JP4074714B2 - Array type light modulation element and flat display driving method - Google Patents

Array type light modulation element and flat display driving method Download PDF

Info

Publication number
JP4074714B2
JP4074714B2 JP27170698A JP27170698A JP4074714B2 JP 4074714 B2 JP4074714 B2 JP 4074714B2 JP 27170698 A JP27170698 A JP 27170698A JP 27170698 A JP27170698 A JP 27170698A JP 4074714 B2 JP4074714 B2 JP 4074714B2
Authority
JP
Japan
Prior art keywords
light modulation
modulation element
light
voltage
type light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27170698A
Other languages
Japanese (ja)
Other versions
JP2000098269A (en
Inventor
宏一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP27170698A priority Critical patent/JP4074714B2/en
Priority to US09/404,541 priority patent/US6356254B1/en
Publication of JP2000098269A publication Critical patent/JP2000098269A/en
Application granted granted Critical
Publication of JP4074714B2 publication Critical patent/JP4074714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/06Passive matrix structure, i.e. with direct application of both column and row voltages to the light emitting or modulating elements, other than LCD or OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • G09G2310/062Waveforms for resetting a plurality of scan lines at a time

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロマシニングにより作製され、電気機械動作により光の透過率を変化させるアレイ型光変調素子、及び該アレイ型光変調素子を用いた平面ディスプレイの駆動方法に関し、特に、アレイ型光変調素子及び平面ディスプレイの応答速度を向上させる技術に関する。
【0002】
【従来の技術】
マイクロマシニングにより作製された可撓薄膜を、静電気力により機械的動作させることで光変調を行う電気機械的な光変調素子が知られている。この光変調素子としては、例えば、透明な電極とダイヤフラムからなる可撓薄膜を、支持部を介して導光板上の固定電極に架設したものがある。
この光変調素子では、両電極間に所定の電圧を印加することで電極間に静電気力を発生させ、可撓薄膜を固定電極に向かって撓ませる。これに伴って素子自体の光学的特性が変化して、光変調素子に光が透過する。一方、印加電圧をゼロにすることで可撓薄膜が弾性復帰し、光変調素子は光を遮光する。このようにして光変調が行なわれる。
【0003】
ところで、可撓薄膜を静電気力によって変形させたり弾性復帰させる場合、印加電圧Vgsと可撓薄膜の変位の関係はヒステリシス特性を示す。従って、印加電圧Vgsと光透過率Tとの関係も図17に示すようにヒステリシス特性を示すことになる。
このヒステリシス特性によれば、光変調要素がOFF(光遮蔽)状態の状態では、VgsがVth(L)以下ではOFF状態を維持し、VgsがVth(H)以上になるとON状態を維持する。そして、光変調要素は、VgsがVth(H)以上ではON状態を維持したままとなり、Vs(L)以下となるとOFF状態に飽和する。尚、Vgsの極性が負の場合は、正極性の縦軸対称の特性となる。
【0004】
【発明が解決しようとする課題】
前記ヒステリシス特性に基づいて、可撓薄膜に静電気応力が生じていない平衡状態(OFF状態)から印加電圧VgsとしてVs(H)を加え、その後、可撓薄膜が十分に変形してからVgsをゼロとしたときの透過光の応答特性を図18に示した。
【0005】
図18によれば、電圧印加による立ち上がり時間τrは、静電気力(引力)のため変位応答が速く、これによる光学応答も速い。さらに、印加電圧Vgsを高くすることで応答時間を短縮することが可能である。
一方、立ち下がり時間τfは、可撓薄膜の材質や形状等により決定される弾性復帰時間であり、一般に立ち上がり時間τrより遅くなる。また、印加電圧による制御は当然ながら不可能である。
【0006】
このため、光変調素子を2次元マトリクスで駆動する場合、光変調画素に入力する画像信号を書き込むための走査時間τは、遅い方の応答時間に律速されてしまう。上記例では、走査時間τは立ち下がり時間τfとなる。このように走査時間が遅くなると、マトリクスの行数を多くすることができず、また、時分割により階調を得る駆動方法においては、階調数を多くすることができないといった問題を生じることになる。
【0007】
さらに、このようなヒステリシス特性を示すものでは、書き込みを行う前の可撓薄膜の状態に次の動作が影響を受けるため、再現良く正確に書き込み動作をさせるためには、書き込み動作の前にリセット動作、即ち、一旦平衡状態(OFF状態)にして、その後に所望の透過率となるように書き込み動作を行うことが望ましい。しかし、単純に書き込み動作の前にリセット動作を行うと、1行当たりの走査時間がさらに長くなり、上記問題を助長することになる。
【0008】
そこで、光変調素子の可撓部分の剛性を高めることで高速応答性を得ることが考えられるが、その反面、駆動電圧が増大するために駆動回路の負担が大きくなり、低コスト・小型化を妨げる要因となり得る。
【0009】
本発明は、このような従来の問題に鑑みてなされたもので、電気機械的光変調素子が復帰に長い時間を要する応答時間の長いものであっても、画質を低下させることなく復帰時間によるロスを防止して実質的な応答時間を飛躍的に向上させることができるアレイ型光変調素子及び平面ディスプレイの駆動方法を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載のアレイ型光変調素子の駆動方法は、
静電気力による可撓部の変位動作と、該可撓部の弾性復帰動作により光変調を行う電気機械的な光変調素子を2次元のマトリクス状に配列したアレイ型光変調素子において、前記光変調素子の復帰動作を行うリセット走査を、リセットされる走査ライン以外の走査ラインに対して、前記素子の変位動作又は状態維持の選択を行う書き込み走査と同時に行い、各走査ラインの書き込み走査を間断なく行い駆動することを特徴とする。
【0011】
このアレイ型光変調素子の駆動方法では、光変調素子のリセット走査を、リセットされる走査ライン以外の走査ラインに対する書き込み走査期間と同時に行い駆動するため、各走査ラインの書き込み走査は、長い弾性復帰時間を要する光変調素子であっても時間をロスすることなく行うことができ、アレイ型光変調素子の応答時間を飛躍的に向上させることができる。
【0012】
請求項2記載のアレイ型光変調素子の駆動方法は、前記リセット走査時間を前記書き込み走査時間の整数倍に設定することを特徴とする。
【0013】
このアレイ型光変調素子の駆動方法では、リセット走査時間を書き込み走査時間の整数倍に設定することにより、設計の自由度を損なうことなく、単純な設計変更によりリセット走査時間を延長することができ、より長い弾性復帰時間を要する素子であっても、応答速度を低下させることなく駆動することができる。
【0014】
請求項3に記載の光変調素子の駆動方法は、前記リセット走査の駆動時間を前記可撓部の弾性復帰時間以上に設定することを特徴とする。
【0015】
この光変調素子の駆動方法では、リセット動作が光変調素子の可撓部の弾性復帰動作であって、可撓部の弾性復帰時間以上にリセット駆動時間を設定することにより、書き込み動作の開始タイミングが弾性復帰途中になることはなく、確実に弾性復帰を保証した駆動方法とすることができる。また、リセット駆動時間を弾性復帰時間に近づけることで素子の書き込み動作をリセット直後に行うことができ、効率良く素子を駆動させることができる。
【0016】
請求項4に記載の光変調素子の駆動方法は、前記光変調素子の弾性復帰動作が、復帰後に遮光状態となる動作であることを特徴とする。
【0017】
この光変調素子の駆動方法では、光変調素子のリセット動作である弾性復帰動作の完了後に遮光状態となるため、リセット動作を行う際、画像として“黒"を出力するときは遮光されたままとなり、“白"を出力するときはリセット期間だけ出力が減少するが殆ど問題となることはない。逆に、リセット動作を光透過状態とした場合、画像として“黒"を出力するときに、リセット動作による光透過が発生し、コントラストが著しく低下することになる。従って、このようなコントラストの低下を防止することができる。
【0018】
請求項5に記載の平面ディスプレイの駆動方法は、前記アレイ型光変調素子と、該アレイ型光変調素子に対向配置した平面光源と、アレイ型光変調素子を挟み前記平面光源の反対側に配設した蛍光体と、を備え、前記アレイ型光変調素子を請求項1〜請求項4のいずれか1項記載の駆動方法により駆動して、前記アレイ型光変調素子から出射される光によって蛍光体を発光表示させることを特徴とする。
【0019】
この平面ディスプレイの駆動方法では、素子の書き込み動作の前にリセット動作を完了させて応答時間の高速化を図った電気機械的なアレイ型光変調素子を用い、アレイ型光変調素子を通過した光源光により蛍光体を発光表示させる構成としているので、平面ディスプレイを高速に駆動することが可能になる。
【0020】
請求項6に記載の平面ディスプレイの駆動方法は、前記平面光源は、前記蛍光体を励起させる紫外線出射光源であることを特徴とする。
【0021】
この平面ディスプレイの駆動方法では、平面光源からの出射紫外線光を光変調素子で透過、遮光して蛍光体を発光励起させることができる。
【0022】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。図1に本発明の第1実施形態に係る光変調素子の構成を示す。
【0023】
可撓薄膜を電気機械動作させて光変調させる動作原理としては、可撓薄膜と透明な信号電極とを離反又は接触させることによる導光拡散作用(以下、導光拡散と称する。)を利用することができる。導光拡散では、空隙を光の透過抵抗として、空隙が形成されている際には、信号電極からの出射光を遮断若しくは減衰させる一方、可撓薄膜を信号電極に接触させた時のみに、信号電極からの出射光を可撓薄膜へ導光(モード結合)させ、その光を可撓薄膜において拡散させることで、可撓薄膜からの出射光の強度を制御する(光変調する)。
【0024】
図1に示すように、導光板1上には、紫外線に対して透明な一方の電極(信号電極)2を形成してある。この例としては、電子密度の高いITOなどの金属酸化物、非常に薄い金属薄膜(アルミ等)、金属微粒子を透明絶縁体に分散した薄膜、又は高濃度ドープしたワイドハンドギャップ半導体などが好適である。
【0025】
電極2の上には、絶縁性の支持部3を形成してある。支持部3には、例えばシリコン酸化物、シリコン窒化物、セラミック、樹脂などを用いることができる。支持部3の上端面には、ダイヤフラム4を形成してある。電極2とダイヤフラム4との間には、空隙(キャビティ)5が形成されている。このダイヤフラム4には、ポリシリコンなどの半導体、絶縁性のシリコン酸化物、シリコン窒化物、セラミック、樹脂などを用いることができる。また、ダイヤフラム4の屈折率は、導光板1の屈折率と同等かそれ以上が好ましい。
【0026】
ダイヤフラム4の上には、光拡散層6、例えば、無機、有機透明材料の表面に凹凸を形成したもの、マイクロプリズム、マイクロレンズを形成したものや、無機、有機多孔質材料、又は屈折率の異なる微粒子を透明基材に分散したものなどを形成してある。
【0027】
光拡散層6の上には、紫外線に対して透明な他方の電極(走査電極)7を形成してある。例として電極2と同様の材料のものを用いることができる。ダイヤフラム4、光拡散層6、電極7は、可撓部としての可撓薄膜8を構成している。
【0028】
導光板1とダイヤフラム4との間には空隙5が存在するが、この空隙5は支持部3の高さで略決定される。空隙5の高さは、例えば、0.1μmから10μm程度が好ましい。この空隙5は、通常、犠牲層のエッチングにより形成される。
【0029】
また、上述の構成例の他に、ダイヤフラム4と光拡散層6とを同一の材料で構成しても良い。例えば、窒化シリコン膜でダイヤフラム4を構成し、上面側の表面に凹凸を形成することによって、拡散機能を持たせることができる。
【0030】
次に、このように構成した光変調素子10の動作原理を説明する。
電圧OFF時、両電極2、7の電圧がゼロで、ダイヤフラム4と導光板1との間に空隙5(例:空気)が存在する場合、
導光板1の屈折率をnwとすると、空気との界面における全反射臨界角θcは、
θc=sin-1(nw)
となる。従って、紫外線は、界面への入射角θが、θ>θcのとき、図1(a)に示すように、導光板1内を全反射しながら進む。
【0031】
電圧ON時、両電極2、7に電圧を印加し、ダイヤフラム4と導光板1表面とを接触又は十分な距離に近づけた場合、図1(b)に示すように、紫外線は、ダイヤフラム4側に伝搬透過し、更に光拡散層6により拡散されて表面側に出射する。
【0032】
この実施形態による光変調素子10によれば、電圧印加によるダイヤフラム4の位置制御により、光変調を行うことができる。
尚、導光板1とダイヤフラム4の間には紫外線に対して透明な電極2が存在するが、通常使用される薄膜の厚さ(2000A)程度であれば、上述の動作上問題の生ずることはない。
【0033】
本実施形態では、図2に示すように上記光変調素子10がn行m列の2次元状に配列される。即ち、マトリクスの各交点Tr(1,1)、Tr(1,2)、Tr(2,1)、Tr(2,2)には光変調素子10がそれぞれ配置され、アレイ型光変調素子50を構成する。
各光変調素子10は、一画素の領域に対応させてある。尚、ここではマトリクスの一部である二行二列のマトリクスに着目して説明することにする。
尚、このアレイ型光変調素子50は、単純マトリクス駆動により動作する。
【0034】
同じ行に配列された光変調素子10のそれぞれの電極は、共通に接続して走査電極としてある。この走査電極には電位Vgが印加される。また、同じ行に配列された光変調素子10のそれぞれの電極は、共通に接続して信号電極としてある。この信号電極には電位Vbが印加される。従って、各光変調素子10に印加される電極間電圧Vgsは、(Vb−Vg)となる。
【0035】
アレイ型光変調素子50を駆動するには、走査信号に従って、行順次に走査電極7を走査し、これと同期させて、走査された電極7に対応するデータ信号を信号電極2に印加する。
【0036】
ここで、走査電極7には、リセット信号、選択信号、非選択信号の三種類の信号(電圧)が与えられる。
リセット信号は、光変調素子10の以前の状態に拘わらず、その行の光変調素子10をOFF(光遮蔽)にする。この時の走査電極の電圧をVg(r)とする。
【0037】
選択信号は、その行にデータを書き込むための信号(書き込み動作用の信号)である。この信号と同時に、信号電極に印加された電圧に従い、光変調素子10の状態がON(光透過)又はOFF(光遮蔽)に決定される。この時の走査電極の電圧をVg(s)とする。
【0038】
非選択信号は、選択がなされないときの信号である。この時、信号電極の電圧に拘わることなく光変調素子10の状態は変わらず、前の状態が維持される。この時の走査電極の電圧をVg(ns) とする。
【0039】
一方、信号電極2には、ON信号、OFF信号の二種類の信号(電圧)が与えられる。
ON信号は、選択された行の光変調素子10に対し、光変調素子10の状態をON(光透過)にする。この時の信号電極2の電圧をVb(on) とする。
【0040】
OFF信号は、選択された行の光変調素子10に対し、光変調素子10の状態をOFF(光遮蔽)にする。但し、実際には、直前で光変調素子10がリセットされることを想定しているので、光変調素子10の状態をOFF(光遮蔽)にする場合は、前の状態(OFF状態)を維持する信号でよい。この時の信号電極2の電圧をVb(off)とする。
【0041】
以上の走査電極電圧、信号電極電圧の組み合わせにより、光変調素子10の電極間電圧Vgsは、以下の6種類の電圧に分けられる。また、電極間電圧Vgsと透過率の特性により、特定の条件が与えられることになる。
【0042】
Vgs(r-on) =Vb(on) −Vg(r) ≦ Vs(L)
Vgs(r-off) =Vb(off)−Vg(r) ≦ Vs(L)
Vgs(s-on) =Vb(on) −Vg(s) ≧ Vs(H)
Vgs(s-off) =Vb(off)−Vg(s) ≦ Vth(L)
Vgs(ns-on) =Vb(on) −Vg(ns) ≦ Vth(L)
Vgs(ns-off)=Vb(off)−Vg(ns) ≧ Vth(H)
【0043】
以上の条件をまとめると、図3に示すとおりになる。
例えば、走査電極電圧Vg がリセットVg(r)で、信号電極電圧Vb がON、即ちVb(on) の場合には、Vs(H)より大きい値の信号電極電圧Vb (図中太実線61)から、Vs(H)とVth(L) との間の走査電極電圧Vg (図中太実線63)が減算され、その値(図中太実線65)がVs(L)より小さくなる。
即ち、
Vgs(r-on)≦Vs(L)
となる。その他同様にして、6種類の電圧が定まることになる。
【0044】
次に、このような電極間電圧Vgsと透過率との関係を利用して、光変調素子10を2次元に配置したマトリクスにデータを書き込む方法を説明する。
マトリクスとして図2に示した2行2列のマトリクスを用い、データの書き込みを行う。マトリクスの各光変調素子10には、以下のON、OFFデータを書き込むものとする。
Tr(1,1) → ON Tr(1,2) → OFF
Tr(2,1) → OFF Tr(2,2) → ON
【0045】
マトリクスには、図4に示すような波形の電圧を印加する。
例えば、1行目Vg(1)には、
t1:リセット電圧 t2:選択電圧
t3:非選択電圧 t4:非選択電圧
を印加する。
1列目Vb(1)には、
t1:don't care t2:ON電圧
t3:OFF電圧 t4:don't care
を印加する。
これにより、各光変調素子10に所望のデータが行順次で書き込まれる。
そして、光変調素子のリセット走査の後に、該素子の変位動作又は状態維持を選択する書き込み走査を行うことで、素子のヒステリシス特性により書き込み走査前の状態が次の動作に影響を及ぼすことが防止され、安定した書き込み走査を行うことができる。また、素子のヒステリシス特性により、単純マトリクス構成の二次元光変調アレイを矛盾無く、即ち、非選択走査ライン上の画素が書き込み走査時に設定されたON/OFF状態を確実に維持されるように駆動することが可能となる。
【0046】
即ち、例えば上述の1行1列目のマトリクスTr(1,1)の場合では、
Vgs:Vb(1)−Vg(1)であるから、
t1:リセット電圧(OFF) t2:ON
t3:状態維持 t4:状態維持
となる。
【0047】
従って、t2におけるONの状態が維持(メモリー)され、その結果、マトリクスTr(1,1)は光変調素子10が「ON」の状態となる。その他、同様にして、他のマトリクスTr(1,2)は「OFF」、Tr(2,1)は「OFF」、Tr(2,2)は「ON」の状態となる。
【0048】
以上の動作により、各走査ラインの光変調素子に対する走査電圧の印加状態は、図5のチャートに示すようになる。即ち、任意のi行目の走査電極にリセット電圧、選択電圧が順次印加されると共に、i+1行目の走査ラインでは、i行目の走査ラインにおける選択電圧印加期間終了後、間断なく直ちに選択電圧が印加される。この場合、i+1行目のリセット電圧印加期間は、i行目の選択電圧印加期間とオーバーラップさせている。他の走査ラインに対しても同様に、リセット電圧印加期間を前行の選択電圧印加期間にオーバーラップさせている。
【0049】
このように、各走査ラインの光変調素子10は、他の行の選択期間(書き込み期間)と同時にリセット動作を行うことで、走査時間を長くすることなく、安定した書き込み動作が得られる。従って、光変調素子の可撓部分の弾性特性やリセット信号の印加により走査時間が遅くなることが防止され、確実な動作を実現しつつアレイ型光変調素子の大型化、高精細化を図ることができる。
【0050】
次に、本発明に係る光変調素子の駆動方法の第2実施形態を説明する。本実施形態は、復帰時間(立ち下がり時間)τfが大きく遅延する(τf≫τr)光変調素子を用いた場合の駆動方法である。図6は、各光変調素子への印加電圧の波形を示している。本実施形態では、リセット電圧の印加期間を前述の第1実施形態の3倍に設定している。即ち、図6においては、図4に示す1行目のリセット期間t1が図6のt1〜t3に相当しており、リセット電圧の印加期間が走査期間τの3倍に設定されている。
この場合の各走査ラインの光変調素子に対する走査電圧の印加状態は、図7のチャートに示すようになる。図7によれば、第1実施形態の場合と同様に、i+1行目の走査ラインでは、i行目の走査ラインにおける選択電圧印加期間終了後、直ちに選択電圧が印加される。この場合、i+1行目のリセット電圧印加期間は、i行目の選択電圧印加期間及びそれ以前の期間(図ではリセット電圧印加期間の一部)にオーバーラップさせており、他の走査ラインに対しても同様にオーバーラップさせている。
【0051】
このように、リセット電圧印加期間を延長させることにより、復帰時間の長い光変調素子であっても走査期間を長くすることなく正確な応答性を得ることが可能となる。
【0052】
ここで、図8は本実施形態の画素Tr(1,1)と画素Tr(1,2)に対する印加電圧Vgsと透過光の応答のチャートを示している。図8(a)に示すように、画素Tr(1,1)は、画素のリセット期間内に立ち下がり時間τfを終了させ、画素をON状態にする信号は予め画素をリセットさせた後に印加させている。このため、立ち上がり時間τrだけで画素をON状態にすることができる。
また、図8(b)に示すように、画素Tr(1,2)は、画素のリセット期間内に立ち下がり時間τfを終了させ、その後状態を維持することで画素をOFF状態にしている。
【0053】
上記各実施形態に示すように、光変調素子は、光変調素子の平衡状態(復帰状態)、又は、リセット状態が光遮断となる構成が好ましい。リセット状態が素子のON(光透過)状態であると、画素として“黒"を出力させるときは、リセット動作による光透過が発生し、コントラストが著しく悪くなる。
一方、リセット状態がOFF(光遮断)であれば、“黒"出力のときは全く光透過はなく、コントラストは殆ど変化しない。“白"出力のとき、リセット期間だけ出力が減るが、この場合は視覚的に殆ど問題にならない。これは、例えば行数が500〜1000行のパネルの場合、その数行分のリセット期間であっても、これによる光量低下は1%程度と僅かなためである。また、素子自体の応答性が遅いため、出力は直ちにONからOFFにならず、徐々に減光するためと、人間の視覚特性が、背景輝度が高いときは輝度変化に対して鈍感になるためでもある。
【0054】
以上説明したように、上記各実施形態では図1に示す導光拡散作用を利用した光変調素子を用いたが、本発明による駆動方式はこれに限定されることなく、導光反射による光変調素子にも適用できる。これは、ダイヤフラム上に適度に傾斜したアルミ等の反射膜を設けて、これを可撓薄膜とした構成であり、電圧ON時に可撓薄膜へ導光された光を反射膜により導光板側に反射させて出射する光変調素子である。この他、以下に示す光変調素子に対しても良好に適用できる。
以下、上述した各実施形態における平面表示装置における光変調素子の他の各構成例を、図9〜図16を参照して順次説明する。
【0055】
まず、可撓薄膜を電気機械動作させて光変調する動作原理として、ファブリペロー干渉を利用した例を説明する。ファブリペロー干渉では、二枚の平面が向かい合わせに平行に配置された状態において、入射光線は、反射と透過を繰り返して多数の光線に分割され、これらは互いに平行となる。透過光線は、無限遠におうて重なり合い干渉する。面の垂線入射光線とのなす角をiとすれば、隣り合う光線間の光路差はx=nt・cosiで与えられる。但し、nは二面間の屈折率、tは間隔である。光路差xが波長λの整数倍であれば透過線は互いに強め合い、半波長の奇数倍であれば互いに打ち消し合う。即ち、反射の際の位相変化がなければ、
2nt・cosi=mλ で透過光最大となり、
2nt・cosi=(2m+1)λ/2 で透過光最小となる。
但し、mは正整数である。
【0056】
即ち、光路差xが所定の値となるように、可撓薄膜を移動させることにより、透明基板から出射される光を、光変調して可撓薄膜から出射させることが可能となる。
【0057】
このようなファブリペロー干渉を利用した光変調素子を平面光源と組み合わせて平面ディスプレイとした具体的な構成を以下に説明する。
図9は光変調素子及び平面光源の概略断面図である。光変調素子20は、紫外線に対して透明な基板21上に設けられた図示しない基板上電極及びダイヤフラム22上に設けられた図示しないダイヤフラム上電極への電圧印加によってダイヤフラム22を変位させ、多層膜干渉効果を生じさせることにより、平面光源23からの紫外線を光変調する。
【0058】
平面光源23は、平板状の平面光源ユニット23a、及び平面光源ユニット23aの側方に設けられたブラックライト用紫外線ランプ(低圧水銀ランプ)23bからなる。平面光源23は、ブラックライト用低圧水銀ランプ23bからの紫外線を、平面光源ユニット23aの側面から入射させて上面から出射させる。
低圧水銀ランプ23bの内壁にブラックライト用の蛍光物質(例えば、BaSi2 5 :Pb2+) を塗布した場合、発光紫外線の分光特性としては、図10に示すように、360nm付近に中心波長λ0を有する。この紫外線をバックライト光として使用する。
【0059】
図示しない基板上電極は、基板21上に図9の紙面垂直方向に所定の間隔をあけて一対設けられる。基板21上における各基板上電極の間には、誘電体多層膜ミラー25,26が設けられる。
【0060】
ダイヤフラム22は、両端部が基板21上に形成された支持部24に懸架され、基板21と所定の間隔をあけて設けられる。ダイヤフラム22の下面には、誘電体多層膜ミラー25が、基板21上の誘電体多層膜ミラー26と所定の間隙tをあけて対向して設けられる。
【0061】
このように構成される光変調素子20において、各電極への印加電圧をOFFにしたときの空隙27の間隔をtoffとする(図9の左側の状態)。また、電圧を印加したとき静電気力により空隙27の間隔が短くなるが、これをtonとする(図9の右側に示す状態)。tonは、各電極への電圧印加に伴ってダイヤフラム22に作用する静電気力と、ダイヤフラム22の変形に伴って生じる復元力をバランスさせることで適切に設定する。
【0062】
より安定な制御を行うには、スペーサ(図示しない)を電極上に設け、スペーサによってダイヤフラム22の変位を物理的に規制することにより、ダイヤフラム22の変位量が一定となるように構成する。スペーサを絶縁体とした場合は、その比誘電率(1以上)により各電極への印加電圧を低減する効果を生じる。また、スペーサが導電性の場合は更にこの効果は大きくなる。尚、スペーサは各電極と同一材料で形成しても良い。
【0063】
ここで、ton、toff を下記のように設定する。(m=1)
ton =1/2×λ0=180nm (λ0:紫外線の中心波長)
toff =3/4×λ0=270nm
【0064】
また、各誘電体多層膜ミラー25,26はそれぞれ、光強度反射率をR=0.85とする。また、空隙27は空気又は希ガスとし、その屈折率はn=1とする。紫外線はコリメートされているので、光変調素子20に入射する入射角i(誘電体多層膜ミラー面の垂線と入射光線のなす角)は略ゼロである。このときの光変調素子20の光強度透過率は図11に示すようになる。
【0065】
従って、各電極に電圧を印加しないときはtoff =270nmであり、光変調素子20は紫外線を殆ど透過させない。
一方、各電極に電圧を印加してton=180nmとすると、光変調素子20は紫外線を透過させる。
【0066】
尚、干渉の条件を満たせば、空隙27の間隔t、屈折率n、各誘電体多層膜ミラー25,26の光強度反射率R等はいずれの組合せでも良い。
また電圧値により、間隙tを連続的に変化させると、透過スペクトルの中心波長を任意に変化させることが可能である。これにより、透過光量を連続的に制御することも可能である。つまり、各電極間の印加電圧の変更による階調制御が可能である。
【0067】
また、上記光変調素子20の変形例として、ブラックライト用水銀ランプ23bに代えて、低圧水銀ランプによるバックライトを用いることもできる。
即ち、254nmの線スペクトルを主成分とする低圧水銀ランプを光源とし、石英ガラス等からなる透明基板と組み合わせることにより、バックライトユニットを構成する。他の波長は、フィルター等によりカットする。このときの紫外線バックライトの分光特性は図12に示すようになる。
また、この光変調素子においては、有効画素エリアの構成材料(ダイヤフラム、誘電体多層膜ミラー、基板等)は、254nmの紫外線を透過する材料とする。
【0068】
ここで、ton、toff を下記のように設定する。(m=1)。
ton =1/2×λ0=127nm (λ0:紫外線の中心波長)
toff =3/4×λ0=191nm
【0069】
その他の条件は、上述の例と同様に、R=0.85、n=1、i=0とする。このときの光変調素子の光強度透過率は図13に示すようになる。
従って、各電極に電圧を印加しないときはtoff =191nmであり、光変調素子は紫外線を殆ど透過させず、電圧を印加したときはton=127nmになり、光変調素子は紫外線を透過させる。
【0070】
特にこの変形例の場合、紫外線が線スペクトルなので、非常に高いエネルギー透過率を示し、高効率でコントラストの高い変調が可能となる。
また、この変形例においても、干渉の条件を満たせば、空隙27の間隔t、屈折率n、各誘電体多層膜ミラー25,26の光強度反射率R等はいずれの組合せでも良い。
【0071】
さらに、各電極に印加する電圧値を変更することにより、間隙tを連続的に変化させると、透過スペクトルの中心波長を任意に変化させることが可能である。これにより透過光量を連続的に制御することも可能である。つまり、各電極への印加電圧の変更による階調制御が可能となる。
【0072】
次に、光変調素子の他の変形例を図14を用いて説明する。
図14は光変調素子及び平面光源の概略断面図である。光変調素子30は、遮光板31及び透明電極32への電圧印加に伴う静電気応力によって遮光板31を変位させ、平面光源33からの紫外線の進路を変更することにより光変調を行う。平面光源33の構成は、図9に示す平面光源23と同様である。
【0073】
透明電極32は、紫外線を透過する基板34上に設けられており、紫外線を透過させる。基板34上の透明電極32以外の部位には、絶縁性の遮光膜35が設けられる。透明電極32及び遮光膜35の上面には、絶縁膜36が積層される。
【0074】
遮光板31は、基板34上に立設された支柱37を介して、基板34の上方に基板34と所定の間隔をあけて片持ち梁構造として設けられる。遮光板31の形状は、対向する基板34上の透明電極32の形状に対応しており、透明電極32よりも若干大きくしてある。
【0075】
遮光板31は、導電性を有する可撓薄膜からなり、例えば紫外線を吸収、若しくは反射する材料からなる単一の導電性薄膜、又は複数の導電性薄膜で構成される。
具体的には、紫外線を反射するアルミ、クロムなどの金属薄膜、紫外線を吸収するポリシリコンなどの半導体による単体構成が挙げられる。また、シリコン酸化物、シリコン窒化物などの絶縁膜、ポリシリコンなどの半導体薄膜に金属を蒸着した構成、又は誘電体多層膜などのフィルターを蒸着した複合構成とすることもできる。
【0076】
このように構成された光変調素子30は、次のように動作する。光変調素子30において、遮光板31及び透明電極32間に電圧を印加しない状態では、遮光板31は透明電極32と対向しており、透明電極32を透過した紫外線は遮光板31によって吸収又は反射される(図14の左側の状態)。
【0077】
一方、遮光板31及び透明電極32間に電圧を印加すると、両者間に作用する静電気力により、遮光板31が捩じれながら透明電極32側に変位する(図14の右側の状態)。これにより、平面光源33から透明電極32を透過した紫外線は、遮光板31に遮蔽されることなく、上方に出射される。
そして、再び遮光板31及び透明電極32間への印加電圧をゼロにすると、遮光板31は、遮光板31自体及び支柱37の弾性によって初期位置に戻る。
【0078】
次に、光変調素子の他の変形例を図15,16を用いて説明する。
図15は光変調素子40の概略構成図であり、図15(a)は平面図、図15(b)は図15(a)のB−B断面図である。
【0079】
光変調素子40は、対向電極41,42及び電極遮光板43への電圧印加に伴う静電気力によって、電極遮光板43を図15で左右方向に変位させることにより、図示しない平面光源からの光を遮光させ、又は透過させる。
【0080】
この対向電極41,42は、紫外線を透過する基板44上で所定の間隔をあけて対向して対をなし、図15(a)において並列に計2対設けられる。また、基板44上における図15右側の対向電極42間には、遮光膜45が設けられる。
【0081】
電極遮光板43は、対向電極41,42間で基板44から図15(b)の上方に所定の間隔をあけた位置に、左右方向に変位可能に設けられる。即ち、電極遮光板43の左右両側は、折れ線バネ46等の可撓部材を介して支持部47に支持されている。電極遮光板43は、対向電極41,42への電圧印加に伴う静電気力によって、折れ線バネ46を弾性変形させつつ、図15の左右方向に変位する。電極遮光板43の左右方向の寸法は、支持部47間の左右方向に沿う距離の略半分である。
【0082】
このように構成された光変調素子40は、次のように動作する。即ち、光変調素子40において、電極遮光板43に電圧ゼロを印加した状態で、図15の左側の対向電極41のみに電圧を印加すると、電極遮光板43は、静電気力によって図15の左側の対向電極41間に移動する(図15に示す状態)。これにより、平面光源から出射され、遮光膜45で遮光されずに基板44を透過した光は、電極遮光板43によって遮光される。
【0083】
一方、電極遮光板43に+Vの電圧を印加した状態で、図16の左側の対向電極41のみに電圧を印加すると、電極遮光板43は、静電気力によって図16の右側の対向電極42間に移動する(図16に示す状態)。これにより、平面光源から出射され、遮光膜45で遮光されずに基板44を透過した光は、電極遮光板43によっても遮光されることなく、図16(b)の上方に出射される。
そして、再び印加電圧をゼロにすると、電極遮光板43は、折れ線バネ46の弾性力及び静電気力によって初期位置に戻る。
このように、各種光変調素子の構成が考えられるが、本発明は前述の各構成に限定されるものではなく、同等の機能を有するものであれば他の如何なる構成のものであっても良い。
【0084】
【発明の効果】
以上説明したように、本発明によれば、静電気力による可撓部の変位動作と、可撓部の弾性復帰動作により光変調を行う電気機械的な光変調素子を2次元のマトリクス状に配列したアレイ型光変調素子の駆動方法であって、光変調素子の復帰動作を行うリセット走査を、リセットされる走査ライン以外の走査ラインに対して、素子の変位動作又は状態維持の選択を行う書き込み走査と同時に行い、各走査ラインの書き込み走査を間断なく行い駆動する。これにより、弾性復帰時間の長い光変調素子であっても時間をロスすることなく画像表示をより高速に行うことが可能になり、応答時間を飛躍的に向上させることができる。
【0085】
また、光変調素子のリセット走査の駆動時間を書き込み走査時間の整数倍等の弾性復帰時間以上に設定することにより、弾性復帰動作に長い時間を要する光変調素子であっても時間をロスすることなく適切な走査で高速応答性を得ることができる。
【0086】
さらに、電気機械的な光変調素子をマトリクス状に配列したアレイ型光変調素子に対向して紫外線を出射する平面光源を設け、アレイ型光変調素子を挟んだ平面光源の反対側に蛍光体を設け、光変調素子から出射される光によって蛍光体を発光させて平面ディスプレイを駆動することにより、コントラストが低下することの無い高速応答性を備えた平面ディスプレイが得られる。
【図面の簡単な説明】
【図1】本発明に係る第1実施形態の光変調素子の光変調動作を説明する断面図である。
【図2】図1に示す光変調素子を2次元配列したアレイ型光変調素子の平面図である。
【図3】走査電極電圧及び信号電極電圧の組み合わせと、光変調素子の電極間電圧との関係を示した説明図である。
【図4】第1実施形態における各光変調素子に異なる波形の電圧を印加してデータを書き込む方法の説明図である。
【図5】第1実施形態におけるリセット動作の駆動期間を走査前行の書き込み動作と同時に行うことを説明するチャート図である。
【図6】第2実施形態における各光変調素子に異なる波形の電圧を印加してデータを書き込む方法の説明図である。
【図7】第2実施形態におけるリセット動作の駆動期間を走査前行の書き込み動作と同時に行うことを説明するチャート図である。
【図8】光変調素子からの透過光の応答特性を示す説明図である。
【図9】多層膜干渉効果を利用した光変調素子の動作説明図である。
【図10】低圧水銀ランプによるバックライトの分光特性を示すグラフである。
【図11】図10に示す特性のバックライトを用いた場合の光変調素子の光強度透過率を示すグラフである。
【図12】紫外線バックライトの分光特性を示すグラフである。
【図13】光変調素子の光強度透過率を示すグラフである。
【図14】光変調素子及び平面光源の他の変形例の概略断面図である。
【図15】光変調素子の他の変形例における構成と遮光動作を説明する図である。
【図16】図15に示す光変調素子の導光状態を説明する図である。
【図17】電気機械的な光変調素子の印加電圧に対する光透過率のヒステリシス特性を説明する図である。
【図18】光変調素子の印加電圧に対する透過光の応答特性を説明する図である。
【符号の説明】
1 導光板
2 信号電極
4 ダイヤフラム
7 信号電極
8 可撓薄膜
10、20,30 光変調素子
50 アレイ型光変調素子
τ 1行の走査時間
τr 立ち上がり時間
τf 立ち下がり時間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an array type light modulation element that is manufactured by micromachining and changes the light transmittance by an electromechanical operation, and a method of driving a flat display using the array type light modulation element. The present invention relates to a technique for improving the response speed of an element and a flat display.
[0002]
[Prior art]
An electromechanical light modulation element that performs light modulation by mechanically operating a flexible thin film manufactured by micromachining by electrostatic force is known. As this light modulation element, for example, there is one in which a flexible thin film made of a transparent electrode and a diaphragm is installed on a fixed electrode on a light guide plate through a support portion.
In this light modulation element, by applying a predetermined voltage between both electrodes, an electrostatic force is generated between the electrodes, and the flexible thin film is bent toward the fixed electrode. Along with this, the optical characteristics of the element itself change, and light is transmitted to the light modulation element. On the other hand, by setting the applied voltage to zero, the flexible thin film is elastically restored, and the light modulation element blocks light. In this way, light modulation is performed.
[0003]
By the way, when the flexible thin film is deformed by an electrostatic force or elastically restored, the relationship between the applied voltage Vgs and the displacement of the flexible thin film exhibits a hysteresis characteristic. Accordingly, the relationship between the applied voltage Vgs and the light transmittance T also exhibits hysteresis characteristics as shown in FIG.
According to this hysteresis characteristic, when the light modulation element is in the OFF (light shielding) state, the OFF state is maintained when Vgs is equal to or lower than Vth (L), and the ON state is maintained when Vgs is equal to or higher than Vth (H). The light modulation element remains in the ON state when Vgs is equal to or higher than Vth (H), and is saturated to the OFF state when Vgs is equal to or lower than Vs (L). In addition, when the polarity of Vgs is negative, the characteristics are positive and symmetric with respect to the vertical axis.
[0004]
[Problems to be solved by the invention]
Based on the hysteresis characteristics, Vs (H) is applied as an applied voltage Vgs from an equilibrium state (OFF state) where no static stress is generated on the flexible thin film, and then Vgs is zeroed after the flexible thin film is sufficiently deformed. The response characteristics of the transmitted light are shown in FIG.
[0005]
According to FIG. 18, the rise time τr due to voltage application has a fast displacement response due to electrostatic force (attraction), and the optical response due to this is also fast. Furthermore, the response time can be shortened by increasing the applied voltage Vgs.
On the other hand, the fall time τf is an elastic recovery time determined by the material and shape of the flexible thin film, and is generally later than the rise time τr. Moreover, control by the applied voltage is naturally impossible.
[0006]
For this reason, when the light modulation element is driven in a two-dimensional matrix, the scanning time τ for writing the image signal to be input to the light modulation pixel is limited by the slower response time. In the above example, the scanning time τ is the falling time τf. As described above, when the scanning time is delayed, the number of rows of the matrix cannot be increased, and in the driving method for obtaining the gradation by time division, there is a problem that the number of gradations cannot be increased. Become.
[0007]
Furthermore, in the case of such a hysteresis characteristic, since the next operation is affected by the state of the flexible thin film before writing, in order to perform the writing operation with good reproducibility, reset before the writing operation. It is desirable that the operation, that is, the equilibrium state (OFF state) is once performed and then the writing operation is performed so as to obtain a desired transmittance. However, if the reset operation is simply performed before the writing operation, the scanning time per row is further increased, and this problem is promoted.
[0008]
Therefore, it is conceivable that high-speed response can be obtained by increasing the rigidity of the flexible portion of the light modulation element. However, the drive voltage increases because the drive voltage increases, thereby reducing the cost and size. It can be a hindrance.
[0009]
The present invention has been made in view of such a conventional problem, and even if the electromechanical light modulation element has a long response time that requires a long time to return, the loss due to the return time without degrading the image quality. It is an object of the present invention to provide an array type light modulation device and a method for driving a flat display capable of preventing the above problem and dramatically improving the substantial response time.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the method for driving an array light modulation element according to claim 1 comprises:
In an array type light modulation element in which electromechanical light modulation elements that perform light modulation by an elastic force displacement operation and an elastic return operation of the flexible part are arranged in a two-dimensional matrix, the light modulation The reset scan for performing the element return operation is performed simultaneously with the write scan for selecting the displacement operation or the state maintenance for the scan lines other than the scan line to be reset, and the write scan for each scan line is performed without interruption. It is characterized by being driven.
[0011]
In this array type light modulation element driving method, reset scanning of the light modulation element is driven simultaneously with the writing scanning period for the scanning lines other than the scanning line to be reset, so that the writing scanning of each scanning line has a long elastic recovery. Even a light modulation element that requires time can be performed without loss of time, and the response time of the array type light modulation element can be dramatically improved.
[0012]
The array type light modulation device driving method according to claim 2 is characterized in that the reset scanning time is set to an integral multiple of the writing scanning time.
[0013]
In this array-type light modulation device driving method, the reset scanning time is set to an integral multiple of the writing scanning time, so that the reset scanning time can be extended by a simple design change without impairing the design freedom. Even an element that requires a longer elastic recovery time can be driven without lowering the response speed.
[0014]
According to a third aspect of the present invention, there is provided the method for driving the light modulation element, wherein the reset scanning driving time is set to be equal to or longer than the elastic return time of the flexible portion.
[0015]
In this light modulation element driving method, the reset operation is the elastic return operation of the flexible portion of the light modulation element, and the reset drive time is set to be equal to or longer than the elastic return time of the flexible portion. Therefore, it is possible to achieve a driving method that ensures the elastic return without being in the middle of the elastic return. Further, by bringing the reset driving time closer to the elastic recovery time, the element writing operation can be performed immediately after resetting, and the element can be driven efficiently.
[0016]
According to a fourth aspect of the present invention, there is provided the method for driving the light modulation element, wherein the elastic return operation of the light modulation element is an operation of entering a light shielding state after the return.
[0017]
In this method of driving the light modulation element, the light is turned off after completion of the elastic return operation, which is the reset operation of the light modulation element. Therefore, when performing the reset operation, the light remains blocked when outputting “black” as an image. When “white” is output, the output decreases only during the reset period, but there is almost no problem. On the other hand, when the reset operation is in a light transmission state, when “black” is output as an image, light transmission occurs due to the reset operation, and the contrast is significantly reduced. Therefore, such a decrease in contrast can be prevented.
[0018]
According to a fifth aspect of the present invention, there is provided a flat panel display driving method comprising: the array type light modulation element; a flat light source disposed opposite to the array type light modulation element; and an array type light modulation element on the opposite side of the flat light source. A fluorescent material provided, and driving the array type light modulation element by the driving method according to any one of claims 1 to 4 to cause fluorescence by light emitted from the array type light modulation element. The body is displayed in a luminous manner.
[0019]
In this flat display driving method, a light source that has passed through an array type light modulation element using an electromechanical array type light modulation element that completes a reset operation before the element write operation to increase the response time. Since the phosphor is configured to emit and display light, the flat display can be driven at high speed.
[0020]
The flat display driving method according to claim 6 is characterized in that the flat light source is an ultraviolet light emission light source for exciting the phosphor.
[0021]
In this flat display driving method, the emitted ultraviolet light from the flat light source can be transmitted and shielded by the light modulation element, and the phosphor can be excited to emit light.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a light modulation element according to the first embodiment of the present invention.
[0023]
As an operation principle of optically modulating the flexible thin film by electromechanical operation, a light guide diffusion action (hereinafter referred to as light guide diffusion) by separating or contacting the flexible thin film and the transparent signal electrode is used. be able to. In light guide diffusion, when the gap is formed as a light transmission resistance, when the gap is formed, the emitted light from the signal electrode is blocked or attenuated, while only when the flexible thin film is brought into contact with the signal electrode, Light emitted from the signal electrode is guided (mode coupled) to the flexible thin film, and the light is diffused in the flexible thin film, thereby controlling the intensity of light emitted from the flexible thin film (modulating light).
[0024]
As shown in FIG. 1, one electrode (signal electrode) 2 that is transparent to ultraviolet rays is formed on the light guide plate 1. For example, a metal oxide such as ITO with a high electron density, a very thin metal thin film (aluminum, etc.), a thin film in which metal fine particles are dispersed in a transparent insulator, or a highly doped wide hand gap semiconductor is suitable. is there.
[0025]
An insulating support portion 3 is formed on the electrode 2. For the support portion 3, for example, silicon oxide, silicon nitride, ceramic, resin, or the like can be used. A diaphragm 4 is formed on the upper end surface of the support portion 3. A gap (cavity) 5 is formed between the electrode 2 and the diaphragm 4. For the diaphragm 4, a semiconductor such as polysilicon, insulating silicon oxide, silicon nitride, ceramic, resin, or the like can be used. The refractive index of the diaphragm 4 is preferably equal to or higher than the refractive index of the light guide plate 1.
[0026]
On the diaphragm 4, a light diffusion layer 6, for example, an inorganic or organic transparent material with irregularities formed thereon, a microprism, a microlens, an inorganic or organic porous material, or a refractive index A material in which different fine particles are dispersed in a transparent substrate is formed.
[0027]
On the light diffusion layer 6, the other electrode (scanning electrode) 7 transparent to ultraviolet rays is formed. As an example, a material similar to that of the electrode 2 can be used. The diaphragm 4, the light diffusion layer 6, and the electrode 7 constitute a flexible thin film 8 as a flexible part.
[0028]
A gap 5 exists between the light guide plate 1 and the diaphragm 4, and the gap 5 is substantially determined by the height of the support portion 3. The height of the gap 5 is preferably about 0.1 μm to 10 μm, for example. The void 5 is usually formed by etching a sacrificial layer.
[0029]
In addition to the above-described configuration example, the diaphragm 4 and the light diffusion layer 6 may be formed of the same material. For example, the diffusion function can be provided by configuring the diaphragm 4 with a silicon nitride film and forming irregularities on the upper surface.
[0030]
Next, the operation principle of the light modulation element 10 configured as described above will be described.
When the voltage is OFF, the voltages of both electrodes 2 and 7 are zero, and there is a gap 5 (e.g., air) between the diaphragm 4 and the light guide plate 1,
When the refractive index of the light guide plate 1 is nw, the total reflection critical angle θc at the interface with air is
θc = sin -1 (Nw)
It becomes. Accordingly, when the incident angle θ to the interface is θ> θc, the ultraviolet rays proceed while being totally reflected in the light guide plate 1 as shown in FIG.
[0031]
When voltage is applied to both electrodes 2 and 7 when the voltage is ON, and the diaphragm 4 and the surface of the light guide plate 1 are brought into contact with each other or close to a sufficient distance, as shown in FIG. Then, the light is further diffused by the light diffusion layer 6 and emitted to the surface side.
[0032]
According to the light modulation element 10 according to this embodiment, light modulation can be performed by position control of the diaphragm 4 by voltage application.
An electrode 2 that is transparent to ultraviolet rays exists between the light guide plate 1 and the diaphragm 4. However, if the thickness of the normally used thin film is about 2000 A, the above-described operational problems may occur. Absent.
[0033]
In the present embodiment, as shown in FIG. 2, the light modulation elements 10 are arranged two-dimensionally in n rows and m columns. That is, the light modulation elements 10 are respectively arranged at the intersections Tr (1,1), Tr (1,2), Tr (2,1), Tr (2,2) of the matrix, and the array type light modulation element 50 is arranged. Configure.
Each light modulation element 10 corresponds to one pixel region. Here, the description will be made by paying attention to a matrix of two rows and two columns which is a part of the matrix.
The array type light modulation element 50 operates by simple matrix driving.
[0034]
The respective electrodes of the light modulation elements 10 arranged in the same row are connected in common as scanning electrodes. A potential Vg is applied to the scan electrode. In addition, the respective electrodes of the light modulation elements 10 arranged in the same row are connected in common to serve as signal electrodes. A potential Vb is applied to the signal electrode. Accordingly, the interelectrode voltage Vgs applied to each light modulation element 10 is (Vb−Vg).
[0035]
In order to drive the array light modulation element 50, the scan electrodes 7 are scanned in a row sequence in accordance with the scan signal, and a data signal corresponding to the scanned electrode 7 is applied to the signal electrode 2 in synchronization therewith.
[0036]
Here, three types of signals (voltages) including a reset signal, a selection signal, and a non-selection signal are applied to the scan electrode 7.
The reset signal turns off (light shielding) the light modulation elements 10 in that row regardless of the previous state of the light modulation elements 10. The voltage of the scanning electrode at this time is Vg (r).
[0037]
The selection signal is a signal for writing data in the row (signal for writing operation). Simultaneously with this signal, the state of the light modulation element 10 is determined to be ON (light transmission) or OFF (light shielding) in accordance with the voltage applied to the signal electrode. The voltage of the scanning electrode at this time is Vg (s).
[0038]
The non-selection signal is a signal when no selection is made. At this time, the state of the light modulation element 10 does not change regardless of the voltage of the signal electrode, and the previous state is maintained. The voltage of the scan electrode at this time is Vg (ns).
[0039]
On the other hand, the signal electrode 2 is supplied with two types of signals (voltages), ie, an ON signal and an OFF signal.
The ON signal turns on the light modulation element 10 (light transmission) with respect to the light modulation element 10 in the selected row. The voltage of the signal electrode 2 at this time is Vb (on).
[0040]
The OFF signal turns off the light modulation element 10 (light shielding) with respect to the light modulation elements 10 in the selected row. However, actually, since it is assumed that the light modulation element 10 is reset immediately before, when the state of the light modulation element 10 is turned off (light shielding), the previous state (OFF state) is maintained. It may be a signal to The voltage of the signal electrode 2 at this time is Vb (off).
[0041]
The interelectrode voltage Vgs of the light modulation element 10 is divided into the following six types of voltage by the combination of the above scan electrode voltage and signal electrode voltage. Further, specific conditions are given by the characteristics of the interelectrode voltage Vgs and the transmittance.
[0042]
Vgs (r-on) = Vb (on)-Vg (r) ≤ Vs (L)
Vgs (r-off) = Vb (off)-Vg (r) ≤ Vs (L)
Vgs (s-on) = Vb (on)-Vg (s) ≥ Vs (H)
Vgs (s-off) = Vb (off)-Vg (s) ≤ Vth (L)
Vgs (ns-on) = Vb (on)-Vg (ns) ≤ Vth (L)
Vgs (ns-off) = Vb (off) -Vg (ns) ≥ Vth (H)
[0043]
The above conditions are summarized as shown in FIG.
For example, when the scan electrode voltage Vg is reset Vg (r) and the signal electrode voltage Vb is ON, that is, Vb (on), the signal electrode voltage Vb having a value larger than Vs (H) (thick solid line 61 in the figure). From this, the scan electrode voltage Vg (bold solid line 63 in the figure) between Vs (H) and Vth (L) is subtracted, and the value (bold solid line 65 in the figure) becomes smaller than Vs (L).
That is,
Vgs (r-on) ≦ Vs (L)
It becomes. In the same manner, six types of voltages are determined.
[0044]
Next, a method of writing data in a matrix in which the light modulation elements 10 are two-dimensionally arranged using such a relationship between the interelectrode voltage Vgs and the transmittance will be described.
Data is written using the matrix of 2 rows and 2 columns shown in FIG. 2 as the matrix. The following ON / OFF data is written in each light modulation element 10 of the matrix.
Tr (1,1) → ON Tr (1,2) → OFF
Tr (2,1) → OFF Tr (2,2) → ON
[0045]
A voltage having a waveform as shown in FIG. 4 is applied to the matrix.
For example, the first line Vg (1)
t1: Reset voltage t2: Selection voltage
t3: non-selection voltage t4: non-selection voltage
Is applied.
In the first row Vb (1),
t1: don't care t2: ON voltage
t3: OFF voltage t4: don't care
Is applied.
As a result, desired data is written in each light modulation element 10 in a row sequential manner.
Then, after the reset scan of the light modulation element, the write scan for selecting the displacement operation or state maintenance of the element is performed, thereby preventing the state before the write scan from affecting the next operation due to the hysteresis characteristic of the element. Therefore, stable writing scanning can be performed. Also, due to the hysteresis characteristics of the element, the two-dimensional light modulation array having a simple matrix configuration is driven without contradiction, that is, the pixels on the non-selected scanning lines are reliably maintained in the ON / OFF state set during the writing scanning. It becomes possible to do.
[0046]
That is, for example, in the case of the matrix Tr (1,1) in the above-mentioned first row and first column,
Since Vgs: Vb (1) -Vg (1),
t1: Reset voltage (OFF) t2: ON
t3: state maintenance t4: state maintenance
It becomes.
[0047]
Accordingly, the ON state at t2 is maintained (memory), and as a result, the light modulation element 10 is in the “ON” state in the matrix Tr (1, 1). Similarly, the other matrix Tr (1, 2) is in the “OFF” state, Tr (2, 1) is in the “OFF” state, and Tr (2, 2) is in the “ON” state.
[0048]
With the above operation, the application state of the scanning voltage to the light modulation element of each scanning line is as shown in the chart of FIG. In other words, a reset voltage and a selection voltage are sequentially applied to an arbitrary i-th scanning electrode, and in the i + 1-th scanning line, immediately after the selection voltage application period in the i-th scanning line ends, the selection voltage is immediately and without interruption. Is applied. In this case, the reset voltage application period of the (i + 1) th row overlaps with the selection voltage application period of the ith row. Similarly, the reset voltage application period is overlapped with the selection voltage application period of the previous row for the other scan lines.
[0049]
As described above, the light modulation element 10 of each scanning line performs a reset operation simultaneously with the selection period (writing period) of another row, thereby obtaining a stable writing operation without increasing the scanning time. Accordingly, it is possible to prevent the scanning time from being delayed due to the elastic characteristics of the flexible portion of the light modulation element and the application of the reset signal, and to increase the size and definition of the array type light modulation element while realizing reliable operation. Can do.
[0050]
Next, a second embodiment of the light modulation element driving method according to the present invention will be described. The present embodiment is a driving method in the case of using an optical modulation element in which the return time (fall time) τf is greatly delayed (τf >> τr). FIG. 6 shows the waveform of the voltage applied to each light modulation element. In the present embodiment, the reset voltage application period is set to three times that of the first embodiment. That is, in FIG. 6, the reset period t1 in the first row shown in FIG. 4 corresponds to t1 to t3 in FIG. 6, and the reset voltage application period is set to three times the scanning period τ.
The application state of the scanning voltage to the light modulation elements in each scanning line in this case is as shown in the chart of FIG. According to FIG. 7, as in the case of the first embodiment, the selection voltage is applied immediately after the selection voltage application period in the i-th scanning line ends in the i + 1-th scanning line. In this case, the reset voltage application period of the (i + 1) th row overlaps with the selection voltage application period of the i-th row and a period before that (a part of the reset voltage application period in the figure). But they are overlapped as well.
[0051]
As described above, by extending the reset voltage application period, it is possible to obtain accurate responsiveness without increasing the scanning period even for a light modulation element having a long recovery time.
[0052]
Here, FIG. 8 shows a chart of the response of the applied voltage Vgs and the transmitted light to the pixel Tr (1,1) and the pixel Tr (1,2) of the present embodiment. As shown in FIG. 8 (a), the pixel Tr (1,1) ends the fall time τf within the reset period of the pixel, and a signal for turning on the pixel is applied after the pixel is reset in advance. ing. For this reason, the pixel can be turned on only by the rise time τr.
Further, as shown in FIG. 8B, the pixel Tr (1, 2) ends the falling time τf within the reset period of the pixel and maintains the state thereafter, thereby turning the pixel off.
[0053]
As shown in the above embodiments, the light modulation element preferably has a configuration in which the light modulation element is in an equilibrium state (returned state) or a reset state is light blocking. If the reset state is the ON (light transmission) state of the element, when “black” is output as a pixel, light transmission occurs due to the reset operation, and the contrast is remarkably deteriorated.
On the other hand, if the reset state is OFF (light blocking), there is no light transmission at the time of “black” output, and the contrast hardly changes. In the case of “white” output, the output decreases only during the reset period. In this case, there is almost no visual problem. This is because, for example, in the case of a panel having 500 to 1000 rows, even when the reset period is for several rows, the light amount decrease due to this is as small as about 1%. Also, since the response of the device itself is slow, the output does not immediately turn from ON to OFF, but gradually diminishes, and human visual characteristics are insensitive to luminance changes when the background luminance is high. But there is.
[0054]
As described above, in each of the above embodiments, the light modulation element using the light guide diffusion action shown in FIG. 1 is used. However, the drive system according to the present invention is not limited to this, and light modulation by light guide reflection is used. It can also be applied to elements. This is a configuration in which a reflective film made of aluminum or the like that is moderately inclined is provided on the diaphragm to make it a flexible thin film, and the light guided to the flexible thin film when the voltage is on is reflected to the light guide plate side by the reflective film. It is a light modulation element that reflects and emits light. In addition, the present invention can also be applied favorably to the following light modulation elements.
Hereinafter, other respective configuration examples of the light modulation element in the flat display device in each of the above-described embodiments will be sequentially described with reference to FIGS.
[0055]
First, an example using Fabry-Perot interference will be described as an operation principle for optical modulation of a flexible thin film by electromechanical operation. In Fabry-Perot interference, in a state where two planes are arranged in parallel to each other, incident light is repeatedly reflected and transmitted and divided into a number of light beams, which are parallel to each other. The transmitted light overlaps and interferes at infinity. If the angle between the surface and the perpendicular incident ray is i, the optical path difference between adjacent rays is given by x = nt · cosi. However, n is a refractive index between two surfaces, and t is an interval. If the optical path difference x is an integral multiple of the wavelength λ, the transmission lines reinforce each other, and if the optical path difference x is an odd multiple of the half wavelength, they cancel each other. That is, if there is no phase change during reflection,
2nt · cosi = mλ is the maximum transmitted light,
2nt · cosi = (2m + 1) λ / 2 and the transmitted light is minimized.
However, m is a positive integer.
[0056]
That is, by moving the flexible thin film so that the optical path difference x becomes a predetermined value, the light emitted from the transparent substrate can be modulated and emitted from the flexible thin film.
[0057]
A specific configuration in which a light modulation element using such Fabry-Perot interference is combined with a flat light source to form a flat display will be described below.
FIG. 9 is a schematic cross-sectional view of the light modulation element and the planar light source. The light modulation element 20 displaces the diaphragm 22 by applying a voltage to a substrate upper electrode (not shown) provided on a substrate 21 transparent to ultraviolet rays and a diaphragm upper electrode (not shown) provided on the diaphragm 22, By causing the interference effect, the ultraviolet light from the planar light source 23 is modulated.
[0058]
The flat light source 23 includes a flat flat light source unit 23a and a black light ultraviolet lamp (low pressure mercury lamp) 23b provided on the side of the flat light source unit 23a. The flat light source 23 causes the ultraviolet light from the low pressure mercury lamp 23b for black light to enter from the side surface of the flat light source unit 23a and to exit from the upper surface.
A fluorescent material for black light (for example, BaSi) is formed on the inner wall of the low-pressure mercury lamp 23b. 2 O Five : Pb 2+ ) Is applied, the spectral characteristics of the emitted ultraviolet rays are such that the center wavelength λ is around 360 nm as shown in FIG. 0 Have This ultraviolet light is used as backlight light.
[0059]
A pair of substrate electrodes (not shown) is provided on the substrate 21 at a predetermined interval in the direction perpendicular to the plane of FIG. Dielectric multilayer mirrors 25 and 26 are provided between the electrodes on the substrate 21.
[0060]
The diaphragm 22 is suspended at both ends by a support portion 24 formed on the substrate 21 and is provided at a predetermined interval from the substrate 21. A dielectric multilayer mirror 25 is provided on the lower surface of the diaphragm 22 so as to face the dielectric multilayer mirror 26 on the substrate 21 with a predetermined gap t.
[0061]
In the light modulation element 20 configured as described above, the interval between the gaps 27 when the applied voltage to each electrode is turned off is toff (the state on the left side in FIG. 9). In addition, when the voltage is applied, the interval between the gaps 27 is shortened by the electrostatic force, which is set to ton (state shown on the right side of FIG. 9). Ton is appropriately set by balancing the electrostatic force acting on the diaphragm 22 with the application of voltage to each electrode and the restoring force generated with the deformation of the diaphragm 22.
[0062]
In order to perform more stable control, a spacer (not shown) is provided on the electrode, and the displacement of the diaphragm 22 is physically restricted by the spacer, so that the displacement amount of the diaphragm 22 is constant. When the spacer is an insulator, an effect of reducing the voltage applied to each electrode is produced by its relative dielectric constant (1 or more). In addition, this effect is further increased when the spacer is conductive. The spacer may be formed of the same material as each electrode.
[0063]
Here, ton and toff are set as follows. (M = 1)
ton = 1/2 × λ 0 = 180nm (λ 0 : Center wavelength of ultraviolet rays)
toff = 3/4 × λ 0 = 270nm
[0064]
The dielectric multilayer mirrors 25 and 26 each have a light intensity reflectance of R = 0.85. The air gap 27 is made of air or a rare gas, and its refractive index is n = 1. Since the ultraviolet rays are collimated, the incident angle i (the angle formed between the perpendicular of the dielectric multilayer mirror surface and the incident light beam) incident on the light modulation element 20 is substantially zero. The light intensity transmittance of the light modulation element 20 at this time is as shown in FIG.
[0065]
Therefore, toff = 270 nm when no voltage is applied to each electrode, and the light modulation element 20 hardly transmits ultraviolet rays.
On the other hand, when a voltage is applied to each electrode to set ton = 180 nm, the light modulation element 20 transmits ultraviolet rays.
[0066]
If the interference condition is satisfied, the gap t of the air gap 27, the refractive index n, the light intensity reflectivity R of each dielectric multilayer mirror 25, 26, etc. may be any combination.
If the gap t is continuously changed according to the voltage value, the center wavelength of the transmission spectrum can be arbitrarily changed. Thereby, it is also possible to control the amount of transmitted light continuously. That is, gradation control by changing the applied voltage between the electrodes is possible.
[0067]
As a modification of the light modulation element 20, a backlight using a low-pressure mercury lamp may be used instead of the black light mercury lamp 23b.
That is, a backlight unit is configured by combining a low-pressure mercury lamp whose main component is a line spectrum of 254 nm with a transparent substrate made of quartz glass or the like. Other wavelengths are cut by a filter or the like. The spectral characteristics of the ultraviolet backlight at this time are as shown in FIG.
In this light modulation element, the constituent material (diaphragm, dielectric multilayer mirror, substrate, etc.) of the effective pixel area is a material that transmits ultraviolet light of 254 nm.
[0068]
Here, ton and toff are set as follows. (M = 1).
ton = 1/2 × λ 0 = 127 nm (λ 0 : Center wavelength of ultraviolet rays)
toff = 3/4 × λ 0 = 191 nm
[0069]
Other conditions are R = 0.85, n = 1, and i = 0 as in the above example. The light intensity transmittance of the light modulation element at this time is as shown in FIG.
Therefore, toff = 191 nm when no voltage is applied to each electrode, and the light modulation element transmits almost no ultraviolet light, and when a voltage is applied, ton = 127 nm, and the light modulation element transmits ultraviolet light.
[0070]
In particular, in the case of this modified example, since ultraviolet rays are a line spectrum, it exhibits a very high energy transmittance, and modulation with high efficiency and high contrast is possible.
Also in this modification, any combination of the spacing t of the air gap 27, the refractive index n, the light intensity reflectance R of each dielectric multilayer mirror 25, 26, etc. may be used as long as the interference condition is satisfied.
[0071]
Furthermore, if the gap t is continuously changed by changing the voltage value applied to each electrode, the center wavelength of the transmission spectrum can be arbitrarily changed. As a result, the amount of transmitted light can be continuously controlled. That is, gradation control can be performed by changing the voltage applied to each electrode.
[0072]
Next, another modification of the light modulation element will be described with reference to FIG.
FIG. 14 is a schematic cross-sectional view of the light modulation element and the planar light source. The light modulation element 30 performs light modulation by displacing the light shielding plate 31 by electrostatic stress accompanying voltage application to the light shielding plate 31 and the transparent electrode 32 and changing the path of ultraviolet rays from the flat light source 33. The configuration of the planar light source 33 is the same as that of the planar light source 23 shown in FIG.
[0073]
The transparent electrode 32 is provided on a substrate 34 that transmits ultraviolet rays and transmits ultraviolet rays. An insulating light shielding film 35 is provided on the substrate 34 other than the transparent electrode 32. An insulating film 36 is laminated on the top surfaces of the transparent electrode 32 and the light shielding film 35.
[0074]
The light shielding plate 31 is provided as a cantilever structure with a predetermined distance from the substrate 34 above the substrate 34 via a support column 37 erected on the substrate 34. The shape of the light shielding plate 31 corresponds to the shape of the transparent electrode 32 on the opposing substrate 34 and is slightly larger than the transparent electrode 32.
[0075]
The light shielding plate 31 is made of a flexible thin film having conductivity, and is made of, for example, a single conductive thin film made of a material that absorbs or reflects ultraviolet rays, or a plurality of conductive thin films.
Specific examples include a single-layer structure made of a semiconductor such as a metal thin film such as aluminum or chromium that reflects ultraviolet rays, or polysilicon that absorbs ultraviolet rays. Further, a configuration in which a metal is deposited on an insulating film such as silicon oxide or silicon nitride, a semiconductor thin film such as polysilicon, or a composite configuration in which a filter such as a dielectric multilayer film is deposited may be employed.
[0076]
The light modulation element 30 configured as described above operates as follows. In the light modulation element 30, when no voltage is applied between the light shielding plate 31 and the transparent electrode 32, the light shielding plate 31 faces the transparent electrode 32, and the ultraviolet light transmitted through the transparent electrode 32 is absorbed or reflected by the light shielding plate 31. (The state on the left side of FIG. 14).
[0077]
On the other hand, when a voltage is applied between the light shielding plate 31 and the transparent electrode 32, the light shielding plate 31 is displaced to the transparent electrode 32 side while being twisted by the electrostatic force acting between them (state on the right side in FIG. 14). As a result, the ultraviolet light transmitted through the transparent electrode 32 from the planar light source 33 is emitted upward without being shielded by the light shielding plate 31.
When the voltage applied between the light shielding plate 31 and the transparent electrode 32 is set to zero again, the light shielding plate 31 returns to the initial position due to the elasticity of the light shielding plate 31 itself and the column 37.
[0078]
Next, another modification of the light modulation element will be described with reference to FIGS.
15 is a schematic configuration diagram of the light modulation element 40, FIG. 15 (a) is a plan view, and FIG. 15 (b) is a cross-sectional view taken along line BB of FIG. 15 (a).
[0079]
The light modulation element 40 displaces the electrode light-shielding plate 43 in the left-right direction in FIG. Light is blocked or transmitted.
[0080]
The counter electrodes 41 and 42 are opposed to each other at a predetermined interval on a substrate 44 that transmits ultraviolet rays, and two pairs are provided in parallel in FIG. Further, a light shielding film 45 is provided between the counter electrodes 42 on the right side of FIG.
[0081]
The electrode light shielding plate 43 is provided so as to be displaceable in the left-right direction at a position spaced apart from the substrate 44 above the substrate 44 in FIG. That is, the left and right sides of the electrode light shielding plate 43 are supported by the support portion 47 via flexible members such as a polygonal line spring 46. The electrode light-shielding plate 43 is displaced in the left-right direction in FIG. 15 while the polygonal line spring 46 is elastically deformed by electrostatic force accompanying voltage application to the counter electrodes 41 and 42. The dimension of the electrode light-shielding plate 43 in the left-right direction is approximately half of the distance along the left-right direction between the support portions 47.
[0082]
The light modulation element 40 configured as described above operates as follows. That is, in the light modulation element 40, when a voltage is applied only to the counter electrode 41 on the left side of FIG. 15 with the voltage zero applied to the electrode light shielding plate 43, the electrode light shielding plate 43 is moved to the left side of FIG. It moves between the counter electrodes 41 (state shown in FIG. 15). Thereby, the light emitted from the planar light source and transmitted through the substrate 44 without being shielded by the light shielding film 45 is shielded by the electrode light shielding plate 43.
[0083]
On the other hand, when a voltage of + V is applied to the electrode light-shielding plate 43 and a voltage is applied only to the counter electrode 41 on the left side of FIG. 16, the electrode light-shielding plate 43 is placed between the counter electrode 42 on the right side of FIG. Move (state shown in FIG. 16). Thus, the light emitted from the planar light source and transmitted through the substrate 44 without being shielded by the light shielding film 45 is emitted upward in FIG. 16B without being shielded by the electrode light shielding plate 43.
When the applied voltage is set to zero again, the electrode light shielding plate 43 returns to the initial position by the elastic force and electrostatic force of the polygonal line spring 46.
As described above, configurations of various light modulation elements are conceivable. However, the present invention is not limited to the above-described configurations, and may have any other configuration as long as it has an equivalent function. .
[0084]
【The invention's effect】
As described above, according to the present invention, the electromechanical light modulation elements that perform light modulation by the displacement operation of the flexible portion by electrostatic force and the elastic return operation of the flexible portion are arranged in a two-dimensional matrix. The array-type light modulation element driving method according to the first aspect of the present invention is directed to a reset scan that performs a return operation of the light modulation element, and a write operation that selects an element displacement operation or a state maintenance for a scan line other than the reset scan line. The scanning is performed simultaneously with scanning, and writing scanning for each scanning line is performed without interruption. As a result, even a light modulation element having a long elastic recovery time can display an image at a higher speed without losing time, and the response time can be dramatically improved.
[0085]
In addition, by setting the drive time for reset scanning of the light modulation element to be equal to or longer than the elastic recovery time such as an integral multiple of the write scanning time, even a light modulation element that requires a long time for elastic recovery operation loses time. High-speed response can be obtained with appropriate scanning.
[0086]
In addition, a planar light source that emits ultraviolet light is provided opposite to the array type light modulation element in which electromechanical light modulation elements are arranged in a matrix, and a phosphor is placed on the opposite side of the plane light source across the array type light modulation element. By providing and driving the flat display by causing the phosphor to emit light by the light emitted from the light modulation element, a flat display having high-speed response without reducing the contrast can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a light modulation operation of a light modulation element according to a first embodiment of the present invention.
FIG. 2 is a plan view of an array type light modulation element in which the light modulation elements shown in FIG. 1 are two-dimensionally arranged.
FIG. 3 is an explanatory diagram showing a relationship between a combination of a scan electrode voltage and a signal electrode voltage and an interelectrode voltage of a light modulation element.
FIG. 4 is an explanatory diagram of a method for writing data by applying a voltage having a different waveform to each light modulation element in the first embodiment.
FIG. 5 is a chart for explaining that the drive period of the reset operation in the first embodiment is performed simultaneously with the write operation of the row before scanning.
FIG. 6 is an explanatory diagram of a method for writing data by applying a voltage having a different waveform to each light modulation element in the second embodiment.
FIG. 7 is a chart for explaining that the drive period of the reset operation in the second embodiment is performed simultaneously with the write operation of the row before scanning.
FIG. 8 is an explanatory diagram showing response characteristics of transmitted light from a light modulation element.
FIG. 9 is an operation explanatory diagram of a light modulation element using a multilayer interference effect.
FIG. 10 is a graph showing spectral characteristics of a backlight using a low-pressure mercury lamp.
11 is a graph showing the light intensity transmittance of the light modulation element when the backlight having the characteristics shown in FIG. 10 is used.
FIG. 12 is a graph showing spectral characteristics of an ultraviolet backlight.
FIG. 13 is a graph showing the light intensity transmittance of the light modulation element.
FIG. 14 is a schematic cross-sectional view of another modification of the light modulation element and the planar light source.
FIG. 15 is a diagram illustrating a configuration and a light shielding operation in another modification of the light modulation element.
16 is a diagram for explaining a light guide state of the light modulation element shown in FIG. 15;
FIG. 17 is a diagram illustrating a hysteresis characteristic of light transmittance with respect to an applied voltage of an electromechanical light modulation element.
FIG. 18 is a diagram illustrating response characteristics of transmitted light with respect to an applied voltage of a light modulation element.
[Explanation of symbols]
1 Light guide plate
2 signal electrodes
4 Diaphragm
7 Signal electrode
8 Flexible thin film
10, 20, 30 Light modulation element
50 Array type light modulator
τ Scanning time for one line
τr rise time
τf Fall time

Claims (6)

静電気力による可撓部の変位動作と、該可撓部の弾性復帰動作により光変調を行う電気機械的な光変調素子を2次元のマトリクス状に配列したアレイ型光変調素子において、
前記光変調素子の復帰動作を行うリセット走査を、リセットされる走査ライン以外の走査ラインに対して、前記素子の変位動作又は状態維持の選択を行う書き込み走査と同時に行い、各走査ラインの書き込み走査を間断なく行い駆動することを特徴とするアレイ型光変調素子の駆動方法。
In an array type light modulation element in which electromechanical light modulation elements that perform light modulation by an elastic force displacement operation by an electrostatic force and an elastic return operation of the flexible part are arranged in a two-dimensional matrix,
The reset scan for performing the return operation of the light modulation element is performed simultaneously with the write scan for selecting the displacement operation or the state maintenance for the scan lines other than the reset scan line, and the write scan for each scan line. A method for driving an array type light modulation element, wherein the driving is performed without interruption.
前記リセット走査時間を前記書き込み走査時間の整数倍に設定することを特徴とする請求項1記載のアレイ型光変調素子の駆動方法。2. The method of driving an array type light modulation element according to claim 1, wherein the reset scanning time is set to an integral multiple of the writing scanning time. 前記リセット走査の駆動時間を前記可撓部の弾性復帰時間以上に設定することを特徴とする請求項1又は請求項2記載のアレイ型光変調素子の駆動方法。3. The array type light modulation device driving method according to claim 1, wherein a driving time of the reset scanning is set to be equal to or longer than an elastic return time of the flexible portion. 前記光変調素子の弾性復帰動作は、復帰後に遮光状態となる動作であることを特徴とする請求項1〜請求項3のいずれか1項記載のアレイ型光変調素子の駆動方法。4. The array type light modulation element driving method according to claim 1, wherein the elastic return operation of the light modulation element is an operation in which a light shielding state is achieved after the return. 前記アレイ型光変調素子と、該アレイ型光変調素子に対向配置した平面光源と、アレイ型光変調素子を挟み前記平面光源の反対側に配設した蛍光体と、を備え、
前記アレイ型光変調素子を請求項1〜請求項4のいずれか1項記載の駆動方法により駆動して、前記アレイ型光変調素子から出射される光によって蛍光体を発光表示させることを特徴とする平面ディスプレイの駆動方法。
The array-type light modulation element, a planar light source disposed opposite to the array-type light modulation element, and a phosphor disposed on the opposite side of the planar light source across the array-type light modulation element,
The array type light modulation element is driven by the driving method according to any one of claims 1 to 4, and the phosphor is lit and displayed by the light emitted from the array type light modulation element. To drive a flat display.
前記平面光源は、前記蛍光体を励起させる紫外線出射光源であることを特徴とする請求項5記載の平面ディスプレイの駆動方法。6. The method of driving a flat display according to claim 5, wherein the flat light source is an ultraviolet light emission light source that excites the phosphor.
JP27170698A 1998-09-25 1998-09-25 Array type light modulation element and flat display driving method Expired - Fee Related JP4074714B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27170698A JP4074714B2 (en) 1998-09-25 1998-09-25 Array type light modulation element and flat display driving method
US09/404,541 US6356254B1 (en) 1998-09-25 1999-09-24 Array-type light modulating device and method of operating flat display unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27170698A JP4074714B2 (en) 1998-09-25 1998-09-25 Array type light modulation element and flat display driving method

Publications (2)

Publication Number Publication Date
JP2000098269A JP2000098269A (en) 2000-04-07
JP4074714B2 true JP4074714B2 (en) 2008-04-09

Family

ID=17503718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27170698A Expired - Fee Related JP4074714B2 (en) 1998-09-25 1998-09-25 Array type light modulation element and flat display driving method

Country Status (2)

Country Link
US (1) US6356254B1 (en)
JP (1) JP4074714B2 (en)

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550794B2 (en) * 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US7123216B1 (en) * 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
KR100703140B1 (en) * 1998-04-08 2007-04-05 이리다임 디스플레이 코포레이션 Interferometric modulation and its manufacturing method
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
JP3643508B2 (en) * 1999-09-28 2005-04-27 株式会社東芝 Movable film type display device
WO2003007049A1 (en) * 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
US6704130B1 (en) * 1999-10-08 2004-03-09 Agere Systems Inc. Electromechanical optical modulator providing stray light control
US6700554B2 (en) * 1999-12-04 2004-03-02 Lg. Philips Lcd Co., Ltd. Transmissive display device using micro light modulator
US6898335B2 (en) * 2000-11-15 2005-05-24 Fuji Photo Film Co., Ltd. Optical modulator, exposure head and image recording apparatus
KR100470207B1 (en) * 2001-08-13 2005-02-04 엘지전자 주식회사 Apparatus and Method for Driving of Metal Insulator Metal Field Emission Display
JP2003057571A (en) * 2001-08-16 2003-02-26 Sony Corp Optical multi-layered structure and optical switching element, and image display device
US6794119B2 (en) * 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
US7781850B2 (en) * 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
JP4042551B2 (en) * 2002-12-02 2008-02-06 株式会社ニコン Microactuator device and optical switch system
TW594360B (en) * 2003-04-21 2004-06-21 Prime View Int Corp Ltd A method for fabricating an interference display cell
TW570896B (en) 2003-05-26 2004-01-11 Prime View Int Co Ltd A method for fabricating an interference display cell
US7221495B2 (en) * 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
TW200506479A (en) * 2003-08-15 2005-02-16 Prime View Int Co Ltd Color changeable pixel for an interference display
TWI231865B (en) * 2003-08-26 2005-05-01 Prime View Int Co Ltd An interference display cell and fabrication method thereof
TWI232333B (en) * 2003-09-03 2005-05-11 Prime View Int Co Ltd Display unit using interferometric modulation and manufacturing method thereof
WO2005050608A1 (en) * 2003-11-20 2005-06-02 Koninklijke Philips Electronics N.V. Improved addressing of a foil display device
US7142346B2 (en) * 2003-12-09 2006-11-28 Idc, Llc System and method for addressing a MEMS display
US7161728B2 (en) * 2003-12-09 2007-01-09 Idc, Llc Area array modulation and lead reduction in interferometric modulators
US7476327B2 (en) * 2004-05-04 2009-01-13 Idc, Llc Method of manufacture for microelectromechanical devices
TWI233916B (en) * 2004-07-09 2005-06-11 Prime View Int Co Ltd A structure of a micro electro mechanical system
KR101354520B1 (en) * 2004-07-29 2014-01-21 퀄컴 엠이엠에스 테크놀로지스, 인크. System and method for micro-electromechanical operating of an interferometric modulator
US7515147B2 (en) * 2004-08-27 2009-04-07 Idc, Llc Staggered column drive circuit systems and methods
US7889163B2 (en) * 2004-08-27 2011-02-15 Qualcomm Mems Technologies, Inc. Drive method for MEMS devices
US7560299B2 (en) * 2004-08-27 2009-07-14 Idc, Llc Systems and methods of actuating MEMS display elements
US7551159B2 (en) * 2004-08-27 2009-06-23 Idc, Llc System and method of sensing actuation and release voltages of an interferometric modulator
US7499208B2 (en) 2004-08-27 2009-03-03 Udc, Llc Current mode display driver circuit realization feature
US20060065622A1 (en) * 2004-09-27 2006-03-30 Floyd Philip D Method and system for xenon fluoride etching with enhanced efficiency
US7289259B2 (en) * 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7843410B2 (en) * 2004-09-27 2010-11-30 Qualcomm Mems Technologies, Inc. Method and device for electrically programmable display
US8878825B2 (en) * 2004-09-27 2014-11-04 Qualcomm Mems Technologies, Inc. System and method for providing a variable refresh rate of an interferometric modulator display
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US20060066932A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Method of selective etching using etch stop layer
US7136213B2 (en) * 2004-09-27 2006-11-14 Idc, Llc Interferometric modulators having charge persistence
US7310179B2 (en) * 2004-09-27 2007-12-18 Idc, Llc Method and device for selective adjustment of hysteresis window
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7675669B2 (en) * 2004-09-27 2010-03-09 Qualcomm Mems Technologies, Inc. Method and system for driving interferometric modulators
US7405861B2 (en) * 2004-09-27 2008-07-29 Idc, Llc Method and device for protecting interferometric modulators from electrostatic discharge
US8514169B2 (en) 2004-09-27 2013-08-20 Qualcomm Mems Technologies, Inc. Apparatus and system for writing data to electromechanical display elements
US7554714B2 (en) * 2004-09-27 2009-06-30 Idc, Llc Device and method for manipulation of thermal response in a modulator
US7719500B2 (en) * 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US8310441B2 (en) 2004-09-27 2012-11-13 Qualcomm Mems Technologies, Inc. Method and system for writing data to MEMS display elements
US7893919B2 (en) * 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US7369296B2 (en) * 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7321456B2 (en) * 2004-09-27 2008-01-22 Idc, Llc Method and device for corner interferometric modulation
US7373026B2 (en) * 2004-09-27 2008-05-13 Idc, Llc MEMS device fabricated on a pre-patterned substrate
US7626581B2 (en) * 2004-09-27 2009-12-01 Idc, Llc Device and method for display memory using manipulation of mechanical response
US7679627B2 (en) * 2004-09-27 2010-03-16 Qualcomm Mems Technologies, Inc. Controller and driver features for bi-stable display
US7527995B2 (en) * 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7936497B2 (en) * 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7302157B2 (en) * 2004-09-27 2007-11-27 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7304784B2 (en) * 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US7345805B2 (en) * 2004-09-27 2008-03-18 Idc, Llc Interferometric modulator array with integrated MEMS electrical switches
US7532195B2 (en) * 2004-09-27 2009-05-12 Idc, Llc Method and system for reducing power consumption in a display
US7545550B2 (en) * 2004-09-27 2009-06-09 Idc, Llc Systems and methods of actuating MEMS display elements
US7724993B2 (en) * 2004-09-27 2010-05-25 Qualcomm Mems Technologies, Inc. MEMS switches with deforming membranes
US20060067650A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Method of making a reflective display device using thin film transistor production techniques
US7349136B2 (en) * 2004-09-27 2008-03-25 Idc, Llc Method and device for a display having transparent components integrated therein
US7630119B2 (en) * 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7553684B2 (en) * 2004-09-27 2009-06-30 Idc, Llc Method of fabricating interferometric devices using lift-off processing techniques
US7684104B2 (en) * 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7327510B2 (en) * 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US20060065366A1 (en) * 2004-09-27 2006-03-30 Cummings William J Portable etch chamber
US7429334B2 (en) * 2004-09-27 2008-09-30 Idc, Llc Methods of fabricating interferometric modulators by selectively removing a material
US7492502B2 (en) * 2004-09-27 2009-02-17 Idc, Llc Method of fabricating a free-standing microstructure
US20060066594A1 (en) * 2004-09-27 2006-03-30 Karen Tyger Systems and methods for driving a bi-stable display element
US7417783B2 (en) * 2004-09-27 2008-08-26 Idc, Llc Mirror and mirror layer for optical modulator and method
US7446927B2 (en) * 2004-09-27 2008-11-04 Idc, Llc MEMS switch with set and latch electrodes
WO2006037044A1 (en) * 2004-09-27 2006-04-06 Idc, Llc Method and device for multistate interferometric light modulation
WO2006061730A1 (en) * 2004-12-06 2006-06-15 Koninklijke Philips Electronics N.V. Passive matrix electrophoretic display with reset
TW200628877A (en) * 2005-02-04 2006-08-16 Prime View Int Co Ltd Method of manufacturing optical interference type color display
US20060230530A1 (en) * 2005-04-14 2006-10-19 Igal Avishay Bed
WO2006121784A1 (en) 2005-05-05 2006-11-16 Qualcomm Incorporated, Inc. Dynamic driver ic and display panel configuration
US7920136B2 (en) * 2005-05-05 2011-04-05 Qualcomm Mems Technologies, Inc. System and method of driving a MEMS display device
US7948457B2 (en) * 2005-05-05 2011-05-24 Qualcomm Mems Technologies, Inc. Systems and methods of actuating MEMS display elements
EP2495212A3 (en) * 2005-07-22 2012-10-31 QUALCOMM MEMS Technologies, Inc. Mems devices having support structures and methods of fabricating the same
US7355779B2 (en) * 2005-09-02 2008-04-08 Idc, Llc Method and system for driving MEMS display elements
US20070126673A1 (en) * 2005-12-07 2007-06-07 Kostadin Djordjev Method and system for writing data to MEMS display elements
US8391630B2 (en) * 2005-12-22 2013-03-05 Qualcomm Mems Technologies, Inc. System and method for power reduction when decompressing video streams for interferometric modulator displays
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7916980B2 (en) * 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7382515B2 (en) * 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US8194056B2 (en) * 2006-02-09 2012-06-05 Qualcomm Mems Technologies Inc. Method and system for writing data to MEMS display elements
US7547568B2 (en) * 2006-02-22 2009-06-16 Qualcomm Mems Technologies, Inc. Electrical conditioning of MEMS device and insulating layer thereof
US7550810B2 (en) * 2006-02-23 2009-06-23 Qualcomm Mems Technologies, Inc. MEMS device having a layer movable at asymmetric rates
US7450295B2 (en) * 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
US7527996B2 (en) * 2006-04-19 2009-05-05 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US7417784B2 (en) * 2006-04-19 2008-08-26 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing a porous surface
US8049713B2 (en) * 2006-04-24 2011-11-01 Qualcomm Mems Technologies, Inc. Power consumption optimized display update
US7369292B2 (en) * 2006-05-03 2008-05-06 Qualcomm Mems Technologies, Inc. Electrode and interconnect materials for MEMS devices
US7649671B2 (en) * 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7471442B2 (en) * 2006-06-15 2008-12-30 Qualcomm Mems Technologies, Inc. Method and apparatus for low range bit depth enhancements for MEMS display architectures
US7702192B2 (en) 2006-06-21 2010-04-20 Qualcomm Mems Technologies, Inc. Systems and methods for driving MEMS display
US7385744B2 (en) * 2006-06-28 2008-06-10 Qualcomm Mems Technologies, Inc. Support structure for free-standing MEMS device and methods for forming the same
US7835061B2 (en) * 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7777715B2 (en) 2006-06-29 2010-08-17 Qualcomm Mems Technologies, Inc. Passive circuits for de-multiplexing display inputs
US7527998B2 (en) * 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7566664B2 (en) * 2006-08-02 2009-07-28 Qualcomm Mems Technologies, Inc. Selective etching of MEMS using gaseous halides and reactive co-etchants
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US20080043315A1 (en) * 2006-08-15 2008-02-21 Cummings William J High profile contacts for microelectromechanical systems
US7706042B2 (en) * 2006-12-20 2010-04-27 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
US7957589B2 (en) * 2007-01-25 2011-06-07 Qualcomm Mems Technologies, Inc. Arbitrary power function using logarithm lookup table
US7719752B2 (en) 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
RU2010133953A (en) * 2008-02-11 2012-03-20 Квалкомм Мемс Текнолоджис, Инк. (Us) METHOD AND DEVICE FOR READING, MEASURING OR DETERMINING PARAMETERS OF DISPLAY ELEMENTS UNITED WITH THE DISPLAY CONTROL DIAGRAM, AND ALSO THE SYSTEM IN WHICH SUCH METHOD AND DEVICE IS APPLIED
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7768690B2 (en) * 2008-06-25 2010-08-03 Qualcomm Mems Technologies, Inc. Backlight displays
JP5367383B2 (en) * 2009-01-14 2013-12-11 株式会社東芝 Display device and driving method thereof
US8405649B2 (en) * 2009-03-27 2013-03-26 Qualcomm Mems Technologies, Inc. Low voltage driver scheme for interferometric modulators
US8736590B2 (en) * 2009-03-27 2014-05-27 Qualcomm Mems Technologies, Inc. Low voltage driver scheme for interferometric modulators
US20110109615A1 (en) * 2009-11-12 2011-05-12 Qualcomm Mems Technologies, Inc. Energy saving driving sequence for a display
CN102834761A (en) 2010-04-09 2012-12-19 高通Mems科技公司 Mechanical layer and methods of forming the same
US20110316832A1 (en) * 2010-06-24 2011-12-29 Qualcomm Mems Technologies, Inc. Pixel drive scheme having improved release characteristics
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8669926B2 (en) * 2011-11-30 2014-03-11 Qualcomm Mems Technologies, Inc. Drive scheme for a display

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH641315B (en) * 1981-07-02 Centre Electron Horloger MINIATURE SHUTTER DISPLAY DEVICE.
US4799050A (en) * 1986-10-23 1989-01-17 Litton Systems Canada Limited Full color liquid crystal display
US5480582A (en) * 1993-06-30 1996-01-02 Pope; Edward J. A. Process for synthesizing amorphous silica microspheres with fluorescence behavior
US6218774B1 (en) * 1993-06-30 2001-04-17 Edward J. A. Pope Photoluminescent/electroluminescent display screen
US6201521B1 (en) * 1995-09-29 2001-03-13 Texas Instruments Incorporated Divided reset for addressing spatial light modulator
US5764208A (en) * 1995-11-02 1998-06-09 Texas Instruments Incorporated Reset scheme for spatial light modulators
JP3799092B2 (en) * 1995-12-29 2006-07-19 アジレント・テクノロジーズ・インク Light modulation device and display device
US6028978A (en) * 1996-12-16 2000-02-22 Ngk Insulators, Ltd. Display device having a colored layer disposed between a displacement transmitting section and an optical waveguide plate
US6195196B1 (en) * 1998-03-13 2001-02-27 Fuji Photo Film Co., Ltd. Array-type exposing device and flat type display incorporating light modulator and driving method thereof

Also Published As

Publication number Publication date
US6356254B1 (en) 2002-03-12
JP2000098269A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
JP4074714B2 (en) Array type light modulation element and flat display driving method
JP3919954B2 (en) Array type light modulation element and flat display driving method
JP3824290B2 (en) Array type light modulation element, array type exposure element, flat display, and method for driving array type light modulation element
US6195196B1 (en) Array-type exposing device and flat type display incorporating light modulator and driving method thereof
JP2004212638A (en) Optical modulator and plane display element
US6642913B1 (en) Light modulation element, exposure unit, and flat-panel display unit
US6392618B1 (en) Active matrix device, and display apparatus
US20020027536A1 (en) Light modulating element array and method of driving the light modulating element array
US7199772B2 (en) Optical switching element, and switching device and image display apparatus each using the optical switching element
US7564610B2 (en) Light control device and light control system using same
JPH11258558A (en) Planar display device
JP2002062493A (en) Display device using interferometfic modulation device
JP2004205973A (en) Flat plane display element and method of driving the same
JP2002207182A (en) Optical multilayered structure and method for manufacturing the same, optical switching element, and image display device
JP3912760B2 (en) Driving method of array type light modulation element and flat display device
JP3258029B2 (en) Phase modulation microstructure for very large integrated spatial light modulator
JP2002040336A (en) Optical modulation element and exposure device and flat display device using the same
JP2005043726A (en) Display element and portable equipment using it
US4088991A (en) Visual display by electric control of scattering of light from a beam guided by an elastomer film
KR100283452B1 (en) Monomorph thin film actuated mirror array
JP2003057567A (en) Optical multi-layered structure, optical switching element and its manufacturing method, and image display device
JP2005157133A (en) Optical switching element and image display apparatus using optical switching element
US8089677B2 (en) Dynamic optical grating device and associated method for modulating light
KR20030091803A (en) Electrostatic machine element, light diffraction modulation element and image display device
EP1480068B1 (en) Array-type light modulation element, drive method thereof, and flat-panel display unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060323

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees