JP2007144597A - Electrodeposition grindstone and grinding method using it - Google Patents

Electrodeposition grindstone and grinding method using it Download PDF

Info

Publication number
JP2007144597A
JP2007144597A JP2005345486A JP2005345486A JP2007144597A JP 2007144597 A JP2007144597 A JP 2007144597A JP 2005345486 A JP2005345486 A JP 2005345486A JP 2005345486 A JP2005345486 A JP 2005345486A JP 2007144597 A JP2007144597 A JP 2007144597A
Authority
JP
Japan
Prior art keywords
grinding
electrodeposition
grindstone
supply hole
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005345486A
Other languages
Japanese (ja)
Inventor
Kenji Akiba
謙次 秋葉
Kenichiro Suwa
建一郎 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005345486A priority Critical patent/JP2007144597A/en
Publication of JP2007144597A publication Critical patent/JP2007144597A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeposition grindstone capable of precluding preventing clogging caused by heat emission or polishing waste generated at the time of grinding. <P>SOLUTION: The electrodeposition grindstone 1 to conduct the contour processing of a work 10 to be processed is structured so that abrasive grains are electrodeposited on the outside surface of a disc-shaped base 2 to form an electrodeposition surface 3. There a grinding liquid supply hole 4 is formed to penetrate the electrodeposition surface 3 from the side face of the base 2 in such an arrangement that one of the openings 4b of the hole 4 faces the outside at the electrodeposition surface 3. At the time of processing the contour, a grinding liquid is poured in from the side face of the base 2 of the grindstone 1 is fed to the surface 3 through the hole 4. At the same time, the liquid is fed to the grindstone 1 also from the grindstone outlet side of the work 10 to be processed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば希土類焼結磁石等の輪郭加工に用いられる電着砥石に関するものであり、さらには、電着砥石を用いた研削加工方法に関する。   The present invention relates to an electrodeposition grindstone used for contour processing of, for example, a rare earth sintered magnet, and further relates to a grinding method using an electrodeposition grindstone.

モータをはじめとする各種電気部品の小型化の要求、及びこれに対応した磁石の特性向上の要求に伴い、高性能小型磁石の開発が求められている。このような中、例えばNd−Fe−B磁石等のR−T−B系(Rは、希土類元素の1種以上である。Tは、Feを必須とし、その他金属元素を含む。)焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であること等の利点を有することから、近年、その需要が益々拡大する傾向にある。   With the demand for miniaturization of various electric parts such as motors and the demand for improvement in the characteristics of magnets corresponding to the demand, development of high-performance small magnets is required. In such a situation, for example, an R-T-B system such as an Nd-Fe-B magnet (R is one or more rare earth elements. T is essential for Fe and contains other metal elements). Magnets have advantages such as excellent magnetic properties, Nd, which is a main component, and abundant resources, and are relatively inexpensive. Therefore, demand for magnets has been increasing in recent years.

希土類焼結磁石の製造方法としては、粉末冶金法が知られており、低コストでの製造が可能なことから広く用いられている。粉末冶金法による希土類焼結磁石の製造方法は、基本的には、先ず、原料合金インゴットを粗粉砕及び微粉砕し、粒径が数μm程度の原料合金粉を得る。このようにして得られた原料合金粉を磁場中で配向させ、成形を行う。磁場中成形後、成形体を真空中、または不活性ガス雰囲気中で焼結を行う。   As a method for producing a rare earth sintered magnet, powder metallurgy is known and widely used because it can be produced at low cost. In the method of manufacturing a rare earth sintered magnet by the powder metallurgy method, first, a raw material alloy ingot is first roughly pulverized and finely pulverized to obtain a raw material alloy powder having a particle size of about several μm. The raw material alloy powder thus obtained is oriented in a magnetic field and molded. After molding in a magnetic field, the compact is sintered in a vacuum or in an inert gas atmosphere.

前述の粉末冶金法による希土類焼結磁石の製造においては、得られる希土類焼結磁石を所定の形状とするための機械加工が必要になる。具体的には、粉末冶金法によって製造される希土類焼結磁石の場合、焼結処理において成形体が大きく収縮するため、高い寸法精度が要求される製品に対しては、輪郭加工や切断加工が必要になる。また、小型磁石の場合、輪郭加工を行ったブロックから切断加工によって所定の厚さの磁石片を切り出し、小型化する手法も採られる。   In the production of the rare earth sintered magnet by the above-mentioned powder metallurgy method, machining for making the obtained rare earth sintered magnet into a predetermined shape is required. Specifically, in the case of rare earth sintered magnets manufactured by powder metallurgy, the compact is greatly shrunk in the sintering process, so contouring and cutting are not possible for products that require high dimensional accuracy. I need it. In the case of a small magnet, a technique of cutting out a magnet piece having a predetermined thickness from a block subjected to contour processing by cutting is also employed.

ところで、希土類焼結磁石に対して輪郭加工を行う場合、台金に砥粒を電着させた電着砥石が用いられており、特に円板状台金の外周面に砥粒を電着された電着砥石が広く用いられている。電着砥石は、例えば前記円板状台金を電気めっき浴に浸漬し、作用面(前記外周面)にダイヤモンド超砥粒を充填してめっきを行い、前記作用面に砥粒を1層分仮固定した後、さらに電気めっき、あるいは無電解めっきにより超砥粒を固着することにより作製される。   By the way, when contour processing is performed on a rare earth sintered magnet, an electrodeposition grindstone in which abrasive grains are electrodeposited on a base metal is used. In particular, abrasive grains are electrodeposited on the outer peripheral surface of a disk-shaped base metal. Electrodeposited whetstones are widely used. For example, the electrodeposition grindstone is obtained by immersing the disc-shaped base metal in an electroplating bath, filling the working surface (the outer peripheral surface) with diamond superabrasive grains, and plating the working surface for one layer of abrasive grains. After temporarily fixing, it is produced by further fixing superabrasive grains by electroplating or electroless plating.

そして、希土類焼結磁石の輪郭加工の際には、輪郭形状に応じた電着面形状を有する円板状の電着砥石を用い、これを概ね3000rpm以上で高速回転させて研削を行い、所定の形状に加工する。このとき、高速回転する電着砥石の研削部分に対して、1方向あるいは前後2方向から研削液を供給し、加工対象物である希土類焼結磁石や電着砥石の高温化を防ぐと同時に、研削によって発生した研磨カスを速やかに排出するようにしている。   In the contour processing of the rare earth sintered magnet, a disc-shaped electrodeposition grindstone having an electrodeposited surface shape corresponding to the contour shape is used, and is ground by rotating at a high speed of approximately 3000 rpm or more. To the shape of At this time, the grinding fluid of the electrodeposition grindstone rotating at high speed is supplied with a grinding liquid from one direction or two front and rear directions, and at the same time, the rare earth sintered magnet and the electrodeposition grindstone that are workpieces are prevented from being heated at high temperatures, Polishing waste generated by grinding is quickly discharged.

電着砥石においては、砥石の作用面である電着面の砥粒の隙間に研削によって生じた研磨カスが付着すると、いわゆる目詰まりを起こして、研削力が大幅に低下するという問題がある。また、固着されている超砥粒が摩耗、脱落すると、電着砥石の寿命が尽きてしまう。この現象は、加工対象物の研削体積が大きい場合や、希土類焼結磁石のような硬材を研削するといった重研削時に顕著に現れる。   In the electrodeposited grindstone, when polishing debris generated by grinding adheres to the gap between the abrasive grains on the electrodeposited surface, which is the working surface of the grindstone, there is a problem that so-called clogging occurs and the grinding force is greatly reduced. In addition, if the superabrasive grains that are fixed wear and fall off, the life of the electrodeposited grindstone will be exhausted. This phenomenon remarkably appears when the grinding volume of the workpiece is large or during heavy grinding such as grinding a hard material such as a rare earth sintered magnet.

したがって、これらの現象を解消することを目的に、前記のように研削液の供給が必須となるが、それだけでは必ずしも十分とは言えない。何故ならば、従来の電着砥石は、研削中に生じた切粉を砥石の回転運動に伴って研削部分から排出する機能(切粉排出性)が小さい上、研削液が研削部分に供給され難く、研削液による冷却効果及び潤滑効果が低いからである。   Therefore, for the purpose of eliminating these phenomena, it is essential to supply the grinding fluid as described above, but this is not always sufficient. This is because the conventional electrodeposited grinding stone has a small function (chip dischargeability) for discharging chips generated during grinding from the grinding part with the rotational movement of the grinding wheel, and the grinding fluid is supplied to the grinding part. This is because the cooling effect and the lubrication effect by the grinding liquid are difficult.

このような状況から、例えば特許文献1においては、砥石の構造を工夫することで前記の問題を解消することが試みられている。具体的には、台金、砥粒及び砥粒を台金上に固搏する電着金属層とから成る電着砥石において、研削作用を有する砥石の最外表面に、所定のパターンで砥粒を有する電着領域群と、砥粒を有しない窪み領域群とからなる電着層を形成してなることを特徴とする電着砥石が開示されている。特許文献1記載の電着砥石では、前記のように砥石の最外周に電着砥石領域(電着領域群)と砥石を有しない領域(窪み領域群)が形成されており、この砥石を有しない領域に研削液が供給されることで、冷却効果が得られるとされている。
特開平9−193022号公報
From such a situation, for example, Patent Document 1 attempts to solve the above problem by devising the structure of the grindstone. Specifically, in an electrodeposited grindstone composed of a base metal, abrasive grains, and an electrodeposited metal layer that solidifies the abrasive grains on the base metal, the abrasive grains in a predetermined pattern are formed on the outermost surface of the grindstone having a grinding action. An electrodeposition grindstone is disclosed, which is formed by forming an electrodeposition layer composed of an electrodeposition region group having a dent and a hollow region group having no abrasive grains. In the electrodeposition grindstone described in Patent Document 1, as described above, the electrodeposition grindstone region (electrodeposition region group) and the region not having the grindstone (dent region group) are formed on the outermost periphery of the grindstone. It is said that a cooling effect can be obtained by supplying the grinding liquid to the area where the operation is not performed.
JP-A-9-193022

しかしながら、砥石に特許文献1記載の発明のような工夫を行ったとしても、砥石を有しない領域に供給される研削液の量は僅かであり、特に重研削では冷却能が不足し、例えば希土類焼結磁石のような研削抵抗が高い加工対象物を研削する場合には、それだけでは不十分である。また、特許文献1記載の技術では、輪郭加工(総型砥石による加工)を行おうとすると、砥石外周に施すパターンが煩雑になるおそれもある。   However, even if the grindstone is devised as in the invention described in Patent Document 1, the amount of the grinding liquid supplied to the region not having the grindstone is small, and particularly in heavy grinding, the cooling ability is insufficient. When grinding a workpiece having a high grinding resistance such as a sintered magnet, that alone is not sufficient. Further, in the technique described in Patent Document 1, when contour processing (processing with a general-purpose grindstone) is performed, a pattern applied to the outer periphery of the grindstone may become complicated.

例えば、四角いブロックを円弧状に輪郭加工する場合、砥石の電着面において研削体積(研削代)が大きい部分が存在する。中央が窪んだ円弧状に輪郭加工する場合には、電着面の中央部分が研削代の大きい部分となる。このような研削代が大きい部分は、偏摩耗を起こし易く、加工精度の低下をもたらし、砥石の寿命、交換時期を早め、加工時の割れ、カケの発生も増大する傾向にある。このような問題は、平面研削とは違い、輪郭加工に使用される電着砥石特有の問題であり、前記特許文献1記載の技術では解消することはできない。   For example, when a square block is contoured in an arc shape, there is a portion with a large grinding volume (grinding allowance) on the electrodeposition surface of the grindstone. When contour processing is performed in an arc shape with a depressed center, the central portion of the electrodeposition surface is a portion with a large grinding allowance. Such a portion with a large grinding allowance is liable to cause uneven wear, resulting in a decrease in processing accuracy, an advance in the life and replacement time of the grindstone, and a tendency to increase the occurrence of cracks and chips during processing. Unlike the surface grinding, such a problem is a problem peculiar to the electrodeposition grindstone used for the contour processing, and cannot be solved by the technique described in Patent Document 1.

本発明は、このような従来の実情に鑑みて提案されたものであり、輪郭加工を行う電着砥石において、研削時に発生する発熱を防止するとともに、研磨カスによる目詰まりを防止することを目的とし、これにより、電着面の砥粒が摩耗、脱落し難い電着砥石を提供することを目的とする。さらに、本発明は、電着砥石を使用することで、加工寸法や生産数の安定化、さらにはコストダウンやメンテナンスの簡易化を図ることが可能な研削加工方法を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and an object of the present invention is to prevent heat generated during grinding and prevent clogging due to polishing residue in an electrodeposited grinding wheel that performs contour machining. Thus, an object of the present invention is to provide an electrodeposition grindstone in which the abrasive grains on the electrodeposited surface are less likely to wear and drop off. Furthermore, an object of the present invention is to provide a grinding method capable of stabilizing machining dimensions and the number of productions, further reducing costs and simplifying maintenance by using an electrodeposition grindstone. .

前述の目的を達成するために、本発明の電着砥石は、円板状台金の外周面に砥粒が電着されて電着面が形成され、加工対象物の輪郭加工を行う電着砥石であって、前記円板状台金の側面から前記電着面に至る研削液供給孔が貫通形成され、前記研削液供給孔の一方の開口部が前記電着面において外部に臨んで開口する形で形成されていることを特徴とする。また、本発明の研削加工方法は、前記電着砥石を用い、前記電着砥石の円板状台金の側面から研削液を注液し、前記研削液供給孔を介して電着面に研削液を供給しながら加工対象物の輪郭加工を行うことを特徴とする。   In order to achieve the above-mentioned object, the electrodeposition grindstone of the present invention is an electrodeposition electrode for performing contour processing of a workpiece by forming an electrodeposition surface by electrodepositing abrasive grains on the outer peripheral surface of a disk-shaped base metal. A grinding fluid supply hole that penetrates from the side surface of the disk-shaped base metal to the electrodeposition surface is formed so that one opening of the grinding fluid supply hole faces the outside on the electrodeposition surface. It is formed in the form to do. Further, the grinding method of the present invention uses the electrodeposition grindstone, injects a grinding liquid from the side surface of the disk-shaped base metal of the electrodeposition grindstone, and grinds the electrodeposited surface through the grinding liquid supply hole. It is characterized in that contour processing of a workpiece is performed while supplying a liquid.

本発明の電着砥石では、前記の通り、円板状台金の側面から電着面に至る研削液供給孔が貫通形成され、研削液供給孔の一方の開口部が電着面において外部に臨んで開口する形で形成されている。したがって、砥石の研削部分に直接研削液が供給されることになり、効果的な冷却、及び円滑な研磨カスの排出が実現される。   In the electrodeposition grindstone of the present invention, as described above, the grinding fluid supply hole extending from the side surface of the disk-shaped base metal to the electrodeposition surface is formed so as to penetrate, and one opening of the grinding fluid supply hole is formed outside on the electrodeposition surface. It is formed so as to face and open. Therefore, the grinding liquid is directly supplied to the grinding portion of the grindstone, so that effective cooling and smooth discharge of polishing residue are realized.

砥石の研削面に研削液を供給する技術としては、例えば特公昭58−2034号公報に開示される技術も知られているが、前記公報に記載される発明は、砥石含有網状金属構造体の裏面側から研削液を供給して砥面に導くものであり、本発明のように電着面に研削液供給孔の開口部を直接開口形成するものではない。本発明では、電着面(砥面)に直接研削液を供給することが重要であり、これにより前記効果的な冷却及び円滑な研磨カスの排出が実現される。前記公報記載の発明のように、砥石含有網状金属構造体の裏面側から研削液を供給した場合、冷却効果はある程度得られるものと考えられるが、研磨カスを効率的に排出することは難しい。   As a technique for supplying a grinding fluid to a grinding surface of a grindstone, for example, a technique disclosed in Japanese Patent Publication No. 58-2034 is also known. However, the invention described in the above gazette describes a grindstone-containing network metal structure. The grinding liquid is supplied from the back side and guided to the abrasive surface, and the opening of the grinding liquid supply hole is not directly formed on the electrodeposition surface as in the present invention. In the present invention, it is important to supply the grinding liquid directly to the electrodeposition surface (abrasive surface), thereby realizing the effective cooling and the smooth discharge of polishing residue. When the grinding liquid is supplied from the back side of the grindstone-containing reticulated metal structure as in the invention described in the publication, it is considered that a cooling effect can be obtained to some extent, but it is difficult to efficiently discharge the polishing residue.

例えば希土類焼結磁石のような金属の硬材を研削加工する場合、ねばりのある研磨カスが砥面に固着するが、前記特公昭58−2034号公報記載の発明のように、砥面に砥石含有網状金属構造体を形成すると、前記研磨カスがその中に入り込んで、前記裏面からの研削液の供給では、これを排出することはできない。したがって、重研削用途に適用することは難しく、前記公報中にもラッピング加工を目的とする場合に好適である旨、記載されている。   For example, when grinding a hard metal such as a rare earth sintered magnet, a sticky polishing residue adheres to the abrasive surface. However, as in the invention described in Japanese Patent Publication No. 58-2034, the abrasive surface is ground on the abrasive surface. When the containing net-like metal structure is formed, the polishing residue enters therein, and cannot be discharged by supplying the grinding liquid from the back surface. Therefore, it is difficult to apply to heavy grinding applications, and it is described in the above publication that it is suitable for the purpose of lapping.

本発明では、このような砥石含有網状金属構造体を形成することなく、砥粒が電着された電着面で研削を行うので、輪郭加工のような重研削加工が可能であり、研磨カスが網目の中に入り込むことはない。そして、電着面に付着した研磨カスは、当該電着面に直接噴出される研削液によって速やかに洗い流される。   In the present invention, since grinding is performed on the electrodeposited surface on which the abrasive grains are electrodeposited without forming such a grindstone-containing network metal structure, heavy grinding processing such as contour processing is possible, and the polishing residue is reduced. Never get into the mesh. Then, the polishing residue adhering to the electrodeposition surface is quickly washed away by the grinding liquid sprayed directly onto the electrodeposition surface.

本発明の電着砥石によれば、研削時に発生する発熱を防止するとともに、研磨カスによる目詰まりを防止することが可能であり、研削抵抗の低減や長寿命化、コストダウン、メンテナンスの簡易化といった効果を得ることが可能である。   According to the electrodeposition grindstone of the present invention, it is possible to prevent heat generated during grinding and to prevent clogging due to polishing residue, reducing grinding resistance, extending the service life, reducing costs, and simplifying maintenance. Such effects can be obtained.

また、本発明の研削加工方法によれば、前記電着砥石の機能により、加工速度の一定化や加工品寸法の安定化、生産数の安定化といった効果を得ることができ、さらには製造コストの削減や工程メンテナンスの簡易化等も実現可能である。   In addition, according to the grinding method of the present invention, the function of the electrodeposition grindstone can provide effects such as a constant processing speed, a stable workpiece size, and a stable production number. It is also possible to achieve a reduction in process and process maintenance.

以下、本発明を適用した電着砥石及び研削加工方法について、図面を参照して詳細に説明する。   Hereinafter, an electrodeposition grindstone and a grinding method to which the present invention is applied will be described in detail with reference to the drawings.

本発明の電着砥石1は、例えば希土類焼結磁石を所定の形状に削り出す研削加工(いわゆる輪郭加工)を行うものであり、図1及び図2に示すように、円板状台金2の外周面に研削部分となる電着面3を形成してなるものである。円板状台金2は、中央部分の厚さが厚くされて取り付け部2aとされ、ここに砥石取り付け孔2bが形成されている。したがって、電着砥石1は、前記砥石取り付け孔2bに回転軸を挿入固定することにより研削加工装置に装着され、前記回転軸によって高速で回転され、前記外周面である電着面3を加工対象物に当接することで研削加工(輪郭加工)が行われる。また、前記円板状台金2の外周側部分は、研削する加工対象物の幅に対応した厚さを有する砥石台金部2cとされており、その先端(最外周面)に電着面3が形成されている。   The electrodeposition grindstone 1 of the present invention performs, for example, a grinding process (so-called contour machining) in which a rare earth sintered magnet is machined into a predetermined shape. As shown in FIGS. The electrodeposition surface 3 which becomes a grinding part is formed on the outer peripheral surface of the substrate. The disc-shaped base metal 2 is thickened at the center portion to form a mounting portion 2a, and a grindstone mounting hole 2b is formed here. Therefore, the electrodeposition grindstone 1 is mounted on a grinding apparatus by inserting and fixing a rotating shaft in the grindstone mounting hole 2b, and is rotated at a high speed by the rotating shaft, and the electrodeposited surface 3 that is the outer peripheral surface is processed. Grinding (contouring) is performed by contacting the object. Further, the outer peripheral side portion of the disc-shaped base metal 2 is a grindstone base metal part 2c having a thickness corresponding to the width of the workpiece to be ground, and an electrodeposition surface at the tip (outermost peripheral surface). 3 is formed.

前記電着面3は、円板状台金2の外周面に砥粒を電着固定することにより構成されるが、砥粒としては、例えばダイヤモンドや窒化ボロン立方晶(CBN)等の超砥粒が用いられる。これら砥粒は、Ni等の電着金属によって前記電着面3に固定されている。   The electrodeposition surface 3 is configured by electrodepositing and fixing abrasive grains on the outer peripheral surface of the disk-shaped base metal 2, and examples of the abrasive grains include superabrasives such as diamond and boron nitride cubic (CBN). Grain is used. These abrasive grains are fixed to the electrodeposition surface 3 by an electrodeposition metal such as Ni.

前記電着面3の形状は、加工対象物の輪郭形状に対応した形状を有し、本実施形態の場合、加工対象物の加工面形状に対応して断面円弧状に突出した形状を有する。図3は、加工対象物10の前記電着砥石1による輪郭加工形状を示すものである。本例の場合、図3(a)に示す四角いブロック形状の加工対象物(例えば希土類焼結磁石)10の上面を、図3(b)に示すような円弧面10aに研削加工する。したがって、電着砥石1の電着面3は、前記円弧面10aに対応した断面円弧状の凸部3aを有する。   The shape of the electrodeposition surface 3 has a shape corresponding to the contour shape of the workpiece, and in the case of this embodiment, the electrodeposition surface 3 has a shape protruding in a circular arc shape corresponding to the workpiece surface shape of the workpiece. FIG. 3 shows a contour machining shape of the workpiece 10 by the electrodeposition grindstone 1. In the case of this example, the upper surface of the square block-shaped workpiece (for example, rare earth sintered magnet) 10 shown in FIG. 3A is ground to an arc surface 10a as shown in FIG. Therefore, the electrodeposition surface 3 of the electrodeposition grindstone 1 has a convex portion 3a having an arcuate cross section corresponding to the arc surface 10a.

前述のような形状の電着面3を有する電着砥石1を用いて加工対象物10に対して研削加工(輪郭加工)を行う場合、前記電着面3の凸部3aにおいて研削代が大きい。すなわち、前記電着面3においては、場所によって加工対象物10に対する研削深さが異なり、前記凸部3aにおいて研削体積が最も大きく、その両側の凹部3bにおいて研削体積が最も小さい。したがって、研削に際しては前記凸部3aに最も負荷がかかり、発熱や研磨カスの発生が最も大きい。   When grinding (contouring) is performed on the workpiece 10 using the electrodeposition grindstone 1 having the electrodeposition surface 3 having the shape described above, the grinding allowance is large at the convex portion 3a of the electrodeposition surface 3. . That is, on the electrodeposition surface 3, the grinding depth with respect to the workpiece 10 differs depending on the location, the grinding volume is the largest in the convex portion 3a, and the grinding volume is the smallest in the concave portions 3b on both sides thereof. Therefore, during the grinding, the load is most applied to the convex portion 3a, and the generation of heat generation and polishing residue is greatest.

そこで本実施形態では、最も研削代の大きい凸部3aに直接研削液が供給できるように、図4に示すような研削液供給孔4を形成し、前記発熱を抑えるとともに、研磨カスを速やかに排出できるようにする。   Therefore, in the present embodiment, the grinding fluid supply hole 4 as shown in FIG. 4 is formed so that the grinding fluid can be directly supplied to the convex portion 3a having the largest grinding allowance, and the heat generation is suppressed and the polishing residue is quickly removed. Allow to drain.

なお、前記加工対象物10の形状は、直方体(四角いブロック形状)には限られず、加工最終形状に近い形状等、任意の形状とすることができる。例えば、成形工程における制約等から、成形し得る成形体の形状が制約されることがあり、このような場合には、成形可能な形状に成形した後、これを焼結処理して所望の形状に研削することが行われる。前記各種形状の加工対象物10の研削の際にも、部分的に研削代の多い部分と少ない部分が生じるが、このような場合にも本発明は適用可能である。この場合、加工対象物10の形状や研削加工形状に応じて、電着面3のうち最も研削代が大きくなる部分に研削液供給孔4を形成すればよい。   The shape of the workpiece 10 is not limited to a rectangular parallelepiped (square block shape), and may be any shape such as a shape close to the final shape of processing. For example, the shape of the molded body that can be molded may be limited due to restrictions in the molding process, etc. In such a case, after forming into a moldable shape, this is sintered and processed into a desired shape Grinding is done. Even when the workpiece 10 having various shapes is ground, a part having a large grinding allowance and a part having a small grinding allowance are generated. However, the present invention is also applicable to such a case. In this case, the grinding fluid supply hole 4 may be formed in the portion of the electrodeposition surface 3 where the grinding allowance is the largest, depending on the shape of the workpiece 10 and the grinding shape.

研削液供給孔4は、前記の通り、電着面3において研削代(研削体積)が最も大きい部分に形成することが好ましく、したがって電着面3の形状に応じて適宜変更することが好ましい。例えば図5(a)に示すような上面を円弧面10aに研削加工した加工対象物10に対して、図5(b)に示すように前記円弧面10aとは反対側の面を円弧面10bに研削加工する場合、当該円弧面10bの研削加工に用いられる電着砥石の電着面3は、図6に示すように、両側が凸部3c、中央部3dが凹部3dとなっている。このような場合には、両側の凸部3cに研削液が供給できるように研削液供給孔4を形成すればよい。   As described above, the grinding fluid supply hole 4 is preferably formed in a portion where the grinding allowance (grinding volume) is the largest on the electrodeposition surface 3, and therefore, it is preferable to appropriately change it according to the shape of the electrodeposition surface 3. For example, with respect to the workpiece 10 whose upper surface as shown in FIG. 5 (a) is ground to the arc surface 10a, as shown in FIG. 5 (b), the surface opposite to the arc surface 10a is the arc surface 10b. As shown in FIG. 6, the electrodeposition surface 3 of the electrodeposition grindstone used for grinding the arc surface 10b has convex portions 3c on both sides and a concave portion 3d on the central portion 3d. In such a case, the grinding fluid supply hole 4 may be formed so that the grinding fluid can be supplied to the convex portions 3c on both sides.

前記研削液供給孔4は、前記電着砥石1の円板状台金2の側面から電着面3へ斜めに貫通する形で形成されており、前記研削液供給孔4の一方の開口部4aが円板状台金2の側面に開口する形で形成されるとともに、他方の開口部4bが電着面3に直接開口する形で形成されている。したがって、前記電着砥石1の側面側から研削液を供給すれば、供給された研削液は、前記円板状台金2の側面を伝って前記研削液供給孔4の開口部4aへ導かれ、図4中破線矢印で示すように、研削液供給孔4を通って電着面3の開口部4bから研削部分に直接供給されることになる。   The grinding fluid supply hole 4 is formed so as to penetrate obliquely from the side surface of the disk-shaped base metal 2 of the electrodeposition grindstone 1 to the electrodeposition surface 3, and one opening portion of the grinding fluid supply hole 4. 4a is formed so as to open on the side surface of the disk-shaped base metal 2, and the other opening 4b is formed so as to open directly on the electrodeposition surface 3. Therefore, if the grinding fluid is supplied from the side surface side of the electrodeposition grindstone 1, the supplied grinding fluid is guided to the opening 4 a of the grinding fluid supply hole 4 along the side surface of the disc-shaped base metal 2. As shown by broken line arrows in FIG. 4, the liquid is directly supplied to the grinding portion from the opening 4 b of the electrodeposition surface 3 through the grinding liquid supply hole 4.

なお、本実施形態の電着砥石1では、図4に示すように、前記円板状台金2の前記研削液供給孔4の開口部4aが形成される位置より外側に、全周に亘って凸状部5が形成されている。この凸状部5の内周面5aは、各研削液供給孔4の開口部4aに接する形で形成されており、電着砥石1の側面から供給される研削液は、電着砥石1の回転に伴う遠心力により円板状台金2の円形面上を外周側に向かって流れ、この凸状部5の内周面5aでせき止められて前記研削液供給孔4の開口部4aへと導かれる。   In addition, in the electrodeposition grindstone 1 of the present embodiment, as shown in FIG. 4, the entire circumference extends beyond the position where the opening 4 a of the grinding liquid supply hole 4 of the disc-shaped base metal 2 is formed. Thus, a convex portion 5 is formed. The inner peripheral surface 5 a of the convex portion 5 is formed in contact with the opening 4 a of each grinding fluid supply hole 4, and the grinding fluid supplied from the side surface of the electrodeposition grinding stone 1 It flows on the circular surface of the disk-shaped base metal 2 toward the outer peripheral side due to the centrifugal force accompanying the rotation, and is dammed by the inner peripheral surface 5a of the convex portion 5 to the opening 4a of the grinding fluid supply hole 4. Led.

前記研削液供給孔4は、電着砥石1に最低1箇所形成すればよいが、効率的に研削液を電着面3に供給するためには、2箇所から16箇所に形成することが好ましい。形成する研削液供給孔4の数は、電着砥石1の大きさ(径)によっても最適数が異なるが、6箇所以上に形成することが好ましく、8箇所以上に形成することがより好ましい。本例では、研削液供給孔4を8箇所に形成している。研削液供給孔4の数が少ないと冷却能が不足するおそれがあり、逆に多すぎると研削できる面積が少なくなり、研削能が低下するおそれがある。   The grinding liquid supply hole 4 may be formed at least at one place on the electrodeposition grindstone 1, but it is preferably formed at 2 to 16 places in order to efficiently supply the grinding liquid to the electrodeposition surface 3. . The number of grinding fluid supply holes 4 to be formed varies depending on the size (diameter) of the electrodeposition grindstone 1, but is preferably formed at 6 or more, more preferably 8 or more. In this example, the grinding fluid supply holes 4 are formed at eight locations. If the number of the grinding fluid supply holes 4 is small, the cooling ability may be insufficient. Conversely, if the number is too large, the area that can be ground may be reduced and the grinding ability may be reduced.

また、研削液供給孔4を複数箇所に形成する場合、電着砥石1の周方向に等角度間隔で形成することが好ましい。研削液供給孔4が1箇所にのみ形成された場合、電着砥石1が高速で回転する際に偏芯するおそれがある。   Moreover, when forming the grinding-fluid supply hole 4 in several places, it is preferable to form in the circumferential direction of the electrodeposition grindstone 1 at equiangular intervals. When the grinding fluid supply hole 4 is formed only at one place, the electrodeposition grindstone 1 may be decentered when rotating at a high speed.

なお、本実施形態においては、前記複数の研削液供給孔4の開口部4aを、円板状台金2の一方の側面に配列形成しており、電着砥石1の一方の側面からのみ研削液を供給し、前記各研削液供給孔4に導入するようにしているが、これに限らず、例えば各研削液供給孔4の開口部4aが円板状台金2の両側面に交互に形成されるようにすることも可能である。この場合には、電着砥石1の両側面から研削液を供給し、各研削液供給孔4に研削液を導入すればよく、砥石自体の冷却効果も助長される。   In the present embodiment, the openings 4 a of the plurality of grinding fluid supply holes 4 are arranged on one side surface of the disk-shaped base metal 2, and grinding is performed only from one side surface of the electrodeposited grinding stone 1. However, the present invention is not limited to this. For example, the openings 4a of the grinding fluid supply holes 4 are alternately formed on both side surfaces of the disc-shaped base metal 2. It is also possible to form it. In this case, the grinding fluid may be supplied from both side surfaces of the electrodeposited grinding stone 1 and introduced into each grinding fluid supply hole 4, and the cooling effect of the grinding stone itself is promoted.

前記電着面3に開口する形で形成される研削液供給孔4の開口部4bの大きさは、電着面3の幅の1/8〜1/3とすることが好ましい。具体的数値としては、例えば円形の開口部とする場合、直径1〜3mmとする。これにより十分な研削液を供給することができ、十分な冷却効果が発現される。開口部4bの寸法が前記以上となると、高速で回転させて研削する際に、砥石強度に問題が生ずるおそれがある。   The size of the opening 4b of the grinding fluid supply hole 4 formed so as to open to the electrodeposition surface 3 is preferably 1/8 to 1/3 of the width of the electrodeposition surface 3. As a specific numerical value, for example, in the case of a circular opening, the diameter is 1 to 3 mm. Thereby, sufficient grinding fluid can be supplied and sufficient cooling effect is expressed. When the dimension of the opening 4b is equal to or larger than the above, there is a possibility that a problem may occur in the strength of the grindstone when grinding by rotating at a high speed.

また、前記研削液供給孔4の形状は、前記の通り、円板状台金2の側面から電着面3へ斜めに貫通する形とすればよいが、これに限らず、中途部で直角に折れ曲がる形状としたり、湾曲した形状とすることも可能である。ただし、円板状台金2の側面側の開口部4aの近傍においては、研削液を前記側面に対して作用させる方向と略平行に導入部を有することが好ましい。これにより研削液供給孔4に研削液を導入する効率を向上することができる。また、前記研削液供給孔4の断面形状は、円形だけでなく、楕円形、三角形、四角形やV字形状とすることも可能である。   Further, as described above, the shape of the grinding fluid supply hole 4 may be a shape that obliquely penetrates from the side surface of the disk-shaped base metal 2 to the electrodeposition surface 3, but is not limited thereto, and is perpendicular to the middle portion. It is also possible to have a bent shape or a curved shape. However, in the vicinity of the opening 4a on the side surface side of the disk-shaped base metal 2, it is preferable to have an introduction portion substantially parallel to the direction in which the grinding fluid acts on the side surface. Thereby, the efficiency of introducing the grinding fluid into the grinding fluid supply hole 4 can be improved. The cross-sectional shape of the grinding fluid supply hole 4 is not limited to a circle, but may be an ellipse, a triangle, a quadrangle, or a V shape.

以上が電着砥石の構成であるが、次に、前記電着砥石を用いた研削加工方法について説明する。なお、ここでは最初に加工対象物である希土類焼結磁石の作製方法について簡単に説明し、その後、作製した希土類焼結磁石(加工対象物10)の輪郭加工について説明する。   The above is the configuration of the electrodeposition grindstone. Next, a grinding method using the electrodeposition grindstone will be described. Here, first, a method for producing a rare earth sintered magnet that is an object to be processed will be briefly described, and then contour processing of the produced rare earth sintered magnet (object to be processed 10) will be described.

希土類焼結磁石は、例えば希土類元素R、遷移金属元素T及びホウ素を主成分とするものであるが、磁石組成は特に限定されず、用途等に応じて任意に選択すればよい。例えば、希土類元素Rとは、具体的にはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb又はLuのことをいい、これらから1種又は2種以上を用いることができる。中でも、資源的に豊富で比較的安価であることから、希土類元素Rとしての主成分をNdとすることが好ましい。また、遷移金属元素Tは、従来から用いられている遷移金属元素をいずれも用いることができ、例えばFe、Co、Ni等から1種又は2種以上を用いることができる。これらの中では、磁気特性の点からFeを主体とすることが好ましく、特に、キュリー温度の向上、粒界相の耐蝕性向上等に効果があるCoを添加することが好ましい。また、前記希土類元素R、遷移金属元素T及びホウ素Bのみならず、他の元素の含有を許容する。例えば、Al、Cu、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが望ましい。特に磁気特性を害する酸素は、その量を7000ppm以下、さらには5000ppm以下とすることが望ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。なお、切断対象となる希土類焼結磁石1としては、前記R−T−B系の希土類焼結磁石に限られるものではない。例えば希土類焼結磁石は、SmCo系焼結磁石等であってもよく、これらについても本発明の研削加工方法を適用することが効果的である。   The rare earth sintered magnet has, for example, a rare earth element R, a transition metal element T, and boron as main components. However, the magnet composition is not particularly limited, and may be arbitrarily selected according to the application. For example, the rare earth element R specifically means Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu. 1 type (s) or 2 or more types can be used. Among these, it is preferable that the main component as the rare earth element R is Nd because it is abundant in resources and relatively inexpensive. Moreover, as the transition metal element T, any conventionally used transition metal element can be used. For example, one or more of Fe, Co, Ni and the like can be used. Among these, from the viewpoint of magnetic properties, Fe is the main component, and it is particularly preferable to add Co that is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase. In addition to the rare earth element R, transition metal element T, and boron B, the inclusion of other elements is allowed. For example, elements such as Al, Cu, Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained. On the other hand, it is desirable to reduce impurity elements such as oxygen, nitrogen, and carbon as much as possible. In particular, the amount of oxygen that impairs magnetic properties is preferably 7000 ppm or less, more preferably 5000 ppm or less. This is because when the amount of oxygen is large, the rare-earth oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated. The rare earth sintered magnet 1 to be cut is not limited to the RTB-based rare earth sintered magnet. For example, the rare earth sintered magnet may be an SmCo-based sintered magnet or the like, and it is effective to apply the grinding method of the present invention also to these.

希土類焼結磁石は粉末冶金法によって作製されるが、その製造プロセスは、基本的には、合金化工程、粗粉砕工程、微粉砕工程、成形工程、焼結工程、時効工程とにより構成される。なお、酸化防止のために、焼結後までの各工程は、ほとんどの工程を真空中、あるいは不活性ガス雰囲気中(窒素ガス雰囲気中、Arガス雰囲気中等)で行う。   Rare earth sintered magnets are produced by powder metallurgy, but the manufacturing process basically consists of an alloying process, coarse pulverization process, fine pulverization process, molding process, sintering process, and aging process. . In order to prevent oxidation, most of the steps after sintering are performed in a vacuum or in an inert gas atmosphere (in a nitrogen gas atmosphere, an Ar gas atmosphere, etc.).

合金化工程では、原料となる金属、あるいは合金を所望の希土類合金粉末の組成に応じて配合し、真空あるいは不活性ガス、例えばAr雰囲気中で溶解し、鋳造することにより合金化する。鋳造法としては、任意の方法を採用し得るが、溶融した高温の液体金属を回転ロール上に供給し、合金薄板を連続的に鋳造するストリップキャスト法(連続鋳造法)が生産性等の観点から好適であり、得られる合金の形態の点でも好適である。   In the alloying step, a raw material metal or alloy is blended according to the composition of the desired rare earth alloy powder, and melted in a vacuum or an inert gas, for example, Ar atmosphere, and cast to form an alloy. As the casting method, any method can be adopted, but the strip casting method (continuous casting method) in which a molten high-temperature liquid metal is supplied onto a rotating roll and the alloy thin plate is continuously cast is a viewpoint of productivity and the like. From the viewpoint of the form of the resulting alloy.

前記合金化の際に用いる原料金属(合金)としては、純希土類元素、希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。合金は、ほぼ最終磁石組成である単一の合金を用いても良いし、最終磁石組成になるように、組成の異なる複数種類の合金を混合しても良い。   As the raw material metal (alloy) used in the alloying, pure rare earth elements, rare earth alloys, pure iron, ferroboron, and alloys thereof can be used. As the alloy, a single alloy having almost the final magnet composition may be used, or a plurality of types of alloys having different compositions may be mixed so as to have the final magnet composition.

粗粉砕工程では、先に鋳造した原料合金の薄板、あるいはインゴット等を、粒径数百μm程度になるまで粉砕する。粉砕手段としては、スタンプミル、ジョークラッシャー、ブラウンミル等を用いることができる。粗粉砕性を向上させるために、水素を吸蔵させて脆化させた後、粗粉砕を行うことが効果的である。   In the coarse pulverization step, the previously cast raw alloy thin plate, ingot, or the like is pulverized until the particle size is about several hundred μm. As the pulverizing means, a stamp mill, a jaw crusher, a brown mill, or the like can be used. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen and embrittlement.

前述の粗粉砕工程が終了した後、必要に応じて粗粉砕した原料合金粉に潤滑剤を添加する。潤滑剤としては、例えば脂肪酸系化合物等を使用することができるが、特に、融点が60℃〜120℃の脂肪酸や脂肪酸アミドを潤滑剤として用いることで、良好な磁気特性、特に高配向度で高い磁化を有する希土類焼結磁石を得ることができ、その種類や添加量によって、成形体強度を所定の値に調整することができる。   After the above-described coarse pulverization step is completed, a lubricant is added to the coarsely pulverized raw material alloy powder as necessary. As the lubricant, for example, a fatty acid compound can be used, and in particular, by using a fatty acid or fatty acid amide having a melting point of 60 ° C. to 120 ° C. as a lubricant, good magnetic properties, in particular, a high degree of orientation. A rare earth sintered magnet having high magnetization can be obtained, and the strength of the compact can be adjusted to a predetermined value depending on the type and amount of addition.

粗粉砕工程の後、微粉砕工程を行うが、この微粉砕工程は、例えば気流式粉砕機等を使用して行われる。微粉砕の際の条件は、用いる気流式粉砕機に応じて適宜設定すればよく、原料合金粉を平均粒径が1〜10μm程度、例えば3〜6μmとなるまで微粉砕する。気流式粉砕機としては、ジェットミル等が好適である。   After the coarse pulverization step, a fine pulverization step is performed. This fine pulverization step is performed using, for example, an airflow pulverizer. The conditions for fine pulverization may be appropriately set according to the airflow pulverizer to be used, and the raw material alloy powder is finely pulverized until the average particle size becomes about 1 to 10 μm, for example, 3 to 6 μm. A jet mill or the like is suitable as the airflow pulverizer.

微粉砕工程の後、磁場中成形工程において、原料合金粉を磁場中にて成形する。具体的には、微粉砕工程にて得られた原料合金粉を電磁石を配置した金型内に充填し、磁場印加によって結晶軸を配向させた状態で磁場中成形する。磁場中成形は、成形圧力と磁界方向が平行な平行磁界成形、成形圧力と磁界方向が直交する直行磁界成形のいずれであってもよい。さらに、磁界印加手段として、パルス電源と空芯コイルも採用することができる。この磁場中成形は、例えば700〜1600kA/mの磁場中で、30〜300MPa、好ましくは130〜160MPa前後の圧力で行えばよい。   After the pulverization step, the raw material alloy powder is formed in the magnetic field in the magnetic field forming step. Specifically, the raw material alloy powder obtained in the fine pulverization step is filled in a mold in which an electromagnet is arranged, and is molded in a magnetic field in a state where crystal axes are oriented by applying a magnetic field. The forming in the magnetic field may be either a parallel magnetic field forming in which the forming pressure and the magnetic field direction are parallel, or an orthogonal magnetic field forming in which the forming pressure and the magnetic field direction are orthogonal to each other. Further, a pulse power source and an air-core coil can be employed as the magnetic field applying means. The forming in the magnetic field may be performed in a magnetic field of 700 to 1600 kA / m, for example, at a pressure of 30 to 300 MPa, preferably about 130 to 160 MPa.

前記成形工程により所定の形状に成形した後、焼結工程において、成形体に対して焼結処理を実施する。焼結処理では、前記成形体を真空または不活性ガス雰囲気中(Arガス雰囲気中等)で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、例えば1000〜1200℃で1〜10時間程度焼結すればよく、焼結後、急冷することが好ましい。なお、焼結工程においては、必要に応じて、焼結に先立って脱脂処理を行うことが好ましい。   After forming into a predetermined shape by the forming step, a sintering process is performed on the formed body in the sintering step. In the sintering process, the compact is sintered in a vacuum or in an inert gas atmosphere (such as in an Ar gas atmosphere). The sintering temperature needs to be adjusted according to various conditions such as composition, pulverization method, difference in particle size and particle size distribution, etc. For example, sintering may be performed at 1000 to 1200 ° C. for about 1 to 10 hours. It is preferable to do. In addition, in a sintering process, it is preferable to perform a degreasing process prior to sintering as needed.

前記焼結後には、得られた焼結体に時効処理を施すことが好ましい。この時効処理は、得られる希土類磁石の保磁力Hcjを制御する上で重要な工程であり、例えば不活性ガス雰囲気中あるいは真空中で時効処理を施す。時効処理としては、2段時効処理が好ましく、1段目の時効処理工程では、800℃前後の温度で1〜3時間保持する。次いで、室温〜200℃の範囲内にまで急冷する第1急冷工程を設ける。2段目の時効処理工程では、600℃前後の温度で1〜3時間保持する。次いで、室温まで急冷する第2急冷工程を設ける。600℃近傍の熱処理で保磁力Hcjが大きく増加するため、時効処理を一段で行う場合には、600℃近傍の時効処理を施すとよい。   After the sintering, the obtained sintered body is preferably subjected to an aging treatment. This aging treatment is an important step in controlling the coercive force Hcj of the obtained rare earth magnet. For example, the aging treatment is performed in an inert gas atmosphere or in a vacuum. As the aging treatment, a two-stage aging treatment is preferable, and in the first aging treatment step, the temperature is maintained at a temperature of about 800 ° C. for 1 to 3 hours. Next, a first quenching step is provided for quenching to room temperature to 200 ° C. In the second stage aging treatment step, the temperature is maintained at about 600 ° C. for 1 to 3 hours. Next, a second quenching step for quenching to room temperature is provided. Since the coercive force Hcj is greatly increased by heat treatment at around 600 ° C., when aging treatment is performed in a single stage, it is preferable to perform aging treatment at around 600 ° C.

以上により、例えば四角いブロック形状の希土類焼結磁石が作製されるが、この四角いブロック形状の希土類焼結磁石に対し、最終製品の形状に合わせて輪郭加工を行う。このとき、前記電着砥石1を用いることで、発熱や目詰まりを防止することが可能である。   As described above, for example, a square block-shaped rare earth sintered magnet is manufactured, and contour processing is performed on the square block-shaped rare earth sintered magnet according to the shape of the final product. At this time, by using the electrodeposition grindstone 1, it is possible to prevent heat generation and clogging.

図7は、前記電着砥石1を用いて加工対象物10(前記四角いブロック形状の希土類焼結磁石)の輪郭加工を行う様子を示すものである。輪郭加工に際しては、図7に示すように、両サイドにガイドを有するレール11上に前記加工対象物10を配し、搬送手段によってこれを搬送する。なお、実際の工程においては、前記レール11上に複数の加工対象物10を配置するが、ここでは簡略化のためレール11上に加工対象物10を1つ配置した状態を示した。   FIG. 7 shows a state in which contour processing of the workpiece 10 (the square block-shaped rare earth sintered magnet) is performed using the electrodeposition grindstone 1. At the time of contour processing, as shown in FIG. 7, the processing object 10 is arranged on a rail 11 having guides on both sides, and is transported by a transporting means. In the actual process, a plurality of workpieces 10 are arranged on the rail 11, but here, for the sake of simplification, one workpiece 10 is arranged on the rail 11.

前記搬送手段によって搬送された加工対象物10は、ガイドに沿って、あるいは付勢されながら矢印方向に高速で回転する電着砥石1と接触し、前記電着面3の形状に輪郭加工される。前記輪郭加工に際しては、先ず、前記電着砥石1の側面側に配置した研削液供給ノズル12から研削液を供給する。研削液としては、防錆剤を添加した水等が使用可能である。   The workpiece 10 conveyed by the conveying means contacts the electrodeposition grindstone 1 that rotates at high speed in the direction of the arrow along the guide or while being biased, and is contoured into the shape of the electrodeposition surface 3. . In the contour machining, first, a grinding fluid is supplied from a grinding fluid supply nozzle 12 disposed on the side surface side of the electrodeposition grindstone 1. As the grinding liquid, water to which a rust preventive agent is added can be used.

研削液供給ノズル12から電着砥石1の側面に供給された研削液は、遠心力により円板状台金2の表面を伝わり、前記凸状部5の内周面5aでせき止められて開口部4aから研削液供給孔4に導かれる。さらに、研削液供給孔4の開口部4bから電着砥石1の電着面3に直接供給され、冷却及び研磨カスの排出を行う。   The grinding fluid supplied from the grinding fluid supply nozzle 12 to the side surface of the electrodeposition grindstone 1 is transmitted along the surface of the disk-shaped base metal 2 by centrifugal force, and is clogged by the inner peripheral surface 5a of the convex portion 5 to be opened. 4a leads to the grinding fluid supply hole 4. Furthermore, it is directly supplied from the opening 4b of the grinding fluid supply hole 4 to the electrodeposition surface 3 of the electrodeposition grindstone 1 to cool and discharge the polishing residue.

輪郭加工に際しては、前記電着砥石1の側面側からの他、通常の研削加工の場合と同様、前記加工対象物10の電着砥石1からの出口位置において、加工対象物10の搬送方向と対向する方向に研削液を供給することが好ましい。本例の場合、前記出口位置に研削液供給ノズル13を設置し、電着砥石1に向かって研削液を供給するようにしている。これにより、供給された研削液は、電着砥石1の回転によって電着面3と加工対象物10の間に巻き込まれ、前記研削液供給孔4から供給される研削液と相俟って、冷却効果及び研磨カス排出機能を発揮する。   At the time of contour processing, in addition to the side surface side of the electrodeposition grindstone 1, as in the case of normal grinding, the workpiece 10 is conveyed at the exit position from the electrodeposition grindstone 1 in the conveying direction of the workpiece 10. It is preferable to supply the grinding fluid in the opposite direction. In the case of this example, a grinding liquid supply nozzle 13 is installed at the outlet position, and the grinding liquid is supplied toward the electrodeposited grinding stone 1. Thereby, the supplied grinding liquid is caught between the electrodeposition surface 3 and the workpiece 10 by the rotation of the electrodeposition grindstone 1, and together with the grinding liquid supplied from the grinding liquid supply hole 4, Exhibits cooling effect and polishing residue discharge function.

前記加工対象物10の搬送方向と対向する方向に供給される研削液を併用することにより、冷却効果が向上し、加工対象物10の破損を抑えることができる。前記研削液供給ノズル13から電着砥石1に研削液を供給しない場合、研削時に冷却が不足して発熱により研削能力が低下する。したがって、研削抵抗が非常に高くなってしまっている状態で、研削中の加工対象物10をその後ろから続く加工対象物10で無理に押し込む形になり、破損が多発する。   By using together the grinding fluid supplied in the direction opposite to the conveyance direction of the workpiece 10, the cooling effect can be improved and damage to the workpiece 10 can be suppressed. When the grinding fluid is not supplied from the grinding fluid supply nozzle 13 to the electrodeposition grindstone 1, cooling is insufficient at the time of grinding, and the grinding ability is reduced due to heat generation. Therefore, in a state in which the grinding resistance has become very high, the workpiece 10 being ground is forcibly pushed by the workpiece 10 that continues from behind, and breakage frequently occurs.

前述のように、輪郭加工に際し、前記研削液供給孔4から電着面3に直接研削液を供給するとともに、加工対象物10の搬送方向と対向して電着砥石1に研削液を供給することで、研削時の発熱を防止するとともに、研磨カスによる目詰まりを防止することが可能であり、加工速度の一定化や加工品寸法の安定化、生産数の安定化といった効果を得ることができ、さらには製造コストの削減や工程メンテナンスの簡易化等も実現可能である。   As described above, at the time of contour machining, the grinding fluid is directly supplied from the grinding fluid supply hole 4 to the electrodeposition surface 3 and the grinding fluid is supplied to the electrodeposition grindstone 1 so as to face the conveying direction of the workpiece 10. As a result, it is possible to prevent heat generation during grinding and to prevent clogging due to polishing debris, and it is possible to obtain effects such as constant processing speed, stabilized workpiece dimensions, and stable production number. In addition, it is possible to reduce manufacturing costs and simplify process maintenance.

以上、本発明を適用した電着砥石、研削加工方法の実施形態について説明してきたが、本発明がこれら実施形態に限定されるものでないことは言うまでもなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。   As mentioned above, although the electrodeposition grindstone to which the present invention is applied and the embodiments of the grinding method have been described, it is needless to say that the present invention is not limited to these embodiments. Can be modified.

次に、本発明の具体的な実施例について説明する。   Next, specific examples of the present invention will be described.

実施例
加工対象物として50mm×10mm×3mmの四角いブロック状の希土類焼結磁石を用い、図4に示す電着面形状を有する電着砥石により輪郭加工を行った。電着砥石は、ダイヤモンド砥粒を電着したものを用い、ダイヤモンド砥粒の砥粒径は100μm〜300μmとした。また、前記電着砥石には、図1及び図2に示すように、研削液供給孔を8箇所形成し、これらを周方向に等角度間隔で配置した。
EXAMPLE A rectangular block-shaped rare earth sintered magnet of 50 mm × 10 mm × 3 mm was used as a workpiece, and contour processing was performed with an electrodeposition grindstone having the electrodeposition surface shape shown in FIG. As the electrodeposition grindstone, a diamond abrasive grain electrodeposited was used, and the abrasive grain diameter of the diamond abrasive grain was set to 100 μm to 300 μm. Moreover, as shown in FIG.1 and FIG.2, 8 places of the grinding fluid supply holes were formed in the said electrodeposition grindstone, and these were arrange | positioned at equal angular intervals in the circumferential direction.

輪郭加工(研削)に際しては、図7に示すように、電着砥石の側面及び加工対象物の搬送方向と対向する方向の2方向から研削液を供給した。また、研削に際しては、電着砥石を4500rpmで回転し、加工対象物の搬送速度(フィード)を300mm/分とした。その結果、おおよそ23000本の加工対象物を研削可能であり、研削能力が著しく向上したことがわかった。なお、前記研削に際して、研削液の供給を電着砥石の側面のみ(すなわち研削液供給孔からのみ)として同様の研削を試みたが、破損が多発し、前記2方向からの研削液の供給が有効であることもわかった。   In the contour processing (grinding), as shown in FIG. 7, the grinding fluid was supplied from two directions, that is, the side surface of the electrodeposition grindstone and the direction opposite to the conveying direction of the workpiece. In grinding, the electrodeposition grindstone was rotated at 4500 rpm, and the conveyance speed (feed) of the workpiece was set to 300 mm / min. As a result, it was found that approximately 23,000 workpieces could be ground and the grinding ability was remarkably improved. In the grinding, the same grinding was attempted with only the side surface of the electrodeposition grindstone being supplied (that is, only from the grinding fluid supply hole). However, breakage occurred frequently, and the grinding fluid was supplied from the two directions. It was also found effective.

比較例
電着砥石に研削液供給孔を形成せず、加工対象物の搬送方向と対向する方向のみから研削液を供給し、他は実施例と同様に加工対象物の輪郭加工を試みた。その結果、おおよそ15000本の加工対象物を研削した時点で研削スピードが低下し、破損による不良サンプルが発生した。
Comparative Example The grinding fluid supply hole was not formed in the electrodeposition grindstone, and the grinding fluid was supplied only from the direction opposite to the conveying direction of the workpiece. As a result, the grinding speed decreased when approximately 15,000 workpieces were ground, and defective samples were generated due to breakage.

加工対象物についての検討
フェライト焼結磁石とNdFeB焼結磁石について、先ず、比較例と同じ砥石で研削を試みた。具体的には、実施例と同じ寸法のフェライト焼結磁石及びNdFeB焼結磁石を比較例と同様、研削液供給孔を形成していない電着砥石を用いて10000本研削した。その結果、法線方向研削抵抗に大きな差異が発生することがわかった。例えば切り込み量を0.1mmとした時、研削当初は研削抵抗に差異は無かったが、10000本数研削後の研削抵抗にフェライト焼結磁石とNdFeB焼結磁石とで大きな差異が見られた。具体的には、フェライト焼結磁石においては、研削当初から10000本数研削後まで研削抵抗が5〜15kgfの範囲で推移したのに対して、NdFeB焼結磁石においては、10000本数研削後の研削抵抗が30〜50kgfと顕著に増加した。
Examination of workpieces First, grinding of ferrite sintered magnets and NdFeB sintered magnets was attempted with the same grindstone as in the comparative example. Specifically, 10000 ferrite sintered magnets and NdFeB sintered magnets having the same dimensions as in the example were ground using an electrodeposition grindstone in which no grinding fluid supply holes were formed. As a result, it was found that a large difference occurred in the normal direction grinding resistance. For example, when the depth of cut was 0.1 mm, there was no difference in grinding resistance at the beginning of grinding, but a large difference was observed between the ferrite sintered magnet and the NdFeB sintered magnet in the grinding resistance after grinding 10,000 pieces. Specifically, in the ferrite sintered magnet, the grinding resistance changed in the range of 5 to 15 kgf from the beginning of grinding to after the 10,000 grinding, whereas in the NdFeB sintered magnet, the grinding resistance after the 10,000 grinding. Markedly increased to 30-50 kgf.

そこで次に、実施例と同じ寸法のフェライト焼結磁石とNdFeB焼結磁石について、実施例と同様、研削液供給孔を形成した電着砥石を用い、電着砥石の側面及び加工対象物の搬送方向と対向する方向の2方向から研削液を供給しながら10000本研削した。その結果、NdFeB焼結磁石の研削においても、10000本数研削後の研削抵抗の上昇はほとんど見られなかった。したがって、本発明の電着砥石は、NdFeB焼結磁石のような希土類焼結磁石の研削に適用して効果が高いと言える。   Therefore, next to the ferrite sintered magnet and the NdFeB sintered magnet having the same dimensions as in the example, the electrodeposition grindstone in which the grinding fluid supply hole is formed is used as in the example, and the side surface of the electrodeposited grindstone and the conveyance of the workpiece 10,000 pieces were ground while supplying a grinding liquid from two directions opposite to the direction. As a result, even in the grinding of the NdFeB sintered magnet, there was almost no increase in the grinding resistance after grinding 10,000 pieces. Therefore, it can be said that the electrodeposition grindstone of the present invention is highly effective when applied to grinding rare earth sintered magnets such as NdFeB sintered magnets.

本発明を適用した電着砥石の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the electrodeposition grindstone to which this invention is applied. 図1に示す電着砥石の概略断面図である。It is a schematic sectional drawing of the electrodeposition grindstone shown in FIG. 輪郭加工を説明する図であり、(a)は研削加工前の加工対象物の形状を示し、(b)は研削加工後の加工対象物の形状を示す。It is a figure explaining an outline process, (a) shows the shape of the workpiece before grinding, and (b) shows the shape of the workpiece after grinding. 図3に示す研削加工を行う電着砥石の電着面の形状及び研削液供給孔を示す。The shape of the electrodeposition surface of the electrodeposition grindstone which performs the grinding process shown in FIG. 3, and the grinding fluid supply hole are shown. 輪郭加工の他の例を説明する図であり、(a)は研削加工前の加工対象物の形状を示し、(b)は研削加工後の加工対象物の形状を示す。It is a figure explaining the other example of a contour process, (a) shows the shape of the workpiece before grinding, (b) shows the shape of the workpiece after grinding. 図5に示す研削加工を行う電着砥石の電着面の形状及び研削液供給孔を示す。The shape of the electrodeposition surface of the electrodeposition grindstone which performs the grinding process shown in FIG. 5, and the grinding fluid supply hole are shown. 図1に示す電着砥石を用いた輪郭加工の様子を示す模式図である。It is a schematic diagram which shows the mode of the contour process using the electrodeposition grindstone shown in FIG.

符号の説明Explanation of symbols

1 電着砥石、2 円板状台金、3 電着面、4 研削液供給孔、4a,4b 開口部、5 凸状部、5a 内周面、10 加工対象物、11 レール、12,13 研削液供給ノズル DESCRIPTION OF SYMBOLS 1 Electrodeposition grindstone, 2 Disc shaped metal base, 3 Electrodeposition surface, 4 Grinding fluid supply hole, 4a, 4b Opening part, 5 Convex part, 5a Inner peripheral surface, 10 Work object, 11 Rail, 12, 13 Grinding fluid supply nozzle

Claims (9)

円板状台金の外周面に砥粒が電着されて電着面が形成され、加工対象物の輪郭加工を行う電着砥石であって、
前記円板状台金の側面から前記電着面に至る研削液供給孔が貫通形成され、前記研削液供給孔の一方の開口部が前記電着面において外部に臨んで開口する形で形成されていることを特徴とする電着砥石。
An electrodeposition grindstone is formed by electrodepositing abrasive grains on the outer peripheral surface of a disk-shaped base metal to form a contour of a workpiece,
A grinding fluid supply hole extending from the side surface of the disk-shaped base metal to the electrodeposition surface is formed so as to penetrate, and one opening of the grinding fluid supply hole is formed so as to open to the outside on the electrodeposition surface. An electrodeposited whetstone characterized by
前記開口部は、前記電着面のうち、輪郭加工の際に研削代が最も大きい位置又はその近傍に形成されていることを特徴とする請求項1記載の電着砥石。   2. The electrodeposition grindstone according to claim 1, wherein the opening is formed in a position where the grinding allowance is the largest in the contour processing or in the vicinity thereof in the electrodeposition surface. 前記研削液供給孔は前記円板状台金の周方向に複数形成され、前記開口部は前記電着面の周方向に複数配列形成されていることを特徴とする請求項1または2記載の電着砥石。   The said grinding-fluid supply hole is formed in multiple numbers by the circumferential direction of the said disk-shaped base metal, The said opening part is formed in multiple numbers by the circumferential direction of the said electrodeposition surface, The 1st or 2 characterized by the above-mentioned. Electrodeposition whetstone. 前記研削液供給孔及び前記開口部の数が2〜16個であり、前記開口部が前記電着面の周方向において略等角度間隔で形成されていることを特徴とする請求項3記載の電着砥石。   The number of the grinding fluid supply holes and the openings is 2 to 16, and the openings are formed at substantially equal angular intervals in the circumferential direction of the electrodeposition surface. Electrodeposition whetstone. 前記開口部の寸法が前記電着面の幅の1/8〜1/3であることを特徴とする請求項1から4のいずれか1項記載の電着砥石。   The electrodeposition grindstone according to any one of claims 1 to 4, wherein the size of the opening is 1/8 to 1/3 of the width of the electrodeposition surface. 前記研削液供給孔の前記円板状台金側面の開口部の外周側に円環状の凸部が形成されていることを特徴とする請求項1から5のいずれか1項記載の電着砥石。   The electrodeposition grindstone according to any one of claims 1 to 5, wherein an annular convex portion is formed on an outer peripheral side of the opening on the side surface of the disc-shaped base metal of the grinding liquid supply hole. . 請求項1から6のいずれか1項記載の電着砥石を用い、前記電着砥石の円板状台金の側面から研削液を注液し、前記研削液供給孔を介して電着面に研削液を供給しながら加工対象物の輪郭加工を行うことを特徴とする研削加工方法。   Using the electrodeposition grindstone according to any one of claims 1 to 6, a grinding liquid is injected from a side surface of a disk-shaped base metal of the electrodeposition grindstone, and the electrodeposition surface is formed through the grinding liquid supply hole. A grinding method characterized by performing contour processing of a workpiece while supplying a grinding fluid. 前記加工対象物の電着砥石出口側からも前記電着砥石に研削液を供給することを特徴とする請求項7記載の研削加工方法。   The grinding method according to claim 7, wherein a grinding liquid is also supplied to the electrodeposition grindstone from the electrodeposition grindstone exit side of the workpiece. 前記加工対象物が希土類焼結磁石であることを特徴とする請求項7または8記載の研削加工方法。   The grinding method according to claim 7 or 8, wherein the object to be processed is a rare earth sintered magnet.
JP2005345486A 2005-11-30 2005-11-30 Electrodeposition grindstone and grinding method using it Pending JP2007144597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005345486A JP2007144597A (en) 2005-11-30 2005-11-30 Electrodeposition grindstone and grinding method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005345486A JP2007144597A (en) 2005-11-30 2005-11-30 Electrodeposition grindstone and grinding method using it

Publications (1)

Publication Number Publication Date
JP2007144597A true JP2007144597A (en) 2007-06-14

Family

ID=38206606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005345486A Pending JP2007144597A (en) 2005-11-30 2005-11-30 Electrodeposition grindstone and grinding method using it

Country Status (1)

Country Link
JP (1) JP2007144597A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273419A (en) * 2013-06-06 2013-09-04 广元飞达模具制造有限公司 Grinding head used for accurate grinding of deflection magnetic core
WO2014034226A1 (en) 2012-08-29 2014-03-06 三菱重工業株式会社 Grindstone tool
US10213904B2 (en) 2013-12-25 2019-02-26 Mitsubishi Heavy Industries Machine Tool Co., Ltd. Grinding wheel tool
CN110421481A (en) * 2019-08-09 2019-11-08 衢州学院 Sapphire slices free abrasive grinding device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034226A1 (en) 2012-08-29 2014-03-06 三菱重工業株式会社 Grindstone tool
CN104582902A (en) * 2012-08-29 2015-04-29 三菱重工业株式会社 Grindstone tool
US10071465B2 (en) 2012-08-29 2018-09-11 Mitsubsihi Heavy Industries Machine Tool Co., Ltd. Grindstone tool
CN103273419A (en) * 2013-06-06 2013-09-04 广元飞达模具制造有限公司 Grinding head used for accurate grinding of deflection magnetic core
US10213904B2 (en) 2013-12-25 2019-02-26 Mitsubishi Heavy Industries Machine Tool Co., Ltd. Grinding wheel tool
CN110421481A (en) * 2019-08-09 2019-11-08 衢州学院 Sapphire slices free abrasive grinding device

Similar Documents

Publication Publication Date Title
JP4640596B2 (en) Cutting apparatus and cutting method
US20110165822A1 (en) Rare earth magnet holding jig, cutting machine, and cutting method
KR20000022567A (en) Method for cutting rare earth alloy, method for manufacturing rare earth alloy plates and method for manufacturing rare earth alloy magnets using wire saw, and voice coil motor
EP2397254B1 (en) Method for multiple cutoff machining of rare earth magnet
JP4895099B2 (en) Grinding apparatus and grinding method
JP2006228937A (en) Manufacturing method of rare earth sintered magnet and device for molding in magnetic field
CN114334413A (en) Method for producing R-T-B sintered magnet
JP2007144597A (en) Electrodeposition grindstone and grinding method using it
KR20130059295A (en) Saw blade and method for multiple sawing of rare earth magnet
JP2007253277A (en) Grinding and cutting element, grinding and cutting element set, and grinding and cutting device and method using them
JP4852806B2 (en) Chamfering method and apparatus for rare earth magnet
JP4556236B2 (en) Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same
JP2006283100A (en) Method for cutting rare earth alloy powder molding
JP2008023650A (en) Grinding device and method
JP2007196307A (en) Grinder, grinding method and method of manufacturing rare earth sintered magnet
JP2006156425A (en) Method of manufacturing rare earth sintered magnet, intra-magnetic field molding apparatus, and metal die
JP7468058B2 (en) Manufacturing method of RTB based sintered magnet
JP2007254813A (en) Method for producing rare earth sintered magnet and die for molding used therefor
JP2006281356A (en) Manufacturing method of rare earth magnet powder compact
JP2005268668A (en) Manufacturing method and apparatus of rare earth sintered magnet
JP4591748B2 (en) Manufacturing method and manufacturing apparatus of rare earth sintered magnet
JP2007253278A (en) Grinding and cutting element, grinding and cutting element set, and grinding and cutting device and method using them
JP4910457B2 (en) Wire saw device and cutting method using the same
JP2001205568A (en) Grinding wheel blade for cutting rare-earth magnet
JP2006041295A (en) Manufacturing method of rare earth sintered magnet and manufacturing method of magnet for vcm (voice coil motor)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A02 Decision of refusal

Effective date: 20100223

Free format text: JAPANESE INTERMEDIATE CODE: A02