JP2007144526A - Twist drill - Google Patents

Twist drill Download PDF

Info

Publication number
JP2007144526A
JP2007144526A JP2005338841A JP2005338841A JP2007144526A JP 2007144526 A JP2007144526 A JP 2007144526A JP 2005338841 A JP2005338841 A JP 2005338841A JP 2005338841 A JP2005338841 A JP 2005338841A JP 2007144526 A JP2007144526 A JP 2007144526A
Authority
JP
Japan
Prior art keywords
drill
cutting
outer peripheral
twist
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005338841A
Other languages
Japanese (ja)
Other versions
JP4746969B2 (en
Inventor
Masakazu Kakimoto
政計 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Next I & D Kk
Next I&d
Original Assignee
Next I & D Kk
Next I&d
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Next I & D Kk, Next I&d filed Critical Next I & D Kk
Priority to JP2005338841A priority Critical patent/JP4746969B2/en
Publication of JP2007144526A publication Critical patent/JP2007144526A/en
Application granted granted Critical
Publication of JP4746969B2 publication Critical patent/JP4746969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/27Composites

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high accuracy twist drill which can produce a beautiful finish of an inner surface without causing burrs, laminated layer separation, or residual fiber in a hole, even when a workpiece is made of high strength fiber composite material, by improving cutting performance by improving the structure of cutting edges, and which can improve its durability. <P>SOLUTION: The twist drill comprises land portions 3 having helical flutes 2, 2 for removing chips on the outer peripheral portion of a drill body 1 rotationally driven about the axis of the drill, and a pair of cutting edges 4, 4, a pair of flanks 5, 5, a pair of thinning edges 6, 6, and a pair of chisel edges 7, 7 formed on the tip end portion of the drill body 1 by a point angle α, wherein the outer peripheral shoulder portions 5a, 5a of the flanks are rounded so as to be curved surfaces R, R, and rake angle portions 21, 21 are provided at cutting edges and the helical flutes in the neighborhood of the shoulder portions, and the ridge lines of the cutting edges are formed so as to be composed of concave shape portions from the chisel edges toward the outer peripheral ends and curved lines following the concave shape portions, and as a result, the cutting edges are formed so as to be sharp cutting edges composed of S shape curved lines as a whole in the side view. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はツイストドリルに関し、特に高強度繊維複合材を穿孔することに好適なツイストドリルであって、詳しくは、軸線回りに回転されるドリル本体の外周部分に切屑排出用の捩れリード溝を形成したランド部を備え、先端部分には、先端角により形成される一対の切り刃および逃げ面が形成されるツイストドリルの改良に関する。   The present invention relates to a twist drill, and more particularly to a twist drill suitable for drilling a high-strength fiber composite material. Specifically, a twist lead groove for discharging chips is formed in an outer peripheral portion of a drill body rotated around an axis. The present invention relates to an improvement of a twist drill including a pair of cutting blades and a flank formed by a tip angle.

工業各分野において、機器の軽量化および高強度化を目的として高強度繊維複合材が使用されており、それにスルーホールや組立孔、取付孔などの穿孔加工を施すことが行われている。例えば、電子産業においては、電子回路基板として両面銅箔ガラス繊維含有エポキシ基板が多用されて、その複合基板にスルーホール、バイヤホール等の微細孔が穿孔され、航空機産業においては、炭素繊維含有の樹脂強化複合材(CFRP)が多用されて、それに組立孔や取付孔など比較的大きな穿孔を施している。また、自動車産業においては、種々の安全対策機器の一つとしてミリ波レーダーアンテナを装備しているが、そのアンテナ基板として耐高速振動性を確保するために、両面に銅貼りしたテフロン(登録商標)系基材等からなる高強度繊維複合材が使用され、そこに多層のミリ波受信回路を形成するために微細なスルーホールを穿孔するようにしている。
それらの複合材は、金属箔や炭素繊維、炭化珪素繊維、ガラス繊維などの補強繊維からなる硬質領域とマトリックスとしての樹脂など軟質領域が混在しているために、穿孔加工としてパンチ加工には適さないので通常はツイストドリルを用いたドリル加工が多用されている。
In each industrial field, a high-strength fiber composite material is used for the purpose of reducing the weight and increasing the strength of equipment, and through-hole processing such as through holes, assembly holes, and mounting holes is performed. For example, in the electronic industry, double-sided copper foil glass fiber-containing epoxy substrates are frequently used as electronic circuit boards, and fine holes such as through holes and via holes are drilled in the composite substrate. In the aircraft industry, carbon fiber-containing epoxy substrates are used. A resin reinforced composite material (CFRP) is frequently used, and relatively large holes such as assembly holes and mounting holes are provided. The automobile industry is equipped with a millimeter-wave radar antenna as one of various safety measures. To secure high-speed vibration resistance as the antenna substrate, Teflon (registered trademark) with copper attached on both sides is used. ) A high-strength fiber composite material made of a base material or the like is used, and fine through-holes are perforated in order to form a multilayer millimeter-wave receiving circuit.
These composite materials are suitable for punching as punching because a hard region consisting of reinforcing fibers such as metal foil, carbon fiber, silicon carbide fiber, and glass fiber and a soft region such as resin as a matrix are mixed. Usually, drilling using a twist drill is often used.

従来一般的なツイストドリルは、特開昭61−109606号公報(特許文献1)の図2や実開平2−150112号公報(特許文献2)に代表されるように、ドリル本体の先端角により形成された一対の切り刃が、先端部またはチゼルエッジから外周端に向けて直線状とした稜線形状の金属加工用のツイストドリルであり(以下、汎用ドリルという)、その変形例として前記特許文献1の図4に示すような、切り刃稜線を凹曲線状(中凹状)としたものも提案されている。
また、硬質領域と軟質領域が混在する複合材料用のツイストドリルとして、前記汎用ドリルを改良する提案がなされており、例えば、特開平2−152708号公報(特許文献3)のように、捩れ角(捩れリード角)を所定範囲に選択し、あるいは、切り刃稜線を凹曲線状(円弧状)とするなどチゼルエッジから外周端に至るまでの切り刃部分の稜線形状を改善することも提案されている。
Conventionally known twist drills are represented by the tip angle of the drill body as represented by FIG. 2 of Japanese Patent Laid-Open No. 61-109606 (Patent Document 1) and Japanese Utility Model Laid-Open No. 2-150112 (Patent Document 2). The pair of cutting blades formed is a twist drill for metal processing having a ridge line shape that is straight from the tip or chisel edge toward the outer peripheral end (hereinafter referred to as a general-purpose drill). As shown in FIG. 4, a cutting edge ridge line having a concave curve shape (inner concave shape) has also been proposed.
Further, as a twist drill for a composite material in which a hard region and a soft region are mixed, a proposal for improving the general-purpose drill has been made. For example, as disclosed in Japanese Patent Laid-Open No. 2-152708 (Patent Document 3), a twist angle is proposed. It has also been proposed to improve the ridge line shape of the cutting edge part from the chisel edge to the outer peripheral edge, such as selecting the (torsion lead angle) within a predetermined range, or making the cutting edge ridge line a concave curve (arc shape) Yes.

特開昭61−109606号公報JP-A-61-109606 実開平2−150112号公報Japanese Utility Model Publication No. 2-150112 特開平2−152708号公報JP-A-2-152708

しかしながら、近時のドリル加工にあっては、各種機器の信頼性を担保するために高強度繊維複合材に従来以上の高い加工精度をもってスルーホール等の穿孔を施すことが要請されている。
具体的に前記ミリ波レーダーアンテナのアンテナ基板の場合を例に説明すれば、前記汎用ドリルを用いたドリル加工においては、表裏銅箔面のめくり上がり(バリ)、内層の浮き上がりや層間剥離などで「断面乱れ」が発生し、あるいは、補強繊維が完全切断されずに引張り出されて孔内に突出する「髭残り」が発生し、それが、後工程におけるメッキ処理時の気孔発生の原因や、孔内に突出した繊維に銅メッキが付着することになり、それらがミリ波受信回路の欠陥となって画像変換精度に悪影響を及ぼすことになる。そのため、ドリル加工による前記「断面乱れ」や孔内の「髭残り」状態を完全に防止する加工精度、すなわち高い切断性能が要請される。
However, in recent drilling, in order to ensure the reliability of various devices, it is required to drill through holes or the like with high processing accuracy higher than before in a high-strength fiber composite material.
Specifically, the case of the antenna substrate of the millimeter wave radar antenna will be described as an example. In the drilling process using the general-purpose drill, the front and back copper foil surfaces are turned up (burrs), the inner layer is lifted up and delaminated. "Cross-section disorder" occurs, or the "fiber residue" that the reinforcing fiber is pulled out without being completely cut and protrudes into the hole is generated. Then, copper plating adheres to the fiber protruding into the hole, which becomes a defect of the millimeter wave receiving circuit and adversely affects the image conversion accuracy. For this reason, machining accuracy, that is, high cutting performance is required to completely prevent the above-mentioned “cross-sectional disorder” and “wrinkle remaining” state in the hole due to drilling.

しかるに、上記特許文献3によれば、従来の汎用ドリルを複合材料用に改良しているものの、単に、チゼルエッジから外周端に至るまでの切り刃稜線を凹曲線状(円弧状)とするだけである。そのため、切削抵抗および切削熱の抑制になり得るとしても、近時の高強度繊維複合材をドリル加工する場合の前記不具合、すなわち積層層間の剥離などの「断面乱れ」や孔内の「髭残り」状態を解消できる切断性能までは得られない。   However, according to the above-mentioned Patent Document 3, although the conventional general-purpose drill is improved for composite materials, the cutting edge ridge line from the chisel edge to the outer peripheral end is simply made into a concave curve shape (arc shape). is there. Therefore, even if cutting resistance and cutting heat can be suppressed, the above-mentioned problems when drilling a recent high-strength fiber composite material, that is, "cross-sectional disorder" such as delamination between laminated layers, The cutting performance that can eliminate the state cannot be obtained.

本発明は、上記従来不具合を解消すべく、切り刃構造を改善して切断性能を高めることにより、高強度繊維複合材であってもバリや積層間剥離、あるいは孔内の髭残りのない美麗な内面仕上りが得られる加工精度の高いツイストドリルを提供し、併せて、ドリルの耐久性を向上させることを目的とするものである。   In order to solve the above-mentioned conventional problems, the present invention improves the cutting edge structure and enhances the cutting performance, so that even a high-strength fiber composite material does not have burrs, delamination between layers, or wrinkles remaining in holes An object of the present invention is to provide a twist drill with high machining accuracy that can achieve a smooth inner surface finish, and to improve the durability of the drill.

上記課題を解決せんとする本発明のツイストドリルは、これまで実用化されている汎用ドリル、具体的には、軸線回りに回転されるドリル本体の外周部分に切屑排出用の捩れリード溝を形成したランド部を備え、先端部分には、先端角により形成される一対の切り刃および逃げ面が形成されるツイストドリル、または、軸線回りに回転されるドリル本体の外周部分に切屑排出用の捩れリード溝を形成したランド部を備え、先端部分には、先端角により形成される一対の切り刃、逃げ面、シンニングおよびチゼルエッジが形成されるツイストドリルを改良するものであって、上記逃げ面の外周肩部をR面取りした湾曲面とし、切り刃および前記肩部近傍のリード溝に掬い部を設け、かつ切り刃の稜線を先端部またはチゼルエッジから外周端に向けた凹曲線状とそれに続く湾曲状にし、全体として切り刃を側面視S字曲線からなる鋭利な刃先形状としたことを特徴とする(請求項1および請求項2)。
そして、上記切り刃稜線の凹曲線は、先端部またはチゼルエッジから凹底部までの漸減曲線部と凹底部から外周端までの漸増曲線部とから構成されるが、その漸減曲線部は、穿孔するワークに対する切込み押圧力が比較的小さなアップカットとして作用し、漸増曲線部は、ワークに対する切込み押圧力が大きなダウンカットとして作用し、漸増曲線部に連続する外周肩部に形成された湾曲稜線が鋭利な湾曲刃部として作用するようにしたものである(請求項3)。
The twist drill of the present invention that solves the above-mentioned problems is a general-purpose drill that has been put to practical use, specifically, a twisted lead groove for chip discharge is formed in the outer peripheral portion of the drill body that rotates about the axis. A twist drill for forming a pair of cutting blades and flank formed by a tip angle at the tip portion, or a twist for discharging chips on an outer peripheral portion of a drill body rotated about an axis. A land portion having a lead groove is provided, and a tip portion is provided to improve a twist drill in which a pair of cutting blades, a flank surface, a thinning and a chisel edge formed by a tip angle are formed. The outer peripheral shoulder is a curved surface with a rounded chamfer, a scooping portion is provided in the cutting blade and the lead groove near the shoulder, and the ridge line of the cutting blade is directed from the tip or chisel edge to the outer peripheral end. It was concave-curved and curved subsequent, characterized in that the cutting edge was sharp edge shape composed of a side view S-shaped curve as a whole (claims 1 and 2).
The concave curve of the cutting edge ridge line is composed of a gradually decreasing curve portion from the tip or chisel edge to the concave bottom portion and a gradually increasing curve portion from the concave bottom portion to the outer peripheral end. The cutting pressure against the workpiece acts as a relatively small up-cut, and the gradually increasing curve portion acts as a large down-cut against the workpiece, and the curved ridge formed on the outer peripheral shoulder that continues to the gradually increasing curved portion is sharp. It is made to act as a curved blade part (Claim 3).

すなわち、本発明は、切り刃の稜線を凹曲線状とするだけでなく、リード溝に掬い部、つまり捩れリード溝の先端部分をさらに凹曲面状に抉り取った部分を設けることによって切り刃に鋭利な刃先が形成され、また、逃げ面の外周肩部に形成された湾曲面(R面)と前記掬い部とにより逃げ面の外周肩部に鋭利な湾曲刃部が新たに形成される。それによって、切り刃は全体としてみれば、側面視で三次元的なS字曲線を呈するものであり、特に、外周肩部に形成された新たな切り刃部分も鋭利な湾曲形カミソリ状の湾曲刃部(R刃部)となる。
上記アップカットとは、例えばスコップを用いて下から上へ掬い上げるような切削態様をいい、穿孔するワークに対して切り刃の切込み押圧力が比較的小さく作用する。また、ダウンカットとは、例えば鍬を用いて上から押え付けながら掘り出すような切削態様をいい、穿孔するワークに対して切り刃の切込み押圧力が大きく作用する。
That is, the present invention not only makes the ridge line of the cutting edge a concave curve, but also provides a cutting edge by providing a scooping part in the lead groove, that is, a part where the tip part of the twisted lead groove is further scooped into a concave curved surface. A sharp blade edge is formed, and a sharp curved blade portion is newly formed on the outer peripheral shoulder of the flank by the curved surface (R surface) formed on the outer peripheral shoulder of the flank and the scooping portion. Accordingly, the cutting blade as a whole exhibits a three-dimensional S-shaped curve in a side view, and in particular, a new cutting blade portion formed on the outer peripheral shoulder also has a sharp curved razor-like curve. It becomes a blade part (R blade part).
The above-mentioned upcut refers to a cutting mode in which, for example, scooping is used to scoop up from the bottom, and the cutting pressing force of the cutting blade acts on the workpiece to be drilled relatively small. Further, the down cut refers to a cutting mode in which, for example, digging while pressing from above using a scissors, and the cutting pressing force of the cutting blade acts on the workpiece to be drilled.

したがって、本発明のツイストドリルによれば、切り刃の漸減曲線部による切込み初期において求心性が確保され、回転に伴うアップカットによって切削抵抗が減じられるとともに比較的小さなワークへの押圧力で切削しながら穿孔され、切り刃の漸増曲線部によるダウンカットによってワークを大きな押圧力で押え付けながら鋭利な切り刃で切断し、それに続く鋭利な前記R刃部によりワークに穿孔される孔外周部分を完全切断しながらドリル加工が連続的に進行する。
特に、上記ワークが前述したような金属材料と繊維強化樹脂材との複合材料である場合でも(請求項4)、アップカット段階では銅箔など金属表面層の変形剥離が防止され、ダウンカットにより内層の浮き上がりや層間剥離が防止され、それに続くR刃部の切断補強繊維の完全切断で繊維の引張り出しが防止され、ドリル加工した孔部分の断面乱れや髭残りのない美麗な内面仕上がりのドリル孔が得られる。また、上記逃げ面の外周肩部に形成した湾曲面により、穿孔後にドリルを引き抜く際に表面層にバリが発生せず美麗な表面仕上がりとなる。
Therefore, according to the twist drill of the present invention, centripetality is ensured in the initial cutting by the gradually decreasing curve portion of the cutting blade, cutting resistance is reduced by up-cutting due to rotation, and cutting is performed with a relatively small pressing force on the workpiece. The workpiece is cut with a sharp cutting blade while holding down the workpiece with a large pressing force by down-cutting by the gradually increasing curved portion of the cutting blade, and the outer peripheral portion of the hole drilled in the workpiece by the sharp R-blade following is completely Drilling proceeds continuously while cutting.
In particular, even when the workpiece is a composite material of a metal material and a fiber reinforced resin material as described above (Claim 4), deformation and peeling of the metal surface layer such as copper foil is prevented at the upcut stage, and the downcut The inner layer is prevented from lifting and delamination, and then the cutting edge of the cutting edge of the R-blade is used to prevent the fiber from being pulled out. A hole is obtained. Further, the curved surface formed on the outer peripheral shoulder portion of the flank provides a beautiful surface finish without generating burrs in the surface layer when the drill is pulled out after drilling.

そして、上記形態のツイストドリルの成形法については、外周肩部の湾曲面、掬い部および側面視S字曲線の刃先形状が形成されるものであれば、ドリル製造の当初からNC研磨機を用いるなどプログラム研磨法により作製する手法その他を採用することも任意であるが、好ましくは、予め成形された既存の汎用ドリルに追い加工を施して作製する手法、すなわち、上記外周肩部の湾曲面が汎用のツイストドリルに面取り加工を施すことにより形成され、その後に、掬い加工を施すことにより前記側面視S字曲線の刃先形状が形成されるようにするとよい(請求項5)。それによれば、既存の汎用ドリルに追い加工を施すことにより作製することができ、また、軸付き砥石や円盤型砥石を用いた掬い加工を施すことにより、前記掬い部とS字曲線の刃先形状を同時に形成することが可能である。   And about the shaping | molding method of the twist drill of the said form, if the cutting edge shape of the curved surface of a peripheral shoulder part, a scooping part, and the S-curve shape of a side view is formed, NC grinder will be used from the beginning of drill manufacture. Although it is optional to adopt a method of producing by a programmed polishing method or the like, preferably, a method of making an existing general-purpose drill that has been preformed by additional machining, that is, the curved surface of the outer peripheral shoulder is It is preferable that a general-purpose twist drill is formed by chamfering, and then a scooping process is performed to form the cutting edge shape of the S-curve when viewed from the side (Claim 5). According to this, it can be produced by subjecting an existing general-purpose drill to follow-up processing, and by applying scooping processing using a grindstone with a shaft or a disc-type grindstone, the scooping portion and the edge shape of the S-curve Can be formed simultaneously.

本発明によれば、切り刃の曲線形状に伴うアップカットによりワークに変形・損傷を与えることなく切込むとともにダウンカットとそれに続く湾曲形カミソリ刃によってワークの穿孔箇所を完全切断し、また、ドリル引き抜き時におけるバリ発生が防止されるので、切断性能を著しく向上させてワークの孔内面仕上がり及び表面仕上がりを良好にする(請求項1〜3)。
特に、ワークが高強度繊維複合材の場合であっても、表面層のめくり上がり、層間剥離などの「断面乱れ」や孔内の「髭残り」を防止できるので、高い加工精度が要求される電子回路基板、ミリ波レーダーアンテナ基板などの機器類のドリル加工に十分に対応可能なツイストドリルを提供することができる。
また、切り刃の漸減曲線部によって求心性が確保されるので、切込み初期におけるドリル曲がりを防止し、ドリル加工の直進性を高めるとともに特に微細ドリルの場合における芯ブレによる折損を防止して耐久性を向上させることができる(請求項4)。
According to the present invention, the up-cut associated with the curved shape of the cutting blade is used to cut the workpiece without deforming or damaging it, and the drilling portion of the workpiece is completely cut by the down-cut and the curved razor blade following the drill. Since the generation of burrs at the time of drawing is prevented, the cutting performance is remarkably improved and the hole inner surface finish and surface finish of the workpiece are improved (claims 1 to 3).
In particular, even when the workpiece is a high-strength fiber composite material, it is possible to prevent “cross-sectional disorder” such as delamination of the surface layer and delamination and “wrinkle residue” in the hole, so that high processing accuracy is required. It is possible to provide a twist drill that can sufficiently cope with drilling of devices such as an electronic circuit board and a millimeter wave radar antenna board.
In addition, centripetality is ensured by the gradually decreasing curve part of the cutting edge, preventing drill bending at the beginning of cutting, improving straightness of drilling, and preventing breakage due to core blurring especially in the case of fine drills. Can be improved (claim 4).

さらに、汎用ドリルに追い加工を施すことにより本発明のツイストドリルを作製すれば、製作容易にして安価にツイストドリルを提供することができるばかりでなく、既存の汎用ドリルからの変更使用も可能である(請求項5)。   Furthermore, if the twist drill according to the present invention is manufactured by performing follow-up processing on a general-purpose drill, not only can the twist drill be provided easily and inexpensively, but also a change from the existing general-purpose drill can be used. (Claim 5).

本発明の実施の形態を図面により説明するが、特徴とする構成を理解しやすくするために先ず基本形状である汎用ドリルの一形態について説明し、それに追い加工を施して本発明のツイストドリルを作製する工程を図1により説明する。   Embodiments of the present invention will be described with reference to the drawings. First, in order to make it easy to understand the characteristic configuration, one embodiment of a general-purpose drill that is a basic shape will be described. The manufacturing process will be described with reference to FIG.

図1において、(a)はシンニングおよびチゼルエッジを備えた汎用ドリルを示し、その(1)は平面図、同(2)は正面図であり、この汎用ドリル10は、超硬合金や高速度鋼など超硬質性材料製のであって、ドリル本体1の外周部分に切屑排出用の2条の捩れリード溝2,2を形成したランド部3を設けており、先端部分には、先端角αにより形成される一対の切り刃4,4と、各切り刃から円周方向へ連なる逃げ面5,5および切屑を排出しやすくするためのシンニング6,6と、シンニングにより形成されるチゼルエッジ7,7を備えた標準的な周知形状である。
両切り刃4,4は、チゼルエッジ7の各端から外周端に向けて直線状、詳しくは、先端中心を通る直径線Pに沿った略直線状であって対称に形成されているものである。また、逃げ面5,5は、切り刃4,4を規定するため先端角αに沿って切削研磨された面であって、その外周肩部5a,5aには特に加工が施されていないものである。
なお、この汎用ドリル10は、実質的には、前記チゼルエッジ7,7が一次切り刃として機能し、切り刃4,4は二次切り刃として機能するものである。また、図中の符号dはドリル本体1の直径(ドリル径)、βは捩れリード溝2のリード角(捩れ角)である。
In FIG. 1, (a) shows a general-purpose drill having a thinning and a chisel edge, (1) is a plan view, and (2) is a front view. This general-purpose drill 10 is made of cemented carbide or high-speed steel. The land portion 3 having two twisted lead grooves 2 for discharging chips is provided on the outer peripheral portion of the drill body 1, and the tip portion is provided with a tip angle α. A pair of cutting blades 4, 4 to be formed, flank surfaces 5, 5 that are continuous from each cutting blade in the circumferential direction, thinnings 6, 6 for facilitating discharge of chips, and chisel edges 7, 7 formed by thinning. Standard well-known shape with
Both the cutting edges 4 and 4 are linearly formed from each end of the chisel edge 7 toward the outer peripheral end, and more specifically, are substantially linear along the diameter line P passing through the center of the tip and are formed symmetrically. Further, the flank surfaces 5 and 5 are surfaces that are cut and polished along the tip angle α in order to define the cutting blades 4 and 4, and the outer peripheral shoulder portions 5a and 5a are not particularly processed. It is.
In this general-purpose drill 10, the chisel edges 7 and 7 substantially function as primary cutting edges, and the cutting edges 4 and 4 function as secondary cutting edges. Further, the symbol d in the figure is the diameter of the drill body 1 (drill diameter), and β is the lead angle (twist angle) of the twist lead groove 2.

図1(b)は前記汎用ドリル10に面取り加工を施した状態の中間ドリル15を示す。この中間ドリル15は、前記逃げ面5,5の外周肩部5a,5aに砥石等で研削および研磨する面取り加工をすることによって、外周肩部5a,5aからランド部3に渉り滑らかな湾曲面Rを形成したものである。
図1(c)は、前記中間ドリル15にさらに掬い加工を施して完成した本発明のツイストドリル(以下、ドリルという)20を示す。ドリル20は、中間ドリル15の捩れリード溝2,2の先端部分、詳しくは、各切り刃4および前記湾曲面Rの近傍のリード溝2に掬い部21を掬い加工によって形成する。
掬い加工は、図7および図8に例示するように、研削装置(図示せず)を用いて、その回転する軸付き太鼓型砥石16(図7参照)または円盤型砥石17(図8参照)に中間ドリル15の捩れリード溝2を押し当て、前記切り刃4および湾曲面R近傍のリード溝面を曲面状に抉り取る加工であり、それによって掬い部21を形成すると同時に切り刃4の稜線を凹曲線状に形成するものである。
なお、図1(b)および(c)においては、比較のために汎用ドリル10の形状を二点鎖線で示している。
FIG. 1B shows the intermediate drill 15 in a state where the general-purpose drill 10 is chamfered. The intermediate drill 15 is curved smoothly by chamfering the outer shoulder portions 5a, 5a of the flank surfaces 5, 5 by grinding and polishing with a grindstone or the like from the outer shoulder portions 5a, 5a to the land portion 3. The surface R is formed.
FIG. 1C shows a twist drill (hereinafter referred to as a drill) 20 according to the present invention, which is completed by further scooping the intermediate drill 15. The drill 20 forms a scooping portion 21 in the tip portion of the twisted lead grooves 2 and 2 of the intermediate drill 15, specifically the scribing portion 21 and the lead groove 2 in the vicinity of the curved surface R by scooping.
As shown in FIGS. 7 and 8, the scooping process is performed using a grinding apparatus (not shown) and a rotating drum wheel 16 with a rotating shaft (see FIG. 7) or a disk-type grinding wheel 17 (see FIG. 8). The twisted lead groove 2 of the intermediate drill 15 is pressed against the cutting edge 4 and the lead groove surface in the vicinity of the curved surface R is scraped into a curved shape, thereby forming the scooping portion 21 and at the same time the ridge line of the cutting blade 4 Are formed in a concave curve shape.
In FIGS. 1B and 1C, the shape of the general-purpose drill 10 is indicated by a two-dot chain line for comparison.

上記ドリル20の詳細を図2〜図5により説明する。
図2(1)および(2)は、図1(c)(1)および(2)の拡大図であり、図2(3)は同(1)中の矢印Xから視た側面図であり、また、同図中の矢印Yがドリル20の回転方向である。
ドリル20は、図2(1)に示すように、先端中心を通り切り刃4,4の外周端を結ぶ直径線P’が前述した汎用ドリル10の直径線Pの位置より回転方向へ僅かに後退しており、切り刃4,4の稜線は、その直径線P’に対して凹曲線状、詳しくは、各チゼルエッジ7の各端から略中央部分の凹底部まで漸減曲線部4a描くとともに凹底部から外周端に向けて漸増曲線部4bを描く凹曲線状を呈する。しかも、切り刃4,4近傍のリード溝面が掬い部21により抉り取られているので、各切り刃4は汎用ドリル10に比べて鋭利な刃先形状となっている。
また、上記外周肩部5a,5aに形成された前記湾曲面Rもまた、近傍のリード溝面が掬い部21により抉り取られているので鋭利な刃先形状となり、それによって、湾曲面Rには切り刃4の外周に連続して新たに形成された湾曲形のR刃部22が形成される。
したがって、ドリル20の刃先形状は全体としてみれば、図2(3)の側面視で示すように、切り刃4とR刃部22からなるS字曲線に形成されている。
Details of the drill 20 will be described with reference to FIGS.
2 (1) and (2) are enlarged views of FIGS. 1 (c), (1), and (2), and FIG. 2 (3) is a side view as viewed from the arrow X in FIG. 2 (1). Moreover, the arrow Y in the figure is the rotation direction of the drill 20.
As shown in FIG. 2 (1), the drill 20 has a diameter line P ′ that passes through the center of the tip and connects the outer peripheral ends of the cutting blades 4, 4 slightly in the rotational direction from the position of the diameter line P of the general-purpose drill 10. The ridgeline of the cutting blades 4 and 4 is recessed with respect to the diameter line P ′. Specifically, the ridgeline of the cutting blades 4 and 4 is concave and drawn gradually from each end of each chisel edge 7 to the concave bottom of the substantially central portion. It has a concave curve shape that draws a gradually increasing curve portion 4b from the bottom toward the outer periphery. Moreover, since the lead groove surface in the vicinity of the cutting blades 4, 4 is scraped off by the scooping portion 21, each cutting blade 4 has a sharper edge shape than the general-purpose drill 10.
Further, the curved surface R formed on the outer peripheral shoulders 5a, 5a also has a sharp cutting edge shape because the adjacent lead groove surface is scraped off by the scooping portion 21, and thereby the curved surface R A curved R blade portion 22 newly formed continuously on the outer periphery of the cutting blade 4 is formed.
Therefore, the shape of the cutting edge of the drill 20 as a whole is formed into an S-shaped curve composed of the cutting blade 4 and the R blade portion 22 as shown in a side view of FIG.

図3は、上記掬い部21により形成された切り刃4およびR刃部22の刃先形状の詳細を横断平面視として示すもので、図3(1)は図2(2)と同一図であるが断面線を示すための正面図、図3(2)〜(5)は各横断面線に沿う端面図である。なお、同図中の二点鎖線は比較のために汎用ドリル10の形状を示している。図3(2)〜(5)において、符号θはドリル20の各部位における横断刃先角度、θ’は対応する汎用ドリル10の各部位における横断刃先角度である。
ドリル20はドリル径dが0.3mm、先端角αが120度、リード角βが30度の場合であって、上記各部位における横断刃先角度を例示すると、断面線A−Aにおけるθ:31度、θ’:38度、断面線B−Bにおけるθ:32度、θ’:65度、断面線C−Cにおけるθ:25度、θ’:65度、断面線D−Dにおけるθ:36度、θ’:65度である。
この例示によれば、R刃部22の刃先角度が最も小さく同部位が湾曲した鋭利なカミソリ状であることが理解されよう。
FIG. 3 shows details of the cutting edge shapes of the cutting blade 4 and the R blade portion 22 formed by the scooping portion 21 as a cross-sectional plan view, and FIG. 3 (1) is the same as FIG. 2 (2). Is a front view for showing a cross-sectional line, and FIGS. 3 (2) to (5) are end views along the cross-sectional lines. In addition, the dashed-two dotted line in the figure has shown the shape of the general purpose drill 10 for the comparison. 3 (2) to (5), the symbol θ is the transverse edge angle at each part of the drill 20, and θ ′ is the transverse edge angle at each part of the corresponding general-purpose drill 10.
The drill 20 is a case where the drill diameter d is 0.3 mm, the tip angle α is 120 degrees, and the lead angle β is 30 degrees. Degrees, θ ′: 38 degrees, θ in section line BB: 32 degrees, θ ′: 65 degrees, θ in section line CC: 25 degrees, θ ′: 65 degrees, θ in section line DD: 36 degrees and θ ′: 65 degrees.
According to this illustration, it will be understood that the blade edge angle of the R blade portion 22 is the smallest and the shape is a sharp razor with the same portion curved.

図4は、上記ドリル20における切り刃4の刃先形状の詳細を縦断側面視として示すもので、図4(1)は断面線を示すための平面図、図4(2)〜(4)は各縦断面線に沿う断面側面図である。図4(2)〜(4)において、符号γはドリル20の各部位における縦断刃先角度であり、断面線E−Eにおけるγ:41度、断面線F−Fにおけるγ:44度、断面線G−Gにおけるγ:43度である。
図5は、ドリル20の縦断刃先角度γと対比するために、汎用ドリル10の同一の断面部位における縦断刃先角度γ’を示し、断面線E’−E’におけるγ:68度、断面線F’−F’におけるγ’:59度、断面線G’−G’におけるγ’:52度である。
この例示によっても、ドリル20は、掬い部21により汎用ドリル10に比べて切り刃4が鋭利に形成されていることが理解されよう。特に、断面線E−Eにおける刃先角度γが41度と著しく鋭利なことにより、ドリル20がワークに食い込んだ瞬間に発生する切削抵抗を小さくして安定したドリルポイントを形成することができ、それに続くダウンカットとの相乗効果によりドリルの振れ回りをなくしてドリル折損を防止し得る。また、断面線G−G線における刃先角度γ(43度)の減少と、前記R刃部22の断面線C−Cにおける刃先角度θ(25度)の減少が相俟ってR刃部22の切断性を向上させることができる。
FIG. 4 shows the details of the shape of the cutting edge 4 of the cutting blade 4 in the drill 20 as a longitudinal side view, FIG. 4 (1) is a plan view showing the cross-sectional line, and FIGS. It is a section side view which meets each longitudinal section line. 4 (2) to 4 (4), the symbol γ is the longitudinal cutting edge angle at each part of the drill 20, γ at the section line EE: 41 degrees, γ at the section line FF: 44 degrees, and the section line. Γ in GG: 43 degrees.
FIG. 5 shows the vertical cutting edge angle γ ′ at the same cross-sectional portion of the general-purpose drill 10 for comparison with the vertical cutting edge angle γ of the drill 20, γ at the cross-sectional line E′-E ′: 68 degrees, and the cross-sectional line F Γ ′ at “−F” is 59 degrees, and γ ′ at the section line G′-G ′ is 52 degrees.
It will be understood from this illustration that the cutting edge 4 of the drill 20 is sharper than the general-purpose drill 10 by the scooping portion 21. In particular, the cutting edge angle γ at the section line EE is extremely sharp at 41 degrees, so that the cutting resistance generated at the moment when the drill 20 bites into the workpiece can be reduced, and a stable drill point can be formed. Due to the synergistic effect with the subsequent down cut, drill breakage can be eliminated and drill breakage can be prevented. In addition, the reduction of the cutting edge angle γ (43 degrees) in the section line GG and the reduction of the cutting edge angle θ (25 degrees) in the section line CC of the R cutting section 22 are combined. The cutting property can be improved.

而して、上記ドリル20を用いてドリル加工する場合について図6(1)により説明すると、ワーク30は高強度繊維樹脂層31を積層し表裏両面に銅箔層32を有する厚さ0.5mmの複合材である。
ドリル20は回転および下降送りによりワーク30の表面銅箔層32に当たって切込みを開始するが、切り刃4,4の漸減曲線部4a,4aによるアップカット作用により、求心性が確保されるとともに切削抵抗が減じられるので銅箔層32のめくり上がりもなく鋭利な刃先により穿孔される。
Thus, the case of drilling using the drill 20 will be described with reference to FIG. 6A. The workpiece 30 has a thickness of 0.5 mm, in which a high-strength fiber resin layer 31 is laminated and copper foil layers 32 are provided on both front and back surfaces. It is a composite material.
The drill 20 hits the surface copper foil layer 32 of the workpiece 30 by rotation and descending feed, and starts cutting. However, the up-cutting action by the gradually decreasing curve portions 4a and 4a of the cutting blades 4 and 4 ensures the centripetal force and the cutting resistance. Therefore, the copper foil layer 32 is not turned up and is perforated by a sharp blade edge.

次いで、切り刃4,4の漸増曲線部4b,4bによるダウンカット作用と鋭利な刃先形状により繊維樹脂層31を下向きに押し付け切断しながら進行するので、積層の浮き上がり、層間剥離を生ずることもなく高強度繊維樹脂層31を切削穿孔し、それに続く鋭利なR刃部22の切断作用によって穿孔される孔外周部分を完全切断しながら進行するので、補強繊維31aの引張り出しが防止されて孔内面に沿い確実に切断される。
そして、裏面銅箔層32まで穿孔した後に、ドリル20が反転しながら上昇してワーク30から引き抜かれるが、外周肩部5a,5aが湾曲面Rに形成されているので上昇時においても層間剥離を生ずるおそれもなく、さらに表面銅箔層32をめくり上げることもなくバリの発生を防止できる。
したがって、開孔されたドリル孔33の内面は断面乱れや髭残りがなく、当該内面および表面共に良好な仕上がりとなる(図6(2)参照)。
Next, since the fiber resin layer 31 is pushed downward and cut by the down-cut action by the gradually increasing curved portions 4b and 4b of the cutting blades 4 and 4 and the sharp blade edge shape, the laminate is lifted and delamination does not occur. The high-strength fiber resin layer 31 is cut and perforated, and then proceeds while completely cutting the outer peripheral portion of the hole perforated by the cutting action of the sharp R-blade 22 so that the reinforcing fiber 31a is prevented from being pulled out and the inner surface of the hole is prevented. It is surely cut along.
Then, after drilling up to the back copper foil layer 32, the drill 20 is raised while being reversed and pulled out from the work 30, but since the outer peripheral shoulders 5a, 5a are formed on the curved surface R, delamination even at the time of ascent The occurrence of burrs can be prevented without turning up the surface copper foil layer 32.
Therefore, the inner surface of the drilled hole 33 is free from cross-sectional disturbance and wrinkle residue, and both the inner surface and the surface have a good finish (see FIG. 6 (2)).

(他の実施の形態)
上記ドリル20は先端角αが120度、リード角βが30度の場合について説明および図示したが、それに限定されるものではなくワークの材質や切削性等に応じて適宜に変更されるものである。
例えば、面取り加工により形成される湾曲面Rは、同じ掬い部21によっても面取り量が大きいほどR刃部22が鋭利に形成されるので、難削性のワーク用には面取り量を多くして切削性を高め、粘質性のワークに対しては面取り量を少なくするなどの変更を施すものである。
(Other embodiments)
The drill 20 has been described and illustrated for the case where the tip angle α is 120 degrees and the lead angle β is 30 degrees. However, the drill 20 is not limited to this and is appropriately changed according to the material of the workpiece, the machinability, and the like. is there.
For example, the curved surface R formed by the chamfering process has a sharper R edge 22 as the amount of chamfering is increased even with the same scooping portion 21, so the amount of chamfering is increased for difficult-to-cut workpieces. It is intended to improve the machinability and make changes such as reducing the chamfering amount for sticky workpieces.

また、ドリルは、ワークの種類に対応できるように各種のリード角βのものを作製するが、そのリード角βに応じて掬い加工で形成される掬い部21が変更され、それにより刃先角度が変化する。
図9はリード角βに対応して掬い部21が変化した場合を例示し、同図において(1)〜(5)はリード角βをそれぞれ20度、25度、30度、35度、40度とした掬い部の変化を示す。その中の(3)は前示したドリル20の場合であるが、その横断刃先角度Θを例示した図3と対比するため、リード角βが20度のドリル20a(図9(1))、およびリード角βが40度のドリル20b(図9(5))を比較例として図10および図11に示す。
In addition, drills having various lead angles β are prepared so as to correspond to the types of workpieces, but the scooping portion 21 formed by scooping is changed according to the lead angle β, whereby the edge angle is changed. Change.
FIG. 9 illustrates the case where the scooping portion 21 changes corresponding to the lead angle β. In FIG. 9, (1) to (5) indicate the lead angle β of 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees, respectively. The change of the ugly part is shown. Among them, (3) is the case of the drill 20 shown above, but in order to contrast the cross cutting edge angle Θ with FIG. 3, the drill 20 a (FIG. 9 (1)) with a lead angle β of 20 degrees, A drill 20b (FIG. 9 (5)) having a lead angle β of 40 degrees is shown in FIGS. 10 and 11 as a comparative example.

図10において、その(2)〜(5)は、同図(1)に示したドリル20aの各横断面線に沿う端面図であって、断面線A−Aにおけるθ:28度、断面線B−Bにおけるθ:19度、断面線C−Cにおけるθ:17度、断面線D−Dにおけるθ:12度である。
図11において、その(2)〜(5)は、同図(1)に示したドリル20bの各横断面線に沿う端面図であって、断面線A−Aにおけるθ:56度、断面線B−Bにおけるθ:47度、断面線C−Cにおけるθ:49度、断面線D−Dにおけるθ:32度である。
この図10、図11および図3の対比により、リード角βが小さいほど刃先角度が小さく鋭利な刃先形状となることが理解される。
したがって、上記湾曲面Rを形成する面取り加工の度合いと共にリード角βを考慮の上で、ワークの材質や難削性などに対応した刃先形状のドリルを選択して使用すればよい。
10, (2) to (5) are end views taken along the cross-sectional lines of the drill 20a shown in FIG. 10 (1), and θ at the cross-sectional line AA: 28 degrees, cross-sectional lines Θ in BB is 19 degrees, θ in section line CC is 17 degrees, and θ in section line DD is 12 degrees.
11, (2) to (5) are end views taken along the cross-sectional lines of the drill 20 b shown in FIG. 11 (1), and θ at the cross-sectional line AA is 56 degrees, the cross-sectional line Θ in BB is 47 degrees, θ in section line CC is 49 degrees, and θ in section line DD is 32 degrees.
By comparing FIG. 10, FIG. 11 and FIG. 3, it is understood that the smaller the lead angle β, the smaller the edge angle and the sharper the edge shape.
Therefore, in consideration of the lead angle β together with the degree of chamfering that forms the curved surface R, a drill with a cutting edge shape corresponding to the material of the workpiece, difficult-to-cut properties, etc. may be selected and used.

なお、上述した実施の形態においては、ワークとして繊維強化複合材について例示したが、それに限らず軟質材、硬質材、難削材のドリル加工用としても適用できるものである。また、ドリル径が0.3mmを用いた微細孔を穿孔する場合で説明したが、ワークの種類、所望するドリル孔径に応じてドリル径を変更(例えば1〜30mm)することは当然であるし、その場合に本発明の趣旨を越脱することなく先端部形状に変更を加えることも任意である。
また、上記実施の形態においては、汎用ドリルとしてシンニング、チゼルエッジを備えたものを例示したが、それらシンニング、チゼルエッジがない汎用ドリルに適用できることは明らかである。
In the above-described embodiment, the fiber reinforced composite material is exemplified as the work. However, the present invention is not limited to this, and can be applied to drilling of soft materials, hard materials, and difficult-to-cut materials. Moreover, although the case where a fine hole using a drill diameter of 0.3 mm is drilled has been described, it is natural to change the drill diameter (for example, 1 to 30 mm) according to the type of workpiece and the desired drill hole diameter. In that case, it is optional to change the shape of the tip without departing from the spirit of the present invention.
In the above-described embodiment, the general-purpose drill having the thinning and the chisel edge is exemplified. However, it is obvious that the general-purpose drill can be applied to the general-purpose drill having no thinning and chisel edge.

本発明のツイストドリルを作製する工程を説明するものであって、(a)は汎用ドリルを示し、その(1)は平面図、同(2)は正面図、(b)は汎用ドリルに面取り加工を施した中間ドリルを示し、その(1)は平面図、同(2)は正面図、(c)は本発明のツイストドリルを示し、その(1)は平面図、同(2)は正面図である。It explains the process for producing the twist drill of the present invention, wherein (a) shows a general-purpose drill, (1) is a plan view, (2) is a front view, and (b) is a chamfer on the general-purpose drill. The processed intermediate drill is shown, (1) is a plan view, (2) is a front view, (c) is a twist drill of the present invention, (1) is a plan view, and (2) is a plan view. It is a front view. 本発明のツイストドリルを拡大したものであって、その(1)は平面図、同(2)は正面図、同(3)は前記(1)中の矢印Xから視た側面図である。It is what expanded the twist drill of this invention, Comprising: The (1) is a top view, The same (2) is a front view, The same (3) is the side view seen from the arrow X in said (1). 本発明ツイストドリルの刃先形状(横断平面視)の詳細を説明するものであり、その(1)は正面図、同(2)は前記(1)中におけるA−A線に沿う端面図、同(3)は同B−B線に沿う端面図、同(4)は同C−C線に沿う端面図、同(5)は同D−D線に沿う端面図である。It explains the details of the cutting edge shape (transverse plan view) of the twist drill of the present invention, (1) is a front view, (2) is an end view along the line AA in (1), (3) is an end view along the BB line, (4) is an end view along the CC line, and (5) is an end view along the DD line. 本発明ツイストドリルの刃先形状(縦断側面視)の詳細を説明するものであり、その(1)は平面図、同(2)は前記(1)中におけるE−E線に沿う端面図、同(3)は同F−F線に沿う端面図、同(4)は同G−G線に沿う端面図である。It explains the details of the cutting edge shape (vertical side view) of the twist drill of the present invention, (1) is a plan view, (2) is an end view along line EE in (1), (3) is an end view along the FF line, and (4) is an end view along the GG line. 汎用ドリルの刃先形状(縦断側面視)の詳細を説明するものであり、その(1)は平面図、同(2)は前記(1)中におけるE’−E’線に沿う端面図、同(3)は同F’−F’線に沿う端面図、同(4)は同G’−G’線に沿う端面図である。It explains the details of the cutting edge shape (vertical side view) of a general-purpose drill, (1) is a plan view, (2) is an end view along line E'-E 'in (1), (3) is an end view taken along line F′-F ′, and (4) is an end view taken along line G′-G ′. 本発明のツイストドリルを用いたドリル加工例を説明するもので、その(1)は加工中の断面図、同(2)は穿孔したワークのドリル孔面を示す切欠斜視図である。The drilling example using the twist drill of this invention is demonstrated, The (1) is sectional drawing in process, (2) is a notch perspective view which shows the drill hole surface of the drilled workpiece | work. 掬い加工を示し、その(1)は平面図、同(2)は正面図、同(3)は側面図である。(1) is a plan view, (2) is a front view, and (3) is a side view. 掬い加工の他の例を示すものであり、その(1)は平面図、同(2)は正面図、同(3)は側面図である。Another example of scooping is shown, in which (1) is a plan view, (2) is a front view, and (3) is a side view. 本発明のツイストドリルにおいて捩れリード角に対応して掬い部が変化する場合を例示した各正面図である。It is each front view which illustrated the case where a scoop part changes corresponding to a twist lead angle in the twist drill of the present invention. リード角が20度の本発明ツイストドリルの刃先形状(横断平面視)を説明するもので、その(1)は正面図、同(2)は前記(1)中におけるA−A線に沿う端面図、同(3)は同B−B線に沿う端面図、同(4)は同C−C線に沿う端面図、同(5)は同D−D線に沿う端面図である。It explains the cutting edge shape (transverse plan view) of the twist drill of the present invention having a lead angle of 20 degrees, (1) is a front view, and (2) is an end surface along the line AA in (1). The figure (3) is an end view along the BB line, (4) is an end view along the CC line, and (5) is an end view along the DD line. リード角が40度の本発明ツイストドリルの刃先形状(横断平面視)を説明するもので、その(1)は正面図、同(2)は前記(1)中におけるA−A線に沿う端面図、同(3)は同B−B線に沿う端面図、同(4)は同C−C線に沿う端面図、同(5)は同D−D線に沿う端面図である。It explains the cutting edge shape (transverse plan view) of the twist drill of the present invention having a lead angle of 40 degrees, (1) is a front view, and (2) is an end surface along the line AA in (1). The figure (3) is an end view along the BB line, (4) is an end view along the CC line, and (5) is an end view along the DD line.

符号の説明Explanation of symbols

1:ドリル本体 2:捩れリード溝 3:ランド部
4:切り刃 4a:漸減凹曲線 4b:漸増凹曲線
5:逃げ面 5a:外周肩部
6:シンニング 7:チゼルエッジ 10:汎用ドリル
15:中間ドリル R:湾曲面
20,20a,20b:ドリル(本発明ドリル)
21:掬い部 22:R刃部
1: Drill body 2: Torsional lead groove 3: Land part 4: Cutting edge 4a: Gradually decreasing concave curve 4b: Gradually increasing concave curve 5: Flank 5a: Outer shoulder 6: Thinning 7: Chisel edge 10: General-purpose drill 15: Intermediate drill R: curved surfaces 20, 20a, 20b: drill (the drill of the present invention)
21: scooping part 22: R blade part

Claims (5)

軸線回りに回転されるドリル本体の外周部分に切屑排出用の捩れリード溝を形成したランド部を備え、先端部分には、先端角により形成される一対の切り刃および逃げ面が形成されるツイストドリルにおいて、
上記逃げ面の外周肩部をR面取りした湾曲面とし、切り刃および前記肩部近傍のリード溝に掬い部を設け、かつ切り刃の稜線を先端部から外周端に向けた凹曲線状とそれに続く湾曲状にし、全体として切り刃を側面視S字曲線からなる鋭利な刃先形状としたことを特徴とするツイストドリル。
Twist with a pair of cutting blades and flank formed by a tip angle at the tip portion provided with a land portion formed with a twist lead groove for discharging chips on the outer peripheral portion of the drill body rotated about the axis In the drill,
The outer peripheral shoulder portion of the flank is a curved surface with a rounded chamfer, a scooping portion is provided in the cutting blade and the lead groove in the vicinity of the shoulder portion, and a concave curved shape in which the ridge line of the cutting blade is directed from the tip portion to the outer peripheral end, and A twist drill characterized in that it has a curved shape, and the cutting blade as a whole has a sharp cutting edge shape consisting of an S-curve when viewed from the side.
軸線回りに回転されるドリル本体の外周部分に切屑排出用の捩れリード溝を形成したランド部を備え、先端部分には、先端角により形成される一対の切り刃、逃げ面、シンニングおよびチゼルエッジが形成されるツイストドリルにおいて、
上記逃げ面の外周肩部を面取りした湾曲面とし、切り刃および前記肩部近傍のリード溝に掬い部を設け、かつ切り刃の稜線をチゼルエッジから外周端に向けた凹曲線状とそれに続く湾曲状にし、全体として切り刃を側面視S字曲線からなる鋭利な刃先形状としたことを特徴とするツイストドリル。
The outer periphery of the drill body that rotates about the axis is provided with a land part that has a twisted lead groove for discharging chips, and a pair of cutting edges, flank, thinning, and chisel edge formed by the tip angle are provided at the tip part. In the twist drill that is formed,
The outer peripheral shoulder portion of the flank is a curved surface that is chamfered, a scooping portion is provided in the cutting blade and the lead groove in the vicinity of the shoulder portion, and a concave curved shape with the ridge line of the cutting blade from the chisel edge toward the outer peripheral end and subsequent curvature A twist drill characterized in that the cutting blade as a whole has a sharp cutting edge shape composed of an S-curve when viewed from the side.
上記凹曲線状切り刃稜線の先端部またはチゼルエッジから凹部底までの漸減曲線部は、穿孔するワークに対する切込み押圧力が比較的小さなアップカットとして作用し、凹部底から外周端までの漸増曲線部は、ワークに対する切込み押圧力が大きなダウンカットとして作用し、漸増曲線部に連続する外周肩部に形成された湾曲稜線が鋭利な湾曲刃部として作用するようにしたことを特徴とする請求項1または2記載のツイストドリル。   The gradually decreasing curve portion from the tip of the concave curved cutting edge ridge line or chisel edge to the bottom of the recess acts as an up-cut with a relatively small cutting pressure on the workpiece to be drilled, and the gradually increasing curve portion from the bottom of the recess to the outer peripheral edge is The cutting urging force acting on the workpiece acts as a large downcut, and the curved ridge formed on the outer peripheral shoulder continuous with the gradually increasing curved portion acts as a sharp curved blade portion. 2. The twist drill according to 2. 上記ワークが、特に、金属材料と繊維強化樹脂材との複合材料であることを特徴とする請求項3記載のツイストドリル。   4. The twist drill according to claim 3, wherein the workpiece is a composite material of a metal material and a fiber reinforced resin material. 上記外周肩部の湾曲面が汎用のツイストドリルに面取り加工を施すことにより形成され、その後に、掬い加工を施すことにより前記側面視S字曲線の刃先形状が形成されることを特徴とする請求項1または2記載のツイストドリル。   The curved surface of the outer peripheral shoulder is formed by chamfering a general-purpose twist drill, and then the edge shape of the S-curve in side view is formed by scooping. Item 3. A twist drill according to item 1 or 2.
JP2005338841A 2005-11-24 2005-11-24 Twist drill Expired - Fee Related JP4746969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005338841A JP4746969B2 (en) 2005-11-24 2005-11-24 Twist drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005338841A JP4746969B2 (en) 2005-11-24 2005-11-24 Twist drill

Publications (2)

Publication Number Publication Date
JP2007144526A true JP2007144526A (en) 2007-06-14
JP4746969B2 JP4746969B2 (en) 2011-08-10

Family

ID=38206540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005338841A Expired - Fee Related JP4746969B2 (en) 2005-11-24 2005-11-24 Twist drill

Country Status (1)

Country Link
JP (1) JP4746969B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039811A (en) * 2007-08-08 2009-02-26 Kumamoto Univ Tool and method for drilling hole in fiber-reinforced composite material
WO2010055559A1 (en) * 2008-11-12 2010-05-20 Next I&D株式会社 Drill
US20100158626A1 (en) * 2008-12-23 2010-06-24 Tatsuo Nakahata Drill and drilling method for workpiece
US20100232899A1 (en) * 2009-03-13 2010-09-16 Manabu Saito Drill
US20110081215A1 (en) * 2008-05-15 2011-04-07 Sumitomo Electric Hardmetal Corp. Twist drill
WO2011049095A1 (en) * 2009-10-21 2011-04-28 福井県 Drill for composite material as well as machining method using same and machining apparatus using same
FR2955792A1 (en) * 2010-02-04 2011-08-05 Kennametal Inc METHOD FOR PRODUCING A DRILL, AND DRILL
ITNA20110038A1 (en) * 2011-09-12 2013-03-13 Antonio Langella TOOL FOR DRILLING MULTIFACERS WITH VARIABLE DIAMETER AND VARIABLE BENDING FOR USE ON COMPOSITE MATERIALS.
WO2013042914A1 (en) * 2011-09-23 2013-03-28 Taegutec Ltd. Drilling tool for composite material
JP2013075339A (en) * 2011-09-30 2013-04-25 Sumitomo Electric Hardmetal Corp Drill for machining laminated board of frp and metal
JP2014018883A (en) * 2012-07-13 2014-02-03 Hitachi Tool Engineering Ltd Drill and method for manufacturing drill bit part
US9073128B2 (en) 2010-07-06 2015-07-07 Kennametal Inc. Drilling tool
US9168593B2 (en) 2008-12-26 2015-10-27 Fuji Jukogyo Kabushiki Kaisha Drill
US9901990B2 (en) 2010-02-04 2018-02-27 Kennametal Inc. Drilling tool
US10259050B2 (en) 2014-07-29 2019-04-16 Kyocera Corporation Drill and method of manufacturing machined product using the same
CN109715324A (en) * 2016-09-20 2019-05-03 本田技研工业株式会社 PCD drill bit and its manufacturing method
WO2021079939A1 (en) * 2019-10-23 2021-04-29 株式会社ギケン Drill

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135709A (en) * 1984-07-27 1986-02-20 高北農機株式会社 Manure spreader
JPS6239913A (en) * 1985-08-12 1987-02-20 アドバンスト・マイクロ・デバイシズ・インコーポレイテッド Programmable logical train
JPH02152708A (en) * 1988-12-02 1990-06-12 Hitachi Koki Co Ltd Twist drill for compound material machining
JPH0871824A (en) * 1994-09-12 1996-03-19 O S G Kk Composite material machining drill
JP2000263306A (en) * 1999-03-16 2000-09-26 Ida Kogyo:Kk Drilling tool preventing generation of burr

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135709A (en) * 1984-07-27 1986-02-20 高北農機株式会社 Manure spreader
JPS6239913A (en) * 1985-08-12 1987-02-20 アドバンスト・マイクロ・デバイシズ・インコーポレイテッド Programmable logical train
JPH02152708A (en) * 1988-12-02 1990-06-12 Hitachi Koki Co Ltd Twist drill for compound material machining
JPH0871824A (en) * 1994-09-12 1996-03-19 O S G Kk Composite material machining drill
JP2000263306A (en) * 1999-03-16 2000-09-26 Ida Kogyo:Kk Drilling tool preventing generation of burr

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039811A (en) * 2007-08-08 2009-02-26 Kumamoto Univ Tool and method for drilling hole in fiber-reinforced composite material
US20110081215A1 (en) * 2008-05-15 2011-04-07 Sumitomo Electric Hardmetal Corp. Twist drill
WO2010055559A1 (en) * 2008-11-12 2010-05-20 Next I&D株式会社 Drill
US20100158626A1 (en) * 2008-12-23 2010-06-24 Tatsuo Nakahata Drill and drilling method for workpiece
US9981322B2 (en) 2008-12-23 2018-05-29 Subaru Corporation Drill and drilling method for workpiece
US9180531B2 (en) * 2008-12-23 2015-11-10 Fuji Jukogyo Kabushiki Kaisha Drill and drilling method for workpiece
US9168593B2 (en) 2008-12-26 2015-10-27 Fuji Jukogyo Kabushiki Kaisha Drill
US8734067B2 (en) * 2009-03-13 2014-05-27 Fuji Jukogyo Kabushiki Kaisha Drill
US20100232899A1 (en) * 2009-03-13 2010-09-16 Manabu Saito Drill
JP2011104766A (en) * 2009-10-21 2011-06-02 Fukui Prefecture Drill for composite material, and machining method and apparatus using the same
WO2011049095A1 (en) * 2009-10-21 2011-04-28 福井県 Drill for composite material as well as machining method using same and machining apparatus using same
US10661356B2 (en) 2010-02-04 2020-05-26 Kennametal Inc. Drilling tool
CN102741014A (en) * 2010-02-04 2012-10-17 钴碳化钨硬质合金公司 Drill bit and method for manufacturing
WO2011097109A3 (en) * 2010-02-04 2011-12-29 Kennametal Inc. Drill bit and method for manufacturing
WO2011097109A2 (en) * 2010-02-04 2011-08-11 Kennametal Inc. Drill bit and method for manufacturing
FR2955792A1 (en) * 2010-02-04 2011-08-05 Kennametal Inc METHOD FOR PRODUCING A DRILL, AND DRILL
US9403246B2 (en) 2010-02-04 2016-08-02 Kennametal Inc. Drill bit and method for manufacturing
US9901990B2 (en) 2010-02-04 2018-02-27 Kennametal Inc. Drilling tool
US9073128B2 (en) 2010-07-06 2015-07-07 Kennametal Inc. Drilling tool
ITNA20110038A1 (en) * 2011-09-12 2013-03-13 Antonio Langella TOOL FOR DRILLING MULTIFACERS WITH VARIABLE DIAMETER AND VARIABLE BENDING FOR USE ON COMPOSITE MATERIALS.
WO2013042914A1 (en) * 2011-09-23 2013-03-28 Taegutec Ltd. Drilling tool for composite material
JP2013075339A (en) * 2011-09-30 2013-04-25 Sumitomo Electric Hardmetal Corp Drill for machining laminated board of frp and metal
JP2014018883A (en) * 2012-07-13 2014-02-03 Hitachi Tool Engineering Ltd Drill and method for manufacturing drill bit part
US10259050B2 (en) 2014-07-29 2019-04-16 Kyocera Corporation Drill and method of manufacturing machined product using the same
CN109715324A (en) * 2016-09-20 2019-05-03 本田技研工业株式会社 PCD drill bit and its manufacturing method
CN109715324B (en) * 2016-09-20 2020-09-22 本田技研工业株式会社 PCD drill bit and manufacturing method thereof
WO2021079939A1 (en) * 2019-10-23 2021-04-29 株式会社ギケン Drill

Also Published As

Publication number Publication date
JP4746969B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4746969B2 (en) Twist drill
US9981322B2 (en) Drill and drilling method for workpiece
JP5385976B2 (en) Drill and cutting method of work material using the drill
JP5366003B2 (en) Router end mill
JP5087735B2 (en) drill
JP5135614B2 (en) Drill for composite material and machining method and machining apparatus using the same
US7278806B1 (en) Two edge deburring tool
US9409239B2 (en) Drill bit
WO2019047557A1 (en) Micro-teeth arrangement designable end mill having tip blade for dedicated use with carbon fiber composite material
US7090442B2 (en) Shaper router and method
EP3305447B1 (en) Step-structured twist drill
WO2012027057A2 (en) Combination end milling/drilling/reaming cutting tool
JP6775856B2 (en) Vertical blade double step micro tooth tool used for high quality drilling of composite materials and their laminated structures
US9199315B2 (en) Twist drill and method for producing a twist drill which method includes forming a flute of a twist drill
CN103071840A (en) Pineapple end mill for carbon fiber reinforced composite
US20140201995A1 (en) Cutting drill and method for manufacturing printed wiring board
EP3175943A1 (en) Drill and method of manufacturing cut product using same
TWI438047B (en) Drilling tools
JP5087744B2 (en) drill
JP2014012302A (en) Drill for composite material, and method and apparatus for machine work using the drill
CN214392488U (en) Annular cutter for drilling composite material
JP2008142834A (en) Drill
CN109894653B (en) Precise micro drill bit for processing high-end communication board
CN106583534A (en) CNC cutting tool and CNC machining method
WO2020261999A1 (en) Drill for carbon-fiber composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees