JP2007145495A - Automatic elevator landing device - Google Patents

Automatic elevator landing device Download PDF

Info

Publication number
JP2007145495A
JP2007145495A JP2005341787A JP2005341787A JP2007145495A JP 2007145495 A JP2007145495 A JP 2007145495A JP 2005341787 A JP2005341787 A JP 2005341787A JP 2005341787 A JP2005341787 A JP 2005341787A JP 2007145495 A JP2007145495 A JP 2007145495A
Authority
JP
Japan
Prior art keywords
power
elevator
current
power supply
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005341787A
Other languages
Japanese (ja)
Other versions
JP4917303B2 (en
Inventor
Akira Otsubo
坪 亮 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Elevator and Building Systems Corp
Original Assignee
Toshiba Elevator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Co Ltd filed Critical Toshiba Elevator Co Ltd
Priority to JP2005341787A priority Critical patent/JP4917303B2/en
Priority to PCT/JP2006/323679 priority patent/WO2007061109A1/en
Priority to CNA2006800440999A priority patent/CN101316782A/en
Publication of JP2007145495A publication Critical patent/JP2007145495A/en
Application granted granted Critical
Publication of JP4917303B2 publication Critical patent/JP4917303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic landing device post-installable by constituting the device independently of a main power circuit, eliminating uselessness of design/the setting of an electric power facility while restraining a cost increase, and capable of restraining stain of various waveforms by reducing capacity of a power source system. <P>SOLUTION: This automatic elevator landing device has a transformer 21 connected in parallel to the power source system 1 between an elevator control device 5 controlling an elevator driving part 8 and an AC power source 2 operating these, a switching device 4 interposed rather in the power source 2 side than a connecting point of the transformer 21 in the power source system 1, a current converter 22 connected in series to the transformer 21, and a capacitor 23 connected in series to the transformer 21 via the current converter 22 and lifting to move an elevator car up to a predetermined story floor, by supplying stored electric power to the elevator control device 5 and the elevator driving part 8 in emergency operation for opening the switching device 4, by charging supply electric power supplied from the AC power source 2 in steady operation for closing the switching device 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エレベータ自動着床装置に関し、特に、地震等による停電の発生のような非常事態の際に交流電源からの電力供給が停止しても最寄りの階床まで昇降してから運転を停止するように動作するエレベータ自動着床装置に関する。   The present invention relates to an elevator automatic landing device, and in particular, in the event of an emergency such as a power outage due to an earthquake or the like, even if power supply from an AC power supply is stopped, the operation is stopped after raising and lowering to the nearest floor The present invention relates to an elevator automatic landing apparatus that operates as described above.

一般に、建物等に設置されたエレベータにおいては、停電等の非常事態が生じた場合にエレベータかご内部に搭乗している利用者が安全に避難できるようにするため、自動着床装置が提案されている(特許文献1参照)。   Generally, in elevators installed in buildings, automatic landing devices have been proposed in order to allow users who are in the elevator car to evacuate safely in the event of an emergency such as a power outage. (See Patent Document 1).

図14および図15は、それぞれ第1および第2の従来例を示している。図14に示す第1の従来例においては、交流電源2、ブレーカ3、エレベータ制御装置5、巻上機9よりなる電源系統1に停電時自動着床装置10Aが並列に接続されており、その接続点はブレーカ3とエレベータ制御装置5との間と、エレベータ制御装置5と巻上機9との間の2箇所設けられている。自動着床装置10Aは、ブレーカ3側から充電回路11、蓄電装置12、昇降圧回路13、直流−交流変換回路14を直列に接続して構成されており、直流−交流変換回路14がエレベータ制御装置5と巻上機9との間の接続点に接続される。エレベータ制御装置5は、制御回路6とインバータ7より構成されている。   14 and 15 show first and second conventional examples, respectively. In the first conventional example shown in FIG. 14, an automatic landing device 10A at the time of power failure is connected in parallel to a power supply system 1 including an AC power source 2, a breaker 3, an elevator control device 5, and a hoisting machine 9, Two connection points are provided between the breaker 3 and the elevator control device 5 and between the elevator control device 5 and the hoisting machine 9. The automatic landing device 10A is configured by connecting a charging circuit 11, a power storage device 12, a step-up / step-down circuit 13 and a DC-AC conversion circuit 14 in series from the breaker 3 side, and the DC-AC conversion circuit 14 is controlled by an elevator. It is connected to a connection point between the device 5 and the hoisting machine 9. The elevator control device 5 includes a control circuit 6 and an inverter 7.

したがって、第1の従来例の自動着床装置10Aは、電源系統1とは別系統として構成されており、非停電時には充電回路11によって蓄電装置12に充電を行なっている。また、停電時にはエレベータ制御装置5が停止するため、蓄電装置12から昇降圧回路13と直流−交流変換回路14を経て巻上機9を駆動して利用者を最寄りの階床まで移動させており、蓄電装置12や昇降圧回路13が停電時の非常電源として機能すると共に巻上機9を制御している。   Therefore, the automatic landing apparatus 10A of the first conventional example is configured as a separate system from the power supply system 1 and charges the power storage device 12 by the charging circuit 11 when there is no power failure. In addition, since the elevator control device 5 stops at the time of a power failure, the hoisting machine 9 is driven from the power storage device 12 through the step-up / down circuit 13 and the DC-AC conversion circuit 14 to move the user to the nearest floor. The power storage device 12 and the step-up / step-down circuit 13 function as an emergency power source during a power failure and control the hoisting machine 9.

また、図15に示す第2の従来例においては、交流電源2、ブレーカ3と巻上機9との間に接続されたエレベータ制御装置5に自動着床装置10Bが直接電力を供給するものであり、ブレーカ3とエレベータ制御装置5との間の接続点に充電回路11が並列に接続され、充電回路11には蓄電装置12が直列に接続されている。蓄電装置12は、エレベータ制御装置5のインバータ7の直流部に直流電力を直接供給すると共に、蓄電装置12とインバータ7の直流部との接続線に並列に昇降圧回路13が設けられて、この昇降圧回路13はエレベータ制御装置5の制御回路6にも接続されて電力を供給している。第2の従来例の場合、ブレーカ3が遮断されて蓄電装置12によりバックアップされたときでも、エレベータ制御装置5の制御回路6はそのまま利用されてインバータ7の直流部に供給される直流電力により巻上機9が駆動されるのを制御するようになっている。
特開2003−34947号公報
Further, in the second conventional example shown in FIG. 15, the automatic landing device 10 </ b> B directly supplies power to the elevator control device 5 connected between the AC power source 2, the breaker 3 and the hoisting machine 9. Yes, a charging circuit 11 is connected in parallel to a connection point between the breaker 3 and the elevator control device 5, and a power storage device 12 is connected in series to the charging circuit 11. The power storage device 12 directly supplies direct current power to the direct current portion of the inverter 7 of the elevator control device 5, and a step-up / step-down circuit 13 is provided in parallel to the connection line between the power storage device 12 and the direct current portion of the inverter 7. The step-up / down circuit 13 is also connected to the control circuit 6 of the elevator control device 5 to supply electric power. In the case of the second conventional example, even when the breaker 3 is shut off and backed up by the power storage device 12, the control circuit 6 of the elevator control device 5 is used as it is and wound by the DC power supplied to the DC portion of the inverter 7. The upper machine 9 is controlled to be driven.
JP 2003-34947 A

しかしながら、上述した第1および第2の従来例によれば、何れも幾つかの問題を有している。まず、図14に示す第1の従来例によれば、定常運転時には、エレベータ制御装置5の行なっている制御機能を非常運転時である停電時には蓄電装置12や昇降圧回路13を動作させるための制御回路が行なっているため、定常運転時と非常運転時用のそれぞれの制御回路が必要となり、同じ構成要素が重複することからコストが増大するという問題がある。   However, both the first and second conventional examples described above have some problems. First, according to the first conventional example shown in FIG. 14, during steady operation, the control function performed by the elevator control device 5 is used to operate the power storage device 12 and the step-up / down circuit 13 during a power failure during emergency operation. Since the control circuit performs, each control circuit for steady operation and emergency operation is required, and the same components are duplicated, resulting in an increase in cost.

また、図15に示す第2の従来例によれば、高圧直流を遮断する回路が必要となり、制御装置の内部回路切換のために回路が複雑となり、停電時に蓄電装置側に電力の供給源を切り換えた際に複雑な回路構成に起因して予期しない問題が発生し易かった。また、停電時と非停電時との切換えを厳格に行なった場合、非停電時の電力設備容量に充分な余裕を持たせて設計しなければならないが、その反面で停電時バックアップ用の蓄電設備を別途に付加する構成となっているため、電力設備の設計または設定の仕方に無駄があるという問題もあった。   Further, according to the second conventional example shown in FIG. 15, a circuit that cuts off the high-voltage direct current is required, the circuit becomes complicated for switching the internal circuit of the control device, and a power supply source is provided on the power storage device side in the event of a power failure. When switching, an unexpected problem was likely to occur due to a complicated circuit configuration. In addition, when switching between power outages and non-power outages is strictly performed, it must be designed with a sufficient margin for the capacity of power facilities during non-power outages. Therefore, there is a problem in that there is a waste in the way of designing or setting the power equipment.

さらに、従来のエレベータ自動着床装置によれば、何れの装置も既に設置されている既設のエレベータ制御装置に取り付けるには、多大なコストと時間を要し、また、特許文献1にも記載されている構成に近い第2の従来例に関しては、エレベータ制御装置の制御回路側やインバータの直流部の構成がエレベータの自動着床装置を後付け可能な構成となっていない場合には、取り付けること自体が不可能であるという問題があった。   Furthermore, according to the conventional elevator automatic landing apparatus, it takes a great deal of cost and time to attach any of the apparatuses to the existing elevator control apparatus, which is also described in Patent Document 1. As for the second conventional example close to the configuration of the elevator, if the configuration of the control circuit side of the elevator control device or the DC part of the inverter is not a configuration that can be retrofitted with the elevator automatic landing device, the installation itself There was a problem that was impossible.

本発明は、主電源回路からは独立して構成できて後付け可能であると共にコストの増加を抑え、電力設備の設計または設定の無駄がなく、近年の要求である電源系統の小容量化の要求を満たし、さらに電源系統における各種の波形の歪みを抑制することのできるエレベータ自動着床装置を提供することを目的とする。   The present invention can be configured independently from the main power supply circuit, can be retrofitted, suppresses an increase in cost, has no waste of power facility design or setting, and has recently been required to reduce the capacity of the power supply system. It is another object of the present invention to provide an elevator automatic landing apparatus that satisfies the above requirements and can suppress distortion of various waveforms in a power supply system.

上記課題を解決するため、本発明の基本概念となる第1構成に係るエレベータ自動着床装置は、少なくとも巻上機を含むエレベータ駆動部を制御するエレベータ制御装置と前記エレベータ駆動部および前記エレベータ制御装置を動作させる電源との間である電源系統に並列に接続された変圧器と、前記電源系統における前記変圧器の接続点よりも電源側に介挿されて前記電源から供給される交流を開閉可能な開閉器と、前記変圧器に直列に接続されて前記変圧器側から流れる交流を直流に変換すると共に前記変圧器側へ流れる直流を交流に変換する電流変換器と、前記電流変換器を介して前記変圧器に直列に接続され、前記開閉器が閉止された定常運転時には前記交流電源から供給される電源電力を充電し、前記開閉器が開放された非常運転時には蓄積した電力を前記エレベータ制御装置および前記エレベータ駆動部に供給してエレベータかごを所定の階床まで昇降移動させる蓄電装置と、を備えることを特徴とする。   In order to solve the above problems, an elevator automatic landing apparatus according to a first configuration, which is a basic concept of the present invention, includes an elevator control device that controls an elevator driving unit including at least a hoisting machine, the elevator driving unit, and the elevator control. A transformer connected in parallel to a power supply system between the power supply that operates the device and an AC supplied from the power supply that is inserted on the power supply side from the connection point of the transformer in the power supply system is opened and closed A possible switch, a current converter connected in series to the transformer to convert alternating current flowing from the transformer side to direct current and converting direct current flowing to the transformer side to alternating current, and the current converter, The power supply power supplied from the AC power source is charged during steady operation when the switch is closed and connected in series via the transformer, and the emergency operation when the switch is opened. Characterized in that it comprises a power storage device for vertically moving the elevator car by supplying electric power accumulated in the elevator control device and the elevator drive unit to a predetermined floor in the.

また、本発明の第2構成に係るエレベータ自動着床装置は、第1構成に記載のものにおいて、前記電流変換器と前記蓄電装置との間に、前記蓄電装置の電力量が変動したときでも前記エレベータ制御装置および前記エレベータ駆動部に対して安定した電力を供給するための昇降圧回路をさらに備えることを特徴とする。   Further, the elevator automatic landing apparatus according to the second configuration of the present invention is the one described in the first configuration, even when the amount of power of the power storage device varies between the current converter and the power storage device. A step-up / step-down circuit for supplying stable electric power to the elevator control device and the elevator driving unit is further provided.

また、本発明の第3構成に係るエレベータ自動着床装置は、第1構成に記載のものにおいて、前記非常運転時に前記蓄電装置の電力量を監視して、前記電力量が十分にあるときには前記定常運転時と同等の昇降動作を前記エレベータ制御装置および前記エレベータ駆動部に提供するように電力を供給し、前記電力量が乏しいときには最寄りの階床まで前記エレベータかごを移動させる電力量監視装置をさらに備えることを特徴とする。   Further, the elevator automatic landing apparatus according to the third configuration of the present invention is the one described in the first configuration, wherein the power amount of the power storage device is monitored during the emergency operation, and the power amount is sufficient when the power amount is sufficient. An electric energy monitoring device that supplies electric power so as to provide the elevator control device and the elevator drive unit with the same ascending / lowering operation during steady operation, and moves the elevator car to the nearest floor when the electric energy is low It is further provided with the feature.

また、本発明の第4構成に係るエレベータ自動着床装置は、第1構成に記載のものにおいて、前記定常運転時に前記エレベータ制御装置および前記エレベータ駆動部が消費する電力を検出する負荷消費電力検出部と、前記負荷電力検出部の検出値が所定値を超えるときに前記定常運転時であっても前記開閉器を閉止したままで前記蓄電装置からの電力を供給させる定常時電力補充部と、をさらに備えることを特徴とする。   Moreover, the elevator automatic landing apparatus which concerns on the 4th structure of this invention WHEREIN: The load power consumption detection which detects the electric power which the said elevator control apparatus and the said elevator drive part consumes at the time of the said steady operation in the thing as described in a 1st structure And a steady-state power replenishment unit that supplies power from the power storage device while the switch is closed even during the steady operation when the detection value of the load power detection unit exceeds a predetermined value, Is further provided.

また、本発明の第5構成に係るエレベータ自動着床装置は、第1構成に記載のものにおいて、前記定常運転時に電源電流を検出する電流検出器と、前記定常運転時に電源電圧を検出する電流検出器と、前記電流検出器および前記電源電圧器によりそれぞれ検出された電流値および電圧値に基づいて電源の無効電力を補償して力率を改善する電力を前記蓄電装置から供給させる無効電力補償制御器と、をさらに備えることを特徴とする。   Moreover, the elevator automatic landing apparatus which concerns on the 5th structure of this invention is a thing as described in a 1st structure, The electric current detector which detects a power supply current at the time of the said steady operation, The electric current which detects a power supply voltage at the said steady operation Reactive power compensation that compensates reactive power of a power source and improves power factor from the power storage device based on a current value and a voltage value detected by the detector and the current detector and the power supply voltage device, respectively And a controller.

また、本発明の第6構成に係るエレベータ自動着床装置は、第1構成に記載のものにおいて、前記定常運転時に交流電源から負荷への漏れ電流を検出する漏れ電流検出部と、前記漏れ電流検出部により前記交流電源から前記エレベータ制御装置および前記エレベータ駆動部に供給される電流の漏れが検出されたときに前記漏れ電流を補償する電力を前記蓄電装置から供給させる漏れ電流補償制御器と、をさらに備えることを特徴とする。   Moreover, the elevator automatic landing apparatus which concerns on the 6th structure of this invention is a thing as described in a 1st structure, The leakage current detection part which detects the leakage current from alternating current power supply to a load at the time of the said steady operation, The said leakage current A leakage current compensation controller for supplying power for compensating the leakage current from the power storage device when leakage of current supplied from the AC power source to the elevator control device and the elevator driving unit is detected by a detection unit; Is further provided.

また、本発明の第7構成に係るエレベータ自動着床装置は、第1構成に記載のものにおいて、前記定常運転時に前記交流電源の電源電圧を監視する電圧監視部と、前記電圧監視部により監視された前記電源電圧の歪みを補償する電力を前記蓄電装置から供給させる電圧歪み補償制御器と、をさらに備えることを特徴とする。   Moreover, the elevator automatic landing apparatus which concerns on the 7th structure of this invention is the thing of the 1st structure, The voltage monitoring part which monitors the power supply voltage of the said alternating current power supply at the time of the said steady operation, and the said voltage monitoring part monitor And a voltage distortion compensation controller for supplying electric power for compensating for the distortion of the power supply voltage from the power storage device.

また、本発明の第8構成に係るエレベータ自動着床装置は、第1構成に記載のものにおいて、前記定常運転時に前記交流電源の電源電流を検出する電流検出器と、前記電流検出器により検出された前記電源電流に含まれる高調波成分を補償する電力を前記蓄電装置から供給させる電流高調波補償制御器と、をさらに備えることを特徴とする。   Moreover, the elevator automatic landing apparatus which concerns on the 8th structure of this invention is a thing as described in a 1st structure, The current detector which detects the power supply current of the said alternating current power supply at the time of the said steady operation, and a detection by the said current detector And a current harmonic compensation controller for supplying electric power for compensating harmonic components included in the power supply current from the power storage device.

本発明は、主電源回路からは独立して構成できて後付け可能であると共にコストの増加を抑え、電力設備の設計または設定の無駄がなく、近年の要求である電源系統の小容量化の要求を満たし、さらに電源系統における各種の波形の歪みを抑制することができる。   The present invention can be configured independently from the main power supply circuit, can be retrofitted, suppresses an increase in cost, has no waste of power facility design or setting, and has recently been required to reduce the capacity of the power supply system. And distortion of various waveforms in the power supply system can be suppressed.

以下、添付図面を参照しながら本発明に係るエレベータ自動着床装置の実施形態について詳細に説明する。   Hereinafter, embodiments of an elevator automatic landing apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

[第1実施形態]
まず、本発明の基本概念に相当する第1実施形態に係るエレベータ自動着床装置について、図1および図2を参照しながら説明する。図1は基本概念に近い概念的に上位の構成を示し、図2はより具体的な構成を示しているが、実線により示されている基本的な構成は何れも同一である。
[First Embodiment]
First, an elevator automatic landing apparatus according to a first embodiment corresponding to the basic concept of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 shows a conceptually superior configuration close to the basic concept, and FIG. 2 shows a more specific configuration, but the basic configuration shown by a solid line is the same.

まず、図1において、電源系統1は、交流電源2と、ブレーカ3と、エレベータ制御装置5と、エレベータ駆動部8を備える。エレベータ駆動部8は少なくともエレベータかご(図示せず)を保持する主ロープ(図示せず)を巻き上げる巻上機9を備えている。第1実施形態に係るエレベータ自動着床装置20は、少なくとも巻上機9を含むエレベータ駆動部8を制御するエレベータ制御装置5と前記駆動部8および前記制御装置5を動作させる交流電源2との間の電源系統1に並列に接続された変圧器21と、交流電源2から駆動部8に至る電源系統1における変圧器21の接続点よりも電源2側に介挿されて電源2側から供給される交流を開閉可能な開閉器4と、変圧器21に直列に接続されて電源2側からの交流を直流に変換すると共に逆方向に流れる直流を交流に変換する電流変換器22と、電流変換器22を介して変圧器21に直列に接続され、開閉器4が閉止された定常運転時には交流電源2から供給される電源電力を充電し、開閉器4が開放された非常運転時には蓄積した電力をエレベータ制御装置5およびエレベータ駆動部8に供給してエレベータかごを所定の階床まで昇降移動させる蓄電装置23を備えている。   First, in FIG. 1, a power supply system 1 includes an AC power supply 2, a breaker 3, an elevator control device 5, and an elevator driving unit 8. The elevator drive unit 8 includes a hoisting machine 9 that winds up at least a main rope (not shown) that holds an elevator car (not shown). The elevator automatic landing apparatus 20 according to the first embodiment includes an elevator control device 5 that controls an elevator drive unit 8 including at least a hoisting machine 9, and an AC power source 2 that operates the drive unit 8 and the control device 5. The transformer 21 connected in parallel to the power supply system 1 between the power supply 2 and the power supply 2 from the connection point of the transformer 21 in the power supply system 1 from the AC power supply 2 to the drive unit 8 is supplied from the power supply 2 side. A switch 4 that can open and close the alternating current, a current converter 22 that is connected in series to the transformer 21 to convert alternating current from the power source 2 into direct current, and converts direct current flowing in the reverse direction into alternating current, It is connected in series to the transformer 21 via the converter 22 and is charged with the power supplied from the AC power source 2 during steady operation when the switch 4 is closed, and accumulated during emergency operation when the switch 4 is opened. Electric power And a power storage device 23 vertically moving the elevator car to a predetermined floor is supplied to the motor controller 5 and the elevator drive unit 8.

図2を用いて、電源系統1を3相交流電源により構成した、より具体的な構成を説明する。まず、電源系統1は、交流電源2からブレーカ3を経て、エレベータ制御装置5に電力を供給し、巻上機9を駆動する構成となっている。また、エレベータ自動着床装置20は、エレベータ制御装置5におけるブレーカ3と前記制御装置5の間に開閉器4が設けられると共に、前記開閉器4と制御装置5との間に変圧器すなわちトランス21を並列に接続し、電流変換器すなわち交流−直流変換器22を介して、蓄電装置23を直列に接続する構成となっている。このような構成において、非停電時には、開閉器4は閉じており、エレベータ制御装置5はエレベータの昇降サービスを実施する。また、トランス21、交流−直流変換器22を介して蓄電装置23への充電を行なう。停電時には開閉器4を開放し、蓄電装置23から交流−直流変換器22およびトランス21を介してエレベータ制御装置5に電力を供給している。   A more specific configuration in which the power supply system 1 is configured by a three-phase AC power supply will be described with reference to FIG. First, the power supply system 1 is configured to supply electric power to the elevator control device 5 from the AC power supply 2 through the breaker 3 and drive the hoisting machine 9. The elevator automatic landing device 20 is provided with a switch 4 between the breaker 3 and the control device 5 in the elevator control device 5, and a transformer, that is, a transformer 21, between the switch 4 and the control device 5. Are connected in parallel, and the power storage device 23 is connected in series via a current converter, that is, an AC-DC converter 22. In such a configuration, at the time of a non-power failure, the switch 4 is closed, and the elevator control device 5 performs an elevator lifting service. In addition, the power storage device 23 is charged via the transformer 21 and the AC-DC converter 22. At the time of a power failure, the switch 4 is opened, and power is supplied from the power storage device 23 to the elevator control device 5 via the AC-DC converter 22 and the transformer 21.

なお、停電時に蓄電装置23とトランス21との間で電流変換を行なう電流変換器22は、蓄電装置23内に蓄積された直流電力を交流電力に変換してトランス21に供給している。また、トランス21は、電流変換器22から供給された交流電力における周波数を維持したままで電圧のみエレベータ制御装置5に最適な電圧に変換して前記制御装置5に供給している。また、図1では詳細構成を省略したエレベータ制御装置5は、従来のものと同様に、制御回路6とインバータ7を備え、電源系統1または自動着床装置20側からそれぞれ供給される交流電流を一旦は整流して直流に変換して周波数と電圧を調整した交流へと再変換して巻上機9等の駆動部8に電力を供給している。   Note that the current converter 22 that performs current conversion between the power storage device 23 and the transformer 21 at the time of a power failure converts DC power stored in the power storage device 23 into AC power and supplies the AC power to the transformer 21. The transformer 21 converts only the voltage into an optimum voltage for the elevator control device 5 while maintaining the frequency of the AC power supplied from the current converter 22 and supplies the voltage to the control device 5. In addition, the elevator control device 5 whose detailed configuration is omitted in FIG. 1 includes a control circuit 6 and an inverter 7 in the same manner as the conventional one, and receives an alternating current supplied from the power system 1 or the automatic landing device 20 side, respectively. Once it is rectified and converted to DC, it is converted back to AC with adjusted frequency and voltage, and power is supplied to the drive unit 8 such as the hoisting machine 9.

基本概念に相当する第1実施形態の動作について説明する。図1および図2に示すように第1実施形態に係るエレベータ自動着床装置20は電源系統1とは別個の電源系統を構成している。定常運転時には、電源系統1からの電力供給に基づいて、エレベータ制御装置5が巻上機9やその他の駆動装置、例えばかご内ファンや照明やインジケータ等の電力負荷よりなるエレベータ駆動部8に電力を供給し、エレベータ制御装置5そのものも電源2から供給される交流電力により動作している。   The operation of the first embodiment corresponding to the basic concept will be described. As shown in FIGS. 1 and 2, the elevator automatic landing apparatus 20 according to the first embodiment forms a power supply system that is separate from the power supply system 1. At the time of steady operation, based on the power supply from the power supply system 1, the elevator control device 5 supplies power to the hoisting machine 9 and other driving devices, for example, the elevator driving unit 8 including a power load such as a car fan, lighting, and an indicator. The elevator control device 5 itself is also operated by AC power supplied from the power source 2.

地震、台風、落雷等の自然災害や、電力の過剰需要、送電線故障等の人為的不具合に起因して交流電源に所望の電力が供給されて来なくなるような停電状態となるとブレーカ3が切れたり、開閉器4が開放されたりして、エレベータは非常運転モードとなる。これにより、電源系統1は遮断されて、交流電源2からの電力供給は停止される。   The breaker 3 is cut when a power failure occurs such that the desired power is not supplied to the AC power source due to natural disasters such as earthquakes, typhoons, lightning strikes, or excessive human power demand, or man-made malfunctions such as power transmission line failures. Or the switch 4 is opened, and the elevator enters the emergency operation mode. Thereby, the power supply system 1 is interrupted and the power supply from the AC power supply 2 is stopped.

このとき、何れかの階床で昇降動作中のエレベータかごがその動作地点で直ちに停止してしまうと、かご内に利用者が搭乗している場合閉じ込め事故が発生する。停電時にエレベータ管理者が最も憂慮する事態は、この閉じ込め事故の発生であり、さらに憂慮すべきことは閉じ込め事故の発生を管理センタ等の監視員が発見できない場合である。   At this time, if an elevator car that is moving up and down on any floor stops immediately at the operating point, a confinement accident occurs when a user is in the car. The situation that the elevator manager is most worried about during a power outage is the occurrence of this confinement accident, and more alarming is the case where a supervisor such as a management center cannot detect the occurrence of the confinement accident.

また、近年、新しい型式のエレベータにおいては、地震発生時にエレベータを地震管制運転により自動制御するものも提案されている。この地震管制制御システムは、例えばエレベータ制御装置の近傍に設けられた地震感知器が地震を感知すると直ちにエレベータを管制制御するものであるが、地震感知器の作動により地震管制運転が実行される前に、停電等によりエレベータが緊急停止してしまった場合には、管制運転に制御を移行する時間的な余裕もなく、閉じ込め事故等が発生してしまうことになる。   In recent years, a new type of elevator has been proposed in which an elevator is automatically controlled by a seismic control operation when an earthquake occurs. This seismic control system, for example, controls an elevator immediately when an earthquake sensor provided in the vicinity of the elevator control device detects an earthquake, but before the seismic control operation is executed by the operation of the seismic sensor. In addition, when the elevator stops due to a power failure or the like, there is no time for shifting control to control operation, and a confinement accident or the like occurs.

第1実施形態の自動着床装置20によれば、このような地震管制システム作動前の停電であっても、ブレーカ3の電力供給路の遮断等により開閉器4が開放されると直ちに蓄電装置23に蓄積されていた直流電力が電流変換器22に供給され、電流変換器22が直流を交流に変換した電力を変圧器23に供給し、この変圧器23により周波数は変更せずに電圧のみを所望の値に調整した交流電力をエレベータ制御装置5に供給する。   According to the automatic landing device 20 of the first embodiment, even when such a power failure occurs before the operation of the earthquake control system, as soon as the switch 4 is opened due to interruption of the power supply path of the breaker 3, etc., the power storage device The DC power stored in 23 is supplied to the current converter 22, and the current converter 22 supplies the power converted from DC to AC to the transformer 23, and the transformer 23 does not change the frequency but only the voltage. AC power adjusted to a desired value is supplied to the elevator control device 5.

このようにして、交流電源2からの交流電力供給を蓄電装置23からの直流電源に切り換えることにより、停電等の非常運転時であることが検出されると、直ちに自動着床装置20が機能する自動着床運転を提供しているので、地震管制システムでは充分に補完できない閉じ込め事故等の発生を未然に防止することができる。   In this way, by switching the AC power supply from the AC power supply 2 to the DC power supply from the power storage device 23, the automatic landing device 20 immediately functions when it is detected that an emergency operation such as a power failure is occurring. Since automatic landing operation is provided, it is possible to prevent the occurrence of confinement accidents and the like that cannot be sufficiently supplemented by the seismic control system.

第1実施形態によれば、地震管制制御システムが設置されていても防止できなかった種類の閉じ込め事故を未然に防止することができ、地震等に起因する停電時の非常運転モードにおいても、蓄電装置内に蓄積された直流電力を交流変換および電圧調整して電源系統1と同等の電力により自動着床制御運転することができる。これにより、エレベータに対する停電時の信頼性を格段に向上させることが可能となり、最悪の事態である停電時の閉じ込め事故の発生については極力避けることができる。   According to the first embodiment, it is possible to prevent a type of confinement accident that could not be prevented even if a seismic control system is installed, and to store power even in an emergency operation mode during a power failure caused by an earthquake or the like. Automatic landing control operation can be performed with electric power equivalent to that of the power supply system 1 by converting the direct current power stored in the apparatus into alternating current and adjusting the voltage. As a result, the reliability of the elevator during a power failure can be significantly improved, and the occurrence of a confinement accident during a power failure, which is the worst case, can be avoided as much as possible.

[第2実施形態]
次に、本発明の第2実施形態に係るエレベータ自動着床装置について、図3を参照しながら説明する。図3において、エレベータ自動着床装置20は、第1実施形態の構成に加えて昇降圧回路24を設けたものである。この昇降圧回路24は、電流変換器である交流−直流変換器22と蓄電装置23との間に設けられており、蓄電装置23の電力量が変動したときでもエレベータ制御装置5およびエレベータ駆動部8に対して安定した電力を供給するために、昇圧または降圧を行なう構成を有している。
[Second Embodiment]
Next, the elevator automatic landing apparatus which concerns on 2nd Embodiment of this invention is demonstrated, referring FIG. In FIG. 3, an elevator automatic landing apparatus 20 is provided with a step-up / down circuit 24 in addition to the configuration of the first embodiment. The step-up / step-down circuit 24 is provided between the AC-DC converter 22 that is a current converter and the power storage device 23, and even when the electric energy of the power storage device 23 fluctuates, the elevator control device 5 and the elevator driving unit. In order to supply stable electric power to 8, the voltage is stepped up or stepped down.

この第2実施形態は、第1実施形態と同様に蓄電装置23の充電/放電を実施する。これに加えて、交流−直流変換器22と蓄電装置23との間に昇降圧回路24を挿入することにより、放電時には蓄電装置23の蓄積電力が低下して端子電圧が小さくなっても安定して電力を供給できると共に、充電時には最も効率の良い充電電圧となるように制御することができる。また、昇降圧回路24により昇圧または降圧を行なう構成とすることによりトランス21をフィルタ回路により置き換えることも可能となる。   In the second embodiment, the power storage device 23 is charged / discharged as in the first embodiment. In addition, by inserting the step-up / step-down circuit 24 between the AC-DC converter 22 and the power storage device 23, the stored power of the power storage device 23 is reduced during discharge and stable even if the terminal voltage decreases. Power can be supplied, and at the time of charging, the most efficient charging voltage can be controlled. In addition, the transformer 21 can be replaced with a filter circuit by increasing or decreasing the voltage by the step-up / step-down circuit 24.

[第3実施形態]
次に、本発明の第3実施形態に係るエレベータ自動着床装置について、図4を参照しながら説明する。図4に示すように、エレベータ自動着床装置20は、第2実施形態の構成に加えて、電力量監視装置25をさらに備えることを特徴とする。この電力量監視装置25は、非常運転時に蓄電装置23の電力量を監視して、前記電力量が十分にあるときには定常運転時と同等の昇降動作をエレベータ制御装置5および駆動部8に提供するように電力を供給し、この電力量が乏しいときには最寄りの階床まで前記エレベータかごを移動させる。
[Third Embodiment]
Next, an elevator automatic landing apparatus according to a third embodiment of the present invention will be described with reference to FIG. As shown in FIG. 4, the elevator automatic landing apparatus 20 further includes an electric energy monitoring device 25 in addition to the configuration of the second embodiment. The power amount monitoring device 25 monitors the power amount of the power storage device 23 during an emergency operation, and provides the elevator controller 5 and the drive unit 8 with a lift operation equivalent to that during steady operation when the power amount is sufficient. When the electric power is low, the elevator car is moved to the nearest floor.

この第3実施形態は、第1および第2実施形態と同様に蓄電装置23の充電/放電を実施する。これに加えて、第3実施形態は、蓄電装置23の蓄電電力量を監視してエレベータ制御装置5へ信号を出力し、蓄電電力量が多いときには通常運転を行ない、蓄電電力量が少ないときには最寄りの階で停止する。   In the third embodiment, charging / discharging of the power storage device 23 is performed as in the first and second embodiments. In addition to this, the third embodiment monitors the amount of power stored in the power storage device 23 and outputs a signal to the elevator control device 5. When the amount of stored power is large, normal operation is performed. Stop at the floor.

第3実施形態によれば、電力量監視装置25により蓄電装置23の蓄電量を常時監視しており、開閉器4が開放されて交流電源2からの電源の供給が絶たれ、蓄電装置23からの電源の供給が開始されたときの蓄電装置23の監視された蓄積電力量に基づいて、エレベータ制御装置5が巻上機9を含む駆動部8の可能な駆動時間を算出して、最適な動作を確保することができる。   According to the third embodiment, the amount of power stored in the power storage device 23 is constantly monitored by the power amount monitoring device 25, the switch 4 is opened, and the power supply from the AC power supply 2 is cut off. The elevator controller 5 calculates the possible drive time of the drive unit 8 including the hoisting machine 9 based on the monitored accumulated electric energy of the power storage device 23 when the supply of the power source is started. Operation can be secured.

[第4実施形態]
次に、本発明の第4実施形態に係るエレベータ自動着床装置について、図5を参照しながら説明する。図5に示すように、エレベータ自動着床装置20は、第2実施形態に記載の構成に加えて、電源系統1のトランス21の接続点と開閉器4との間に設けられて電源系統1の電流を検出する電流検出器26とこの電流検出器26の検出値に基づいて交流−直流変換器22に電力供給指令を指示して電力を補充させる定常時電力補充部(電力供給指令)27とを備えている。電流検出部26は定常運転時にエレベータ制御装置5およびエレベータ駆動部8が消費する電力を検出する負荷消費電力検出部であり、電力補充部27は負荷電力検出部としての電流検出部26の検出値が所定値を超えるときには、定常運転時であっても開閉器4を閉止したままで蓄電装置23からの電力を供給させる定常時電力補充部として機能している。
[Fourth Embodiment]
Next, an elevator automatic landing apparatus according to a fourth embodiment of the present invention will be described with reference to FIG. As shown in FIG. 5, the elevator automatic landing device 20 is provided between the connection point of the transformer 21 of the power supply system 1 and the switch 4 in addition to the configuration described in the second embodiment. A current detector 26 for detecting the current of the current, and a power supplement command (power supply command) 27 for instructing the power supply command to the AC-DC converter 22 based on the detected value of the current detector 26 to replenish the power. And. The current detection unit 26 is a load power consumption detection unit that detects the power consumed by the elevator controller 5 and the elevator drive unit 8 during steady operation, and the power supplement unit 27 is a detection value of the current detection unit 26 as a load power detection unit. When the value exceeds a predetermined value, it functions as a steady-state power supplementing unit that supplies power from the power storage device 23 with the switch 4 being closed even during steady operation.

次に、第4実施形態を適用したエレベータにおける動作時間と電力量の関係について、図6の特性図を参照しながら説明する。エレベータを昇降させるためには動き始めてから加速して、定常状態となり、停止階でかごを停止させるために減速するという3つの動作期間がある。その3つの動作期間における電力量の変化特性が図6に示されている。加速期間では、定常期間に移行する瞬間まで正比例し、定常期間では一定の電力量を消費し、減速期間では移行の瞬間に電力量が一瞬跳ね上がった後、減速状態に比例して減少する。   Next, the relationship between the operation time and the electric energy in an elevator to which the fourth embodiment is applied will be described with reference to the characteristic diagram of FIG. In order to raise and lower the elevator, there are three operation periods in which the elevator is accelerated after starting to move, reaches a steady state, and decelerates to stop the car on the stop floor. FIG. 6 shows the change characteristics of the electric energy during the three operation periods. In the acceleration period, it is directly proportional to the moment of transition to the steady period, consumes a constant amount of power in the steady period, and in the deceleration period, the amount of power jumps momentarily at the moment of transition and then decreases in proportion to the deceleration state.

したがって、加速期間から定常期間へと移行する直前の所定の期間だけ、図6に破線で示す設定値を超えている時間がある(ハッチング部分)。このハッチング部分の時間に対して、第4実施形態を適用することにより、電流量を検出して電力の設定値を超える部分を蓄電装置23からの供給電力で補うようにすれば、エレベータでの電力消費を含むこの建物の電力設備の容量を設定値までに制限することができる。   Therefore, there is a time exceeding the set value indicated by the broken line in FIG. 6 only in a predetermined period immediately before the transition from the acceleration period to the steady period (hatched portion). By applying the fourth embodiment to the time of the hatched portion, if the amount of current is detected and the portion exceeding the set value of power is supplemented with the power supplied from the power storage device 23, The capacity of the building's power equipment, including power consumption, can be limited to a set value.

図5に示す第4実施形態によれば、停電していない定常運転時に蓄電装置23に充電しておくだけでなく、電源系統1の電源2から流れる電流を電流検出器26により検出することにより監視して、一定以上の電流が流れようとしたときに、蓄電装置23より電力を供給し、電源2側の電力供給を少なくする。これにより、電源設備の容量を小さくすることができる。近年、建物の電力負荷が増大化しているために、電源設備の容量を大きくする傾向があるが、この第4実施形態によれば、建物内の電力負荷の需要が増大した場合でもエレベータの電力需要を交流電源2のみに頼らないで、蓄電装置23の蓄積電力量の中から供給するようにしており、エレベータ用も含めて建物内の電源設備の低容量化にも寄与することになる。   According to the fourth embodiment shown in FIG. 5, not only is the power storage device 23 charged during steady operation without a power failure, but also the current detector 26 detects the current flowing from the power source 2 of the power system 1. Monitoring is performed to supply power from the power storage device 23 when a current of a certain level or more is about to flow, and power supply on the power source 2 side is reduced. Thereby, the capacity | capacitance of power supply equipment can be made small. In recent years, since the power load of buildings has increased, there is a tendency to increase the capacity of power supply facilities. According to the fourth embodiment, even when the demand for power loads in buildings increases, the power of elevators Instead of relying solely on the AC power supply 2, the demand is supplied from the amount of stored power in the power storage device 23, which contributes to a reduction in the capacity of the power supply equipment in the building including the elevator.

[第5実施形態]
次に、本発明の第5実施形態に係るエレベータ自動着床装置について、図7を参照しながら説明する。図7において、エレベータ自動着床装置20は、第2実施形態の構成に加えて、定常運転時に電源電圧および電源電流を含む電源の状態を監視する電源監視部としての電流検出器26と、この電源監視部としての電流検出器26により監視された電源の状態に基づいて無効電力を調整して力率を改善した電力を蓄電装置23から供給させる電源状態改善部としての無効電力補償制御器28とをさらに備えることを特徴としている。無効電力補償制御器28にはトランス21から電源系統1への蓄積電力を供給する供給線の電圧を検出する電圧検出器29の検出出力も供給されている。
[Fifth Embodiment]
Next, an elevator automatic landing apparatus according to a fifth embodiment of the present invention will be described with reference to FIG. 7, in addition to the configuration of the second embodiment, the elevator automatic landing apparatus 20 includes a current detector 26 as a power supply monitoring unit that monitors a power supply state including a power supply voltage and a power supply current during steady operation, A reactive power compensation controller 28 as a power supply state improvement unit that adjusts reactive power based on the state of the power supply monitored by the current detector 26 as a power supply monitoring unit and supplies power with improved power factor from the power storage device 23. And further comprising. The reactive power compensation controller 28 is also supplied with a detection output of a voltage detector 29 that detects a voltage of a supply line that supplies stored power from the transformer 21 to the power supply system 1.

上記構成の第5実施形態では、非停電時に蓄積装置23に充電するだけでなく、電流検出器26により交流電源2から流れる電流を検出し、電圧検出器29によりトランス21からエレベータ制御装置5への電力供給線の電圧を検出し、検出された電流値と電圧値に基づいて無効電力補償制御器28が無効電力を小さくするように制御して、蓄電装置23から電力を供給し、電源側の力率を「1」に近づけるように制御している。   In the fifth embodiment having the above-described configuration, not only the storage device 23 is charged during a power outage, but also the current flowing from the AC power source 2 is detected by the current detector 26, and the transformer 21 is connected to the elevator control device 5 by the voltage detector 29. And the reactive power compensation controller 28 controls the reactive power compensation controller 28 to reduce the reactive power based on the detected current value and voltage value, and supplies power from the power storage device 23 to the power source side. The power factor is controlled to be close to “1”.

図8は、上段から順番に、図7における電圧検出器29の検出電圧値、電流検出器26の検出電流値、蓄電装置23からの補償電力波形、電源系統1に現れる出力波形をそれぞれ示している。トランス21から出力される交流の電圧波形と、開閉器4の下流側の電流波形はそれぞれの位相が1/4周期ずれており、この位相差により電源側の力率は所望の値とはなっていない。蓄電装置23からはこの位相差に起因して力率が所望の値となっていない状態を補償するため、蓄電装置23の出力として示されているような補償波形が出力され、電源系統1には最下段に示されるような波形が現れる。このようにして、無効電力補償制御器28は電源側の力率を「1」にするように補償制御している。   FIG. 8 shows the detected voltage value of the voltage detector 29, the detected current value of the current detector 26, the compensated power waveform from the power storage device 23, and the output waveform appearing in the power system 1 in order from the top. Yes. The phase of the AC voltage waveform output from the transformer 21 and the current waveform on the downstream side of the switch 4 are shifted from each other by a quarter period. Due to this phase difference, the power factor on the power source side becomes a desired value. Not. In order to compensate for a state where the power factor is not a desired value due to this phase difference, the power storage device 23 outputs a compensation waveform as shown as the output of the power storage device 23, and Shows the waveform shown at the bottom. In this way, the reactive power compensation controller 28 performs compensation control so that the power factor on the power supply side is set to “1”.

以上の構成・作用を有する第5実施形態によれば、基本的な機能としては、第1実施形態と同様に非停電時に電力を蓄積しておいて停電時にエレベータのかごが自動着床するまでエレベータ制御装置5を制御しているが、これに加えて、非停電時の定常運転時に、電源系統1の電流値と蓄電装置23の出力電圧値をそれぞれ検出してそれぞれの位相差を補償制御することにより、無効電力の補償をも併せ行なうようにしているので、定常運転時のエレベータの運転効率を大幅に改善することができる。   According to the fifth embodiment having the above-described configuration and operation, the basic function is to accumulate electric power at the time of non-power outage and to automatically land the elevator car at the time of power outage as in the first embodiment. Although the elevator control device 5 is controlled, in addition to this, during steady operation during a power outage, the current value of the power supply system 1 and the output voltage value of the power storage device 23 are detected and the respective phase differences are compensated and controlled. As a result, reactive power compensation is also performed, so that the operation efficiency of the elevator during steady operation can be greatly improved.

[第6実施形態]
次に、本発明の第6実施形態に係るエレベータ自動着床装置について、図9を参照しながら説明する。図9において、エレベータ自動着床装置20は、第2実施形態の構成に加えて、漏れ電流補償制御器30と零相電流検出器(ZCT)31とを備えることを特徴とする。図9において、定常運転時に交流電源2から負荷への漏れ電流を検出する漏れ電流検出部としての零相電流検出器31が設けられている。そして、この漏れ電流検出部としての零相電流検出器31により交流電源2からエレベータ制御装置5および駆動部8に供給される交流電流の漏れが検出されたときに、漏れ電流補償部としての漏れ電流補償制御器30がこの漏れ電流を補償する電力を蓄電装置23から供給させるように構成されている。
[Sixth Embodiment]
Next, an elevator automatic landing apparatus according to a sixth embodiment of the present invention will be described with reference to FIG. In FIG. 9, the elevator automatic landing apparatus 20 includes a leakage current compensation controller 30 and a zero-phase current detector (ZCT) 31 in addition to the configuration of the second embodiment. In FIG. 9, a zero-phase current detector 31 is provided as a leakage current detector that detects a leakage current from the AC power supply 2 to the load during steady operation. When the leakage of the alternating current supplied from the AC power source 2 to the elevator control device 5 and the drive unit 8 is detected by the zero-phase current detector 31 as the leakage current detection unit, the leakage as the leakage current compensation unit is detected. The current compensation controller 30 is configured to supply power for compensating for the leakage current from the power storage device 23.

すなわち、第6実施形態によれば、非停電時に蓄電装置23に充電するだけでなく、交流電源2の零相電流を零相電流検出器(ZCT)31により検出し、漏れ電流補償制御器30により漏れ電流が小さくなるように蓄電装置23より電力を供給させるようにしている。   That is, according to the sixth embodiment, not only the power storage device 23 is charged during a power outage, but also the zero phase current of the AC power supply 2 is detected by the zero phase current detector (ZCT) 31 and the leakage current compensation controller 30 is detected. Thus, electric power is supplied from the power storage device 23 so that the leakage current is reduced.

[第7実施形態]
次に、本発明の第7実施形態に係るエレベータ自動着床装置について、図10および図11を参照しながら説明する。まず、図10において、エレベータ自動着床装置20は、第2実施形態の構成に加えて、定常運転時に交流電源2の電源電圧を監視する電圧監視部としての電圧検出器29と、電圧監視部としての電圧検出器29により監視された電源電圧の歪みを補償する電力を蓄電装置23から供給させる歪み補償部としての電圧歪み補償制御器32とをさらに備えることを特徴としている。
[Seventh Embodiment]
Next, the elevator automatic landing apparatus which concerns on 7th Embodiment of this invention is demonstrated, referring FIG. 10 and FIG. First, in FIG. 10, in addition to the configuration of the second embodiment, the elevator automatic landing apparatus 20 includes a voltage detector 29 as a voltage monitoring unit that monitors the power supply voltage of the AC power supply 2 during steady operation, and a voltage monitoring unit. And a voltage distortion compensation controller 32 as a distortion compensator for supplying power for compensating for distortion of the power supply voltage monitored by the voltage detector 29 from the power storage device 23.

この第7実施形態によれば、非停電時に蓄電装置23に充電するだけでなく、電源2の電圧歪みを電圧検出器29により検出し、電圧歪み補償制御器32により電圧歪みが小さくなるように補償制御して、蓄電装置23より電力を供給させるようにしている。図11は、この補償制御を行なっている電源電圧、電流、補償値をそれぞれ示す特性図であり、電圧波形のピーク部分に相当する期間に対応して電流波形が強く現れるため、これを打ち消すような緩い曲線の補償値を同じ期間で出力することにより、電圧歪みを補償するようにしている。   According to the seventh embodiment, not only the power storage device 23 is charged during a power outage, but also the voltage distortion of the power source 2 is detected by the voltage detector 29 and the voltage distortion is reduced by the voltage distortion compensation controller 32. Compensation control is performed so that power is supplied from the power storage device 23. FIG. 11 is a characteristic diagram showing the power supply voltage, current, and compensation value for which this compensation control is being performed. Since the current waveform appears strongly corresponding to the period corresponding to the peak portion of the voltage waveform, this is canceled out. By outputting a compensation value of a gentle curve in the same period, voltage distortion is compensated.

[第8実施形態]
次に、本発明の第8実施形態に係るエレベータ自動着床装置について、図12および図13を参照しながら説明する。図12において、エレベータ自動着床装置20は、第2実施形態の構成に加え、定常運転時に交流電源2の電源電流を監視する電流検出器26と、この電流検出器26により検出された電源電流に含まれる高調波成分を補償した電力を蓄電装置23から供給させる高調波電流補償部33と、をさらに備えることを特徴としている。
[Eighth Embodiment]
Next, an elevator automatic landing apparatus according to an eighth embodiment of the present invention will be described with reference to FIGS. 12, in addition to the configuration of the second embodiment, the elevator automatic landing apparatus 20 includes a current detector 26 that monitors the power source current of the AC power source 2 during steady operation, and a power source current detected by the current detector 26. And a harmonic current compensator 33 for supplying power compensated for the harmonic component contained in the power storage device 23 from the power storage device 23.

この第8実施形態によれば、非停電時に蓄電装置23に充電するだけでなく、電源2の全ての相電流を電流検出器26により検出し、電流高調波補償制御器33により電流高調波が小さくなるように蓄電装置23より電力を供給する。図13の上段には、一例としての1つの相の検出電流の波形が示されており、図13の下段には破線で示すこの波形に対する高調波成分が示されている。この高調波成分を補償するような電力を供給することにより高調波成分が補償された電力によりエレベータ制御装置5および巻上機9を駆動することができる。   According to the eighth embodiment, not only the power storage device 23 is charged during a non-power failure, but also all phase currents of the power supply 2 are detected by the current detector 26, and current harmonics are detected by the current harmonic compensation controller 33. Electric power is supplied from the power storage device 23 so as to be reduced. The upper part of FIG. 13 shows a waveform of a detection current of one phase as an example, and the lower part of FIG. 13 shows a harmonic component corresponding to this waveform indicated by a broken line. By supplying electric power that compensates for this harmonic component, the elevator controller 5 and the hoisting machine 9 can be driven by the electric power whose harmonic component is compensated.

なお、上述した第1ないし第8実施形態は、それぞれ単独で実施することも可能であるが、記載された実施形態の幾つかを組み合わせて実施することも可能である。何れの実施形態によっても、エレベータ制御装置5以降の構成を変更することなく、エレベータ自動着床装置20のみを電源系統1に付加することが可能である。また、非停電時の自動着床装置の用途および作用を充電だけに限定することなく、電源系統1に供給される電力の各種の成分を補償するために用いられたり、補償作用を有したりすることにより、無駄な設備の付加という意味合いを打ち消すことができ、停電時のバックアップ機能に加えて定常運転時の正確な制御を可能にすると共に利用者に快適な搭乗感覚を提供できる。   In addition, although the 1st thru | or 8th embodiment mentioned above can each be implemented independently, it is also possible to implement combining some of described embodiment. In any embodiment, it is possible to add only the elevator automatic landing device 20 to the power supply system 1 without changing the configuration of the elevator control device 5 and the subsequent components. Moreover, it is used to compensate for various components of the power supplied to the power supply system 1 without having to limit the use and operation of the automatic landing device at the time of non-power failure to only charging, and has a compensating effect. By doing so, it is possible to negate the meaning of adding unnecessary facilities, and in addition to a backup function in the event of a power failure, accurate control during steady operation is possible and a comfortable boarding feeling can be provided to the user.

基本概念の第1実施形態のエレベータ自動着床装置を示すブロック構成図。The block block diagram which shows the elevator automatic landing apparatus of 1st Embodiment of a basic concept. 第1実施形態の詳細構成を示すブロック図。The block diagram which shows the detailed structure of 1st Embodiment. 第2実施形態によるエレベータ自動着床装置の構成を示すブロック図。The block diagram which shows the structure of the elevator automatic landing apparatus by 2nd Embodiment. 第3実施形態によるエレベータ自動着床装置の構成を示すブロック図。The block diagram which shows the structure of the elevator automatic landing apparatus by 3rd Embodiment. 第4実施形態によるエレベータ自動着床装置の構成を示すブロック図。The block diagram which shows the structure of the elevator automatic landing apparatus by 4th Embodiment. 図5のエレベータ制御装置への供給電力の波形を示す特性図。The characteristic view which shows the waveform of the electric power supplied to the elevator control apparatus of FIG. 第5実施形態によるエレベータ自動着床装置の構成を示すブロック図。The block diagram which shows the structure of the elevator automatic landing apparatus by 5th Embodiment. 図7の各部の電圧・電流・電力波形を示す特性図。The characteristic view which shows the voltage, electric current, and electric power waveform of each part of FIG. 第6実施形態によるエレベータ自動着床装置の構成を示すブロック図。The block diagram which shows the structure of the elevator automatic landing apparatus by 6th Embodiment. 第7実施形態によるエレベータ自動着床装置の構成を示すブロック図。The block diagram which shows the structure of the elevator automatic landing apparatus by 7th Embodiment. 図10の各部の電圧・電流。補償値の波形を示す特性図。Voltage and current of each part in FIG. The characteristic view which shows the waveform of a compensation value. 第8実施形態によるエレベータ自動着床装置の構成を示すブロック図。The block diagram which shows the structure of the elevator automatic landing apparatus by 8th Embodiment. 図12の各部の電流・高調波成分の波形を示す特性図。The characteristic view which shows the waveform of the electric current and a harmonic component of each part of FIG. 第1従来例によるエレベータ自動着床装置の構成を示すブロック図。The block diagram which shows the structure of the elevator automatic landing apparatus by a 1st prior art example. 第2従来例によるエレベータ自動着床装置の構成を示すブロック図。The block diagram which shows the structure of the elevator automatic landing apparatus by a 2nd prior art example.

符号の説明Explanation of symbols

1 電源系統
4 開閉器
5 エレベータ制御装置
8 エレベータ駆動部
9 巻上機
20 エレベータ自動着床装置
21 変圧器(トランス)
22 電流変換器(交流−直流変換器)
23 蓄電装置
24 昇降圧回路
25 電力量監視装置
26 電流検出器
27 電力補充部(電力供給指令)
28 無効電力補償制御器
29 電圧検出器
30 漏れ電流補償制御器
31 零電流検出器
32 電圧歪み補償制御器
33 電流高調波補償制御器
DESCRIPTION OF SYMBOLS 1 Power supply system 4 Switch 5 Elevator control apparatus 8 Elevator drive part 9 Hoisting machine 20 Elevator automatic landing apparatus 21 Transformer (transformer)
22 Current converter (AC-DC converter)
23 power storage device 24 step-up / down circuit 25 power monitoring device 26 current detector 27 power supplement unit (power supply command)
28 Reactive power compensation controller 29 Voltage detector 30 Leakage current compensation controller 31 Zero current detector 32 Voltage distortion compensation controller 33 Current harmonic compensation controller

Claims (8)

少なくとも巻上機を含むエレベータ駆動部を制御するエレベータ制御装置と前記エレベータ駆動部および前記エレベータ制御装置を動作させる電源との間である電源系統に並列に接続された変圧器と、
前記電源系統における前記変圧器の接続点よりも電源側に介挿されて前記電源から供給される交流を開閉可能な開閉器と、
前記変圧器に直列に接続されて前記変圧器側から流れる交流を直流に変換すると共に前記変圧器側へ流れる直流を交流に変換する電流変換器と、
前記電流変換器を介して前記変圧器に直列に接続され、前記開閉器が閉止された定常運転時には前記交流電源から供給される電源電力を充電し、前記開閉器が開放された非常運転時には蓄積した電力を前記エレベータ制御装置および前記エレベータ駆動部に供給してエレベータかごを所定の階床まで昇降移動させる蓄電装置と、
を備えることを特徴とするエレベータ自動着床装置。
A transformer connected in parallel to a power system between an elevator control device that controls an elevator drive unit including at least a hoisting machine and a power source that operates the elevator drive unit and the elevator control device;
A switch capable of opening and closing the alternating current supplied from the power supply, which is inserted on the power supply side from the connection point of the transformer in the power supply system;
A current converter connected in series to the transformer to convert alternating current flowing from the transformer side into direct current and converting direct current flowing to the transformer side to alternating current;
It is connected in series to the transformer via the current converter, and charges the power supply supplied from the AC power source during steady operation when the switch is closed, and accumulates during emergency operation when the switch is opened. A power storage device that moves the elevator car up and down to a predetermined floor by supplying the generated electric power to the elevator controller and the elevator drive unit;
An elevator automatic landing apparatus comprising:
前記電流変換器と前記蓄電装置との間に、前記蓄電装置の電力量が変動したときでも前記エレベータ制御装置および前記エレベータ駆動部に対して安定した電力を供給する昇降圧回路をさらに備えることを特徴とする請求項1に記載のエレベータ自動着床装置。   A step-up / step-down circuit for supplying stable power to the elevator control device and the elevator driving unit even when the amount of power of the power storage device fluctuates between the current converter and the power storage device. 2. The elevator automatic landing apparatus according to claim 1, wherein 前記非常運転時に前記蓄電装置の電力量を監視して、前記電力量が十分にあるときには前記定常運転時と同等の昇降動作を前記エレベータ制御装置および前記エレベータ駆動部に提供するように電力を供給し、前記電力量が乏しいときには最寄りの階床まで前記エレベータかごを移動させる電力量監視装置をさらに備えることを特徴とする請求項1に記載のエレベータ自動着床装置。   The power amount of the power storage device is monitored during the emergency operation, and when the power amount is sufficient, power is supplied so as to provide the elevator control device and the elevator drive unit with the same lift operation as during the steady operation. The elevator automatic landing apparatus according to claim 1, further comprising a power amount monitoring device that moves the elevator car to a nearest floor when the power amount is low. 前記定常運転時に前記エレベータ制御装置および前記エレベータ駆動部が消費する電力を検出する負荷消費電力検出部と、前記負荷電力検出部の検出値が所定値を超えるときに前記定常運転時であっても前記開閉器を閉止したままで前記蓄電装置からの電力を供給させる定常時電力補充部と、をさらに備えることを特徴とする請求項1に記載のエレベータ自動着床装置。   Even during the steady operation when the detected value of the load power detection unit exceeds a predetermined value, a load power consumption detection unit that detects power consumed by the elevator control device and the elevator drive unit during the steady operation The elevator automatic landing apparatus according to claim 1, further comprising a steady-state power replenishment unit that supplies power from the power storage device with the switch closed. 前記定常運転時に電源電流を検出する電流検出器と、前記定常運転時に電源電圧を検出する電圧検出器と、前記電流検出器および前記電圧検出器によりそれぞれ検出された電流値および電圧値に基づいて電源の無効電力を補償して力率を改善する電力を前記蓄電装置から供給させる無効電力補償制御器と、をさらに備えることを特徴とする請求項1に記載のエレベータ自動着床装置。   Based on a current detector that detects a power supply current during the steady operation, a voltage detector that detects a power supply voltage during the steady operation, and a current value and a voltage value detected by the current detector and the voltage detector, respectively. The elevator automatic landing apparatus according to claim 1, further comprising: a reactive power compensation controller that compensates reactive power of a power source to supply power that improves power factor from the power storage device. 前記定常運転時に前記交流電源から負荷への漏れ電流を検出する漏れ電流検出部と、前記漏れ電流検出部により前記交流電源から前記エレベータ制御装置および前記エレベータ駆動部に供給される電流の漏れが検出されたときに前記漏れ電流を補償する電力を前記蓄電装置から供給させる漏れ電流補償制御器と、をさらに備えることを特徴とする請求項1に記載のエレベータ自動着床装置。   A leakage current detection unit that detects a leakage current from the AC power supply to the load during the steady operation, and a leakage of current supplied from the AC power supply to the elevator controller and the elevator driving unit is detected by the leakage current detection unit The elevator automatic landing apparatus according to claim 1, further comprising: a leakage current compensation controller configured to supply electric power for compensating the leakage current from the power storage device when the operation is performed. 前記定常運転時に前記交流電源の電源電圧を監視する電圧監視部と、前記電圧監視部により監視された前記電源電圧の歪みを補償する電力を前記蓄電装置から供給させる電圧歪み補償制御器と、をさらに備えることを特徴とする請求項1に記載のエレベータ自動着床装置。   A voltage monitoring unit that monitors the power supply voltage of the AC power supply during the steady operation, and a voltage distortion compensation controller that supplies power from the power storage device to compensate for distortion of the power supply voltage monitored by the voltage monitoring unit. The elevator automatic landing apparatus according to claim 1, further comprising: 前記定常運転時に前記交流電源の電源電流を検出する電流検出器と、前記電流検出器により検出された前記電源電流に含まれる高調波成分を補償する電力を前記蓄電装置から供給させる電流高調波補償制御器と、をさらに備えることを特徴とする請求項1に記載のエレベータ自動着床装置。   A current detector that detects a power source current of the AC power source during the steady operation, and a current harmonic compensation that supplies power from the power storage device to compensate for a harmonic component included in the power source current detected by the current detector The elevator automatic landing apparatus according to claim 1, further comprising a controller.
JP2005341787A 2005-11-28 2005-11-28 Elevator automatic landing device Active JP4917303B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005341787A JP4917303B2 (en) 2005-11-28 2005-11-28 Elevator automatic landing device
PCT/JP2006/323679 WO2007061109A1 (en) 2005-11-28 2006-11-28 Elevator automatic landing device
CNA2006800440999A CN101316782A (en) 2005-11-28 2006-11-28 Elevator automatic landing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341787A JP4917303B2 (en) 2005-11-28 2005-11-28 Elevator automatic landing device

Publications (2)

Publication Number Publication Date
JP2007145495A true JP2007145495A (en) 2007-06-14
JP4917303B2 JP4917303B2 (en) 2012-04-18

Family

ID=38067329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341787A Active JP4917303B2 (en) 2005-11-28 2005-11-28 Elevator automatic landing device

Country Status (3)

Country Link
JP (1) JP4917303B2 (en)
CN (1) CN101316782A (en)
WO (1) WO2007061109A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860306A (en) * 2010-03-23 2010-10-13 杭州双华科技有限公司 Speed control module and speed control circuit of brush direct-current tubular motor
JP2012191841A (en) * 2011-03-10 2012-10-04 Tesla Motors Inc Apparatus for improving charging efficiency using selectable isolation
JP2014082113A (en) * 2012-10-17 2014-05-08 Mitsubishi Electric Corp Illuminating device
JP2015168507A (en) * 2014-03-06 2015-09-28 東芝エレベータ株式会社 Power supply device of elevator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263726B2 (en) * 2007-11-15 2013-08-14 東芝エレベータ株式会社 Elevator power supply system
WO2011052015A1 (en) * 2009-10-30 2011-05-05 三菱電機株式会社 Elevator control device and control method
JP5520174B2 (en) * 2010-09-21 2014-06-11 東芝エレベータ株式会社 Elevator control device
CN106629298A (en) * 2017-03-07 2017-05-10 西继迅达(许昌)电梯有限公司 Elevator emergency control method, device and system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036742B2 (en) * 1983-06-30 1991-01-30 Mitsubishi Electric Corp
JPH0632553A (en) * 1992-07-16 1994-02-08 Hitachi Ltd Elevator device
JPH099256A (en) * 1995-04-18 1997-01-10 Fuji Xerox Co Ltd Image encoding device and image decoding device
JPH10129945A (en) * 1996-10-24 1998-05-19 Lg Ind Syst Co Ltd Emergency operating device of elevator
JP2000184737A (en) * 1998-12-18 2000-06-30 Toshiba Corp Noise reduction circuit
JP2001019311A (en) * 1999-07-06 2001-01-23 Toshiba Elevator Co Ltd Elevator control device
JP2003032913A (en) * 2001-07-11 2003-01-31 Tokyo Gas Co Ltd Uninterruptible power supply
JP2005015067A (en) * 2003-06-23 2005-01-20 Mitsubishi Electric Corp Emergency operation device of elevator
JP2005089096A (en) * 2003-09-17 2005-04-07 Toshiba Elevator Co Ltd Elevator control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099526A (en) * 1995-06-22 1997-01-10 Tsuken Denki Kogyo Kk Uninterruptible power supply apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036742B2 (en) * 1983-06-30 1991-01-30 Mitsubishi Electric Corp
JPH0632553A (en) * 1992-07-16 1994-02-08 Hitachi Ltd Elevator device
JPH099256A (en) * 1995-04-18 1997-01-10 Fuji Xerox Co Ltd Image encoding device and image decoding device
JPH10129945A (en) * 1996-10-24 1998-05-19 Lg Ind Syst Co Ltd Emergency operating device of elevator
JP2000184737A (en) * 1998-12-18 2000-06-30 Toshiba Corp Noise reduction circuit
JP2001019311A (en) * 1999-07-06 2001-01-23 Toshiba Elevator Co Ltd Elevator control device
JP2003032913A (en) * 2001-07-11 2003-01-31 Tokyo Gas Co Ltd Uninterruptible power supply
JP2005015067A (en) * 2003-06-23 2005-01-20 Mitsubishi Electric Corp Emergency operation device of elevator
JP2005089096A (en) * 2003-09-17 2005-04-07 Toshiba Elevator Co Ltd Elevator control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860306A (en) * 2010-03-23 2010-10-13 杭州双华科技有限公司 Speed control module and speed control circuit of brush direct-current tubular motor
CN101860306B (en) * 2010-03-23 2013-05-01 杭州双华科技有限公司 Speed control module and speed control circuit of brush direct-current tubular motor
JP2012191841A (en) * 2011-03-10 2012-10-04 Tesla Motors Inc Apparatus for improving charging efficiency using selectable isolation
JP2014082113A (en) * 2012-10-17 2014-05-08 Mitsubishi Electric Corp Illuminating device
JP2015168507A (en) * 2014-03-06 2015-09-28 東芝エレベータ株式会社 Power supply device of elevator

Also Published As

Publication number Publication date
CN101316782A (en) 2008-12-03
WO2007061109A1 (en) 2007-05-31
JP4917303B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4917303B2 (en) Elevator automatic landing device
JP4874404B2 (en) Automatic rescue operation for regenerative drive system
JP4727166B2 (en) Elevator control device
KR101930252B1 (en) Device for automatically rescuing lift and saving energy and method thereof, and super-capacitor module
US6431323B2 (en) Elevator power management system having power storage apparatus maintaining a particular charge in accordance with time of day
RU2490201C2 (en) Elevator and mounted electric power supply system with extra power supply control means
US8146714B2 (en) Elevator system including regenerative drive and rescue operation circuit for normal and power failure conditions
KR20010085604A (en) Controller of elevator
JP3261901B2 (en) Elevator emergency operation device
US7728456B2 (en) Vehicle auxiliary electric-power-supplying system
JPH11299275A (en) Power unit for elevator
WO2010059139A1 (en) Power management in elevators during marginal quality power conditions
JP6576588B1 (en) Elevator power supply system and elevator power supply method
KR102345574B1 (en) Elevator ard included a power regenerative unit
JP2003333891A (en) Motor driver and power source used therefor and method for reducing capacity of power source facility of motor driver
CN115940172A (en) Device applied to voltage sag treatment of subway escalator and control method thereof
JP2003333893A (en) Motor driver
JP2015054729A (en) Elevator control device
CN110356943B (en) Elevator control system and vertical ladder rescue device
JP2012218853A (en) Elevator control device
CN103825353A (en) Lift emergency power-supply system
JP2006176257A (en) Elevator control device
WO2014010051A1 (en) Elevator device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350