is integrally formed on the upper surface of the transmission-side optical surface 912 that is fixed in position. The transmission side gap 9123 is set by a transmission side spacer surface 9122 formed integrally with the upper surface of the transmission side stopper transmission surface 9121. The incident side gap 9143 is set by the incident side spacer surface 9142. This optical switching element 91 not only can accurately set the length of the optical path between the transmission side optical surface 912 and the displacement optical surface 913 by the transmission side stopper transmission surface 9121, the transmission side gap 9123, and the incident side gap 9143. By restricting the amount of displacement of the displacement optical surface 913 to the range of the transmission side gap 9123 and the incident side gap 9143, the increase and decrease of the length of the optical path is accurately regulated, and the change of the interference action of light is switched accurately. be able to.

この透過型の光スイッチング素子91は、静電気力によって、変位光学面913が弾性変形限界を超えて変位しないように、透過側ストッパ透過面9121により変位量を制限し、信頼性の向上を図っている。また、静電気力によって変位する変位光学面913は、図14に示す透過側ストッパ透過面9121に密着した状態から、ほぼ平坦な元の状態に復帰するに際し、大きくリバウンドしないようにするため、極めて狭い入射側間隙9143を隔てて形成された入射側ストッパ透過面9141に接面させて、短時間で元の安定状態に復帰させることができるので、極めて高速のスイッチング動作が可能となる。   This transmission type optical switching element 91 limits the amount of displacement by the transmission side stopper transmission surface 9121 so that the displacement optical surface 913 is not displaced beyond the elastic deformation limit due to electrostatic force, thereby improving the reliability. Yes. In addition, the displacement optical surface 913 that is displaced by electrostatic force is extremely narrow so that it does not rebound greatly when returning to the substantially flat original state from the close contact state with the transmission side stopper transmission surface 9121 shown in FIG. Since it can be brought into contact with the incident-side stopper transmitting surface 9141 formed with the incident-side gap 9143 therebetween and returned to the original stable state in a short time, an extremely high-speed switching operation is possible.

また、投光パターンが不鮮明になることを防止するため、図14に示すように、入射側ストッパ透過面9141の上面に、入射光を遮断する遮光面919を形成し、この遮光面919に変位光学面913が変位した際、透過側ストッパ透過面9141に接面する範囲以下の狭い透過窓9192を開口して、入射光が透過する範囲を最大光強度ITmaxが得られる範囲内に限定している。すなわち、透過窓9192を開口した遮光面919は、得られる透過光の光強度分布を図14の下部に一点鎖線で示されるITmaxの幅に限定し、透過光の輪郭を鮮明にする。   In order to prevent the projection pattern from becoming unclear, as shown in FIG. 14, a light shielding surface 919 that blocks incident light is formed on the upper surface of the incident side stopper transmitting surface 9141, and the light shielding surface 919 is displaced. When the optical surface 913 is displaced, a narrow transmission window 9192 that is smaller than the range in contact with the transmission side stopper transmission surface 9141 is opened, and the range through which incident light is transmitted is limited to the range in which the maximum light intensity ITmax can be obtained. Yes. In other words, the light shielding surface 919 having the transmission window 9192 opened restricts the light intensity distribution of the obtained transmitted light to the width of ITmax indicated by the alternate long and short dash line in the lower part of FIG. 14, and sharpens the outline of the transmitted light.

図14に示す光スイッチング素子91は、一対の透過側光学面912及び変位光学面913による光の干渉作用、いわゆる「ファブリー・ペロー型干渉フィルタ」に見られる光の干渉作用を利用している。しかし、図14に示す入射光強度I0に対する透過光の変位光学面913が透過側ストッパ透過面9121に密着した状態(以下、光スイッチング素子91のON状態と称する)の最大光強度ITmaxと、変位光学面913が入射側ストッパ透過面9141に密着した状態(以下、光スイッチング素子91のOFF状態と称する)の最小光強度ITminとの比、すなわちITmax/ITmin比(以下、光強度比と称する)が十分大きくならない場合がある。 The optical switching element 91 shown in FIG. 14 utilizes the light interference action by the pair of transmission side optical surface 912 and the displacement optical surface 913, that is, the light interference action seen in the so-called “Fabry-Perot interference filter”. However, the maximum light intensity ITmax in a state where the displacement optical surface 913 of the transmitted light with respect to the incident light intensity I 0 shown in FIG. 14 is in close contact with the transmission side stopper transmission surface 9121 (hereinafter referred to as the ON state of the optical switching element 91), The ratio of the displacement optical surface 913 in close contact with the incident side stopper transmission surface 9141 (hereinafter referred to as the OFF state of the optical switching element 91) to the minimum light intensity ITmin, that is, the ITmax / ITmin ratio (hereinafter referred to as the light intensity ratio). ) May not be large enough.

光強度比を大きくするため、非特許文献1は、図15に示すように、光学面923,925,927を3段に配設し、光の干渉作用を二重にするdouble-cavity法を提案している。この非特許文献1が開示する光スイッチング素子92は、基板921の上面に下段スペーサ面922、中段スペーサ面924及び上段スペーサ面926を介在させ、それぞれ下段間隙9221、中段間隙9241及び上段間隙9261で分離された下段変位光学面923、中段光学面925及び上段変位光学面927を形成している。この光スイッチング素子92は、中段光学面925に対して下段変位光学面923及び上段変位光学面927から直流電圧Vを印加すると、下段変位光学面923及び上段変位光学面927が中段光学面925に密着して中段間隙9241及び上段間隙9261をなくし、逆に下段間隙9221を大きくして、光の干渉作用による透過光の光強度を変化させる。前記光の干渉作用は、下段変位光学面923及び中段光学面925間の光経路や、中段光学面925及び上段変位光学面927間の光経路で二重に生じ、あたかも2つの光スイッチング素子を直列に配設したかのように、光強度比を大きくできる。   In order to increase the light intensity ratio, Non-Patent Document 1 proposes a double-cavity method in which optical surfaces 923, 925, and 927 are arranged in three stages and the interference action of light is doubled as shown in FIG. . In the optical switching element 92 disclosed in Non-Patent Document 1, a lower spacer surface 922, an intermediate spacer surface 924, and an upper spacer surface 926 are interposed on the upper surface of a substrate 921, and a lower gap 9221, an intermediate gap 9241, and an upper gap 9261, respectively. Separated lower displacement optical surface 923, middle optical surface 925, and upper displacement optical surface 927 are formed. In this optical switching element 92, when a DC voltage V is applied to the middle optical surface 925 from the lower displacement optical surface 923 and the upper displacement optical surface 927, the lower displacement optical surface 923 and the upper displacement optical surface 927 become the middle optical surface 925. The intermediate gap 9241 and the upper gap 9261 are eliminated in close contact with each other, and the lower gap 9221 is conversely enlarged to change the light intensity of the transmitted light due to the light interference action. The light interference action occurs twice in the light path between the lower-stage displacement optical surface 923 and the middle-stage optical surface 925 and the light path between the middle-stage optical surface 925 and the upper-stage displacement optical surface 927, as if two optical switching elements were used. The light intensity ratio can be increased as if they were arranged in series.

しかし、非特許文献1が開示する光スイッチング素子92は、変位する下段変位光学面923及び上段変位光学面927が片持梁形状であり、下段変位光学面923及び上段変位光学面927が中段光学面925に密着するように変位した後、直流電圧Vの印加をやめて元に復帰する際、下段変位光学面923及び上段変位光学面927が元の位置を超えて反対側へ変位し、正しく元の位置に復帰するまで往復運動を繰り返す振動現象(リバウンド現象)を起こす虞れがある。このリバウンド現象は、スイッチング動作が高速になるほど発生しやすくなるため、スイッチング動作の高速化が制限される。   However, in the optical switching element 92 disclosed in Non-Patent Document 1, the lower displacement optical surface 923 and the upper displacement optical surface 927 that are displaced are in a cantilever shape, and the lower displacement optical surface 923 and the upper displacement optical surface 927 are middle optical. When the DC voltage V is stopped after being displaced so that it is in close contact with the surface 925, the lower displacement optical surface 923 and the upper displacement optical surface 927 are displaced to the opposite side beyond the original position, and are correctly restored. There is a risk of causing a vibration phenomenon (rebound phenomenon) that repeats reciprocating motion until the position returns to the position. Since this rebound phenomenon is more likely to occur as the switching operation becomes faster, speeding up of the switching operation is limited.

特開2005-157133号公報JP-A-2005-157133 W. Janto他, "Design and fabrication of double-cavity tunable filter using micromachined structure," Japanese Journal of Applied Physics, vol. 42, no. 7B, pp. L828-L830, July 2003.W. Janto et al., "Design and fabrication of double-cavity tunable filter using micromachined structure," Japanese Journal of Applied Physics, vol. 42, no.7B, pp. L828-L830, July 2003.

特許文献1の光スイッチング素子(図14参照)は、高い光強度比を得ることができず、画像表示装置のスイッチング素子として用いると、コントラスト比の低い不明瞭な画像しか構成できない場合がある。コントラスト比の高い鮮明な画像を得るには、画素単位を構成する光スイッチング素子に、100:1以上、望ましくは1000:1程度の光強度比が望まれる。また、非特許文献1の光スイッチング素子(図15参照)は、大きな光強度比を得ることができるが、リバウンド現象によって高速なスイッチング動作が望めない。   The optical switching element of Patent Document 1 (see FIG. 14) cannot obtain a high light intensity ratio, and when used as a switching element of an image display device, only an unclear image with a low contrast ratio may be formed. In order to obtain a clear image with a high contrast ratio, a light intensity ratio of 100: 1 or more, preferably about 1000: 1 is desired for the optical switching element constituting the pixel unit. Further, the optical switching element of Non-Patent Document 1 (see FIG. 15) can obtain a large light intensity ratio, but a high-speed switching operation cannot be expected due to the rebound phenomenon.

鮮明な動画を再生する薄型の画像表示装置は、高速なスイッチング動作が可能で、かつ大きな光強度比の光スイッチング素子が要求される。更に、表示面に対する透過光又は反射光の投光パターンがぼやけない光スイッチング素子が要求される。そこで、MEMS技術を用いた光スイッチング素子において、変位する光学面の変位量を制御してリバウンド現象を抑制又は防止して高速なスイッチング動作を実現し、また光学面を3枚以上にして2重以上の光干渉作用が得られるようにして大きな光強度比を実現し、更には透過光又は反射光の輪郭が鮮明な投光パターンを得ること、すなわち変位する光学面が接面し、予め設定可能な最大の光強度比が得られる範囲内でのみ透過光又は反射光の投光パターンを得ることのできる光スイッチング素子について検討した。   A thin image display device that reproduces a clear moving image requires an optical switching element that can perform a high-speed switching operation and has a large light intensity ratio. Furthermore, an optical switching element that does not blur the projection pattern of transmitted light or reflected light on the display surface is required. Therefore, in optical switching elements using MEMS technology, the amount of displacement of the displacing optical surface is controlled to suppress or prevent the rebound phenomenon to realize high-speed switching operation, and more than two optical surfaces are doubled. A large light intensity ratio is achieved by obtaining the above-described light interference effect, and furthermore, a light projection pattern with a clear outline of transmitted light or reflected light is obtained, that is, a displacing optical surface is in contact with and set in advance. An optical switching element capable of obtaining a light projection pattern of transmitted light or reflected light only within a range where the maximum possible light intensity ratio can be obtained was studied.

検討の結果開発したものが、位置固定な透過側光学面と、変位手段により変位する変位光学面と、位置固定な入射側光学面とを前記記載順に配設し、前記透過側光学面及び変位光学面間の光経路Aと、前記変位光学面及び入射側光学面間の光経路Bとを形成してなり、変位手段により変位光学面を変位させることにより、光経路A及び光経路Bの長さを相反関係で増減させて該光経路A及び光経路Bの光の干渉作用を変化させて、入射側光学面に照射する入射光に対する透過側光学面からの透過光又は入射側光学面からの反射光の光強度を変化させる光スイッチング素子である。本発明の光スイッチング素子は、入射側光学面に入射光を入力し、透過側光学面から透過光を出力する透過型の光スイッチング素子と、入射側光学面に入射光を入力し、同じく入射側光学面から反射光を出力する反射型の光スイッチング素子とを含む。   What has been developed as a result of the study is that a transmission-side optical surface that is fixed in position, a displacement optical surface that is displaced by a displacement means, and an incident-side optical surface that is fixed in position are arranged in the order described above. An optical path A between the optical surfaces and an optical path B between the displacement optical surface and the incident-side optical surface are formed. By displacing the displacement optical surface by the displacing means, the optical path A and the optical path B Increasing or decreasing the length in a reciprocal relationship to change the light interference action of the light path A and the light path B so that the transmitted light from the transmission side optical surface or the incident side optical surface with respect to the incident light irradiated on the incident side optical surface It is an optical switching element which changes the light intensity of the reflected light from. The optical switching element of the present invention is a transmission type optical switching element that inputs incident light to the incident side optical surface and outputs transmitted light from the transmission side optical surface, and incident light that is input to the incident side optical surface. And a reflective optical switching element that outputs reflected light from the side optical surface.

ここで、本発明に言う「入射側光学面」は入射光を入力する側の固定された光学面を、「透過側光学面」は変位光学面を挟んで前記入射側光学面と対称となる位置関係に配置する側の固定された光学面である。反射型の光スイッチング素子では、入射側光学面から反射光を出力し、透過側光学面から透過光を出力しないため、入射側光学面を「反射側光学面」、透過側光学面を「遮断側光学面」と呼ぶこともできる。また、本発明に言う「光学面」は光学的に全透過又は全反射しない半透過な面(膜を含む)を意味し、例えば光経路の断面に等しい大きさの面や、光経路を横断する大きさの膜の前記光経路に対応する部分がこれに相当する。こうした光学面としては、導電性を有する多結晶シリコン膜等の単層膜、又は前記単層膜に加えてシリコン窒化膜等の絶縁膜や金等の導電性薄膜を含む多層膜を例示できる。   Here, the “incident side optical surface” referred to in the present invention is a fixed optical surface on the side where incident light is input, and the “transmission side optical surface” is symmetrical with the incident side optical surface across the displacement optical surface. It is a fixed optical surface on the side arranged in a positional relationship. In the reflection type optical switching element, since the reflected light is output from the incident side optical surface and the transmitted light is not output from the transmission side optical surface, the incident side optical surface is “reflection side optical surface” and the transmission side optical surface is “blocked”. It can also be called a “side optical surface”. The “optical surface” in the present invention means a semi-transparent surface (including a film) that is not optically totally transmitted or totally reflected, for example, a surface having a size equal to the cross section of the optical path, or crossing the optical path. The portion corresponding to the optical path of the film having a size corresponding to this corresponds to this. Examples of such an optical surface include a single layer film such as a polycrystalline silicon film having conductivity, or a multilayer film including an insulating film such as a silicon nitride film and a conductive thin film such as gold in addition to the single layer film.

透過型の光スイッチング素子は、入射側光学面に入射光を照射し、透過側光学面から最大光強度ITmaxの透過光を出力する状態と、相対的に低い最小光強度ITminの透過光を出力する状態(最小光強度ITmin=0を含む)とを切り換える。これから、透過型の光スイッチング素子では、「最大光強度ITmaxの透過光を出力する状態」を、スイッチング動作との関係で「ON状態」、入射光との関係で「透過」と呼び、「最小光強度ITminの透過光を出力する状態」を、スイッチング動作との関係で「OFF状態」、入射光との関係で「非透過」と呼ぶ。ON状態又は透過では、光経路A及び光経路Bの長さに応じた光の干渉作用による減衰がなく、各光学面や基板等の減衰に依存する透過光が得られる。これに対し、OFF状態又は非透過では、各光学面や基板等の減衰に加え、光経路A及び光経路Bの長さに応じた光の干渉作用による減衰を受けた透過光となる。   The transmissive optical switching element irradiates the incident side optical surface with incident light, outputs the transmitted light with the maximum light intensity ITmax from the transmission side optical surface, and outputs the transmitted light with the relatively low minimum light intensity ITmin. To be switched (including the minimum light intensity ITmin = 0). From now on, in the transmission type optical switching element, the “state of transmitting the transmitted light with the maximum light intensity ITmax” is called “ON state” in relation to the switching operation and “transmission” in relation to the incident light. The state in which transmitted light with light intensity ITmin is output is referred to as “OFF state” in relation to the switching operation, and “non-transparent” in relation to incident light. In the ON state or transmission, there is no attenuation due to the interference action of light according to the length of the optical path A and the optical path B, and transmitted light depending on the attenuation of each optical surface, substrate, etc. is obtained. On the other hand, in the OFF state or non-transmission, in addition to attenuation of each optical surface and substrate, the transmitted light is attenuated by the interference action of light according to the length of the optical path A and the optical path B.

反射型の光スイッチング素子は、入射側光学面に入射光を照射し、入射側光学面から最大光強度ITmaxの反射光を出力する状態と、相対的に低い最小光強度ITminの反射光を入射側光学面から出力する状態(最小光強度ITmin=0を含む)とを切り換える。これから、反射型の光スイッチング素子では、「最大光強度ITmaxの反射光を出力する状態」を、スイッチング動作との関係で「ON状態」、入射光との関係で「反射」と呼び、「最小光強度ITminの反射光を出力する状態」を、スイッチング動作との関係で「OFF状態」、入射光との関係で「非反射」と呼ぶ。ON状態又は反射では、光経路A及び光経路Bの長さに応じた光の干渉作用による吸収がなく、光経路に直交する各光学面や基板等の減衰に依存する反射光が得られる。これに対し、OFF状態又は非反射では、各光学面や基板等の減衰に加え、光経路A及び光経路Bの長さに応じた光の干渉作用による吸収を受けた反射光となる。   The reflection type optical switching element irradiates the incident side optical surface with incident light and outputs the reflected light with the maximum light intensity ITmax from the incident side optical surface and the reflected light with the relatively low minimum light intensity ITmin. The state of output from the side optical surface (including minimum light intensity ITmin = 0) is switched. From now on, in the reflection type optical switching element, the “state that outputs the reflected light with the maximum light intensity ITmax” is called “ON state” in relation to the switching operation, and “reflection” in relation to the incident light, and “minimum” The “state of outputting reflected light with light intensity ITmin” is called “OFF state” in relation to the switching operation, and “non-reflecting” in relation to the incident light. In the ON state or reflection, there is no absorption due to the interference action of light according to the length of the light path A and the light path B, and reflected light depending on the attenuation of each optical surface or substrate orthogonal to the light path is obtained. On the other hand, in the OFF state or non-reflection, in addition to the attenuation of each optical surface, the substrate, etc., the reflected light is absorbed by the interference action of light according to the length of the optical path A and the optical path B.

本発明の光スイッチング素子は、透過側光学面及び変位光学面間の光経路Aの長さと、前記変位光学面及び入射側光学面間の光経路Bの長さとを、相反関係で増減させることにより、前記光経路A及び光経路Bの光の干渉作用を変化させて、透過光又は反射光を最大光強度ITmax及び最小光強度ITminの間で切り換える。すなわち、2つの光経路A及び光経路Bの光の干渉作用を相乗させており、前記最大光強度ITmax及び最小光強度ITminの比、すなわち光強度比を大きくしている。こうした本発明の光スイッチング素子は、光経路Aを有する光スイッチング素子と光経路Bを有する光スイッチング素子とを直列に重ねた構成に類似するが、光経路A及び光経路Bの各長さを増減させる変位光学面を共用し、光経路A及び光経路Bの長さが相反関係で同時に増減する点に特徴を有する。   The optical switching element of the present invention increases or decreases the length of the optical path A between the transmission side optical surface and the displacement optical surface and the length of the optical path B between the displacement optical surface and the incident side optical surface in a reciprocal relationship. Thus, the transmitted light or the reflected light is switched between the maximum light intensity ITmax and the minimum light intensity ITmin by changing the interference action of the light in the light path A and the light path B. That is, the interference of light in the two light paths A and B is synergized, and the ratio of the maximum light intensity ITmax and the minimum light intensity ITmin, that is, the light intensity ratio is increased. Such an optical switching element of the present invention is similar to a configuration in which an optical switching element having an optical path A and an optical switching element having an optical path B are overlapped in series, but the lengths of the optical path A and the optical path B are different. It is characterized in that the displacement optical surface to be increased / decreased is shared, and the lengths of the optical path A and the optical path B increase / decrease simultaneously due to a reciprocal relationship.

本発明の光スイッチング素子は、光経路A及び光経路Bを多段に積層する構成にすることにより、更に光強度比を高めることができる。例えば光経路A及び光経路Bを2段に積層する光スイッチング素子は、位置固定な透過側光学面と、変位手段により変位する下段の変位光学面と、位置固定な下段の中間光学面と、位置固定な上段の中間光学面と、変位手段により変位する上段の変位光学面と、位置固定な入射側光学面とを前記記載順に配設し、前記透過側光学面及び下段の変位光学面間の光経路Aと、前記下段の変位光学面及び下段の中間光学面間の光経路Bと、前記上段の中間光学面及び上段の変位光学面間の光経路Cと、前記上段の変位光学面及び入射側光学面間の光経路Dとを形成してなり、変位手段により下段の変位光学面及び上段の変位光学面の一方又は双方を変位させることにより、光経路A及び光経路Bの長さを相反関係で増減させて該光経路A及び光経路Bの光の干渉作用を変化させ、また光経路C及び光経路Dの長さを相反関係で増減させて該光経路C及び光経路Dの光の干渉作用を変化させて、入射側光学面に照射する入射光に対する透過側光学面からの透過光又は入射側光学面からの反射光の光強度を変化させる構成となる。この光スイッチング素子は、光経路Cが光経路A(又は光経路B)に相当し、光経路Dが光経路B(又は光経路A)に相当する。   In the optical switching element of the present invention, the light intensity ratio can be further increased by adopting a configuration in which the optical path A and the optical path B are stacked in multiple stages. For example, the optical switching element in which the optical path A and the optical path B are stacked in two stages includes a position-fixed transmission side optical surface, a lower-stage displacement optical surface that is displaced by a displacement means, and a position-fixed lower-stage intermediate optical surface, An upper intermediate optical surface that is fixed in position, an upper optical surface that is displaced by a displacing means, and an incident-side optical surface that is fixed in position are arranged in the order described, and between the transmission optical surface and the lower displacement optical surface Optical path A, optical path B between the lower displacement optical surface and lower intermediate optical surface, optical path C between the upper intermediate optical surface and upper displacement optical surface, and the upper displacement optical surface And the optical path D between the incident-side optical surfaces, and by displacing one or both of the lower-stage displacement optical surface and the upper-stage displacement optical surface by the displacement means, the length of the optical path A and the optical path B The optical path A and the optical path are increased or decreased in a reciprocal relationship. And the length of the light path C and the light path D is increased or decreased in a reciprocal relationship to change the light interference action of the light path C and the light path D, so that the incident side optical surface The light intensity of the transmitted light from the transmission side optical surface or the reflected light from the incident side optical surface with respect to the incident light to be irradiated is changed. In this optical switching element, the optical path C corresponds to the optical path A (or optical path B), and the optical path D corresponds to the optical path B (or optical path A).

また、光経路A及び光経路Bを2段に積層する光スイッチング素子は、上段及び下段に介在する光学面を兼用して、位置固定な透過側光学面と、変位手段により変位する下段の変位光学面と、位置固定な共通の中間光学面と、変位手段により変位する上段の変位光学面と、位置固定な入射側光学面とを前記記載順に配設し、前記透過側光学面及び下段の変位光学面間の光経路Aと、前記下段の変位光学面及び共通の中間光学面間の光経路Bと、前記共通の中間光学面及び上段の変位光学面間の光経路Cと、前記上段の変位光学面及び入射側光学面間の光経路Dとを形成してなり、変位手段により下段の変位光学面及び上段の変位光学面の一方又は双方を変位させることにより、光経路A及び光経路Bの長さを相反関係で増減させて該光経路A及び光経路Bの光の干渉作用を変化させ、また光経路C及び光経路Dの長さを相反関係で増減させて該光経路C及び光経路Dの光の干渉作用を変化させて、入射側光学面に照射する入射光に対する透過側光学面からの透過光又は入射側光学面からの反射光の光強度を変化させる構成にしてもよい。この光スイッチング素子は、光経路Cが光経路A(又は光経路B)に相当し、光経路Dが光経路B(又は光経路A)に相当する。   In addition, the optical switching element in which the optical path A and the optical path B are stacked in two stages also serves as an optical surface interposed between the upper and lower stages, and the position-fixed transmission side optical surface and the lower displacement displaced by the displacing means. An optical surface, a fixed intermediate optical surface fixed in position, an upper displacement optical surface displaced by a displacement means, and an incident-side optical surface fixed in position are arranged in the order described, and the transmission-side optical surface and the lower optical surface An optical path A between the displacement optical surfaces; an optical path B between the lower displacement optical surface and the common intermediate optical surface; an optical path C between the common intermediate optical surface and the upper displacement optical surface; The optical path D is formed between the displacement optical surface and the incident side optical surface, and one or both of the lower displacement optical surface and the upper displacement optical surface are displaced by the displacement means. The length of the path B is increased or decreased in a reciprocal relationship, and the optical path A The light interference action of the light path B is changed, and the length of the light path C and the light path D is increased / decreased in a reciprocal relationship to change the light interference action of the light path C and the light path D. You may make it the structure which changes the light intensity of the transmitted light from the transmission side optical surface with respect to the incident light irradiated to a side optical surface, or the reflected light from an incident side optical surface. In this optical switching element, the optical path C corresponds to the optical path A (or optical path B), and the optical path D corresponds to the optical path B (or optical path A).

更に、光経路A及び光経路Bを2段に積層する光スイッチング素子は、積層する光経路C又は光経路Dのいずれかを省略して、位置固定な透過側光学面と、変位手段により変位する下段の変位光学面と、位置固定な共通の中間光学面と、変位手段により変位する上段の変位光学面とを前記記載順に配設し、前記透過側光学面及び下段の変位光学面間の光経路Aと、前記下段の変位光学面及び共通の中間光学面間の光経路Bと、前記共通の中間光学面及び上段の変位光学面間の光経路Cとを形成してなり、変位手段により下段の変位光学面及び上段の変位光学面の一方又は双方を変位させることにより、光経路A及び光経路Bの長さを相反関係で増減させて該光経路A及び光経路Bの光の干渉作用を変化させ、また光経路Cの長さを増減させて該光経路Cの光の干渉作用を変化させて、上段の変位光学面に照射する入射光に対する透過側光学面からの透過光又は上段の変位光学面からの反射光の光強度を変化させる構成にしてもよい。この光スイッチング素子は、光経路Cが光経路A(又は光経路B)に相当する。   Furthermore, in the optical switching element in which the optical path A and the optical path B are laminated in two stages, either the laminated optical path C or the optical path D is omitted, and the position is fixed by the transmission-side optical surface and the displacement means. A lower displacing optical surface, a common intermediate optical surface whose position is fixed, and an upper displacing optical surface that is displaced by the displacing means are arranged in the order described, and between the transmission side optical surface and the lower displacing optical surface. An optical path A, an optical path B between the lower displacement optical surface and the common intermediate optical surface, and an optical path C between the common intermediate optical surface and the upper displacement optical surface are formed. By displacing one or both of the lower displacing optical surface and the upper displacing optical surface, the length of the optical path A and the optical path B is increased or decreased in a reciprocal relationship, and the light of the optical path A and the optical path B is Change the interference action and increase or decrease the length of the light path C By changing the interference action of the light in the optical path C, the light intensity of the transmitted light from the transmission side optical surface or the reflected light from the upper displacement optical surface with respect to the incident light irradiated on the upper displacement optical surface is changed. May be. In this optical switching element, the optical path C corresponds to the optical path A (or optical path B).

上記各光スイッチング素子における変位光学面は、光経路A等の長さを増減する変位ができればよく、このための変位手段を限定しない。ここで、変位光学面の「変位」とは、変位光学面が変形することなく、変位光学面全体が平行移動して入射側光学面又は透過側光学面に接近又は離反する運動や、変位光学面自体が変形して、前記変形部分が入射側光学面又は透過側光学面に接近又は離反する運動を意味する。こうした運動の変位を微小な変位光学面にさせることは、物理的な変位手段では難しく、電磁気的な変位手段が好ましい。これから、変位光学面は、外部から印加される電気信号に応じて発生する電界が該変位光学面に加える静電気力により変位させたり、外部から印加される電気信号に応じて発生する電界が該変位光学面と一体に形成された補助変位面に加える静電気力により前記補助変位面と一体に変位させるとよい。変位光学面を静電気力で変位させる場合、補強用の補助変位面を変位光学面と一体に形成してもよい。また、補助変位面を静電気力で変位させる場合、変位光学面も静電気力で変位させてもよい。前記各電気信号は、透過側光学面、変位光学面及び入射側光学面を電極としたり、前記透過側光学面、変位光学面又は入射側光学面に対して別途電極を付設して印加する。補助変位面は、変位光学面に別途付設する電極とすることができる。また、透過側光学面、変位光学面及び入射側光学面を含む光経路上に別体の電極を配設して、前記電極に電気信号を印加してもよい。いずれにせよ、変形させる変位光学面に静電気力が働けば、電極の構成又は位置は自由に設定できる。   The displacement optical surface in each optical switching element is not limited as long as it can be displaced to increase or decrease the length of the optical path A or the like. Here, “displacement” of the displacement optical surface refers to a movement in which the entire displacement optical surface moves in parallel and approaches or separates from the incident side optical surface or the transmission side optical surface without deformation of the displacement optical surface. It means that the surface itself is deformed and the deformed part approaches or separates from the incident side optical surface or the transmission side optical surface. It is difficult for a physical displacement means to cause such a movement displacement to be a minute displacement optical surface, and an electromagnetic displacement means is preferable. From this, the displacement optical surface is displaced by an electrostatic force applied to the displacement optical surface by an electric field generated in response to an externally applied electric signal, or an electric field generated in response to an externally applied electric signal. It is preferable that the auxiliary displacement surface is displaced integrally by an electrostatic force applied to the auxiliary displacement surface formed integrally with the optical surface. When the displacement optical surface is displaced by electrostatic force, a reinforcing auxiliary displacement surface may be formed integrally with the displacement optical surface. When the auxiliary displacement surface is displaced by electrostatic force, the displacement optical surface may be displaced by electrostatic force. Each electric signal is applied by using a transmission-side optical surface, a displacement optical surface, and an incident-side optical surface as electrodes, or by separately attaching electrodes to the transmission-side optical surface, the displacement optical surface, or the incident-side optical surface. The auxiliary displacement surface can be an electrode separately provided on the displacement optical surface. Further, a separate electrode may be disposed on the optical path including the transmission side optical surface, the displacement optical surface, and the incident side optical surface, and an electric signal may be applied to the electrode. In any case, if an electrostatic force acts on the displacement optical surface to be deformed, the configuration or position of the electrode can be freely set.

また、本発明の光スイッチング素子は、変位光学面の変位量を制限する変位制限ストッパを変位光学面に対して付設し、変位光学面の変位量を制限して、スイッチング動作を高速化し、併せて変位光学面のリバウンド現象を防止する。例えば、透過型の光スイッチング素子は、光経路A及び光経路Bの長さがそれぞれ[(λ/2)×n+λ/4](λは入射光の波長、nは整数、以下同じ)で非透過となり、前記各光経路の長さが変位光学面の変位によってλ/4だけ増減すると透過となるように構成すれば、変位光学面の必要変位量はλ/4となる。本発明は、変位光学面の変位可能範囲を前記必要変位量以上にしながら、この変位光学面の実際変位量を変位制限ストッパにより必要変位量に制限する。これは、高速に変位している最中の変位光学面を強制的に停止させることを意味し、光スイッチング素子のスイッチング動作の高速化をもたらすほか、変位制限ストッパに停止させられる変位光学面にリバウンド現象が起こることを抑制又は防止する。   In addition, the optical switching element of the present invention is provided with a displacement limiting stopper for limiting the displacement amount of the displacement optical surface to the displacement optical surface to limit the displacement amount of the displacement optical surface, thereby speeding up the switching operation. This prevents the rebound phenomenon of the displacement optical surface. For example, in a transmissive optical switching element, the lengths of the optical path A and the optical path B are [(λ / 2) × n + λ / 4] (λ is the wavelength of incident light, n is an integer, and the same applies hereinafter). If it is configured to transmit light when the length of each optical path is increased or decreased by λ / 4 due to the displacement of the displacement optical surface, the required amount of displacement of the displacement optical surface is λ / 4. The present invention limits the actual displacement amount of the displacement optical surface to the necessary displacement amount by the displacement limit stopper while making the displaceable range of the displacement optical surface more than the necessary displacement amount. This means that the displacing optical surface that is being displaced at high speed is forcibly stopped. In addition to speeding up the switching operation of the optical switching element, the displacing optical surface that is stopped by the displacement limiting stopper is used. Suppress or prevent the rebound phenomenon from occurring.

このように、本発明の変位制限ストッパは、変位光学面の変位量を制限できればどのような構成でもよいが、変位光学面と平行に配設し、変位した変位光学面が接面するストッパ透過面として構成することが好ましい。前記ストッパ透過面は、変位光学面同様、光経路を直交して前記変位光学面と平行に配設され、復帰位置(初期位置)又は変位位置(λ/4だけ変位した位置)で変位光学面に接面して、実際変位量を制限する。これにより、変位手段はストッパ透過面に押し当てるように変位光学面を変位させればよいため、変位光学面の変位速度を大きくし、スイッチング動作を高速化できる。また、変位量を制限した位置で、変位光学面がストッパ透過面に接面するため、前記接面した範囲での透過光又は反射光の光強度を均一にできる。   As described above, the displacement limiting stopper of the present invention may have any configuration as long as the displacement amount of the displacement optical surface can be limited. However, the stopper is arranged in parallel with the displacement optical surface, and the stopper transmissive surface on which the displaced displacement optical surface is in contact is provided. It is preferable to configure as a surface. Like the displacement optical surface, the stopper transmission surface is disposed in parallel with the displacement optical surface so that the optical path is orthogonal to the displacement optical surface at the return position (initial position) or the displacement position (position displaced by λ / 4). The actual displacement is limited by contacting the surface. Thus, the displacement means only needs to displace the displacement optical surface so as to press against the stopper transmission surface, so that the displacement speed of the displacement optical surface can be increased and the switching operation can be speeded up. Further, since the displacement optical surface is in contact with the stopper transmission surface at the position where the displacement amount is limited, the light intensity of the transmitted light or the reflected light in the contacted range can be made uniform.

より具体的なストッパ透過面は、光経路Aの長さを減ずる方向に変位させる変位光学面の前記変位方向と同じ側に設け、この変位光学面が変位した際に前記変位光学面に接面する透過側ストッパ透過面や、光経路Bの長さを減ずる方向に変位させる変位光学面の前記変位方向と同じ側に設け、この変位光学面が復元した際に前記変位光学面と接面する入射側ストッパ透過面を例示できる。透過側ストッパ透過面は、変位光学面の変位位置(λ/4だけ変位した位置)に対して設けるストッパ透過面であり、入射側ストッパ透過面は、変位光学面の復帰位置(初期位置)に対して設けるストッパ透過面である。   A more specific stopper transmission surface is provided on the same side as the displacement direction of the displacement optical surface that is displaced in the direction of reducing the length of the optical path A, and is in contact with the displacement optical surface when the displacement optical surface is displaced. The transmission side stopper is provided on the same side as the displacement optical surface to be displaced in the direction of reducing the length of the optical path B and the displacement optical surface is in contact with the displacement optical surface when the displacement optical surface is restored. An incident side stopper transmission surface can be exemplified. The transmission side stopper transmission surface is a stopper transmission surface provided with respect to the displacement position (position displaced by λ / 4) of the displacement optical surface, and the incident side stopper transmission surface is at the return position (initial position) of the displacement optical surface. It is a stopper transmission surface provided for the surface.

透過側ストッパ透過面及び入射側ストッパ透過面は、それぞれ個別に用いることもできるが、両者を同時に用いることが好ましい。この場合、透過側光学面及び変位光学面に異なる極性の電圧を有する電気信号を印加して透過側光学面及び変位光学面が互いに引き合う静電気力を発生させ、変位光学面を変位方向に配設した透過側ストッパ透過面に押し当てるように変位させ、また透過側光学面及び変位光学面に同じ極性の電圧を有する電気信号を印加して透過側光学面及び変位光学面が互いに反発する静電気力を発生させ、入射側ストッパ透過面に押し当てて復帰させる。このように、変位又は復帰のいずれに際しても変位光学面を透過側ストッパ透過面又は入射側ストッパ透過面に押し当てる構成にすると、例えば変位光学面の変位によるOFF状態からON状態へのスイッチング動作やON状態からOFF状態へのスイッチング動作を高速化し、変位光学面の復帰に際するリバウンド現象を抑制又は防止できる。   The transmission side stopper transmission surface and the incidence side stopper transmission surface can be used individually, but it is preferable to use both at the same time. In this case, an electrical signal having a voltage of different polarity is applied to the transmission side optical surface and the displacement optical surface to generate an electrostatic force that attracts the transmission side optical surface and the displacement optical surface, and the displacement optical surface is disposed in the displacement direction. Electrostatic force that causes the transmission side optical surface and the displacement optical surface to repel each other by applying an electric signal having the same polarity voltage to the transmission side optical surface and the displacement optical surface. Is generated and pressed against the transmission surface of the incident side stopper to recover. In this way, when the displacement optical surface is pressed against the transmission side stopper transmission surface or the incident side stopper transmission surface at any time of displacement or return, for example, switching operation from OFF state to ON state due to displacement of the displacement optical surface, The switching operation from the ON state to the OFF state can be speeded up, and the rebound phenomenon when the displacement optical surface is restored can be suppressed or prevented.

更に、変位した変位光学面がストッパ透過面に接面する範囲以下の透過窓を開口した遮光面を、変位光学面と平行に配設することにより、本発明の光スイッチング素子は鮮明な投光パターンを実現する。ここで、「遮光面」は、入射光を全反射又は吸収して、入射光を透過させない面を意味する。本発明の光スイッチング素子は、変位する変位光学面がストッパ透過面に接面する範囲で設計通りの透過光又は反射光が得られるものの、前記範囲外では必ずしも設計通りの透過光又は反射光が得られる保証がない。遮光面は、変位する変位光学面がストッパ透過面に接面する範囲以下の透過窓の範囲に透過光又は反射光が得られる範囲を限定し、設計通りの透過光又は反射光が得られるようにして、前記透過光又は反射光の輪郭を鮮明にする。   Furthermore, the light switching element of the present invention has a clear light projection by arranging a light-shielding surface having a transmission window below the range where the displaced displacement optical surface is in contact with the stopper transmission surface, in parallel with the displacement optical surface. Realize the pattern. Here, the “light-shielding surface” means a surface that totally reflects or absorbs incident light and does not transmit incident light. In the optical switching element of the present invention, the transmitted light or reflected light as designed is obtained in the range where the displacing optical surface to contact the stopper transmitting surface, but the designed transmitted light or reflected light is not necessarily outside the range. There is no guarantee obtained. The light-shielding surface limits the range in which transmitted light or reflected light is obtained to the range of the transmission window below the range where the displaced displacement optical surface is in contact with the stopper transmission surface, so that the transmitted light or reflected light as designed can be obtained. Thus, the outline of the transmitted light or reflected light is sharpened.

具体的な遮光面は、透過側光学面の上面又は下面に添設した透過側遮光面、変位光学面の上面又は下面に添設した変位側遮光面、入射側光学面の上面又は下面に添設した入射側遮光面、ストッパ透過面の上面又は下面に添設したストッパ側遮光面、そして光スイッチング素子を形成する基板の上面又は下面に添設した基板側遮光面を例示できる。各遮光面は、透過側光学面、変位光学面、入射側光学面、ストッパ透過面又は基板の上面又は下面に、これら透過側光学面、変位光学面、入射側光学面、ストッパ透過面又は基板と一体に形成することが好ましい。ここで、変位する変位光学面に変位側遮光面を一体に形成することは難しいため、例えば変位する変位光学面に対して添設する遮光面は、変位する変位光学面に近接して配設する場合を含む。   Specific light-shielding surfaces include a transmission-side light-shielding surface attached to the upper or lower surface of the transmission-side optical surface, a displacement-side light-shielding surface attached to the upper or lower surface of the displacement optical surface, and an upper surface or lower surface of the incident-side optical surface. Examples thereof include an incident-side light-shielding surface, a stopper-side light-shielding surface attached to the upper or lower surface of the stopper transmission surface, and a substrate-side light-shielding surface attached to the upper or lower surface of the substrate on which the optical switching element is formed. Each light shielding surface is a transmission side optical surface, a displacement optical surface, an incident side optical surface, a stopper transmission surface or an upper surface or a lower surface of the substrate, and the transmission side optical surface, the displacement optical surface, the incident side optical surface, the stopper transmission surface or the substrate. It is preferable to form it integrally. Here, since it is difficult to integrally form the displacement-side light shielding surface on the displacing displacement optical surface, for example, the light shielding surface attached to the displacing displacement optical surface is disposed close to the displacing displacement optical surface. Including the case of

本発明の上記光スイッチング素子を用いることにより、高コントラスト、高応答性、高解像度及び低消費電力を兼ね備えた画像表示装置を構成できる。すなわち、本発明の画像表示装置は、光源からの入射光に対して透過光又は反射光の光強度を変化させる光スイッチング素子からなる画素単位を1次元配列又は2次元配列し、各画素単位の点灯又は消灯により画像を表示面に表示する画像表示装置において、光スイッチング素子は位置固定な透過側光学面と、変位手段により変位する変位光学面と、位置固定な入射側光学面とを前記記載順に配設し、前記透過側光学面及び変位光学面間の光経路Aと、前記変位光学面及び入射側光学面間の光経路Bとを形成してなり、変位手段により変位光学面を変位させることにより、光経路A及び光経路Bの長さを相反関係で増減させて該光経路A及び光経路Bの光の干渉作用を変化させて、入射側光学面に照射する入射光に対する透過側光学面からの透過光又は入射側光学面からの反射光の光強度を変化させる構成となる。   By using the optical switching element of the present invention, an image display device having high contrast, high responsiveness, high resolution and low power consumption can be configured. That is, the image display device of the present invention has a one-dimensional array or a two-dimensional array of pixel units composed of optical switching elements that change the light intensity of transmitted light or reflected light with respect to incident light from a light source. In the image display device that displays an image on the display surface by turning on or off, the optical switching element includes a transmission-side optical surface whose position is fixed, a displacement optical surface that is displaced by a displacement unit, and a light-incident-side optical surface that is fixed in position. The optical path A between the transmission optical surface and the displacement optical surface and the optical path B between the displacement optical surface and the incident optical surface are formed in order, and the displacement optical surface is displaced by the displacement means. Thus, the length of the light path A and the light path B is increased or decreased in a reciprocal relationship to change the light interference action of the light path A and the light path B, thereby transmitting the incident light irradiated on the incident side optical surface. From the side optical surface A configuration for changing the light intensity of the reflected light from the over light or incident-side optical surface.

光スイッチング素子は、光経路Aの長さと光経路Bの長さとを同時に増減させて大きく変化する光の干渉作用を利用し、入射光に対する透過光又は反射光の光強度比を大きくできる。前記光強度比はそのまま表示面におけるコントラスト比に反映されるので、本発明の画像表示装置は、表示面におけるコントラスト比を強くできる。また、光スイッチング素子は、変位光学面の変位量を制限する変位制限ストッパを変位光学面に対して付設することにより、スイッチング動作を高速化できる。これにより、本発明の画像表示装置は、各画素単位の応答速度を高め、動きの激しい動画も応答よく表示させることができる。前記変位制限ストッパは、変位光学面と平行に配設し、変位した変位光学面が接面するストッパ透過面が好ましい。   The optical switching element can increase the light intensity ratio of the transmitted light or the reflected light with respect to the incident light by utilizing the interference action of the light that is greatly changed by simultaneously increasing or decreasing the length of the optical path A and the length of the optical path B. Since the light intensity ratio is directly reflected in the contrast ratio on the display surface, the image display device of the present invention can increase the contrast ratio on the display surface. The optical switching element can speed up the switching operation by attaching a displacement limiting stopper for limiting the amount of displacement of the displacement optical surface to the displacement optical surface. As a result, the image display device of the present invention can increase the response speed of each pixel unit, and can display a moving image with high response in a responsive manner. The displacement limiting stopper is preferably a stopper transmission surface that is arranged in parallel with the displacement optical surface and is in contact with the displaced displacement optical surface.

そして、光スイッチング素子は、変位した変位光学面がストッパ透過面に接面する範囲以下の透過窓を開口した遮光面を、変位光学面と平行に配設して、透過光又は反射光の輪郭を鮮明にできる。これにより、画像表示装置は、各画素単位を明確にし、表示面に表示される画像の解像度を高めることができる。更に、光スイッチング素子は、外部から印加される電気信号に応じて発生する電界が変位光学面に加える静電気力を変位手段として該変位光学面を変位させる、又は外部から印加される電気信号に応じて発生する電界が変位光学面と一体に形成された補助変位面に加える静電気力を変位手段として前記変位光学面を補助変位面と一体に変位させることにより、変位手段を駆動するための使用電力を抑制できる。これにより、画素単位、ひいては表示面全体に要求される使用電力が抑制され、画像表示装置として低消費電力を実現できる。   The optical switching element includes a light shielding surface having a transmission window that is equal to or smaller than a range in which the displaced optical surface is in contact with the stopper transmission surface, and is arranged in parallel with the optical displacement surface, so that the contour of transmitted light or reflected light is obtained. Can be clarified. Thereby, the image display apparatus can clarify each pixel unit, and can raise the resolution of the image displayed on a display surface. Furthermore, the optical switching element displaces the displacement optical surface using an electrostatic force applied to the displacement optical surface by an electric field generated according to an electric signal applied from the outside, or responds to an electric signal applied from the outside. Electric power used to drive the displacement means by displacing the displacement optical surface integrally with the auxiliary displacement surface using the electrostatic force applied to the auxiliary displacement surface formed integrally with the displacement optical surface by the electric field generated by Can be suppressed. As a result, the power consumption required for the pixel unit and thus the entire display surface is suppressed, and low power consumption can be realized as an image display device.

ここで、本発明の光スイッチング素子は、光経路A及び光経路Bの長さの増減量に応じて透過光又は反射光の光強度を連続的に調整できる。これから、例えば変位制限ストッパを用いず、変位する変位光学面の変位量を連続的に増減して、前記光スイッチング素子からなる画素単位の発色及び光強度を調整することが考えられる。しかし、こうした変位光学面の変位量の増減による光強度の調整は難しく、また変位制限ストッパを用いることによる高速なスイッチング動作の恩恵を受けることができない。そこで、例えば変位制限ストッパを設ける等して変位光学面の変位量を一定に規制しつつ、各光スイッチング素子が入射光を透過又は反射させている時間、すなわちON状態の時間を増減して、画素単位の発色及び光強度を調整することとした。   Here, the optical switching element of the present invention can continuously adjust the light intensity of the transmitted light or the reflected light according to the increase / decrease amount of the length of the optical path A and the optical path B. From this, for example, it is conceivable to adjust the color development and the light intensity of each pixel composed of the optical switching element by continuously increasing / decreasing the displacement amount of the displacing optical surface without using the displacement limiting stopper. However, it is difficult to adjust the light intensity by increasing or decreasing the displacement amount of the displacement optical surface, and it is not possible to benefit from a high-speed switching operation using the displacement limit stopper. Therefore, for example, by providing a displacement limit stopper, the amount of displacement of the displacement optical surface is regulated to be constant, and the time during which each optical switching element transmits or reflects incident light, that is, the ON state time is increased or decreased. It was decided to adjust the color development and light intensity for each pixel.

まず、本発明の画像表示装置は、外部から印加される電気信号に応じて発生する電界により変位光学面に加えられる静電気力を光スイッチング素子の変位光学面の変位手段とし、画素単位の単位点灯時間を分割した単位印加時間で印加する電気信号の印加回数を、前記単位印加時間の総和が単位点灯時間を超えない範囲で増減することにより、この画素単位の発色及び光強度を調整することとした。この場合、画素単位の発色は、各光スイッチング素子に対する電気信号の印加回数によって決定され、また画素単位の光強度は、各光スイッチング素子に対する電気信号の印加回数に比例する。ここで、「単位点灯時間」とは、表示面が複数の走査線を走査順に点灯して画像を表示する場合の前記各走査線毎の点灯時間である。例えば30fpsで画像を表示する表示面が1フレームを525本の走査線で構成している場合(現行アナログテレビ放送等)、単位点灯時間は(1/30)/525≒6.35×10-5秒となる。単位印加時間は、前記単位点灯時間を分割した時間であるから、例えば前記単位点灯時間(6.35×10-5秒)を100分割した場合の単位印加時間は6.35×10-7秒となり、印加回数を0〜100回の範囲で増減して、理論上、光強度を100階調で調整できる。 First, the image display device of the present invention uses the electrostatic force applied to the displacement optical surface by an electric field generated according to an externally applied electric signal as a displacement means of the displacement optical surface of the optical switching element, and unit lighting in units of pixels. Adjusting the color development and light intensity of this pixel unit by increasing or decreasing the number of times of application of the electrical signal applied in the unit application time divided in time so that the total of the unit application time does not exceed the unit lighting time; did. In this case, the color development for each pixel is determined by the number of times of applying the electric signal to each optical switching element, and the light intensity for each pixel is proportional to the number of times of applying the electric signal to each light switching element. Here, the “unit lighting time” is a lighting time for each scanning line when the display surface lights a plurality of scanning lines in the scanning order to display an image. For example, if the display surface that displays an image at 30 fps consists of 525 scanning lines per frame (current analog TV broadcasts, etc.), the unit lighting time is (1/30) /525≒6.35×10 -5 seconds It becomes. Since the unit application time is a time obtained by dividing the unit lighting time, for example, when the unit lighting time (6.35 × 10 −5 seconds) is divided into 100, the unit application time is 6.35 × 10 −7 seconds, and the number of application times Theoretically, the light intensity can be adjusted in 100 gradations by increasing or decreasing from 0 to 100 times.

また、本発明の画像表示装置は、外部から印加される電気信号に応じて発生する電界により変位光学面に加えられる静電気力を光スイッチング素子の変位光学面の変位手段とし、画素単位の単位点灯時間以下の連続印加時間で電気信号を印加してなり、前記単位点灯時間を超えない範囲で電気信号の連続印加時間を増減することにより、該画素単位の発色及び光強度を調整することもできる。この場合、画素単位の発色は、各光スイッチング素子に対する電気信号の連続印加時間によって決定され、また画素単位の光強度は、各光スイッチング素子に対する電気信号の連続印加時間に比例する。上記例示で説明すれば、連続印加時間は、0〜単位点灯時間=0〜6.35×10-5秒の範囲で100段階に増減して、理論上、光強度を100階調で調整できる。 Further, the image display device of the present invention uses the electrostatic force applied to the displacement optical surface by the electric field generated according to the electric signal applied from the outside as the displacement means of the displacement optical surface of the optical switching element, and unit lighting in units of pixels. It is also possible to adjust the color development and light intensity of the pixel unit by applying an electrical signal with a continuous application time of less than or equal to the time and increasing or decreasing the continuous application time of the electrical signal within a range not exceeding the unit lighting time. . In this case, the color development of each pixel is determined by the continuous application time of the electrical signal to each optical switching element, and the light intensity of each pixel is proportional to the continuous application time of the electrical signal to each optical switching element. In the above example, the continuous application time can be increased or decreased in 100 steps within a range of 0 to unit lighting time = 0 to 6.35 × 10 −5 seconds, and the light intensity can theoretically be adjusted in 100 gradations.

光スイッチング素子は、特定波長の入射光に対して透過光又は反射光を出力するだけであるから、表示面にカラー画像を得るには次の構成が必要である。すなわち、画素単位は、赤色光、緑色光及び青色光に対応して異なる光経路A及び光経路Bの長さを設定した赤色用スイッチング素子、緑色用スイッチング素子及び青色用スイッチング素子の各1基合計3基を一組として構成し、光源から赤色光、緑色光及び青色光に対応する3波長の可視光を入射光として前記画素単位に入力し、前記画素単位を構成する各光スイッチング素子からの透過光又は反射光により表示面に画像を表示してなり、各画素単位を構成する各光スイッチング素子の透過光又は反射光の光強度を個別に変化させることにより、表示面に各画素単位でカラー表示する。この場合、光源は、画像表示装置の薄型化及び低消費電力化を考慮すれば、可視光の発光ダイオード又はレーザダイオード(以下、可視光ダイオードで代表)が好ましい。   Since the optical switching element only outputs transmitted light or reflected light with respect to incident light having a specific wavelength, the following configuration is required to obtain a color image on the display surface. That is, the pixel unit is one each of a red switching element, a green switching element, and a blue switching element in which different lengths of light paths A and B are set corresponding to red light, green light, and blue light. A total of three units are configured as one set, and three wavelengths of visible light corresponding to red light, green light, and blue light are input as incident light from the light source to the pixel unit, and from each optical switching element that configures the pixel unit An image is displayed on the display surface by transmitted light or reflected light, and each pixel unit is displayed on the display surface by individually changing the light intensity of the transmitted light or reflected light of each light switching element constituting each pixel unit. To display in color. In this case, the light source is preferably a visible light emitting diode or a laser diode (hereinafter referred to as a visible light diode) in consideration of thinning and low power consumption of the image display device.

光源としての可視光ダイオードは、個数に制限はないが、単数又は比較的少数の可視光ダイオードでは、全画素単位の全光スイッチング素子へ十分な光強度の入射光を入力することは困難である。しかし、例えば表示面は複数の走査線を走査順に点灯して画像を表示する構成とし、前記走査線に沿って並ぶ画素単位を走査単位とし、走査順にしたがって点灯する走査単位のみに光源から入射光を入力し、走査順でない残余の走査単位には光源から入射光を入力しない構成にすると、点灯する走査単位を構成する画素単位へのみ入射光を入力すればよくなり、必要な可視光ダイオードの個数を減らすことができる。また、走査線数に等しい可視光ダイオードを走査単位毎に割り当て、走査順に各可視光ダイオードの点灯又は消灯を切り換えていってもよい。この場合、点灯している可視光ダイオードは走査順に対応する1個だけであるから、画像表示装置としての消費電力を低減できる。   The number of visible light diodes as the light source is not limited, but it is difficult to input incident light with sufficient light intensity to all the optical switching elements of all the pixels with a single or a relatively small number of visible light diodes. . However, for example, the display surface is configured to display an image by lighting a plurality of scanning lines in the scanning order, the pixel units arranged along the scanning lines are set as scanning units, and only the scanning units that are lit in the scanning order are incident light from the light source. If the incident light is not input from the light source to the remaining scanning units that are not in the scanning order, it is only necessary to input the incident light to the pixel units constituting the scanning unit to be lit. The number can be reduced. Further, a visible light diode equal to the number of scanning lines may be assigned for each scanning unit, and each visible light diode may be turned on or off in the scanning order. In this case, since there is only one visible light diode corresponding to the scanning order, power consumption as the image display device can be reduced.

カラー表示を実現する別の構成として、画素単位は、紫外光に対応した光経路A及び光経路Bの長さを設定した紫外光用スイッチング素子の少なくとも3基を一組として構成し、光源から単波長の紫外光を入射光として前記画素単位に入力し、前記画素単位を構成する各光スイッチング素子からの透過光又は反射光を受けて発光する赤色用蛍光面、緑色用蛍光面又は青色用蛍光面を前記画素単位の各光スイッチング素子に対応して設けた表示面に画像を表示してなり、各画素単位を構成する各光スイッチング素子の透過光又は反射光の光強度を個別に変化させることにより、表示面に各画素単位でカラー表示する構成にしてもよい。この場合、画素単位にもう一つの紫外光用スイッチング素子を加えて合計4基を一組とし、表示面には赤色用蛍光面、緑色用蛍光面又は青色用蛍光面に白色用蛍光面を加えて構成してもよい。   As another configuration for realizing color display, the pixel unit is configured as a set of at least three switching elements for ultraviolet light in which the lengths of the optical path A and the optical path B corresponding to the ultraviolet light are set, and from the light source A single-wavelength ultraviolet light is input to the pixel unit as incident light, and receives a transmitted light or a reflected light from each optical switching element constituting the pixel unit to emit light. An image is displayed on a display surface provided with a fluorescent screen corresponding to each light switching element of each pixel unit, and the light intensity of transmitted light or reflected light of each light switching element constituting each pixel unit is individually changed. By doing so, a color display may be performed on the display surface in units of pixels. In this case, another switching element for ultraviolet light is added to each pixel to make a total of four groups, and a red fluorescent screen, a green fluorescent screen or a blue fluorescent screen is added to the display screen and a white fluorescent screen is added. May be configured.

上記紫外光用スイッチング素子を用いる場合、光源は紫外光の発光ダイオード又はレーザダイオードを用いるとよい(以下、紫外光ダイオードで代表)。この紫外光ダイオードを光源とする場合も、上記可視光ダイオードの使用態様同様、表示面は、複数の走査線を走査順に点灯して画像を表示してなり、前記走査線に沿って並ぶ画素単位を走査単位とし、走査順にしたがって点灯する走査単位のみに光源から入射光を入力し、走査順でない残余の走査単位には光源から入射光を入力しない構成にするとよい。また、走査線数に等しい紫外光ダイオードを走査単位毎に割り当て、走査順に各紫外光ダイオードの点灯又は消灯を切り換えていくことで、点灯している紫外光ダイオードを走査順に対応する1個だけとすることにより、画像表示装置としての消費電力を低減することもできる。   When the ultraviolet light switching element is used, an ultraviolet light emitting diode or laser diode may be used as the light source (hereinafter represented by an ultraviolet light diode). In the case where this ultraviolet light diode is used as a light source, as in the above-described use form of the visible light diode, the display surface displays a picture by lighting a plurality of scanning lines in the order of scanning, and pixel units arranged along the scanning lines. Is configured so that incident light is input from the light source only to the scanning units that are lit according to the scanning order, and incident light from the light source is not input to the remaining scanning units that are not in the scanning order. Further, by assigning an ultraviolet light diode equal to the number of scanning lines for each scanning unit and switching on / off of each ultraviolet light diode in the scanning order, only one ultraviolet light diode that is turned on corresponds to the scanning order. By doing so, the power consumption as an image display apparatus can also be reduced.

本発明の光スイッチング素子は、変位光学面により光経路A及び光経路Bを相反関係で同時に増減し、あたかも2つの光スイッチング素子が直列に配設されているかのように作動する。重要な点は、前記光経路A及び光経路Bが同期して増減し、スイッチング動作を連動する点にある。これにより、光経路A及び光経路Bそれぞれの光の干渉作用を相乗させて、入射光に対する透過光又は反射光の光強度比を大きくできる。こうして、本発明の光スイッチング素子を用いた画像表示装置は、コントラストの明瞭な画像を表示できる。   The optical switching element of the present invention simultaneously increases or decreases the optical path A and the optical path B in a reciprocal relationship by the displacement optical surface, and operates as if two optical switching elements are arranged in series. The important point is that the optical path A and the optical path B increase / decrease synchronously and interlock with the switching operation. Thereby, the interference action of the light of each of the light path A and the light path B can be made synergistic, and the light intensity ratio of the transmitted light or the reflected light to the incident light can be increased. Thus, the image display apparatus using the optical switching element of the present invention can display an image with clear contrast.

また、本発明の光スイッチング素子は、変位制限ストッパによって変位光学面の変位量を制限することにより、光スイッチング素子のスイッチング動作を高速化する効果を有する。特に、変位する変位光学面に接面するストッパ透過面を変位制限ストッパとすれば、変位方向及び復帰方向のいずれにも変位光学面の変位を制御できるようになり、スイッチング動作をより高速化できる。こうして、本発明の光スイッチング素子を用いた画像表示装置は、応答速度に優れ、動きの激しい動画の表示を可能にする。   Further, the optical switching element of the present invention has an effect of speeding up the switching operation of the optical switching element by limiting the amount of displacement of the displacement optical surface by the displacement limiting stopper. In particular, if the stopper transmitting surface that contacts the displacing optical surface is a displacement limiting stopper, the displacement of the displacing optical surface can be controlled in both the displacement direction and the return direction, and the switching operation can be further speeded up. . Thus, the image display device using the optical switching element of the present invention has an excellent response speed and enables the display of a moving image with intense movement.

更に、本発明の光スイッチング素子は、透過窓を有する遮光面により透過光又は反射光の輪郭を鮮明できる。ここで、この遮光面はストッパ透過面と併用できるため、本発明の画像表示装置は、輪郭の鮮明な投光パターンを得ることができる。そして、本発明の光スイッチング素子は、変位光学面の変位手段として電気信号が発生させる電界による静電気力を利用できるため、使用電力が抑制される。これから、本発明の画像表示装置は、低消費電力ながら高解像度の画像が得られる。   Furthermore, the optical switching element of the present invention can sharpen the outline of transmitted light or reflected light by the light shielding surface having the transmission window. Here, since this light shielding surface can be used in combination with the stopper transmission surface, the image display device of the present invention can obtain a light projection pattern with a clear outline. And since the optical switching element of this invention can utilize the electrostatic force by the electric field which an electric signal generate | occur | produces as a displacement means of a displacement optical surface, the electric power used is suppressed. Thus, the image display device of the present invention can obtain a high-resolution image with low power consumption.

本発明の画像表示装置は、上述の通り、本発明の光スイッチング素子の効果を基礎として、高コントラスト、高応答性、高解像度及び低消費電力という効果が得られる。これに加えて、画素単位を構成する光スイッチング素子に印加する電気信号の印加回数又は印加時間を調整することにより、前記画素単位の発色及び光強度を容易かつきめ細やかに調整できる効果を有する。これは、本発明の光スイッチング素子が有する高速なスイッチング動作を利用した本発明の画像表示装置特有の効果である。   As described above, the image display device of the present invention can provide the effects of high contrast, high response, high resolution, and low power consumption based on the effects of the optical switching element of the present invention. In addition to this, it is possible to easily and finely adjust the color development and the light intensity of the pixel unit by adjusting the number of times or the application time of the electric signal applied to the optical switching element constituting the pixel unit. This is an effect peculiar to the image display apparatus of the present invention using the high-speed switching operation of the optical switching element of the present invention.

以下、本発明の実施形態について図面を参照しながら説明する。図1a及び図1bは本発明に基づく透過型の光スイッチング素子1を示す断面図である。本例の光スイッチング素子1は、本発明の基本構成を有し、透過側光学面12及び変位光学面13間の光経路Aと、変位光学面13及び入射側光学面14間の光経路Bとを有する。透過側光学面12は、導電性を有し、半透過膜である多結晶シリコン膜、金膜、ITO膜等からなり、入射光に対して透明な石英ガラスからなる基板11の上面に形成している。変位光学面13は、導電性を有する多結晶シリコン膜、金膜、ITO膜等からなり、透過側光学面12から光経路Aの長さを隔てて形成している。入射側光学面14は、導電性を有する多結晶シリコン膜、金膜、ITO膜等からなり、変位光学面13から光経路Bの長さを隔てて形成している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1a and 1b are sectional views showing a transmissive optical switching element 1 according to the present invention. The optical switching element 1 of this example has the basic configuration of the present invention, and includes an optical path A between the transmission side optical surface 12 and the displacement optical surface 13 and an optical path B between the displacement optical surface 13 and the incident side optical surface 14. And have. The transmission side optical surface 12 is made of a polycrystalline silicon film, a gold film, an ITO film, etc., which is conductive and a semi-transmission film, and is formed on the upper surface of the substrate 11 made of quartz glass transparent to incident light. ing. The displacement optical surface 13 is made of a conductive polycrystalline silicon film, a gold film, an ITO film, or the like, and is formed with a distance of the optical path A from the transmission side optical surface 12. The incident-side optical surface 14 is made of a conductive polycrystalline silicon film, a gold film, an ITO film, or the like, and is formed with a distance of the optical path B from the displacement optical surface 13.

変位光学面13は、透過側光学面12、変位光学面13及び入射側光学面14を電極として印加した電気信号が発生させる静電気力によって、透過側光学面12又は入射側光学面14に向けて変位し、透過側光学面12及び変位光学面13間の光経路Aの長さと変位光学面13及び入射側光学面14間の光経路Bの長さとを相反関係で同時に増減する。具体的には、透過側光学面12及び変位光学面13間の光経路Aの長さが増加すれば、変位光学面13及び入射側光学面14間の光経路Bの長さが減少し、逆に透過側光学面12及び変位光学面13間の光経路Aの長さが減少すれば、変位光学面13及び入射側光学面14間の光経路Bの長さが増加する。   The displacement optical surface 13 is directed toward the transmission side optical surface 12 or the incident side optical surface 14 by an electrostatic force generated by an electric signal applied using the transmission side optical surface 12, the displacement optical surface 13, and the incident side optical surface 14 as electrodes. The length of the optical path A between the transmission side optical surface 12 and the displacement optical surface 13 and the length of the optical path B between the displacement optical surface 13 and the incident side optical surface 14 are simultaneously increased or decreased due to a reciprocal relationship. Specifically, if the length of the optical path A between the transmission side optical surface 12 and the displacement optical surface 13 increases, the length of the optical path B between the displacement optical surface 13 and the incident side optical surface 14 decreases, Conversely, if the length of the optical path A between the transmission side optical surface 12 and the displacement optical surface 13 decreases, the length of the optical path B between the displacement optical surface 13 and the incident side optical surface 14 increases.

透過側光学面12及び変位光学面13間の光経路Aの長さは、透過側光学面12及び変位光学面13の厚みを無視すれば、透過側ストッパ透過面121及び透過側間隙123の厚みの合計である。透過側ストッパ透過面121は、入射光に対して透明で屈折率が大きく、かつ誘電率の高い窒化シリコン膜等からなり、位置固定な透過側光学面12の上面に一体に形成しており、その膜厚は正確に設定できる。透過側間隙123は前記透過側ストッパ透過面121の上面に一体に形成する燐ガラス膜等からなる透過側スペーサ面122により、正確に設定できる。透過側間隙123は、透過側スペーサ面122を選択的にエッチングして形成する。   The length of the optical path A between the transmission side optical surface 12 and the displacement optical surface 13 is the thickness of the transmission side stopper transmission surface 121 and the transmission side gap 123 if the thickness of the transmission side optical surface 12 and the displacement optical surface 13 is ignored. Is the sum of The transmission-side stopper transmission surface 121 is made of a silicon nitride film or the like that is transparent to incident light, has a high refractive index, and has a high dielectric constant, and is integrally formed on the upper surface of the transmission-side optical surface 12 that is fixed in position. The film thickness can be set accurately. The transmission side gap 123 can be accurately set by the transmission side spacer surface 122 made of a phosphor glass film or the like integrally formed on the upper surface of the transmission side stopper transmission surface 121. The transmission side gap 123 is formed by selectively etching the transmission side spacer surface 122.

変位光学面13及び入射側光学面14の光経路Bの長さは、変位光学面13及び入射側光学面14の厚みを無視すれば、入射側ストッパ透過面141及び入射側間隙143の厚みの合計である。ここで、入射側ストッパ透過面141は、入射光に対して透明で屈折率が大きく、かつ誘電率の高い窒化シリコン膜等からなり、入射側スペーサ面142の上面に連続して堆積させて形成しており、厚みを正確に設定できる。また、入射側間隙143は、変位光学面13の上面に一体に形成する燐ガラス膜等からなる入射側スペーサ面142により、正確に設定できる。これから、入射側間隙143の厚みは、入射側スペーサ面142の厚みに等しい。入射側間隙143は、入射側スペーサ面142を選択的にエッチングして形成する。   If the thickness of the displacement optical surface 13 and the incident side optical surface 14 is ignored, the length of the optical path B of the displacement optical surface 13 and the incident side optical surface 14 is equal to the thickness of the incident side stopper transmission surface 141 and the incident side gap 143. Total. Here, the incident-side stopper transmitting surface 141 is formed of a silicon nitride film or the like that is transparent to incident light, has a high refractive index, and has a high dielectric constant, and is continuously deposited on the upper surface of the incident-side spacer surface 142. The thickness can be set accurately. Further, the incident-side gap 143 can be accurately set by the incident-side spacer surface 142 made of a phosphor glass film or the like integrally formed on the upper surface of the displacement optical surface 13. From this, the thickness of the incident side gap 143 is equal to the thickness of the incident side spacer surface 142. The incident side gap 143 is formed by selectively etching the incident side spacer surface 142.

このように、本発明の光スイッチング素子1は、透過側ストッパ透過面121、透過側間隙123(又は透過側スペーサ面122)、入射側間隙143(又は入射側スペーサ面142)及び入射側ストッパ透過面141の各厚みによって透過側光学面12及び変位光学面13間の光経路Aや変位光学面13及び入射側光学面14間の光経路Bの各長さを正確に設定できるだけでなく、変位光学面13の変位量を透過側間隙123及び入射側間隙143の範囲に制限することで、前記光経路A及び光経路Bの長さの増減を正確に規制して、光の干渉作用の変化を正確に切り替えることができる。   As described above, the optical switching element 1 of the present invention includes the transmission side stopper transmission surface 121, the transmission side gap 123 (or transmission side spacer surface 122), the incident side gap 143 (or incident side spacer surface 142), and the incident side stopper transmission. Depending on the thickness of the surface 141, not only can the length of the optical path A between the transmission side optical surface 12 and the displacement optical surface 13 and the length of the optical path B between the displacement optical surface 13 and the incident side optical surface 14 be set accurately, but also the displacement By restricting the amount of displacement of the optical surface 13 to the range of the transmission side gap 123 and the incident side gap 143, the increase and decrease of the length of the light path A and the light path B is accurately regulated, and the change of the light interference action is changed. Can be switched accurately.

本例は、投光パターンを鮮明にするため、入射側光学面14の上面に、シリコン酸化膜やシリコン窒化膜等の保護面191を介して入射光を遮断する高融点金属膜(W膜やMo膜等)からなる遮光面19を形成している。この遮光面19は、変位光学面13が変位した際、透過側ストッパ透過面121に接面する範囲以下の狭い透過窓192を開口しており、最大光強度ITmax又は最小光強度ITminが得られる範囲内に投光パターンを限定している。こうした遮光面19は、光経路A又は光経路B上に設けられればよく、配設位置は保護面191の上面に制限されない。すなわち、遮光面19は、例えば保護面191の下面、入射側光学面14の上面又は下面、透過側光学面12の上面又は下面、透過側ストッパ透過面121の上面又は下面、変位光学面13の上面又は下面のほか、基板11の上面又は下面のいずれに設けてもよい。また、遮光面19は、上記高融点金属膜以外にも、Al, Au, Cr等の金属膜や、多結晶シリコン膜等の半導体膜により形成できる。   In this example, in order to make the projection pattern clear, a high-melting point metal film (W film or the like) that blocks incident light on the upper surface of the incident-side optical surface 14 via a protective surface 191 such as a silicon oxide film or a silicon nitride film. A light shielding surface 19 made of a Mo film or the like is formed. When the displacement optical surface 13 is displaced, the light shielding surface 19 opens a narrow transmission window 192 that is equal to or smaller than the range in contact with the transmission side stopper transmission surface 121, and the maximum light intensity ITmax or the minimum light intensity ITmin is obtained. The projection pattern is limited within the range. Such a light shielding surface 19 may be provided on the light path A or the light path B, and the arrangement position is not limited to the upper surface of the protective surface 191. That is, the light shielding surface 19 is, for example, the lower surface of the protective surface 191, the upper surface or the lower surface of the incident side optical surface 14, the upper surface or the lower surface of the transmission side optical surface 12, the upper surface or the lower surface of the transmission side stopper transmission surface 121, In addition to the upper surface or the lower surface, it may be provided on either the upper surface or the lower surface of the substrate 11. In addition to the refractory metal film, the light shielding surface 19 can be formed of a metal film such as Al, Au, or Cr, or a semiconductor film such as a polycrystalline silicon film.

本例の光スイッチング素子1は、図1bに見られるように、導電性を有する透過側光学面12に正(+)の電気信号を、変位光学面13及び入射側光学面14に負(−)の電気信号を印加して、透過側光学面12に変位光学面13を引きつける静電気力と、そして入射側光学面14に変位光学面13を反発させる静電気力とを発生させ変位光学面13を透過側光学面12に向けて変位させる。そして、変位光学面13を透過側ストッパ透過面121に密着させれば、透過側光学面12及び変位光学面13間の光経路Aの長さは短くなり、逆に変位光学面13及び入射側光学面14間の光経路Bの長さは長くなることで、それぞれ光の干渉作用を変化させ、最大光強度ITmaxの透過光にできる。ここで、本発明は、透過側光学面12、変位光学面13及び入射側光学面14は平行平板構造としているので、低電圧の電気信号を印加して大きな静電気力を発生させることができる。すなわち、本例の光スイッチング素子1は、低電圧でスイッチング動作させることができ、低消費電力である。   As shown in FIG. 1B, the optical switching element 1 of this example gives a positive (+) electric signal to the transmission side optical surface 12 having conductivity, and a negative (−) to the displacement optical surface 13 and the incident side optical surface 14. ) To generate an electrostatic force that attracts the displacing optical surface 13 to the transmission side optical surface 12 and an electrostatic force that repels the displacing optical surface 13 to the incident side optical surface 14. It is displaced toward the transmission side optical surface 12. If the displacement optical surface 13 is brought into close contact with the transmission side stopper transmission surface 121, the length of the optical path A between the transmission side optical surface 12 and the displacement optical surface 13 is shortened, and conversely the displacement optical surface 13 and the incident side. By increasing the length of the optical path B between the optical surfaces 14, the interference action of the light can be changed, and the transmitted light having the maximum light intensity ITmax can be obtained. Here, in the present invention, since the transmission side optical surface 12, the displacement optical surface 13, and the incident side optical surface 14 have a parallel plate structure, a large electrostatic force can be generated by applying a low voltage electric signal. That is, the optical switching element 1 of this example can be switched at a low voltage and has low power consumption.

本例の光スイッチング素子1は、静電気力によって、変位光学面13が弾性変形限界を超えて変位しないように、透過側ストッパ透過面121により変位量を制限して、信頼性の向上を図っている。また、静電気力によって変位する変位光学面13は、透過側ストッパ透過面121に密着した状態(図1b参照)から、ほぼ平坦な元の状態に復帰するに際し、大きくリバウンドしないように、狭い入射側間隙143を隔てて形成されている入射側ストッパ透過面141に押し付けるように接面させて(図1a参照)、変位光学面13の変位を強制的に止めることにより、短時間で元の安定状態に復帰させることができる。   In the optical switching element 1 of this example, the displacement amount is limited by the transmission side stopper transmission surface 121 so that the displacement optical surface 13 is not displaced beyond the elastic deformation limit due to electrostatic force, thereby improving the reliability. Yes. Further, the displacement optical surface 13 that is displaced by electrostatic force is narrow on the incident side so that it does not rebound greatly when returning from the state of close contact with the transmission side stopper transmission surface 121 (see FIG. 1b) to the almost flat original state. The original stable state can be achieved in a short time by bringing the surface into contact with the entrance-side stopper transmitting surface 141 formed across the gap 143 (see FIG. 1a) and forcibly stopping the displacement of the displacement optical surface 13. Can be restored.

ここで、変位光学面13をより短時間で復帰させるには、上述とは逆に、導電性を有する透過側光学面12及び変位光学面13に正(+)の電気信号を、入射側光学面14に負(−)の電気信号を印加して、透過側光学面12に変位光学面13を反発させる静電気力と、そして入射側光学面14に変位光学面13を引きつける静電気力とを発生させることにより、入射側ストッパ透過面141に密着させるまで変位光学面13を強制的に変位させるとよい。この場合、変位光学面13は、入射側ストッパ透過面141に強制的に密着するため、当然にリバウンド現象を起こすことなく瞬時に安定するので、極めて高速なスイッチング動作が可能となる。   Here, in order to return the displacement optical surface 13 in a shorter time, conversely to the above, a positive (+) electrical signal is applied to the transmission side optical surface 12 and the displacement optical surface 13 having conductivity. A negative (-) electrical signal is applied to the surface 14 to generate an electrostatic force that repels the displacement optical surface 13 on the transmission side optical surface 12 and an electrostatic force that attracts the displacement optical surface 13 to the incident side optical surface 14 By doing so, the displacement optical surface 13 may be forcibly displaced until it is brought into close contact with the incident side stopper transmission surface 141. In this case, the displacement optical surface 13 is forcibly brought into close contact with the entrance-side stopper transmission surface 141, and naturally stabilizes without causing a rebound phenomenon, so that an extremely high speed switching operation is possible.

図2a及び図2bは本発明に基づく透過型の光スイッチング素子2の別例を示す断面図である。本例の光スイッチング素子2は、基板21上に透過側光学面22を、透過側光学面22上に透過側ストッパ透過面221を、透過側ストッパ透過面221上に透過側スペーサ面222を、そして透過側スペーサ面222上に下層補助変位面231及び変位光学面23を一体に形成している。透過側間隙223は、透過側スペーサ面222により形成される。そして、変位光学面23上に入射側スペーサ面242を、入射側スペーサ面242上に入射側ストッパ透過面241を形成し、この入射側ストッパ透過面241の上面に入射側光学面24を形成している。入射側間隙243は、入射側スペーサ面242により形成される。このほか、入射側ストッパ透過面241の上面に、保護面291を介して、透過窓292を開口した遮光面29を形成している点は、基本構成(図1参照)と同様である。   2a and 2b are sectional views showing other examples of the transmission type optical switching element 2 according to the present invention. The optical switching element 2 of this example has a transmission side optical surface 22 on the substrate 21, a transmission side stopper transmission surface 221 on the transmission side optical surface 22, and a transmission side spacer surface 222 on the transmission side stopper transmission surface 221. A lower auxiliary displacement surface 231 and a displacement optical surface 23 are integrally formed on the transmission side spacer surface 222. The transmission side gap 223 is formed by the transmission side spacer surface 222. Then, the incident side spacer surface 242 is formed on the displacement optical surface 23, the incident side stopper transmitting surface 241 is formed on the incident side spacer surface 242, and the incident side optical surface 24 is formed on the upper surface of the incident side stopper transmitting surface 241. ing. The incident side gap 243 is formed by the incident side spacer surface 242. In addition, the light shielding surface 29 having the transmission window 292 opened through the protective surface 291 is formed on the upper surface of the incident side stopper transmission surface 241 as in the basic configuration (see FIG. 1).

基本構成(図1参照)との相違点は、変位光学面23を電極とせず、導電性を有し、透明なITO膜等の透明導電膜からなる下層補助変位面231を変位光学面23の下面側に一体に形成し、この下層補助変位面231を電極としている点にある。本例の変位光学面23は、図2bに見られるように、透過側光学面22に正(+)の電気信号を、下層補助変位面231及び入射側光学面24に負(−)の電気信号を印加して、透過側光学面22に下層補助変位面231を引きつける静電気力と、入射側光学面24に下層補助変位面231を反発させる静電気力とを発生させ、下層補助変位面231と一体の変位光学面23を透過側光学面22に向けて変位させて、光経路A及び光経路Bの光の干渉作用を変化させる。   The difference from the basic configuration (see FIG. 1) is that the displacement optical surface 23 is not an electrode, and is conductive, and the lower auxiliary displacement surface 231 made of a transparent conductive film such as a transparent ITO film is replaced with the displacement optical surface 23. It is integrally formed on the lower surface side, and this lower auxiliary displacement surface 231 is used as an electrode. The displacement optical surface 23 of this example has a positive (+) electrical signal on the transmission side optical surface 22 and a negative (−) electrical signal on the lower auxiliary displacement surface 231 and the incident side optical surface 24, as seen in FIG. 2b. By applying a signal, an electrostatic force that attracts the lower auxiliary displacement surface 231 to the transmission side optical surface 22 and an electrostatic force that repels the lower auxiliary displacement surface 231 on the incident side optical surface 24 are generated. The integrated displacement optical surface 23 is displaced toward the transmission side optical surface 22 to change the light interference action of the light path A and the light path B.

変位光学面23を復帰させるには、図2aに見られるように、透過側光学面22及び下層補助変位面231に正(+)の電気信号を、入射側光学面24に負(−)の電気信号を印加して、透過側光学面22に下層補助変位面231を反発させる静電気力と、入射側光学面24に下層補助変位面231を引きつける静電気力とを発生させ、入射側ストッパ透過面241に密着させるまで下層補助変位面231と共に変位光学面23を強制的に変位させる。また、変位光学面23を電極とし、下層補助変位面231に窒化シリコン膜等を用いた場合、透過側光学面22及び変位光学面23間の光経路Aの長さを基本構成と同じにするべく、透過側ストッパ透過面221の厚みを前記下層補助変位面231の厚み相当分だけ薄くする。   To return the displacement optical surface 23, as seen in FIG. 2a, a positive (+) electrical signal is applied to the transmission side optical surface 22 and the lower auxiliary displacement surface 231, and a negative (-) electrical signal is applied to the incident side optical surface 24. By applying an electrical signal, an electrostatic force that repels the lower auxiliary displacement surface 231 on the transmission side optical surface 22 and an electrostatic force that attracts the lower auxiliary displacement surface 231 on the incident side optical surface 24 are generated, and the incident side stopper transmission surface The displacement optical surface 23 is forcibly displaced together with the lower auxiliary displacement surface 231 until it is brought into close contact with 241. When the displacement optical surface 23 is an electrode and a silicon nitride film or the like is used for the lower auxiliary displacement surface 231, the length of the optical path A between the transmission side optical surface 22 and the displacement optical surface 23 is the same as the basic configuration. Accordingly, the thickness of the transmission side stopper transmission surface 221 is reduced by an amount corresponding to the thickness of the lower layer auxiliary displacement surface 231.

図3a及び図3bは本発明に基づく透過型の光スイッチング素子3の別例を示す断面図である。本例の光スイッチング素子3は、基板31上に透過側光学面32を、透過側光学面32上に透過側ストッパ透過面321を、透過側ストッパ透過面321上に透過側スペーサ面322を、そして透過側スペーサ面322上に下層補助変位面331、変位光学面33及び上層補助変位面332を一体に形成している。透過側間隙323は、透過側スペーサ面322により形成される。そして、上層補助変位面332上に入射側スペーサ面342を、入射側スペーサ面342上に入射側ストッパ透過面341を形成し、この入射側ストッパ透過面341の上面に入射側光学面34を形成している。入射側間隙343は、入射側スペーサ面342により形成される。このほか、入射側ストッパ透過面341の上面に、保護面391を介して、透過窓392を開口した遮光面39を形成している点は、基本構成(図1参照)と同様である。   3a and 3b are sectional views showing another example of the transmission type optical switching element 3 according to the present invention. The optical switching element 3 of this example has a transmission side optical surface 32 on the substrate 31, a transmission side stopper transmission surface 321 on the transmission side optical surface 32, a transmission side spacer surface 322 on the transmission side stopper transmission surface 321, A lower auxiliary displacement surface 331, a displacement optical surface 33, and an upper auxiliary displacement surface 332 are integrally formed on the transmission side spacer surface 322. The transmission side gap 323 is formed by the transmission side spacer surface 322. Then, the incident side spacer surface 342 is formed on the upper auxiliary displacement surface 332, the incident side stopper transmitting surface 341 is formed on the incident side spacer surface 342, and the incident side optical surface 34 is formed on the upper surface of the incident side stopper transmitting surface 341. is doing. The incident side gap 343 is formed by the incident side spacer surface 342. In addition, the light shielding surface 39 having the transmission window 392 opened through the protective surface 391 is formed on the upper surface of the incident side stopper transmission surface 341, which is the same as the basic configuration (see FIG. 1).

基本構成(図1参照)との相違点は、変位光学面33を電極とせず、導電性を有し、透明なITO膜等の透明導電膜からなる下層補助変位面331及び上層補助変位面332を変位光学面33の下面側及び上面側それぞれに一体に形成し、この下層補助変位面331及び上層補助変位面332を電極としている点にある。本例の変位光学面33は、図3bに見られるように、透過側光学面32に正(+)の電気信号を、下層補助変位面331、上層補助変位面332及び入射側光学面34に負(−)の電気信号を印加して、透過側光学面32に下層補助変位面331を引きつける静電気力と、入射側光学面34に上層補助変位面332を反発させる静電気力とを発生させ、下層補助変位面331及び上層補助変位面332と一体の変位光学面33を透過側光学面32に向けて変位させて、光経路A及び光経路Bの光の干渉作用を変化させる。   The difference from the basic configuration (see FIG. 1) is that the displacement optical surface 33 is not used as an electrode, and is conductive and has a lower auxiliary displacement surface 331 and an upper auxiliary displacement surface 332 made of a transparent conductive film such as a transparent ITO film. Are integrally formed on the lower surface side and the upper surface side of the displacement optical surface 33, respectively, and the lower layer auxiliary displacement surface 331 and the upper layer auxiliary displacement surface 332 are used as electrodes. 3B, the displacement optical surface 33 of this example applies a positive (+) electric signal to the transmission side optical surface 32, and applies to the lower layer auxiliary displacement surface 331, the upper layer auxiliary displacement surface 332, and the incident side optical surface 34. By applying a negative (−) electric signal, an electrostatic force that attracts the lower auxiliary displacement surface 331 to the transmission side optical surface 32 and an electrostatic force that repels the upper auxiliary displacement surface 332 on the incident side optical surface 34 are generated. The displacement optical surface 33 integral with the lower auxiliary displacement surface 331 and the upper auxiliary displacement surface 332 is displaced toward the transmission side optical surface 32 to change the light interference action of the light path A and the light path B.

変位光学面33を復帰させるには、図3aに見られるように、透過側光学面32、下層補助変位面331及び上層補助変位面332に正(+)の電気信号を、入射側光学面34に負(−)の電気信号を印加して、透過側光学面32に下層補助変位面331を反発させる静電気力と、入射側光学面34に上層補助変位面332を引きつける静電気力とを発生させ、入射側ストッパ透過面341に密着させるまで下層補助変位面331及び上層補助変位面332と一体の変位光学面33を強制的に変位させる。また、変位光学面33を電極とし、下層補助変位面331及び上層補助変位面332に窒化シリコン膜等を用いた場合、透過側光学面32及び変位光学面33間の光経路Aの長さを基本構成と同じにするべく、透過側ストッパ透過面321の厚みを前記下層補助変位面331の厚み相当分だけ薄くし、変位光学面33及び入射側光学面34間の光経路Bの長さを基本構成と同じにするべく、入射側ストッパ透過面341の厚みを前記上層補助変位面332の厚み相当分だけ薄くする。こうした補助変位面の使用の有無は、変位光学面の材料によって選択的に決定するとよい。   To return the displacement optical surface 33, as shown in FIG. 3 a, positive (+) electrical signals are applied to the transmission side optical surface 32, the lower layer auxiliary displacement surface 331 and the upper layer auxiliary displacement surface 332, and the incident side optical surface 34. A negative (−) electrical signal is applied to the transmission side optical surface 32 to generate an electrostatic force that repels the lower auxiliary displacement surface 331 on the transmission side optical surface 32 and an electrostatic force that attracts the upper auxiliary displacement surface 332 to the incident side optical surface 34. Then, the displacement optical surface 33 integrated with the lower auxiliary displacement surface 331 and the upper auxiliary displacement surface 332 is forcibly displaced until it is brought into close contact with the incident side stopper transmission surface 341. Further, when the displacement optical surface 33 is used as an electrode and a silicon nitride film or the like is used for the lower auxiliary displacement surface 331 and the upper auxiliary displacement surface 332, the length of the optical path A between the transmission side optical surface 32 and the displacement optical surface 33 is set. In order to make the same as the basic configuration, the thickness of the transmission side stopper transmission surface 321 is reduced by an amount corresponding to the thickness of the lower auxiliary displacement surface 331, and the length of the optical path B between the displacement optical surface 33 and the incident side optical surface 34 is reduced. In order to make the same as the basic configuration, the thickness of the incident side stopper transmitting surface 341 is reduced by an amount corresponding to the thickness of the upper auxiliary displacement surface 332. Whether or not the auxiliary displacement surface is used may be selectively determined depending on the material of the displacement optical surface.

図4a及び図4bは本発明に基づく透過型の光スイッチング素子の別例を示す断面図である。本例の光スイッチング素子4は、基本構成(図1参照)を上下に鏡面対称の関係で単純に積層しながら構造的に一体とした構成である。下段は、基板41上に下段の透過側光学面42を、この透過側光学面42上に下段の透過側ストッパ透過面421を、この透過側ストッパ透過面421上に下段の透過側スペーサ面422を、そしてこの透過側スペーサ面422上に下段の変位光学面43を形成している。下段の透過側間隙423は、透過側スペーサ面422により形成される。そして、前記変位光学面43上に下段の入射側スペーサ面442を、この入射側スペーサ面442上に下段の入射側ストッパ透過面441を形成し、この入射側ストッパ透過面441の上面に下段の入射側光学面44を形成している。下段の入射側間隙443は、入射側スペーサ面442により形成される。   4a and 4b are sectional views showing other examples of the transmission type optical switching element according to the present invention. The optical switching element 4 of the present example is a configuration in which the basic configuration (see FIG. 1) is structurally integrated while simply being stacked vertically and mirror-symmetrically. The lower stage includes a lower transmission side optical surface 42 on the substrate 41, a lower transmission side stopper transmission surface 421 on the transmission side optical surface 42, and a lower transmission side spacer surface 422 on the transmission side stopper transmission surface 421. The lower displacement optical surface 43 is formed on the transmission side spacer surface 422. The lower transmission side gap 423 is formed by the transmission side spacer surface 422. Then, a lower incident side spacer surface 442 is formed on the displacement optical surface 43, and a lower incident side stopper transmitting surface 441 is formed on the incident side spacer surface 442, and a lower step is formed on the upper surface of the incident side stopper transmitting surface 441. An incident side optical surface 44 is formed. The lower incident side gap 443 is formed by the incident side spacer surface 442.

上段は、下段の入射側光学面44上に形成した中間面45上に構成している。この上段は、前記中間面45上に上段の透過側光学面46を、この透過側光学面46上に上段の透過側ストッパ透過面461を、この透過側ストッパ透過面461上に上段の透過側スペーサ面462を、そしてこの透過側スペーサ面462上に上段の変位光学面47を形成している。上段の透過側間隙463は、前記透過側スペーサ面462により形成される。そして、前記変位光学面47上に上段の入射側スペーサ面482を、この入射側スペーサ面482上に上段の入射側ストッパ透過面481を形成し、この入射側ストッパ透過面481の上面に上段の入射側光学面48を形成している。上段の入射側間隙483は、前記入射側スペーサ面482により形成される。このほか、前記入射側ストッパ透過面481の上面に、保護面491を介して、透過窓492を開口した遮光面49を形成している点は、基本構成(図1参照)と同様である。   The upper stage is configured on an intermediate surface 45 formed on the lower incident side optical surface 44. The upper stage includes an upper transmission side optical surface 46 on the intermediate surface 45, an upper transmission side stopper transmission surface 461 on the transmission side optical surface 46, and an upper transmission side on the transmission side stopper transmission surface 461. A spacer surface 462 and an upper displacement optical surface 47 are formed on the transmission side spacer surface 462. The upper transmission side gap 463 is formed by the transmission side spacer surface 462. Then, an upper incident side spacer surface 482 is formed on the displacement optical surface 47, an upper incident side stopper transmitting surface 481 is formed on the incident side spacer surface 482, and an upper step is formed on the upper surface of the incident side stopper transmitting surface 481. An incident side optical surface 48 is formed. The upper incident side gap 483 is formed by the incident side spacer surface 482. In addition, the light shielding surface 49 having the transmission window 492 opened is formed on the upper surface of the incident side stopper transmission surface 481 through the protective surface 491, which is the same as the basic configuration (see FIG. 1).

このように、鏡面対称の関係で上下段から構成される本例の光スイッチング素子4は、下段の透過側光学面42及び下段の変位光学面43間の光経路A、下段の変位光学面43及び下段の入射側光学面44間の光経路Bとに加え、上段の透過側光学面46及び上段の変位光学面47間の光経路Cと、上段の変位光学面47及び上段の入射側光学面48間の光経路Dとを備えており、前記光経路A、光経路B、光経路C及び光経路Dの各長さを同時に変化させることにより、それぞれの光の干渉作用を相乗させ、大きな光強度比を実現する。   As described above, the optical switching element 4 of the present example configured with the upper and lower stages in a mirror-symmetrical relationship includes the optical path A between the lower transmission side optical surface 42 and the lower displacement optical surface 43, and the lower displacement optical surface 43. And the optical path B between the upper transmission optical surface 46 and the upper displacement optical surface 47, the upper displacement optical surface 47, and the upper incident optical surface. A light path D between the surfaces 48, and by simultaneously changing the lengths of the light path A, the light path B, the light path C, and the light path D, synergistic interference of each light, A large light intensity ratio is realized.

上下段の変位光学面43及び変位光学面47は、同極性の電気信号を印加して一体に制御するとよい。例えば図4bに見られるように、下段の透過側光学面42及び上段の入射側光学面48に正(+)の電気信号を、下段の変位光学面43、下段の入射側光学面44、上段の透過側光学面46及び上段の変位光学面47に負(−)の電気信号を印加して、下段の透過側光学面42に下段の変位光学面43を引きつける静電気力と、下段の入射側光学面44に前記変位光学面43を反発させる静電気力と、上段の透過側光学面46に上段の変位光学面47を反発させる静電気力と、そして上段の入射側光学面48に前記変位光学面47を引きつける静電気力とを発生させ、下段の変位光学面43を下段の透過側光学面42に向け、同時に上段の変位光学面47を上段の入射側光学面48に向けて変位させて、光経路A、光経路B、光経路C及び光経路Dの光の干渉作用を変化させる。   The upper and lower displacement optical surfaces 43 and 47 may be integrally controlled by applying electric signals having the same polarity. For example, as seen in FIG. 4b, positive (+) electrical signals are applied to the lower transmission side optical surface 42 and the upper incident side optical surface 48, the lower displacement optical surface 43, the lower incident side optical surface 44, and the upper step. An electrostatic force that applies a negative (−) electric signal to the transmission optical surface 46 and the upper displacement optical surface 47 of the upper surface to attract the lower displacement optical surface 43 to the lower transmission optical surface 42, and the lower incident side. An electrostatic force that repels the displacement optical surface 43 on the optical surface 44, an electrostatic force that repels the upper displacement optical surface 47 on the upper transmission side optical surface 46, and the displacement optical surface on the upper incident side optical surface 48 The lower displacement optical surface 43 is directed toward the lower transmission optical surface 42, and the upper displacement optical surface 47 is simultaneously displaced toward the upper incident optical surface 48 to generate light. The light interference action of the path A, the light path B, the light path C, and the light path D is changed.

変位光学面43及び変位光学面47を復帰させるには、図4aに見られるように、下段の透過側光学面42、下段の変位光学面43、上段の変位光学面47及び上段の入射側光学面48に正(+)の電気信号を、下段の入射側透過面44及び上段の透過側光学面46に負(−)の電気信号を印加して、下段の透過側光学面42に下段の変位光学面43を反発させる静電気力と、下段の入射側光学面44に前記変位光学面43を引きつける静電気力と、上段の透過側光学面46に上段の変位光学面47を引きつける静電気力と、そして上段の入射側光学面48に前記変位光学面47を反発させる静電気力とを発生させて、下段の入射側ストッパ透過面441に密着させるまで下段の変位光学面43を強制的に変位させ、同時に上段の透過側ストッパ透過面461に密着させるまで上段の変位光学面47を強制的に変位させる。   To return the displacement optical surface 43 and the displacement optical surface 47, as shown in FIG. 4a, the lower transmission optical surface 42, the lower displacement optical surface 43, the upper displacement optical surface 47, and the upper incident optical surface. A positive (+) electrical signal is applied to the surface 48, a negative (−) electrical signal is applied to the lower incident side transmission surface 44 and the upper transmission side optical surface 46, and the lower transmission side optical surface 42 is applied to the lower transmission side optical surface 42. An electrostatic force that repels the displacement optical surface 43, an electrostatic force that attracts the displacement optical surface 43 to the lower incident side optical surface 44, an electrostatic force that attracts the upper displacement optical surface 47 to the upper transmission side optical surface 46, Then, by generating an electrostatic force that repels the displacement optical surface 47 on the upper incident side optical surface 48, the lower displacement optical surface 43 is forcibly displaced until it is in close contact with the lower incident side stopper transmitting surface 441, At the same time, the upper displacement optical surface 47 is forcibly brought into close contact with the upper transmission side stopper transmission surface 461. To displace.

図5a及び図5bは本発明に基づく透過型の光スイッチング素子5の別例を示す断面図である。本例の光スイッチング素子5は、基本構成(図1参照)を鏡面対称の関係で上下段に積層する際、下段の入射側光学面54を上段の透過側光学面として兼用しながら、構造的に一体とした構成である。下段は、基板51上に下段の透過側光学面52を、この透過側光学面52上に下段の透過側ストッパ透過面521を、この透過側ストッパ透過面521上に下段の透過側スペーサ面522を、そしてこの透過側スペーサ面522上に下段の変位光学面53を形成している。下段の透過側間隙523は、透過側スペーサ面522により形成される。そして、前記変位光学面53上に下段の入射側スペーサ面542を、この入射側スペーサ面542上に下段の入射側ストッパ透過面541を形成し、この入射側ストッパ透過面541の上面に下段の入射側光学面54を形成している。下段の入射側間隙543は、入射側スペーサ面542により形成される。   5a and 5b are sectional views showing another example of the transmission type optical switching element 5 according to the present invention. The optical switching element 5 of this example has a structure in which the lower incident side optical surface 54 is also used as the upper transmission side optical surface when the basic configuration (see FIG. 1) is laminated in the upper and lower stages with mirror symmetry. It is the structure integrated with. The lower stage includes a lower transmission side optical surface 52 on the substrate 51, a lower transmission side stopper transmission surface 521 on the transmission side optical surface 52, and a lower transmission side spacer surface 522 on the transmission side stopper transmission surface 521. A lower displacement optical surface 53 is formed on the transmission side spacer surface 522. The lower transmission side gap 523 is formed by the transmission side spacer surface 522. Then, a lower incident side spacer surface 542 is formed on the displacement optical surface 53, and a lower incident side stopper transmitting surface 541 is formed on the incident side spacer surface 542, and a lower step is formed on the upper surface of the incident side stopper transmitting surface 541. An incident-side optical surface 54 is formed. The lower incident side gap 543 is formed by the incident side spacer surface 542.

上段は、下段の入射側光学面54上に上段の透過側ストッパ透過面561を、この透過側ストッパ透過面561上に上段の透過側スペーサ面562を、そしてこの透過側スペーサ面562上に上段の変位光学面57を形成している。上段の透過側間隙563は、前記透過側スペーサ面562により形成される。そして、前記変位光学面57上に上段の入射側スペーサ面582を、この入射側スペーサ面582上に上段の入射側ストッパ透過面581を形成し、この入射側ストッパ透過面581の上面に上段の入射側光学面58を形成している。上段の入射側間隙583は、前記入射側スペーサ面582により形成される。このほか、前記入射側ストッパ透過面581の上面に、保護面591を介して、透過窓592を開口した遮光面59を形成している点は、基本構成(図1参照)と同様である。   The upper stage includes an upper transmission side stopper transmission surface 561 on the lower incident side optical surface 54, an upper transmission side spacer surface 562 on the transmission side stopper transmission surface 561, and an upper stage on the transmission side spacer surface 562. The displacement optical surface 57 is formed. The upper transmission side gap 563 is formed by the transmission side spacer surface 562. Then, an upper incident side spacer surface 582 is formed on the displacement optical surface 57, an upper incident side stopper transmitting surface 581 is formed on the incident side spacer surface 582, and an upper step is formed on the upper surface of the incident side stopper transmitting surface 581. An incident side optical surface 58 is formed. The upper incident side gap 583 is formed by the incident side spacer surface 582. In addition, the light shielding surface 59 having the transmission window 592 opened is formed on the upper surface of the incident side stopper transmission surface 581 through the protective surface 591 as in the basic configuration (see FIG. 1).

このように、下段の入射側光学面54を上下段で共用しながら鏡面対称の関係で構成される本例の光スイッチング素子5は、下段の透過側光学面52及び下段の変位光学面53間の光経路Aと、下段の変位光学面53及び下段の入射側光学面54間の光経路Bとに加え、下段の透過側光学面52及び上段の変位光学面57間の光経路Cと、上段の変位光学面57及び上段の入射側光学面58間の光経路Dとを備えており、前記光経路A、光経路B、光経路C及び光経路Dの各長さを同時に変化させることにより、それぞれの光の干渉作用を相乗させ、大きな光強度比を実現する。   As described above, the optical switching element 5 of the present example configured in a mirror-symmetrical relationship while sharing the lower incident side optical surface 54 in the upper and lower stages is provided between the lower transmission side optical surface 52 and the lower displacement optical surface 53. And an optical path C between the lower transmission optical surface 52 and the upper displacement optical surface 57, and an optical path C between the lower transmission optical surface 53 and the upper displacement optical surface 57. And an optical path D between the upper displacement optical surface 57 and the upper incident-side optical surface 58, and the lengths of the optical path A, the optical path B, the optical path C, and the optical path D are changed simultaneously. By synthesizing the interference action of each light, a large light intensity ratio is realized.

上下段の変位光学面53及び変位光学面57は、同極性の電気信号を印加して一体に制御するとよい。例えば図5bに見られるように、下段の透過側光学面52及び上段の入射側光学面58に正(+)の電気信号を、下段の変位光学面53、下段の入射側光学面54及び上段の変位光学面57に負(−)の電気信号を印加して、下段の透過側光学面52に下段の変位光学面53を引きつける静電気力と、下段の入射側光学面54に前記変位光学面53を反発させる静電気力と、下段の入射側光学面54に上段の変位光学面57を反発させる静電気力と、そして上段の入射側光学面58に前記変位光学面57を引きつける静電気力とを発生させ、下段の変位光学面53を下段の透過側光学面52に向け、同時に上段の変位光学面57を上段の入射側光学面58に向けて変位させて、光経路A、光経路B、光経路C及び光経路Dの光の干渉作用を変化させる。   The upper and lower displacement optical surfaces 53 and 57 may be controlled integrally by applying electric signals of the same polarity. For example, as seen in FIG. 5b, a positive (+) electrical signal is applied to the lower transmission side optical surface 52 and the upper incident side optical surface 58, the lower displacement optical surface 53, the lower incident side optical surface 54, and the upper step. An electrostatic force that applies a negative (−) electrical signal to the first displacement optical surface 57 to attract the lower displacement optical surface 53 to the lower transmission optical surface 52, and the displacement optical surface to the lower incident optical surface 54. An electrostatic force that repels 53, an electrostatic force that repels the upper displacement optical surface 57 on the lower incident side optical surface 54, and an electrostatic force that attracts the displacement optical surface 57 to the upper incident side optical surface 58 are generated. The lower displacement optical surface 53 is directed toward the lower transmission optical surface 52, and the upper displacement optical surface 57 is simultaneously displaced toward the upper incident optical surface 58, so that the optical path A, the optical path B, the light The light interference action of the path C and the optical path D is changed.

変位光学面53及び変位光学面57を復帰させるには、図5aに見られるように、下段の透過側光学面52、下段の変位光学面53、上段の変位光学面57及び上段の入射側光学面58に正(+)の電気信号を、下段の入射側光学面54に負(−)の電気信号を印加して、下段の透過側光学面52に下段の変位光学面53を反発させる静電気力と、下段の入射側光学面54に前記変位光学面53を引きつける静電気力と、下段の入射側光学面54に上段の変位光学面57を引きつける静電気力と、そして上段の入射側光学面58に前記変位光学面57を反発させる静電気力とを発生させて、下段の入射側ストッパ透過面541に密着させるまで下段の変位光学面53を強制的に変位させ、同時に上段の透過側ストッパ透過面561に密着させるまで上段の変位光学面57を強制的に変位させる。   To return the displacement optical surface 53 and the displacement optical surface 57, as shown in FIG. 5a, the lower transmission optical surface 52, the lower displacement optical surface 53, the upper displacement optical surface 57, and the upper incident optical surface. Static electricity that applies a positive (+) electrical signal to the surface 58 and a negative (−) electrical signal to the lower incident side optical surface 54 to repel the lower displacement optical surface 53 to the lower transmission side optical surface 52 Force, electrostatic force attracting the displacement optical surface 53 to the lower incident side optical surface 54, electrostatic force attracting the upper displacement optical surface 57 to the lower incident side optical surface 54, and upper incident side optical surface 58 Generating an electrostatic force that repels the displacement optical surface 57 and forcibly displacing the lower displacement optical surface 53 until it is brought into close contact with the lower incident side stopper transmission surface 541, and at the same time, the upper transmission side stopper transmission surface. The upper displacement optical surface 57 is forcibly displaced until it is brought into close contact with 561.

図6a及び図6bは本発明に基づく透過型の光スイッチング素子6の別例を示す断面図である。本例の光スイッチング素子6は、基本構成(図1参照)を鏡面対称の関係で上下段に積層する際、下段の入射側光学面64を上段の透過側光学面として兼用し、更に上段の入射側光学面を省略しながら、構造的に一体とした構成である。下段は、基板61上に下段の透過側光学面62を、この透過側光学面62上に下段の透過側ストッパ透過面621を、この透過側ストッパ透過面621上に下段の透過側スペーサ面622を、そしてこの透過側スペーサ面622上に下段の変位光学面63を形成している。下段の透過側間隙623は、透過側スペーサ面622により形成される。そして、前記変位光学面63上に下段の入射側スペーサ面642を、この入射側スペーサ面642上に下段の入射側ストッパ透過面641を形成し、この入射側ストッパ透過面641の上面に下段の入射側光学面64を形成している。下段の入射側間隙643は、入射側スペーサ面642により形成される。   6a and 6b are sectional views showing other examples of the transmission type optical switching element 6 according to the present invention. In the optical switching element 6 of this example, when the basic configuration (see FIG. 1) is stacked in the upper and lower stages in a mirror-symmetrical relationship, the lower incident side optical surface 64 is also used as the upper transmission side optical surface. It is a structure that is structurally integrated while omitting the incident side optical surface. The lower stage includes a lower transmission side optical surface 62 on the substrate 61, a lower transmission side stopper transmission surface 621 on the transmission side optical surface 62, and a lower transmission side spacer surface 622 on the transmission side stopper transmission surface 621. The lower displacement optical surface 63 is formed on the transmission side spacer surface 622. The lower transmission side gap 623 is formed by the transmission side spacer surface 622. Then, a lower incident side spacer surface 642 is formed on the displacement optical surface 63, and a lower incident side stopper transmitting surface 641 is formed on the incident side spacer surface 642, and a lower step on the upper surface of the incident side stopper transmitting surface 641. An incident side optical surface 64 is formed. The lower incident side gap 643 is formed by the incident side spacer surface 642.

上段は、下段の入射側光学面64上に上段の透過側ストッパ透過面661を、この透過側ストッパ透過面661上に上段の透過側スペーサ面662を、そしてこの透過側スペーサ面662上に上段の変位光学面67を形成している。上段の透過側間隙663は、前記透過側スペーサ面662により形成される。そして、前記変位光学面67上に上段の入射側スペーサ面682を、この入射側スペーサ面682上に上段の入射側ストッパ透過面を兼ねた保護面691を形成し、前記保護面691を介して、透過窓692を開口した遮光面69を形成している。上段の入射側間隙683は前記入射側スペーサ面682により形成される。   The upper stage includes an upper transmission side stopper transmission surface 661 on the lower incident side optical surface 64, an upper transmission side spacer surface 662 on the transmission side stopper transmission surface 661, and an upper stage on the transmission side spacer surface 662. The displacement optical surface 67 is formed. The upper transmission side gap 663 is formed by the transmission side spacer surface 662. Then, an upper incident side spacer surface 682 is formed on the displacement optical surface 67, and a protective surface 691 that also serves as an upper incident side stopper transmission surface is formed on the incident side spacer surface 682, and the protective surface 691 is interposed therebetween. In addition, a light shielding surface 69 having a transmission window 692 opened is formed. The upper incident side gap 683 is formed by the incident side spacer surface 682.

このように、下段で入射側光学面64を上下段で共用し、上段の入射側光学面を省略しながら鏡面対称の関係で構成される本例の光スイッチング素子6は、下段の透過側光学面62及び下段の変位光学面63間の光経路Aと、下段の変位光学面63及び下段の入射側光学面64間の光経路Bとに加え、下段の入射側光学面64及び上段の変位光学面67間の光経路Cを備えており、前記光経路A、光経路B及び光経路Cの各長さを同時に変化させることにより、それぞれの光の干渉作用を相乗させ、大きな光強度比を実現する。この光スイッチング素子6は、光経路Dがないため、例えば図5に見られる光スイッチング素子5に比べて光強度比が若干低いが、下段で入射側光学面64を上下段で共用し、上段の入射側光学面を省略しているので、逆に透過率は高くなっている。   In this way, the optical switching element 6 of the present example, which is configured in a mirror-symmetrical relationship with the lower-stage incident-side optical surface 64 shared by the upper and lower stages and omitting the upper-stage incident-side optical surface, has the lower-stage transmission-side optical In addition to the optical path A between the surface 62 and the lower displacement optical surface 63 and the optical path B between the lower displacement optical surface 63 and the lower incident optical surface 64, the lower incident optical surface 64 and the upper displacement An optical path C between the optical surfaces 67 is provided, and by changing the lengths of the optical path A, the optical path B, and the optical path C at the same time, the interference action of each light is synergized, and a large light intensity ratio To realize. Since this optical switching element 6 does not have the optical path D, the light intensity ratio is slightly lower than that of the optical switching element 5 shown in FIG. 5, for example. Since the incident side optical surface is omitted, the transmittance is high.

上下段の変位光学面63及び変位光学面67は、同極性の電気信号を印加して一体に制御するとよい。例えば図6bに見られるように、下段の透過側光学面62に正(+)の電気信号を、下段の変位光学面63、下段の入射側光学面64及び上段の変位光学面67に負(−)の電気信号を印加して、下段の透過側光学面62に下段の変位光学面63を引きつける静電気力と、下段の入射側光学面64に前記変位光学面63を反発させる静電気力と、下段の入射側光学面64に上段の変位光学面67を反発させる静電気力とを発生させ、下段の変位光学面63を下段の透過側光学面62に向け、同時に上段の変位光学面67を保護面691に向けて変位させて、光経路A、光経路B及び光経路Cの光の干渉作用を変化させる。   The upper and lower displacing optical surfaces 63 and the displacing optical surface 67 may be controlled integrally by applying electric signals of the same polarity. For example, as can be seen in FIG. 6b, a positive (+) electrical signal is applied to the lower transmission optical surface 62 and negative (to the lower displacement optical surface 63, the lower incident optical surface 64, and the upper displacement optical surface 67. An electrostatic signal that applies the electrical signal of −) to attract the lower displacement optical surface 63 to the lower transmission side optical surface 62, and an electrostatic force that repels the displacement optical surface 63 to the lower incidence side optical surface 64; An electrostatic force that repels the upper displacement optical surface 67 is generated on the lower incident side optical surface 64, and the lower displacement optical surface 63 is directed to the lower transmission optical surface 62, and at the same time, the upper displacement optical surface 67 is protected. Displacement toward the surface 691 changes the light interference action of the light path A, light path B, and light path C.

変位光学面63及び変位光学面67を復帰させるには、図6aに見られるように、下段の透過側光学面62、下段の変位光学面63及び上段の変位光学面67に正(+)の電気信号を、下段の入射側光学面64に負(−)の電気信号を印加して、下段の透過側光学面62に下段の変位光学面63を反発させる静電気力と、下段の入射側光学面64に前記変位光学面63を引きつける静電気力と、下段の入射側光学面64に上段の変位光学面67を引きつける静電気力とを発生させて、下段の入射側ストッパ透過面641に密着させるまで下段の変位光学面63を強制的に変位させ、同時に上段の透過側ストッパ透過面661に密着させるまで上段の変位光学面67を強制的に変位させる。   To return the displacement optical surface 63 and the displacement optical surface 67, as shown in FIG. 6a, the lower transmission optical surface 62, the lower displacement optical surface 63, and the upper displacement optical surface 67 are positive (+). An electrostatic force that applies a negative (−) electrical signal to the lower incident side optical surface 64 to repel the lower displacement optical surface 63 on the lower transmission side optical surface 62, and the lower incident side optical surface Until an electrostatic force that attracts the displacement optical surface 63 to the surface 64 and an electrostatic force that attracts the upper displacement optical surface 67 to the lower incident side optical surface 64 are generated and brought into close contact with the lower incident side stopper transmitting surface 641 The lower displacement optical surface 63 is forcibly displaced, and at the same time, the upper displacement optical surface 67 is forcibly displaced until it is brought into close contact with the upper transmission side stopper transmission surface 661.

次に、本発明による透過型の光スイッチング素子の動作原理について、基本構成を示す図1及び図2を参照しながら説明する。本発明は、透過側光学面12及び変位光学面13間の光経路Aの長さと、変位光学面13及び入射側光学面14間の光経路Bの長さとをそれぞれ変化させることにより、いわゆる「ファブリー・ペロー型干渉フィルタ」に見られる光の干渉作用を変化させる。ここで、本発明の光スイッチング素子1を前記ファブリー・ペロー型干渉フィルタとして考えた場合、入射光が入射側光学面14に直交して入射するとすれば、透過光の透過率は近似的に
IT/I0=[1−K/(1−R)]2{1+[4R/(1−R)2]sin2(2πh/λ)}-1
で与えられる。
Next, the operation principle of the transmission type optical switching element according to the present invention will be described with reference to FIGS. 1 and 2 showing the basic configuration. In the present invention, the length of the optical path A between the transmission side optical surface 12 and the displacement optical surface 13 and the length of the optical path B between the displacement optical surface 13 and the incident side optical surface 14 are changed, respectively. The interference effect of light seen in the “Fabry-Perot interference filter” is changed. Here, when the optical switching element 1 of the present invention is considered as the Fabry-Perot interference filter, if the incident light is incident orthogonally to the incident side optical surface 14, the transmittance of the transmitted light is approximately
IT / I 0 = [1-K / (1-R)] 2 {1+ [4R / (1-R) 2 ] sin 2 (2πh / λ)} −1
Given in.

ここで、I0:入射光強度、IT:透過光強度、K:吸収係数、R:反射係数、T:透過係数、h:2つの光学面の実効的な光経路の長さ(h=nt、nは2つの光学面間の実効的な屈折率、tは2つの光学面の間隔)、λ:入射光の波長であり、K+R+T=1である。上記式の右辺の[1−K/(1−R)]2項は入射光強度に対する減衰率を示し、透過光の最大光強度をITmax、入射光強度がI0とすれば、(ITmax/I0)となる。また、上記式右辺の{1+[4R/(1−R)2]sin2(2πh/λ)}-1項は、ITmaxに対する透過光の光強度の比IT/ITmaxを表わす。 Here, I 0 : incident light intensity, IT: transmitted light intensity, K: absorption coefficient, R: reflection coefficient, T: transmission coefficient, h: effective optical path length of two optical surfaces (h = nt) , N is the effective refractive index between the two optical surfaces, t is the distance between the two optical surfaces), λ: the wavelength of the incident light, and K + R + T = 1. The [1-K / (1-R)] 2 term on the right side of the above equation indicates the attenuation rate with respect to the incident light intensity. If the maximum light intensity of the transmitted light is ITmax and the incident light intensity is I 0 , (ITmax / I 0 ). Also, the {1+ [4R / (1-R) 2 ] sin 2 (2πh / λ)} −1 term on the right side of the above expression represents the ratio IT / ITmax of the light intensity of transmitted light to ITmax.

一般に、透過光の最大光強度ITmaxは実効的な光経路の長さhがm(λ/2)の場合の光強度を、また透過光の最小光強度ITminは実効的な光経路の長さhがn(λ/2)+λ/4の場合の光強度を表す。ここで、前記m及びnはそれぞれ整数である。例えば、実効的な光経路の長さhがλから(5/4)λへとλ/4だけ変化すると、IT/ITmaxは1.0から単調に減少して間隔hが(5/4)λの時に最小値となる。透過光の光強度の変化はRに依存するため、明確なON状態及びOFF状態の切り替えを図るには、前記Rを大きくすればよいことが分かる。これに対し、両光学面に対して印加する電気信号により、透過光の光強度を連続的(アナログ的)に変化させたい、すなわち緩やかなIT/ITmaxの変化を得たい場合にはRを小さくすればよい。   In general, the maximum light intensity ITmax of transmitted light is the light intensity when the effective light path length h is m (λ / 2), and the minimum light intensity ITmin of transmitted light is the effective light path length. It represents the light intensity when h is n (λ / 2) + λ / 4. Here, m and n are integers. For example, if the effective optical path length h changes from λ to (5/4) λ by λ / 4, IT / ITmax decreases monotonically from 1.0 and the interval h is (5/4) λ. Sometimes the minimum value. Since the change in the light intensity of the transmitted light depends on R, it can be seen that R can be increased in order to clearly switch between the ON state and the OFF state. On the other hand, when it is desired to change the light intensity of the transmitted light continuously (analog) by the electrical signals applied to both optical surfaces, that is, to obtain a gradual change in IT / ITmax, R is decreased. do it.

透過側光学面12及び変位光学面13間の光経路Aでは、透過光の最小光強度ITminは、実効的な光経路Aの長さh=n11+n0g=(5/4)λの場合(図1aの場合)に得られる。ここで、n1及びt1は透過側ストッパ透過面121の屈折率及び膜厚を、そしてn0及びgは透過側間隙123及び入射側間隙143の屈折率(空気の場合、n0=1.0)及び間隔である。これに対して、透過光の最大光強度ITmaxは、実効的な光経路Aの長さh=n11=λの場合(図1bの場合)に得られる。 In the optical path A between the transmission side optical surface 12 and the displacement optical surface 13, the minimum light intensity ITmin of the transmitted light is the effective length of the optical path A h = n 1 t 1 + n 0 g = (5/4) Obtained in the case of λ (FIG. 1a). Here, n 1 and t 1 are the refractive index and film thickness of the transmission side stopper transmission surface 121, and n 0 and g are the refractive indexes of the transmission side gap 123 and the incident side gap 143 (in the case of air, n 0 = 1.0). ) And intervals. On the other hand, the maximum light intensity ITmax of the transmitted light is obtained when the effective length of the optical path A is h = n 1 t 1 = λ (in the case of FIG. 1b).

同様に、変位光学面13及び入射側光学面14間の光経路Bでは、実効的な光経路Bの長さh=n=(5/4)λの場合(図1aの場合)に透過光の最小光強度ITminが得られる。ここで、n及び tは入射側ストッパ透過面141の屈折率及び膜厚である。これに対して、透過光の最大光強度ITmaxは、実効的な光経路Bの長さh=n+ng=3λ/2の場合(図1bの場合)に得られる。ここで、n0及び gは透過側間隙123及び入射側間隙143の屈折率(空気の場合、n0=1.0)及び間隔である。これから、透過側間隙123及び入射側間隙143は、g=λ/4(n0=1.0の場合)を満足するように、精密に設定できればよいことが分かる。 Similarly, in the optical path B between the displacement optical surface 13 and the incident-side optical surface 14, the effective optical path B has a length h = n 2 t 2 = (5/4) λ (in the case of FIG. 1a). In addition, the minimum light intensity ITmin of the transmitted light is obtained. Here, n 2 and t 2 are the refractive index and film thickness of the incident side stopper transmitting surface 141. On the other hand, the maximum light intensity ITmax of the transmitted light is obtained when the length of the effective optical path B is h = n 2 t 2 + n 0 g = 3λ / 2 (in the case of FIG. 1b). Here, n 0 and g are the refractive index (in the case of air, n 0 = 1.0) and interval of the transmission side gap 123 and the incident side gap 143. From this, it can be seen that the transmission side gap 123 and the incident side gap 143 may be set precisely so as to satisfy g = λ / 4 (when n 0 = 1.0).

図2に見られる光スイッチング素子2では、次のようになる。この光スイッチング素子2は、基本構成(図1参照)と異なり、変位光学面23及び下層補助変位面231が一体に変位する。したがって、透過光の最小光強度ITminは、実効的な光経路Aの長さh=n+n+n0g=(5/4)λの場合(図2aの場合)に得られる。ここで、n及びtは透過側ストッパ透過面221の屈折率及び膜厚を、n及びtは下層補助変位面231の屈折率及び膜厚を、そしてn0及びgは透過側間隙223及び入射側間隙243の屈折率(空気の場合、n0=1.0)及び間隔である。 In the optical switching element 2 seen in FIG. In this optical switching element 2, unlike the basic configuration (see FIG. 1), the displacement optical surface 23 and the lower layer auxiliary displacement surface 231 are integrally displaced. Therefore, the minimum light intensity ITmin of the transmitted light is obtained when the effective optical path A length h = n 3 t 3 + n 4 t 4 + n 0 g = (5/4) λ (in the case of FIG. 2a). It is done. Here, n 3 and t 3 are the refractive index and film thickness of the transmission side stopper transmission surface 221, n 4 and t 4 are the refractive index and film thickness of the lower auxiliary displacement surface 231, and n 0 and g are transmission side. The refractive index of the gap 223 and the incident side gap 243 (in the case of air, n 0 = 1.0) and the interval.

これに対し、透過光の最大光強度ITmaxは、実効的な光経路Aの長さh=n+n=λの場合(図2bの場合)に得られる。これから、透過側間隙223及び入射側間隙243は、g=λ/4(n0=1.0の場合)を満足するように、精密に設定できればよいことが分かる。光経路Bについては上述と同様であるため、省略する。ここで、基本構成(図1参照)の透過側ストッパ透過面121と、図2に見られる透過側ストッパ透過面221及び下層補助変位面231を同じ材料で形成すれば、t1=t+tとなる。 On the other hand, the maximum light intensity ITmax of the transmitted light is obtained when the length of the effective optical path A is h = n 3 t 3 + n 4 t 4 = λ (in the case of FIG. 2b). From this, it can be seen that the transmission-side gap 223 and the incident-side gap 243 need only be set precisely so as to satisfy g = λ / 4 (when n 0 = 1.0). Since the optical path B is the same as described above, the description is omitted. Here, if the transmission side stopper transmission surface 121 of the basic configuration (see FIG. 1), the transmission side stopper transmission surface 221 and the lower layer auxiliary displacement surface 231 shown in FIG. 2 are formed of the same material, t 1 = t 3 + a t 4.

図3に見られる光スイッチング素子3では、次のようになる。光経路Aについては、図2を用いて説明した上述と同じである。これに対し、光経路Bに関しては、更に上層補助変位面332を形成したところから、図1を用いて説明した上述と異なる。光スイッチング素子3における光経路Bでは、透過光の最小光強度ITminは、実効的な光経路Bの長さh=n+n=(5/4)λの場合(図3aの場合)に得られる。ここで、n及びtは入射側ストッパ透過面341の屈折率及び膜厚を、n及びtは上層補助変位面332の屈折率及び膜厚である。 In the optical switching element 3 seen in FIG. The optical path A is the same as described above with reference to FIG. On the other hand, the optical path B is different from that described above with reference to FIG. 1 because the upper auxiliary displacement surface 332 is further formed. In the optical path B in the optical switching element 3, the minimum light intensity ITmin of the transmitted light is an effective optical path B length h = n 5 t 5 + n 6 t 6 = (5/4) λ (FIG. 3a). In the case of). Here, n 5 and t 5 are the refractive index and film thickness of the incident side stopper transmitting surface 341, and n 6 and t 6 are the refractive index and film thickness of the upper auxiliary displacement surface 332.

これに対して、透過光の最大光強度ITmaxは、実効的な光経路Bの長さh=n+n+ng=3λ/2の場合(図3bの場合)に得られる。これから、透過側間隙323及び入射側間隙343は、g=λ/4(n0=1.0の場合)を満足するように、精密に設定できればよいことが分かる。ここで、基本構成(図1参照)の透過側ストッパ透過面121と、図3に見られる入射側ストッパ透過面341及び上層補助変位面332を同じ材料で形成すれば、t=t+tとなる。 On the other hand, the maximum light intensity ITmax of the transmitted light is obtained when the length of the effective light path B is h = n 5 t 5 + n 6 t 6 + n 0 g = 3λ / 2 (in the case of FIG. 3b). It is done. From this, it can be seen that the transmission side gap 323 and the incident side gap 343 need only be set precisely so as to satisfy g = λ / 4 (when n 0 = 1.0). Here, if the transmission side stopper transmission surface 121 of the basic configuration (see FIG. 1), the incident side stopper transmission surface 341 and the upper auxiliary displacement surface 332 shown in FIG. 3 are formed of the same material, t 2 = t 5 + the t 6.

図1に見られる光スイッチング素子1では、光経路Aの長さhは、入射光の波長λ=1.3〜1.5μmに対してh=n11+n0g≒(5/4)λ≒1.6μmとなる。透過側間隙123及び入射側間隙143がいずれも空気(n0=1.0)で満たされている場合、g=λ/4であり、n11=λとなる。また、窒化シリコン膜からなる透過側ストッパ透過面121は、n1=2.0となるので、t1=λ/2.0≒0.7μmとなる。本発明の光スイッチング素子1は、透過側スペーサ面122を燐ガラス膜等で形成することにより、透過側スペーサ面122の膜厚をλ/4≒0.4μmとしても、ウエットエッチング工程により精度高く加工できる。この加工精度の高さは、その他の例(図2〜図6参照)でも同様である。 In the optical switching element 1 shown in FIG. 1, the length h of the optical path A is h = n 1 t 1 + n 0 g≈ (5/4) λ≈for the wavelength λ = 1.3 to 1.5 μm of the incident light. 1.6 μm. When both the transmission side gap 123 and the incident side gap 143 are filled with air (n 0 = 1.0), g = λ / 4 and n 1 t 1 = λ. Further, since the transmission side stopper transmission surface 121 made of a silicon nitride film has n 1 = 2.0, t 1 = λ / 2.0≈0.7 μm. In the optical switching element 1 of the present invention, the transmission side spacer surface 122 is formed of a phosphor glass film or the like, so that the film thickness of the transmission side spacer surface 122 is λ / 4≈0.4 μm. it can. This high processing accuracy is the same in other examples (see FIGS. 2 to 6).

本発明の光スイッチング素子は、光の干渉作用の変化を妨げない範囲で、他の膜を形成することもできる。例えば、光スイッチング素子の表面に対して、入射光の反射を防止する反射防止膜や、外部から異物が侵入することを防止する保護面を形成してもよい。この場合、透過窓を開口した遮光面を、前記反射防止膜又は保護面の上面又は下面に形成することもできる。また、上記説明では入射側光学面側から入射光を入力する場合を例示したが、光経路Aのほかには方向性がないため、例えば入射光を透過側光学面に照射しても、上述同様のスイッチング動作を実現できる。更に、上述までは透過型の光スイッチング素子についてであったが、本発明に基づく反射型の光スイッチング素子についても、上述同様のスイッチング動作を実現できる。   In the optical switching element of the present invention, other films can be formed as long as the change of the interference action of light is not hindered. For example, an antireflection film that prevents reflection of incident light or a protective surface that prevents foreign matter from entering from the outside may be formed on the surface of the optical switching element. In this case, a light-shielding surface having a transmissive window opened may be formed on the upper surface or the lower surface of the antireflection film or the protective surface. Moreover, although the case where incident light is input from the incident side optical surface side is illustrated in the above description, since there is no directionality other than the optical path A, for example, even if incident light is irradiated onto the transmission side optical surface, A similar switching operation can be realized. Further, although the above description has been for the transmission type optical switching element, the same switching operation as described above can be realized for the reflection type optical switching element according to the present invention.

本発明の光スイッチング素子は、上述までの説明から分かるように、透過又は非透過を切り替える光の干渉作用を決定する透過側間隙及び入射側間隙を正確に設定できることから、可視光を挟んで赤外光から紫外光まで、特に短波長光を入射光とすることができる点に特徴がある。そこで、具体的にフォトリソグラフィにも用いられているg線(λ=436nm)を入射光として、基本構成(図1参照)である透過型の光スイッチング素子1における透過又は非透過の切り替えを説明する。   As can be seen from the above description, the optical switching element of the present invention can accurately set the transmission side gap and the incident side gap that determine the interference action of light that switches between transmission and non-transmission. From the outside light to the ultraviolet light, particularly short wavelength light can be used as incident light. Therefore, switching between transmission and non-transmission in the transmissive optical switching element 1 having the basic configuration (see FIG. 1) is described using g-line (λ = 436 nm), which is also used in photolithography, as incident light. To do.

g線(λ=436nm)を入射光とする光スイッチング素子1の構成は。次のとおりである。基板11は約0.5mm厚の石英ガラス板からなり、導電性を有する20nm厚の多結晶シリコン膜で透過側光学面12を前記基板11の表面に形成する。次に、n11=λの要件を満足するように、前記透過側光学面12の上面に、t1=213nmの窒化シリコン膜 (λ≒0.4μmでの屈折率n1=2.05) を透過側ストッパ透過面121として形成する。この透過側ストッパ透過面121の上面に、燐ガラス膜で透過側スペーサ面122を形成する。この透過側スペーサ面122の厚みが、透過側間隙123に相当する。 What is the configuration of the optical switching element 1 that uses g-line (λ = 436 nm) as incident light? It is as follows. The substrate 11 is made of a quartz glass plate having a thickness of about 0.5 mm, and a transmission side optical surface 12 is formed on the surface of the substrate 11 with a conductive 20 nm thick polycrystalline silicon film. Next, a silicon nitride film of t 1 = 213 nm (refractive index n 1 = 2.05 at λ≈0.4 μm) is formed on the upper surface of the transmission side optical surface 12 so as to satisfy the requirement of n 1 t 1 = λ. The transmission side stopper is formed as a transmission surface 121. On the upper surface of the transmission side stopper transmission surface 121, a transmission side spacer surface 122 is formed of a phosphor glass film. The thickness of the transmission side spacer surface 122 corresponds to the transmission side gap 123.

変位光学面13は、導電性を有する20nm厚の多結晶シリコン膜からなり、上記透過側スペーサ面122の上面に形成している。そして、前記変位光学面13の上面に燐ガラス膜からなる入射側スペーサ面142を形成し、この入射側スペーサ面142の上面にシリコン窒化膜からなる入射側ストッパ透過面141を形成する。ここで、入射側ストッパ透過面141の厚みは、n=(5/4)λを満足するように、265nm厚とする。入射側光学面14は、入射側ストッパ透過面141の上面に導電性を有する20nm厚の多結晶シリコン膜により形成する。透過側間隙123及び入射側間隙143は、透過側スペーサ面122及び入射側スペーサ面142をそれぞれ選択的にエッチングすることにより形成する。この場合、透過側間隙123及び入射側間隙143は、その合計がλ/4=109nmとなるように設定している。 The displacement optical surface 13 is made of a conductive polycrystalline silicon film having a thickness of 20 nm, and is formed on the upper surface of the transmission side spacer surface 122. Then, an incident side spacer surface 142 made of a phosphor glass film is formed on the upper surface of the displacement optical surface 13, and an incident side stopper transmitting surface 141 made of a silicon nitride film is formed on the upper surface of the incident side spacer surface 142. Here, the thickness of the incident side stopper transmitting surface 141 is set to 265 nm so as to satisfy n 2 t 2 = (5/4) λ. The incident side optical surface 14 is formed on the upper surface of the incident side stopper transmitting surface 141 by a 20 nm thick polycrystalline silicon film having conductivity. The transmission side gap 123 and the incident side gap 143 are formed by selectively etching the transmission side spacer surface 122 and the incident side spacer surface 142, respectively. In this case, the transmission side gap 123 and the incident side gap 143 are set so that the sum thereof is λ / 4 = 109 nm.

こうして作られた光スイッチング素子1は、入射光がλ=436nmにおいて、それぞれ20nm厚の多結晶シリコン膜からなる透過側光学面12及び変位光学面13間の光経路Aの吸収係数K=0.25(透過側光学面12及び変位光学面13の合計の吸収係数)、同じく光経路Aの反射係数はR=0.4となる。この吸収係数K及び反射係数Rから、光経路Aでは、最大光強度ITmax=0.34I0、最小光強度ITmin=0.06I0となり、入射光に対して透過光は約1/3に減衰するが、光強度比ITmax/ ITmin ≒5となる。これから、光経路A及び光経路Bを直列に有する本発明の光スイッチング素子1全体では、透過光に対して透過光は約1/9に減衰するものの、光強度比ITmax/ ITminは約25倍となる。このことから、本例の構成は紫外光(g線(λ=436nm))の透過型の光スイッチング素子として利用できる。 The optical switching element 1 thus manufactured has an absorption coefficient K of 0.25 (= optical path A between the transmission side optical surface 12 and the displacement optical surface 13 each made of a 20 nm thick polycrystalline silicon film when the incident light is λ = 436 nm. The total absorption coefficient of the transmission side optical surface 12 and the displacement optical surface 13), and similarly, the reflection coefficient of the optical path A is R = 0.4. From the absorption coefficient K and the reflection coefficient R, in the optical path A, the maximum light intensity ITmax = 0.34I 0 and the minimum light intensity ITmin = 0.06I 0 , and the transmitted light attenuates to about 1/3 with respect to the incident light. The light intensity ratio ITmax / ITmin≈5. From this point, in the entire optical switching element 1 of the present invention having the optical path A and the optical path B in series, the transmitted light attenuates to about 1/9 with respect to the transmitted light, but the light intensity ratio ITmax / ITmin is about 25 times. It becomes. Therefore, the configuration of this example can be used as a transmission type optical switching element for ultraviolet light (g-line (λ = 436 nm)).

次に、本発明の光スイッチング素子を用いた画像表示装置を説明する。本発明の画像表示装置7(図7又は図10参照)は、例えば上記基本構成(図1参照)の光スイッチング素子1を、例えば3原色である赤色光(R)に最適化された光スイッチング素子をRスイッチング素子721、緑色光(G)に最適化された光スイッチング素子をGスイッチング素子722、そして青色光(B)に最適化された光スイッチング素子をBスイッチング素子723として構成したり(後掲図8参照)、また紫外光(U)に最適化された光スイッチング素子をUスイッチング素子724として構成する(後掲図9参照)。   Next, an image display device using the optical switching element of the present invention will be described. The image display device 7 (see FIG. 7 or FIG. 10) of the present invention is an optical switching device in which, for example, the optical switching element 1 having the above-described basic configuration (see FIG. 1) is optimized for red light (R) that is, for example, three primary colors. The element is configured as an R switching element 721, an optical switching element optimized for green light (G) as a G switching element 722, and an optical switching element optimized for blue light (B) as a B switching element 723 ( An optical switching element optimized for ultraviolet light (U) is configured as a U switching element 724 (see FIG. 9 below).

まず、3原色を用いる画像表示装置7について説明する。下記説明中、光スイッチング素子内部の構成は、図1の説明及び符号による。上述したg線(λ=436nm)に最適化した光スイッチング素子の構成を例にすれば、シリコン窒化膜の屈折率は赤色光(R、λ=700nm)で2.03、緑色光(G、λ=540nm)で2.03、そして青色光(B、λ=460nm)で2.04である。これから、透過側ストッパ透過面121の膜厚t1は、Rスイッチング素子721で345nm、Gスイッチング素子722で266nm、Bスイッチング素子723で230nmに設定する。同様に、入射側ストッパ透過面141の膜厚tは、Rスイッチング素子721で431nm、Gスイッチング素子722で333nm、Bスイッチング素子723で282nmに設定する。そして、各光スイッチング素子721,722,723の透過側間隙123及び入射側間隙143はλ/4であるから、Rスイッチング素子721で175nm、Gスイッチング素子722で135nm、そしてBスイッチング素子723で115nmに設定する。 First, the image display device 7 using three primary colors will be described. In the following description, the configuration inside the optical switching element is based on the description and reference numerals of FIG. Taking the configuration of the optical switching element optimized for the g-line (λ = 436 nm) described above as an example, the refractive index of the silicon nitride film is 2.03 for red light (R, λ = 700 nm), and green light (G, λ = 540 nm) is 2.03, and blue light (B, λ = 460 nm) is 2.04. From this, the film thickness t 1 of the transmission side stopper transmission surface 121 is set to 345 nm for the R switching element 721, 266 nm for the G switching element 722, and 230 nm for the B switching element 723. Similarly, the thickness t 2 of the incidence-side stopper transmission surface 141, 431 nm in R switching elements 721, 333 nm in G switching element 722 is set at B switching elements 723 to 282 nm. Since the transmission side gap 123 and the incident side gap 143 of each of the optical switching elements 721, 722, 723 are λ / 4, they are set to 175 nm for the R switching element 721, 135 nm for the G switching element 722, and 115 nm for the B switching element 723.

ここで、透過側光学面12、変位光学面13及び入射側光学面14を、いずれも導電性を有する20nm厚の多結晶シリコン膜から構成した場合、赤色光(R)、緑色光(G)及び青色光(B)に対する各吸収係数Kは0.01、0.02及び0.16であり、反射係数Rは0.34、0.36及び0.38である。よって、各減衰率(ITmax/I0)は、Rスイッチング素子721の光経路A及び光経路Bでそれぞれ0.98、Gスイッチング素子722の光経路A及び光経路Bでそれぞれ0.97、Bスイッチング素子723の光経路A及び光経路Bでそれぞれ0.55となる。そして、各光強度比(ITmax/ITmin)はRスイッチング素子721の光経路A及び光経路Bでそれぞれ4.1、Gスイッチング素子722の光経路A及び光経路Bでそれぞれ4.5、Bスイッチング素子723の光経路A及び光経路Bでそれぞれ5.0となる。これから、Rスイッチング素子721としての減衰率は0.96、光強度比は17、Gスイッチング素子722としての減衰率は0.94、光強度比は20、そしてBスイッチング素子723としての減衰率は0.30、光強度比は25となる。 Here, when the transmission side optical surface 12, the displacement optical surface 13 and the incident side optical surface 14 are all made of a 20 nm thick polycrystalline silicon film having conductivity, red light (R), green light (G) And the respective absorption coefficients K for blue light (B) are 0.01, 0.02 and 0.16, and the reflection coefficients R are 0.34, 0.36 and 0.38. Therefore, each attenuation rate (ITmax / I 0 ) is 0.98 for the optical path A and the optical path B of the R switching element 721, 0.97 for the optical path A and the optical path B of the G switching element 722, and 0.97 for the B switching element 723, respectively. It becomes 0.55 in each of the optical path A and the optical path B. Each light intensity ratio (ITmax / ITmin) is 4.1 for the optical path A and optical path B of the R switching element 721, 4.5 for each of the optical path A and optical path B of the G switching element 722, and light of the B switching element 723. It becomes 5.0 in each of the path A and the optical path B. Accordingly, the attenuation rate as the R switching element 721 is 0.96, the light intensity ratio is 17, the attenuation rate as the G switching element 722 is 0.94, the light intensity ratio is 20, and the attenuation rate as the B switching element 723 is 0.30, the light intensity. The ratio is 25.

これから分かるように、入射光の波長λが長くなるにつれて多結晶シリコンの反射係数Rが低くなるので光強度比も低くなる。光強度比の違いはスイッチング動作の相違を意味するが、同一の画像表示装置に用いる光スイッチング素子として、各光強度比はできる限り同じであることが望ましい。そこで、透過側光学面12、変位光学面13及び入射側光学面14は、波長λが300〜1000nm(1.0μm)に対して略一定の反射率R=0.55を有するMo膜やR=0.60のW膜を用いながら、吸収係数K=0.20になるように膜厚を設定すればよい。この場合、Mo膜による光スイッチング素子では減衰率=0.30、光強度比=144が、W膜による光スイッチング素子では減衰率=0.25、光強度比=256が期待できる。このように、Rスイッチング素子721、Gスイッチング素子722及びBスイッチング素子723では、多結晶シリコン膜に代えてMo膜又はW膜により光学面を構成することにより、透過特性を改善できる。これは、説明を省略するが、反射型のRスイッチング素子721、Gスイッチング素子722及びBスイッチング素子723についても同様である。   As can be seen, as the wavelength λ of the incident light becomes longer, the reflection coefficient R of the polycrystalline silicon becomes lower, so the light intensity ratio becomes lower. Although the difference in the light intensity ratio means a difference in switching operation, it is desirable that the light intensity ratios be the same as much as possible as the optical switching elements used in the same image display device. Therefore, the transmission side optical surface 12, the displacement optical surface 13, and the incident side optical surface 14 are a Mo film having a substantially constant reflectance R = 0.55 with respect to a wavelength λ of 300 to 1000 nm (1.0 μm), or R = 0.60. While using the W film, the film thickness may be set so that the absorption coefficient K = 0.20. In this case, attenuation rate = 0.30 and light intensity ratio = 144 can be expected for the optical switching element using Mo film, and attenuation ratio = 0.25 and light intensity ratio = 256 can be expected for the optical switching element using W film. Thus, in the R switching element 721, the G switching element 722, and the B switching element 723, the transmission characteristics can be improved by configuring the optical surface with a Mo film or a W film instead of the polycrystalline silicon film. The same applies to the reflective R switching element 721, G switching element 722, and B switching element 723, although the description is omitted.

図7a〜図7cは、Rスイッチング素子721、Gスイッチング素子722及びBスイッチング素子723を同一のガラス基板71上に2次元配列して構成した画像表示装置7の構成図(図7a)と、各光スイッチング素子721,722,723に印加する電気信号の制御方式を表す説明図(図7b及び図7c)である。本例の画像表示装置7は、上述したRスイッチング素子721、Gスイッチング素子722及びBスイッチング素子723を一組とした画素単位72を、同一のガラス基板71上に2次元配列して、表示面73を構成している。そして、各光スイッチング素子721,722,723の透過光(又は反射光)の光強度を増減できるように、各光スイッチング素子721,722,723へ個別に電気信号を印加する信号線を接続する。蛍光管等からなる一体の光源741からの入射光は、入射光入力部75により、2次元配列された画素単位72全体へ分散され、入力される。一体の光源741は、後述する可視光ダイオードのほか、従来公知の各種光源を用いることができる。   7a to 7c are a configuration diagram (FIG. 7a) of an image display device 7 in which an R switching element 721, a G switching element 722, and a B switching element 723 are two-dimensionally arranged on the same glass substrate 71; It is explanatory drawing (FIG. 7b and FIG. 7c) showing the control system of the electric signal applied to the optical switching elements 721,722,723. In the image display device 7 of this example, a pixel unit 72 including the above-described R switching element 721, G switching element 722, and B switching element 723 is two-dimensionally arranged on the same glass substrate 71, and the display surface is displayed. 73 is composed. Then, a signal line for individually applying an electric signal is connected to each of the optical switching elements 721, 722, 723 so that the light intensity of the transmitted light (or reflected light) of each of the optical switching elements 721, 722, 723 can be increased or decreased. Incident light from an integrated light source 741 made of a fluorescent tube or the like is dispersed and input to the entire pixel units 72 arranged two-dimensionally by an incident light input unit 75. As the integrated light source 741, in addition to a visible light diode described later, various conventionally known light sources can be used.

画素単位72の発色及び光強度は、一体の光源741から入力される入射光の光強度を調整するのではなく、各画素単位72を構成する光スイッチング素子721,722,723個々のON状態の時間を増減することで、容易に調整できる。例えば、図7bに見られるように、画素単位72の単位点灯時間を等分割したパルス幅の電気信号の印加回数を、前記単位印加時間の総和が単位点灯時間を超えない範囲で増減することにより、画素単位72の発色及び光強度は前記電気信号を単位点灯時間で積分した強さで制御できる。また、図7cに見られるように、画素単位72の単位点灯時間以下の連続印加時間で印加する電気信号の前記連続印加時間を、前記単位点灯時間を超えない範囲で増減することにより、画素単位72の発色及び光強度は前記電気信号を単位点灯時間で積分した強さで制御できる。いずれも、電気信号の印加回数又は連続印加時間は容易に制御できるため、精密な画素単位72の発色及び光強度を制御できる。   The color development and light intensity of the pixel unit 72 does not adjust the light intensity of the incident light input from the integrated light source 741, but increases or decreases the time of each ON state of the light switching elements 721, 722, and 723 constituting each pixel unit 72. Therefore, it can be adjusted easily. For example, as shown in FIG. 7b, by increasing / decreasing the number of times of applying an electric signal having a pulse width obtained by equally dividing the unit lighting time of the pixel unit 72 within a range in which the sum of the unit application times does not exceed the unit lighting time. The color development and light intensity of the pixel unit 72 can be controlled by the intensity obtained by integrating the electric signal with the unit lighting time. Further, as shown in FIG. 7c, by increasing or decreasing the continuous application time of the electric signal applied in a continuous application time equal to or less than the unit lighting time of the pixel unit 72 within a range not exceeding the unit lighting time, The color development and light intensity of 72 can be controlled by the intensity obtained by integrating the electric signal with the unit lighting time. In any case, since the number of times of applying an electric signal or the continuous application time can be easily controlled, the color development and light intensity of the pixel unit 72 can be precisely controlled.

具体的には次のようになる。例えば、カラー画像を30フレーム/秒で走査する場合、約30ms/フレームの画像変換を必要とする。そして、画素単位72が1000×1000で2次元配列されているとすれば、走査毎の読み出し時間は33ms/1000=33μsとなる。ここで、図7bに示す例によれば、各画素単位72の階調性を1000段階に設定すれば、電気信号は単位点灯時間中に1000回の印加回数を有すればよい。そして、各電気信号のパルス幅及びパルス間隔が等しければ、1つの電気信号のパルス幅は33μs/2000=16nsecとなる。   Specifically: For example, when a color image is scanned at 30 frames / second, an image conversion of about 30 ms / frame is required. If the pixel units 72 are two-dimensionally arranged at 1000 × 1000, the readout time for each scan is 33 ms / 1000 = 33 μs. Here, according to the example shown in FIG. 7b, if the gradation of each pixel unit 72 is set to 1000 levels, the electrical signal may have 1000 times of application during the unit lighting time. If the pulse width and pulse interval of each electrical signal are equal, the pulse width of one electrical signal is 33 μs / 2000 = 16 nsec.

この電気信号におけるパルス幅を精度よく保つには、立ち上がり時間及び立ち下り時間をパルス幅の1/10程度とすれば、約2nsec以下のスイッチング動作を有する各光スイッチング素子721,722,723を用いればよいことになる。また、図7cに示す例では、同じく階調性を1000段階とすれば、33μs/1000=33nsec以下のピッチで連続印加時間を増減させることになる。この場合、各電気信号は間隔を空けずに印加することから、パルスの立ち上がり時間及び立ち下り時間は33nsecの1/10以下として、3.3nsec以下のスイッチング動作が可能な各光スイッチング素子721,722,723を用いればよいことになる。   In order to keep the pulse width of the electrical signal with high accuracy, it is only necessary to use each of the optical switching elements 721, 722, 723 having a switching operation of about 2 nsec or less if the rise time and the fall time are about 1/10 of the pulse width. Become. In the example shown in FIG. 7c, if the gradation is 1000 steps, the continuous application time is increased or decreased at a pitch of 33 μs / 1000 = 33 nsec or less. In this case, since each electric signal is applied without an interval, each of the optical switching elements 721, 722, and 723 capable of switching operation of 3.3 nsec or less is used by setting the pulse rise time and fall time to 1/10 or less of 33 nsec. It will be good.

こうした画素単位72の点灯を制御する場合、画素単位72を構成する各光スイッチング素子721,722,723に、非常に高速なスイッチング動作、すなわち数nsec以下のスイッチング動作が要求されることが分かる。この点、本発明の光スイッチング素子は、極めて高速なスイッチング動作を実現しており、上記具体的な要求にも十分応えることができる。更に、高精細な画像を表示するため、画素単位の単位点灯時間が短くなり、また階調度を高めた場合に要求されるスイッチング動作はより高速になるが、本発明の光スイッチング素子はそうした要求にも応えることができる。このように、本発明は光強度比が大きく、高速なスイッチング動作を有する光スイッチング素子を実現することにより、これを用いた画像表示装置の高コントラストと高精細さを可能にする。   When the lighting of the pixel unit 72 is controlled, it is understood that the optical switching elements 721, 722, and 723 constituting the pixel unit 72 are required to perform a very high speed switching operation, that is, a switching operation of several nsec or less. In this respect, the optical switching element of the present invention realizes an extremely high-speed switching operation, and can sufficiently meet the above specific requirements. Furthermore, since a high-definition image is displayed, the unit lighting time per pixel is shortened, and the switching operation required when the gradation is increased is faster, but the optical switching element of the present invention has such a requirement. Can also respond. As described above, the present invention realizes an optical switching element having a large light intensity ratio and a high-speed switching operation, thereby enabling high contrast and high definition of an image display apparatus using the optical switching element.

図8は3原色に対応した3種類のRスイッチング素子721、Gスイッチング素子722及びBスイッチング素子723から画素単位を構成した画像表示装置を表す構成図である。本例の画像表示装置7は、光源(図示略)である可視光ダイオードから、3原色の各単波長からなる3種類の入射光(赤色光、緑色光及び青色光)を、各光スイッチング素子721,722,723へ入力する。各画素単位72を構成する各光スイッチング素子721,722,723は、それぞれ複数であってもよい。この画素単位32は、ガラス基板71に2次元配列されているから、各画素単位72を構成する各光スイッチング素子721,722,723を個別に制御することにより、表示面73(各光スイッチング素子721,722,723の透過光を投光する面)に画像を表示できる。   FIG. 8 is a configuration diagram showing an image display device in which a pixel unit is configured by three types of R switching elements 721, G switching elements 722, and B switching elements 723 corresponding to the three primary colors. The image display device 7 of this example receives three types of incident light (red light, green light, and blue light) each having three single colors from a visible light diode that is a light source (not shown), and each optical switching element. Input to 721,722,723. Each of the optical switching elements 721, 722, 723 constituting each pixel unit 72 may be plural. Since the pixel units 32 are two-dimensionally arranged on the glass substrate 71, the light switching elements 721, 722, and 723 constituting each pixel unit 72 are individually controlled to control the display surface 73 (transmitted light of the light switching elements 721, 722, and 723). The image can be displayed on the surface where the light is projected.

図9は3原色及び白色に対応して4個の同じUスイッチング素子724から画素単位72を構成した画像表示装置7を表す構成図である。この画像表示装置7は、GaN半導体等からなる紫外光ダイオードを光源(図示略)とする単波長の紫外光を入射光とする。画素単位72における3原色及び白色は、Uスイッチング素子724からの透過光を受けて発光する赤色蛍光面731、緑色蛍光面732、青色蛍光面733又は白色蛍光面734(図9中、それぞれR、G、B及びWと表示)による。これから、本例の表示面73は、前記蛍光面731,732,733,734から構成される。各画素単位72のUスイッチング素子724は、各蛍光面731,732,733,734に対してそれぞれ1個ずつ割り当ている。   FIG. 9 is a configuration diagram showing the image display device 7 in which the pixel unit 72 is configured by four identical U switching elements 724 corresponding to the three primary colors and white. The image display device 7 uses, as incident light, single-wavelength ultraviolet light having a light source (not shown) as an ultraviolet light diode made of a GaN semiconductor or the like. The three primary colors and the white color in the pixel unit 72 are a red phosphor screen 731, a green phosphor screen 732, a blue phosphor screen 733, or a white phosphor screen 734 that emits light received from the U-switching element 724 (R, G, B and W). From this, the display surface 73 of this example is composed of the phosphor screens 731,732,733,734. One U switching element 724 of each pixel unit 72 is assigned to each phosphor screen 731,732,733,734.

本例は、発色のよい奇麗なカラー画像を実現するため、光の3原色に対応した赤色蛍光面731、緑色蛍光面732及び青色蛍光面733に、白色蛍光面734を組み合わせている。しかし、単なるカラー画像でよい場合、赤色蛍光面731、緑色蛍光面732及び青色蛍光面733だけでもよい。各画素単位72を構成するUスイッチング素子724は、各蛍光面731,732,733,734毎に複数あってもよい。これにより、各画素単位72のUスイッチング素子724は、それぞれ同じ紫外光を受けながら、各蛍光面731,732,733,734に対応したUスイッチング素子724を個別に透過又は非透過に切り替えることで、画素単位72での3原色の発光を実現する。   In this example, a white fluorescent screen 734 is combined with a red fluorescent screen 731, a green fluorescent screen 732, and a blue fluorescent screen 733 corresponding to the three primary colors of light in order to realize a beautiful color image with good color development. However, when a simple color image is sufficient, only the red phosphor screen 731, the green phosphor screen 732, and the blue phosphor screen 733 may be used. A plurality of U switching elements 724 constituting each pixel unit 72 may be provided for each phosphor screen 731,732,733,734. Accordingly, the U switching element 724 of each pixel unit 72 receives the same ultraviolet light, and individually switches the U switching element 724 corresponding to each phosphor screen 731, 732, 733, 734 to transmissive or non-transmissive so that Realizes light emission of three primary colors.

図10は個別の光源742を画像の走査に合わせて順次点灯及び消灯を切り替える画像表示装置7の図7a相当構成図である。本発明による画像表示装置7は、上述の例(図7a、図8及び図9)に見られるように、同一のガラス基板71の上面にRスイッチング素子721、Gスイッチング素子722及びBスイッチング素子723からなる画素単位72を2次元配列した構成であり、全光スイッチング素子721,722,723に対して光源742から入射光を入力する。実際の画像表示装置7は、個別の光源742から全光スイッチング素子721,722,723へ均一に入射光を直接入力することは難しいので、通常、図10に見られるように、プリズム等からなる入射光入力部75を介して各光源742から全光スイッチング素子721,722,723へと入射光が導かれる。光源742は、既述した可視光ダイオードを用いることができる。   FIG. 10 is a configuration diagram corresponding to FIG. 7a of the image display device 7 in which individual light sources 742 are sequentially switched on and off in accordance with image scanning. The image display device 7 according to the present invention has an R switching element 721, a G switching element 722, and a B switching element 723 on the upper surface of the same glass substrate 71 as seen in the above-described examples (FIGS. 7a, 8 and 9). The pixel units 72 are arranged in a two-dimensional array, and incident light is input from the light source 742 to the all-optical switching elements 721, 722, and 723. Since it is difficult for the actual image display device 7 to directly input incident light uniformly from the individual light sources 742 to the all-optical switching elements 721, 722, 723, as shown in FIG. Incident light is guided from each light source 742 to all-optical switching elements 721, 722, 723 via 75. As the light source 742, the visible light diode described above can be used.

本例は、動画を表示する画像表示装置7の本質として画面走査されることを利用し、走査信号に同期して、複数ある光源742も点灯及び消灯を切り替えるようにしている。これにより、画面走査に合わせて透過又は非透過が切り替えられている光スイッチング素子721,722,723に対応する光源742のみが点灯すればよくなり、光源742全体として消灯しているものが多くなるため、結果として省電力化を図ることができる。   In this example, screen scanning is used as the essence of the image display device 7 for displaying a moving image, and a plurality of light sources 742 are switched on and off in synchronization with the scanning signal. As a result, only the light source 742 corresponding to the optical switching elements 721, 722, and 723 whose transmission or non-transmission is switched in accordance with the screen scan needs to be turned on, and many light sources 742 are turned off as a result. Power saving can be achieved.

以下、本発明の光スイッチング素子について、変位光学面が変位した状態で固定した試作品を製作し、光強度比の向上を確認した。変位光学面を固定した理由は、試作品の構成を簡素にするためである。図11aは光経路A(又は光経路B)のOFF状態に相当する試作品(比較例1)を表す図1a相当断面図、図11bは光経路A(又は光経路B)のON状態に相当する試作品(比較例2)を表す図1b相当断面図、図11cは2個の比較例1を上下対称に重ね合わせて光経路A及び光経路BそれぞれのOFF状態に相当する基本構成の試作品(実施例1)を表す図1a相当断面図であり、図11dは2個の比較例2を上下対称に重ね合わせて光経路A及び光経路BそれぞれのON状態に相当する基本構成の試作品(実施例2)を表す図1b相当断面図である。   Hereinafter, with respect to the optical switching element of the present invention, a prototype was manufactured in which the displacement optical surface was displaced, and the improvement in the light intensity ratio was confirmed. The reason for fixing the displacement optical surface is to simplify the configuration of the prototype. 11a is a cross-sectional view corresponding to FIG. 1a showing a prototype (Comparative Example 1) corresponding to the OFF state of the optical path A (or optical path B), and FIG. 11b corresponds to the ON state of the optical path A (or optical path B). FIG. 11 c is a cross-sectional view corresponding to FIG. 1 b showing a prototype (Comparative Example 2), and FIG. 11 c is a trial of a basic configuration corresponding to the OFF state of each of the optical path A and the optical path B by superimposing two Comparative Examples 1 vertically FIG. 11d is a cross-sectional view corresponding to FIG. 1a representing the work (Example 1), and FIG. 11d is a test of a basic configuration corresponding to the ON state of each of the optical path A and the optical path B by superposing two comparative examples 2 vertically. FIG. 2 is a cross-sectional view corresponding to FIG.

比較例1,比較例2、実施例1及び実施例2は、同種素材を用いながら、それぞれ光経路A又は光経路Bの長さを変えている。例えば、入射光に紫外光であるg線(λ=436nm)を用いる場合、比較例1は、図11aに見られるように、0.5mm厚の石英ウェーハからなる基板81の上面に、透過側光学面82として21nm厚の多結晶シリコン膜をCVD(化学気相堆積)法で形成し、前記透過側光学面82の上面に、間隙形成面83としてOFF状態の光経路Aに相当する263nm(屈折率を2.05として5λ/4相当)の厚さのシリコン窒化膜をCVD法で形成し、そして前記間隙形成面83の上面に、変位光学面85として21nmの多結晶シリコン膜をCVD法で形成している。この実施例1の変位光学面85は動かないので、比較例2は、図11bに見られるように、間隙形成面84としてON状態の光経路Aに相当する207nm(屈折率を2.05としてλ相当)の厚さのシリコン窒化膜をCVD法で形成している。そして、実施例1は、図11cに見られるように、2個の前記比較例1を上下対称にして互いの変位光学面85,85を接面させた構成で、実施例2は、図11dに見られるように、2個の前記比較例2を上下対称にして互いの変位光学面85,85を接面させた構成である。   In Comparative Example 1, Comparative Example 2, Example 1 and Example 2, the length of the optical path A or the optical path B is changed while using the same material. For example, when g-line (λ = 436 nm), which is ultraviolet light, is used as the incident light, as shown in FIG. 11a, in Comparative Example 1, the transmission side optical is formed on the upper surface of a substrate 81 made of a quartz wafer having a thickness of 0.5 mm. A polycrystalline silicon film having a thickness of 21 nm is formed as the surface 82 by the CVD (chemical vapor deposition) method, and the upper surface of the transmission-side optical surface 82 is 263 nm (refractive as the gap forming surface 83 corresponding to the optical path A in the OFF state. A silicon nitride film having a thickness of 2.05 (corresponding to 5λ / 4 with a rate of 2.05) is formed by the CVD method, and a 21 nm polycrystalline silicon film is formed on the upper surface of the gap forming surface 83 as the displacement optical surface 85 by the CVD method. ing. Since the displacement optical surface 85 of Example 1 does not move, Comparative Example 2 corresponds to 207 nm corresponding to the optical path A in the ON state as the gap formation surface 84 (corresponding to λ with a refractive index of 2.05) as seen in FIG. ) Thick silicon nitride film is formed by the CVD method. As shown in FIG. 11c, Example 1 has a configuration in which the two comparative examples 1 are vertically symmetrical, and the displacement optical surfaces 85 and 85 are in contact with each other. As can be seen from the above, the displacement optical surfaces 85 and 85 are in contact with each other so that the two comparative examples 2 are vertically symmetrical.

図12は、比較例1、比較例2、実施例1及び実施例2それぞれの波長250nm〜2000nmにおける透過率の測定結果のグラフである。透過率は、石英ウェーハである基板81の透過率を差し引いている。図12中の比較例1、比較例2、実施例1及び実施例2は、それぞれ光の干渉作用により、透過率に周期的な高低が生じている。ここで、実施例1及び実施例2は、長い波長領域で観測される長周期の波形に微小な短周期の波形が重なっているが、この短周期の波形は、2個の比較例1又は比較例2を重ね合わせた際、接面する変位光学面85,85間に形成される空気層に起因して発生した光の干渉作用によるノイズと考えられるが、本発明が目標とする500nm以下の短波長域では無視できる。また、例えば比較例1はOFF状態、比較例2はON状態を想定して製作したが、互いに相反する透過率特性を有するため、以下では透過率の相対的大小に従って、一方をON状態、他方をOFF状態として光強度比を算出することにした。   FIG. 12 is a graph showing the measurement results of transmittance at wavelengths of 250 nm to 2000 nm for Comparative Example 1, Comparative Example 2, Example 1 and Example 2. The transmittance is obtained by subtracting the transmittance of the substrate 81, which is a quartz wafer. In Comparative Example 1, Comparative Example 2, Example 1 and Example 2 in FIG. 12, the periodicity of the transmittance is caused by the interference action of light. Here, in Example 1 and Example 2, a minute short period waveform overlaps with a long period waveform observed in a long wavelength region. When the comparative example 2 is overlaid, it is considered to be noise due to the interference action of light generated due to the air layer formed between the contacting optical surfaces 85 and 85. Is negligible in the short wavelength region. In addition, for example, Comparative Example 1 was manufactured assuming an OFF state, and Comparative Example 2 was assumed to be an ON state. However, since they have mutually opposite transmittance characteristics, in the following, according to the relative magnitude of the transmittance, one is turned on and the other Was decided to calculate the light intensity ratio.

図13aは波長域が350nm〜500nmの範囲で極大値を示す比較例2及び実施例2の透過率及び光強度比を表すグラフであり、図13bは波長域が400nm〜550nmの範囲で極大値を示す比較例1及び実施例1の透過率及び光強度比とを表すグラフである。ここで、例えば図13aにおける比較例2及び実施例2の各光強度比は、比較例2又は実施例2をON状態、比較例1又は実施例1をOFF状態とみなして、比較例1又は実施例1の透過率に対する比較例2又は実施例2の透過率の比から算出している。図13bにおける比較例1及び実施例1の各光強度比は、比較例1又は実施例1をON状態、比較例2又は実施例2をOFF状態とみなして、比較例2又は実施例2の透過率に対する比較例1又は実施例1の透過率の比から算出している。   FIG. 13a is a graph showing the transmittance and light intensity ratio of Comparative Example 2 and Example 2 in which the wavelength range is 350 nm to 500 nm, and FIG. 13b is the maximum value in the wavelength range of 400 nm to 550 nm. It is a graph showing the transmittance | permeability and light intensity ratio of the comparative example 1 and Example 1 which show. Here, for example, the respective light intensity ratios of Comparative Example 2 and Example 2 in FIG. 13a are considered as Comparative Example 1 or Example 2, assuming that Comparative Example 2 or Example 2 is in the ON state and Comparative Example 1 or Example 1 is in the OFF state. It is calculated from the ratio of the transmittance of Comparative Example 2 or Example 2 to the transmittance of Example 1. The light intensity ratios of Comparative Example 1 and Example 1 in FIG. 13b are the same as those of Comparative Example 2 or Example 2, assuming that Comparative Example 1 or Example 1 is in the ON state and Comparative Example 2 or Example 2 is in the OFF state. It is calculated from the ratio of the transmittance of Comparative Example 1 or Example 1 to the transmittance.

図13aから、比較例2は波長=約410nmで最大透過率が約19%を示すものの光強度比は約9に留まり、実施例2は同じく波長=約410nmで最大透過率が約9%と低下したものの光強度比は約32にまで向上した。また、図13bから、比較例1は波長=480nmで最大透過率が約50%を示すものの光強度比は約8に留まり、実施例1は波長=約480nmで最大透過率が約26%と低下したものの光強度比はが約19にまで向上した。これから、光経路A及び光経路Bを直列に備えた本発明の光スイッチング素子は、透過率こそ低下するものの、画像表示装置の画素単位に求められる光強度比が大幅に改善されることが分かり、本発明の有効性が立証できる。   From FIG. 13a, although Comparative Example 2 shows a maximum transmittance of about 19% at a wavelength = about 410 nm, the light intensity ratio remains at about 9, and Example 2 also has a maximum transmittance of about 9% at a wavelength = about 410 nm. Although decreased, the light intensity ratio improved to about 32. From FIG. 13b, although Comparative Example 1 shows a maximum transmittance of about 50% at a wavelength = 480 nm, the light intensity ratio is only about 8, and Example 1 has a maximum transmittance of about 26% at a wavelength = about 480 nm. Although decreased, the light intensity ratio increased to about 19. From this, it can be seen that the optical switching element of the present invention provided with the optical path A and the optical path B in series greatly improves the light intensity ratio required for each pixel of the image display device, although the transmittance is reduced. Thus, the effectiveness of the present invention can be proved.

透過光が最小光強度である本発明に基づく透過型光スイッチング素子を示す断面図である。It is sectional drawing which shows the transmission type optical switching element based on this invention whose transmitted light is the minimum light intensity. 透過光が最大光強度である本発明に基づく透過型光スイッチング素子の断面図である。It is sectional drawing of the transmission type optical switching element based on this invention whose transmitted light is the maximum light intensity. 透過光が最小光強度である本発明に基づく透過型光スイッチング素子の別例を示す断面図である。It is sectional drawing which shows another example of the transmission type optical switching element based on this invention whose transmitted light is the minimum light intensity. 透過光が最大光強度である本発明に基づく透過型光スイッチング素子の別例を示す断面図である。It is sectional drawing which shows another example of the transmissive | pervious optical switching element based on this invention whose transmitted light is the maximum light intensity. 透過光が最小光強度である本発明に基づく透過型光スイッチング素子の別例を示す断面図である。It is sectional drawing which shows another example of the transmission type optical switching element based on this invention whose transmitted light is the minimum light intensity. 透過光が最大光強度である本発明に基づく透過型光スイッチング素子の別例を示す断面図である。It is sectional drawing which shows another example of the transmissive | pervious optical switching element based on this invention whose transmitted light is the maximum light intensity. 透過光が最小光強度である本発明に基づく透過型光スイッチング素子の別例を示す断面図である。It is sectional drawing which shows another example of the transmission type optical switching element based on this invention whose transmitted light is the minimum light intensity. 透過光が最大光強度である本発明に基づく透過型光スイッチング素子の別例を示す断面図である。It is sectional drawing which shows another example of the transmissive | pervious optical switching element based on this invention whose transmitted light is the maximum light intensity. 透過光が最小光強度である本発明に基づく透過型光スイッチング素子の別例を示す断面図である。It is sectional drawing which shows another example of the transmission type optical switching element based on this invention whose transmitted light is the minimum light intensity. 透過光が最大光強度である本発明に基づく透過型光スイッチング素子の別例を示す断面図である。It is sectional drawing which shows another example of the transmissive | pervious optical switching element based on this invention whose transmitted light is the maximum light intensity. 透過光が最小光強度である本発明に基づく透過型光スイッチング素子の別例を示す断面図である。It is sectional drawing which shows another example of the transmission type optical switching element based on this invention whose transmitted light is the minimum light intensity. 透過光が最大光強度である本発明に基づく透過型光スイッチング素子の別例を示す断面図である。It is sectional drawing which shows another example of the transmissive | pervious optical switching element based on this invention whose transmitted light is the maximum light intensity. 3種類の光スイッチング素子を同一のガラス基板上に2次元配列して構成した画像表示装置の構成図である。It is a block diagram of the image display apparatus comprised by three-dimensionally arranging three types of optical switching elements on the same glass substrate. 各光スイッチング素子に印加する電気信号の制御方式を表す説明図である。It is explanatory drawing showing the control system of the electric signal applied to each optical switching element. 各光スイッチング素子に印加する電気信号の制御方式を表す説明図である。It is explanatory drawing showing the control system of the electric signal applied to each optical switching element. 3原色に対応した3種類の光スイッチング素子から画素単位を構成した画像表示装置を表す構成図である。It is a block diagram showing the image display apparatus which comprised the pixel unit from three types of optical switching elements corresponding to three primary colors. 3原色及び白色に対応して4個の同じ光スイッチング素子から画素単位を構成した画像表示装置を表す構成図である。It is a block diagram showing the image display apparatus which comprised the pixel unit from four same optical switching elements corresponding to three primary colors and white. 個別の光源を画像の走査に合わせて順次点灯及び消灯を切り替える画像表示装置の構成図である。It is a block diagram of the image display apparatus which switches an individual light source sequentially on and off according to the scanning of an image. 光経路A(又は光経路B)のOFF状態に相当する試作品(比較例1)を表す図1a相当断面図である。It is sectional drawing equivalent to FIG. 1 a showing the prototype (comparative example 1) equivalent to the OFF state of the optical path A (or optical path B). 光経路A(又は光経路B)のON状態に相当する試作品(比較例2)を表す図1b相当断面図である。It is sectional drawing equivalent to FIG. 1 b showing the prototype (comparative example 2) equivalent to the ON state of the optical path A (or optical path B). 光経路A及び光経路BそれぞれのOFF状態に相当する基本構成の試作品(実施例1)を表す図1a相当断面図である。FIG. 1B is a cross-sectional view corresponding to FIG. 光経路A及び光経路BそれぞれのON状態に相当する基本構成の試作品(実施例2)を表す図1b相当断面図である。It is sectional drawing equivalent to FIG. 1 b showing the prototype (Example 2) of the basic composition equivalent to the ON state of each of the optical path A and the optical path B. 比較例1、比較例2、実施例1及び実施例2それぞれの波長250nm〜2000nmにおける透過率の測定結果のグラフである。It is a graph of the measurement result of the transmittance | permeability in the wavelength of 250 nm-2000 nm of each of Comparative Example 1, Comparative Example 2, Example 1 and Example 2. 波長域が350nm〜500nmの範囲で極大値を示す比較例2及び実施例2の透過率及び光強度比とを表すグラフである。It is a graph showing the transmittance | permeability and light intensity ratio of the comparative example 2 and Example 2 which show a maximum value in the wavelength range of 350 nm-500 nm. 波長域が400nm〜550nmの範囲で極大値を示す比較例1及び実施例1の透過率及び光強度比とを表すグラフである。It is a graph showing the transmittance | permeability and light intensity ratio of the comparative example 1 and Example 1 which show a maximum value in the wavelength range of 400 nm-550 nm. 透過光が最大光強度ITmaxである従来の透過型の光スイッチング素子の断面図である。It is sectional drawing of the conventional transmissive | pervious optical switching element whose transmitted light is the maximum light intensity ITmax. 光学面を3枚配設して光を二重に干渉させた従来の透過型の光スイッチング素子の断面図である。It is sectional drawing of the conventional transmissive | pervious optical switching element which arrange | positioned three optical surfaces and made light interfere twice.

符号の説明Explanation of symbols

1 光スイッチング素子
11 基板
12 透過側光学面
121 透過側ストッパ透過面
122 透過側スペーサ面
123 透過側間隙
13 変位光学面
14 入射側光学面
141 入射側ストッパ透過面
142 入射側スペーサ面
143 入射側間隙
19 遮光面
191 保護面
192 透過窓
2 光スイッチング素子
3 光スイッチング素子
4 光スイッチング素子
5 光スイッチング素子
6 光スイッチング素子
7 画像表示装置
721 Rスイッチング素子
722 Gスイッチング素子
723 Bスイッチング素子
724 Uスイッチング素子
91 従来の光スイッチング素子
92 従来の光スイッチング素子
A 光経路
B 光経路
C 光経路
D 光経路
1 Optical switching element
11 Board
12 Transmission side optical surface
121 Transmission side stopper Transmission surface
122 Transmission side spacer surface
123 Transmission side gap
13 Displacement optical surface
14 Incident side optical surface
141 Entrance stopper transmission surface
142 Incident side spacer surface
143 Incident side gap
19 Shading surface
191 Protective surface
192 Transmission window 2 Optical switching element 3 Optical switching element 4 Optical switching element 5 Optical switching element 6 Optical switching element 7 Image display device
721 R switching element
722 G switching element
723 B switching element
724 U switching element
91 Conventional optical switching devices
92 Conventional optical switching element A Optical path B Optical path C Optical path D Optical path

Claims (23)

位置固定な透過側光学面と、変位手段により変位する変位光学面と、位置固定な入射側光学面とを前記記載順に配設し、前記透過側光学面及び変位光学面間の光経路Aと、前記変位光学面及び入射側光学面間の光経路Bとを形成してなり、変位手段により変位光学面を変位させることにより、光経路A及び光経路Bの長さを相反関係で増減させて該光経路A及び光経路Bの光の干渉作用を変化させて、入射側光学面に照射する入射光に対する透過側光学面からの透過光又は入射側光学面からの反射光の光強度を変化させてなる光スイッチング素子。 A transmission-side optical surface that is fixed in position, a displacement optical surface that is displaced by a displacement means, and an incident-side optical surface that is fixed in position are arranged in the order described, and an optical path A between the transmission-side optical surface and the displacement optical surface The optical path B is formed between the displacement optical surface and the incident side optical surface, and the length of the optical path A and the optical path B is increased or decreased in a reciprocal relationship by displacing the displacement optical surface by the displacement means. By changing the interference action of the light in the optical path A and the optical path B, the light intensity of the transmitted light from the transmission side optical surface or the reflected light from the incident side optical surface with respect to the incident light irradiated on the incident side optical surface is changed. An optical switching element that is changed. 位置固定な透過側光学面と、変位手段により変位する下段の変位光学面と、位置固定な下段の中間光学面と、位置固定な上段の中間光学面と、変位手段により変位する上段の変位光学面と、位置固定な入射側光学面とを前記記載順に配設し、前記透過側光学面及び下段の変位光学面間の光経路Aと、前記下段の変位光学面及び下段の中間光学面間の光経路Bと、前記上段の中間光学面及び上段の変位光学面間の光経路Cと、前記上段の変位光学面及び入射側光学面間の光経路Dとを形成してなり、変位手段により下段の変位光学面及び上段の変位光学面の一方又は双方を変位させることにより、光経路A及び光経路Bの長さを相反関係で増減させて該光経路A及び光経路Bの光の干渉作用を変化させ、また光経路C及び光経路Dの長さを相反関係で増減させて該光経路C及び光経路Dの光の干渉作用を変化させて、入射側光学面に照射する入射光に対する透過側光学面からの透過光又は入射側光学面からの反射光の光強度を変化させてなる光スイッチング素子。 Position-fixed transmission side optical surface, lower-stage displacement optical surface displaced by the displacement means, position-fixed lower-stage intermediate optical surface, position-fixed upper-stage intermediate optical surface, and upper-stage displacement optics displaced by the displacement means And a fixed incident-side optical surface arranged in the order described above, between the transmission-side optical surface and the lower-stage displacement optical surface, and between the lower-stage displacement optical surface and the lower-stage intermediate optical surface , An optical path C between the upper intermediate optical surface and the upper displacement optical surface, and an optical path D between the upper displacement optical surface and the incident-side optical surface. By displacing one or both of the lower displacing optical surface and the upper displacing optical surface, the length of the optical path A and the optical path B is increased or decreased in a reciprocal relationship, and the light of the optical path A and the optical path B is The interference action is changed, and the length of the optical path C and the optical path D Accordingly, the interference action of the light in the light path C and the light path D is changed to increase or decrease the light, and the transmitted light from the transmission side optical surface or the reflected light from the incident side optical surface with respect to the incident light irradiated on the incident side optical surface An optical switching element obtained by changing the light intensity. 位置固定な透過側光学面と、変位手段により変位する下段の変位光学面と、位置固定な共通の中間光学面と、変位手段により変位する上段の変位光学面と、位置固定な入射側光学面とを前記記載順に配設し、前記透過側光学面及び下段の変位光学面間の光経路Aと、前記下段の変位光学面及び共通の中間光学面間の光経路Bと、前記共通の中間光学面及び上段の変位光学面間の光経路Cと、前記上段の変位光学面及び入射側光学面間の光経路Dとを形成してなり、変位手段により下段の変位光学面及び上段の変位光学面の一方又は双方を変位させることにより、光経路A及び光経路Bの長さを相反関係で増減させて該光経路A及び光経路Bの光の干渉作用を変化させ、また光経路C及び光経路Dの長さを相反関係で増減させて該光経路C及び光経路Dの光の干渉作用を変化させて、入射側光学面に照射する入射光に対する透過側光学面からの透過光又は入射側光学面からの反射光の光強度を変化させてなる光スイッチング素子。 Position-fixed transmission-side optical surface, lower-stage displacement optical surface displaced by the displacement means, position-fixed common intermediate optical surface, upper-stage displacement optical surface displaced by the displacement means, and position-fixed incident-side optical surface Are arranged in the order described, the optical path A between the transmission side optical surface and the lower displacement optical surface, the optical path B between the lower displacement optical surface and the common intermediate optical surface, and the common intermediate An optical path C between the optical surface and the upper displacement optical surface and an optical path D between the upper displacement optical surface and the incident side optical surface are formed, and the lower displacement optical surface and the upper displacement are formed by the displacement means. By displacing one or both of the optical surfaces, the length of the light path A and the light path B is increased or decreased in a reciprocal relationship to change the light interference action of the light path A and the light path B, and the light path C And the length of the optical path D is increased or decreased in a reciprocal relationship, and the optical path C and An optical switching element that changes the light intensity of the transmitted light from the transmission side optical surface or the reflected light from the incident side optical surface with respect to the incident light irradiated on the incident side optical surface by changing the interference action of the light of the path D . 位置固定な透過側光学面と、変位手段により変位する下段の変位光学面と、位置固定な共通の中間光学面と、変位手段により変位する上段の変位光学面とを前記記載順に配設し、前記透過側光学面及び下段の変位光学面間の光経路Aと、前記下段の変位光学面及び共通の中間光学面間の光経路Bと、前記共通の中間光学面及び上段の変位光学面間の光経路Cとを形成してなり、変位手段により下段の変位光学面及び上段の変位光学面の一方又は双方を変位させることにより、光経路A及び光経路Bの長さを相反関係で増減させて該光経路A及び光経路Bの光の干渉作用を変化させ、また光経路Cの長さを増減させて該光経路Cの光の干渉作用を変化させて、上段の変位光学面に照射する入射光に対する透過側光学面からの透過光又は上段の変位光学面からの反射光の光強度を変化させてなる光スイッチング素子。 A position-fixed transmission-side optical surface, a lower-stage displacement optical surface displaced by the displacement means, a position-fixed common intermediate optical surface, and an upper-stage displacement optical surface displaced by the displacement means, arranged in the order described above, The optical path A between the transmission side optical surface and the lower displacement optical surface, the optical path B between the lower displacement optical surface and the common intermediate optical surface, and the common intermediate optical surface and the upper displacement optical surface. And the length of the optical path A and the optical path B are increased or decreased in a reciprocal relationship by displacing one or both of the lower optical displacement surface and the upper optical displacement surface by the displacement means. To change the light interference action of the light path A and the light path B, and increase or decrease the length of the light path C to change the light interference action of the light path C, so that the upper displacement optical surface The transmitted light from the optical surface on the transmission side or the upper stage Optical switching element comprising varying the light intensity of the reflected light from the optical surface. 変位光学面は、外部から印加される電気信号に応じて発生する電界が該変位光学面に加える静電気力により変位させる請求項1〜4いずれか記載の光スイッチング素子。 5. The optical switching element according to claim 1, wherein the displacement optical surface is displaced by an electrostatic force applied to the displacement optical surface by an electric field generated according to an electric signal applied from outside. 変位光学面は、外部から印加される電気信号に応じて発生する電界が該変位光学面と一体に形成された補助変位面に加える静電気力により前記補助変位面と一体に変位させる請求項1〜4いずれか記載の光スイッチング素子。 The displacement optical surface is displaced integrally with the auxiliary displacement surface by an electrostatic force applied to an auxiliary displacement surface formed integrally with the displacement optical surface by an electric field generated according to an electric signal applied from the outside. 4. The optical switching element according to any one of 4 above. 変位光学面の変位量を制限する変位制限ストッパを変位光学面に対して付設してなる請求項1〜6いずれか記載の光スイッチング素子。 The optical switching element according to claim 1, wherein a displacement limiting stopper for limiting a displacement amount of the displacement optical surface is attached to the displacement optical surface. 変位制限ストッパは、変位した変位光学面が接面するストッパ透過面である請求項7記載の光スイッチング素子。 8. The optical switching element according to claim 7, wherein the displacement limiting stopper is a stopper transmission surface on which the displaced displacement optical surface comes into contact. 変位した変位光学面がストッパ透過面に接面する範囲以下の透過窓を開口した遮光面を、変位光学面と平行に配設した請求項7記載の光スイッチング素子。 8. The optical switching element according to claim 7, wherein a light-shielding surface having a transmission window that is equal to or smaller than a range in which the displaced displacement optical surface is in contact with the stopper transmission surface is disposed in parallel with the displacement optical surface. 光源からの入射光に対して透過光又は反射光の光強度を変化させる光スイッチング素子からなる画素単位を1次元配列又は2次元配列し、各画素単位の点灯又は消灯により画像を表示面に表示する画像表示装置において、光スイッチング素子は位置固定な透過側光学面と、変位手段により変位する変位光学面と、位置固定な入射側光学面とを前記記載順に配設し、前記透過側光学面及び変位光学面間の光経路Aと、前記変位光学面及び入射側光学面間の光経路Bとを形成してなり、変位手段により変位光学面を変位させることにより、光経路A及び光経路Bの長さを相反関係で増減させて該光経路A及び光経路Bの光の干渉作用を変化させて、入射側光学面に照射する入射光に対する透過側光学面からの透過光又は入射側光学面からの反射光の光強度を変化させることを特徴とする光スイッチング素子を用いた画像表示装置。 Pixel units consisting of optical switching elements that change the light intensity of transmitted light or reflected light with respect to incident light from a light source are arranged one-dimensionally or two-dimensionally, and an image is displayed on the display surface by turning on or off each pixel unit. In the image display device, the optical switching element includes a transmission-side optical surface having a fixed position, a displacement optical surface that is displaced by a displacement means, and a light-incident-side optical surface that is fixed in position, in the order described, and the transmission-side optical surface. And an optical path A between the displacement optical surface and an optical path B between the displacement optical surface and the incident-side optical surface. By displacing the displacement optical surface by the displacement means, the optical path A and the optical path The length of B is increased / decreased in a reciprocal relationship to change the light interference action of the light path A and the light path B, and the transmitted light from the transmission side optical surface or the incident side with respect to the incident light irradiated on the incident side optical surface Reflected light from optical surface An image display device using the optical switching element, characterized in that to vary the light intensity. 光スイッチング素子は、変位光学面の変位量を制限する変位制限ストッパを変位光学面に対して付設してなる請求項10記載の光スイッチング素子を用いた画像表示装置。 11. The image display device using an optical switching element according to claim 10, wherein the optical switching element is provided with a displacement limiting stopper for limiting a displacement amount of the displacement optical surface with respect to the displacement optical surface. 変位制限ストッパは、変位した変位光学面が接面するストッパ透過面である請求項11記載の光スイッチング素子を用いた画像表示装置。 12. The image display device using an optical switching element according to claim 11, wherein the displacement limiting stopper is a stopper transmission surface on which the displaced optical displacement surface comes into contact. 光スイッチング素子は、変位した変位光学面がストッパ透過面に接面する範囲以下の透過窓を開口した遮光面を、変位光学面と平行に配設した請求項7記載の光スイッチング素子を用いた画像表示装置。 8. The optical switching element according to claim 7, wherein the optical switching element is provided with a light-shielding surface having a transmission window that is less than or equal to a range where the displaced displacement optical surface is in contact with the stopper transmission surface parallel to the displacement optical surface. Image display device. 光スイッチング素子は、外部から印加される電気信号に応じて発生する電界が変位光学面に加える静電気力を変位手段として該変位光学面を変位させる請求項10記載の光スイッチング素子を用いた画像表示装置。 11. The image display using an optical switching element according to claim 10, wherein the optical switching element displaces the displacing optical surface by using an electrostatic force applied to the displacing optical surface by an electric field generated according to an electric signal applied from the outside as a displacing means. apparatus. 光スイッチング素子は、外部から印加される電気信号に応じて発生する電界が変位光学面と一体に形成された補助変位面に加える静電気力を変位手段として前記変位光学面を補助変位面と一体に変位させる請求項10記載の光スイッチング素子を用いた画像表示装置。 The optical switching element integrates the displacement optical surface with the auxiliary displacement surface using an electrostatic force applied to an auxiliary displacement surface formed integrally with the displacement optical surface by an electric field generated in response to an externally applied electric signal. 11. An image display device using the optical switching element according to claim 10. 光スイッチング素子は、画素単位の単位点灯時間を分割した単位印加時間で電気信号を印加してなり、前記単位印加時間の総和が単位点灯時間を超えない範囲で電気信号の印加回数を増減することにより、該画素単位の発色及び光強度を調整する請求項14又は15いずれか記載の光スイッチング素子を用いた画像表示装置。 The optical switching element is configured to apply an electric signal with a unit application time obtained by dividing a unit lighting time in pixel units, and increase or decrease the number of times the electric signal is applied within a range in which the total of the unit application time does not exceed the unit lighting time. 16. The image display device using the optical switching element according to claim 14, wherein the color development and the light intensity of the pixel unit are adjusted by: 光スイッチング素子は、画素単位の単位点灯時間以下の連続印加時間で電気信号を印加してなり、前記単位点灯時間を超えない範囲で電気信号の連続印加時間を増減することにより、該画素単位の発色及び光強度を調整する請求項14又は15いずれか記載の光スイッチング素子を用いた画像表示装置。 The optical switching element is configured to apply an electric signal with a continuous application time equal to or less than a unit lighting time of a pixel unit, and by increasing or decreasing the continuous application time of the electric signal within a range not exceeding the unit lighting time, 16. An image display device using the optical switching element according to claim 14, wherein color development and light intensity are adjusted. 画素単位は、赤色光、緑色光及び青色光に対応して異なる光経路A及び光経路Bの長さを設定した赤色用スイッチング素子、緑色用スイッチング素子及び青色用スイッチング素子の各1基合計3基を一組として構成し、光源から赤色光、緑色光及び青色光に対応する3波長の可視光を入射光として前記画素単位に入力し、前記画素単位を構成する各光スイッチング素子からの透過光又は反射光により表示面に画像を表示してなり、各画素単位を構成する各光スイッチング素子の透過光又は反射光の光強度を個別に変化させることにより、表示面に各画素単位でカラー表示してなる請求項10記載の光スイッチング素子を用いた画像表示装置。 The pixel unit is a total of 3 each of a red switching element, a green switching element, and a blue switching element in which different lengths of light paths A and B are set corresponding to red light, green light, and blue light. A group is configured as a set, and visible light of three wavelengths corresponding to red light, green light, and blue light is input as incident light from the light source to the pixel unit, and transmitted from each optical switching element constituting the pixel unit. An image is displayed on the display surface by light or reflected light, and the color of each pixel on the display surface is changed by individually changing the light intensity of transmitted light or reflected light of each light switching element constituting each pixel unit. 11. An image display device using the optical switching element according to claim 10, which is displayed. 光源は、可視光の発光ダイオード又はレーザダイオードである請求項18記載の光スイッチング素子を用いた画像表示装置。 19. The image display device using an optical switching element according to claim 18, wherein the light source is a visible light emitting diode or a laser diode. 表示面は、複数の走査線を走査順に点灯して画像を表示してなり、前記走査線に沿って並ぶ画素単位を走査単位とし、走査順にしたがって点灯する走査単位のみに光源から入射光を入力し、走査順でない残余の走査単位には光源から入射光を入力しない請求項18又は19いずれか記載の光スイッチング素子を用いた画像表示装置。 The display surface displays an image by lighting a plurality of scanning lines in the scanning order. The unit of pixels arranged along the scanning lines is a scanning unit, and incident light is input from the light source only to the scanning units that are lit according to the scanning order. 20. The image display device using an optical switching element according to claim 18, wherein incident light is not input from the light source to the remaining scanning units not in the scanning order. 画素単位は、紫外光に対応して入射側スペーサ面の長さを設定した紫外光用スイッチング素子の少なくとも3基を一組として構成し、光源から単波長の紫外光を入射光として前記画素単位に入力し、前記画素単位を構成する各光スイッチング素子からの透過光又は反射光を受けて発光する赤色用蛍光面、緑色用蛍光面又は青色用蛍光面を前記画素単位の各光スイッチング素子に対応して設けた表示面に画像を表示してなり、各画素単位を構成する各光スイッチング素子の透過光又は反射光の光強度を個別に変化させることにより、表示面に各画素単位でカラー表示してなる請求項10記載の光スイッチング素子を用いた画像表示装置。 The pixel unit is composed of at least three switching elements for ultraviolet light in which the length of the incident side spacer surface is set corresponding to the ultraviolet light, and the pixel unit uses the single wavelength ultraviolet light from the light source as incident light. The red fluorescent screen, the green fluorescent screen, or the blue fluorescent screen that emits light by receiving transmitted light or reflected light from each optical switching element constituting the pixel unit is used as each optical switching element in the pixel unit. The image is displayed on the corresponding display surface, and the color of each pixel on the display surface is changed by individually changing the light intensity of transmitted light or reflected light of each optical switching element constituting each pixel unit. 11. An image display device using the optical switching element according to claim 10, which is displayed. 光源は、紫外光の発光ダイオード又はレーザダイオードである請求項21記載の光スイッチング素子を用いた画像表示装置。 22. The image display device using an optical switching element according to claim 21, wherein the light source is an ultraviolet light emitting diode or a laser diode. 表示面は、複数の走査線を走査順に点灯して画像を表示してなり、前記走査線に沿って並ぶ画素単位を走査単位とし、走査順にしたがって点灯する走査単位のみに光源から入射光を入力し、走査順でない残余の走査単位には光源から入射光を入力しない請求項21又は22いずれか記載の光スイッチング素子を用いた画像表示装置。 The display surface displays an image by lighting a plurality of scanning lines in the scanning order. The unit of pixels arranged along the scanning lines is a scanning unit, and incident light is input from the light source only to the scanning units that are lit according to the scanning order. 23. The image display device using an optical switching element according to claim 21, wherein incident light is not input from the light source to the remaining scanning units not in the scanning order.
JP2005339999A 2005-11-25 2005-11-25 Optical switching element and image display apparatus using the same Pending JP2007147833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339999A JP2007147833A (en) 2005-11-25 2005-11-25 Optical switching element and image display apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339999A JP2007147833A (en) 2005-11-25 2005-11-25 Optical switching element and image display apparatus using the same

Publications (1)

Publication Number Publication Date
JP2007147833A true JP2007147833A (en) 2007-06-14

Family

ID=38209329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339999A Pending JP2007147833A (en) 2005-11-25 2005-11-25 Optical switching element and image display apparatus using the same

Country Status (1)

Country Link
JP (1) JP2007147833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070188A (en) * 2009-09-23 2011-04-07 Samsung Electronics Co Ltd Display device
JP2013506160A (en) * 2009-09-28 2013-02-21 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Interference display device with interference reflector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070188A (en) * 2009-09-23 2011-04-07 Samsung Electronics Co Ltd Display device
JP2013506160A (en) * 2009-09-28 2013-02-21 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Interference display device with interference reflector

Similar Documents

Publication Publication Date Title
JP2002207182A (en) Optical multilayered structure and method for manufacturing the same, optical switching element, and image display device
JP4074714B2 (en) Array type light modulation element and flat display driving method
EP1406109B1 (en) Optical multilayer structure and its production method, optical switching device, and image display
JP3888075B2 (en) Optical switching element, optical switching device, and image display apparatus
TWI358550B (en) Separable modulator
US5062689A (en) Electrostatically actuatable light modulating device
JP4460732B2 (en) Flat display device and exposure apparatus
US7564610B2 (en) Light control device and light control system using same
TW200911677A (en) Microelectromechanical device with optical function separated from mechanical and electrical function
JP2002062505A (en) Projection type display deice and interference modulation element used therefor
JP2007240617A (en) Light controlling element, display device, and stress measuring device
JPH11258558A (en) Planar display device
JP4404174B2 (en) Optical switching element, switching device using the same, and image display device
KR101389478B1 (en) Display device and method of manufacturing the display device
JP2002040336A (en) Optical modulation element and exposure device and flat display device using the same
JP3912760B2 (en) Driving method of array type light modulation element and flat display device
JP2005043726A (en) Display element and portable equipment using it
TWI798436B (en) Reflective Dynamic Metainterface
JPH11254752A (en) Exposing element
JP2005157133A (en) Optical switching element and image display apparatus using optical switching element
JP2007147833A (en) Optical switching element and image display apparatus using the same
JP2010210813A (en) Actuator, optical controller, electrooptical device, and electronic equipment
JP2010197778A (en) Optical controller, method of manufacturing the same, electrooptical apparatus, and electronic device
WO2020203313A1 (en) Display device and lens array
JP4614027B2 (en) Optical multilayer structure, optical switching element, and image display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071227