WO2010055559A1 - Drill - Google Patents

Drill Download PDF

Info

Publication number
WO2010055559A1
WO2010055559A1 PCT/JP2008/070603 JP2008070603W WO2010055559A1 WO 2010055559 A1 WO2010055559 A1 WO 2010055559A1 JP 2008070603 W JP2008070603 W JP 2008070603W WO 2010055559 A1 WO2010055559 A1 WO 2010055559A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
drill
angle
lead
cutting edge
Prior art date
Application number
PCT/JP2008/070603
Other languages
French (fr)
Japanese (ja)
Inventor
政計 柿本
武司 出口
渉 青木
Original Assignee
Next I&D株式会社
ビーティーティー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Next I&D株式会社, ビーティーティー株式会社 filed Critical Next I&D株式会社
Priority to PCT/JP2008/070603 priority Critical patent/WO2010055559A1/en
Publication of WO2010055559A1 publication Critical patent/WO2010055559A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/06Drills with lubricating or cooling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/27Composites
    • B23B2226/275Carbon fibre reinforced carbon composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/02Connections between shanks and removable cutting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/04Angles, e.g. cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/08Side or plan views of cutting edges
    • B23B2251/082Curved cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/14Configuration of the cutting part, i.e. the main cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/20Number of cutting edges
    • B23B2251/202Three cutting edges

Definitions

  • the present invention relates to a drill, and more particularly to a drill useful for applying to a composite material in which materials including difficult-to-cut materials such as carbon fiber reinforced resin (CFRP), which are frequently used as aircraft materials, are laminated.
  • CFRP carbon fiber reinforced resin
  • the present invention relates to an improvement in a twist drill having a twisted lead groove formed on a surface and a cutting blade formed on a tip surface with a tip angle.
  • a back taper portion that changes the outer diameter of the drill body is formed, and an improvement in which the tip angle is changed in two steps with respect to the lead angle of the twisted lead groove (Patent Document 1), or A substantially crescent-shaped main cutting edge is formed on the circumferential surface of both sides around the centering cutting edge, the tip of which forms an arc with respect to the drilled surface, and a cutting edge is formed between the centering cutting edge and the main cutting edge.
  • the improvement (patent document 2) etc. etc. in which they became a substantially M-shaped blade-tip shape seeing from the front etc. were seen.
  • Patent Document 3 Japanese Patent Application No. 2005-338841.
  • the basic structure of this prior application drill is that a pair of cutting blades and a flank formed by the tip angle are formed at the tip of the drill body.
  • the outer peripheral shoulder of the flank is a curved surface with a rounded chamfer.
  • the blade and the torsion lead groove near the shoulder are provided with a scooping portion, and the ridge line of the cutting blade is formed in a concave curve shape from the tip portion toward the outer peripheral end and a curved shape subsequent thereto, and the cutting blade as a whole is an S-curve in side view. In this way, the surface layer is rolled up to prevent wrinkles remaining in the holes and lower burrs from occurring on the back layer.
  • Patent Document 1 and Patent Document 2 described above, a sufficiently effective solution can be obtained for the occurrence of the bulging P and the burrs Q of tough fibers when the CFRP material W is drilled. Even when the prior art of Patent Document 3 is adopted, when applied to the CFRP material W, it is possible to prevent the generation of wrinkles remaining in the holes and wrinkle burrs Q on the back surface layer, but the surface layer is swollen. It was not enough to prevent P.
  • the present invention is based on the further improvement of the drill disclosed in Patent Document 3, and the surface layer bulge P and the back surface burrs, which were problems with composite materials containing difficult-to-cut materials such as CFRP.
  • An object is to provide a drill with high machining accuracy by effectively preventing the generation of Q.
  • Another object of the present invention is to improve the manufacturability and durability of the drill by improving the structure and material of the tip head portion of the drill body.
  • the present invention provides a drill having a torsional lead groove having a predetermined lead angle ⁇ on the outer peripheral surface of the drill body and a cutting edge formed by the tip angle on the tip surface.
  • the tip lead angle ⁇ a of the torsion lead groove is set to a constant value in the range of ⁇ 10 ° to + 10 ° smaller than the lead angle ⁇ , and the cutting edge is set on the cutting edge by setting the outer peripheral rake angle.
  • the outer peripheral blade portion having a sharp shape is formed, and the ridge line of the cutting blade is a concave curve.
  • a general twist lead groove is constant up to the tip, and the lead angle ⁇ is 20 ° to 30 °, and the tip lead angle ⁇ a is changed to an angle of ⁇ 10 ° to + 10 °.
  • the second feature is that the outer edge portion is sharpened and the cutting edge ridge is formed into a concave curve.
  • the second feature is a configuration in which the prior application invention of Patent Document 3 is substantially applied, and the first feature is a configuration in which the prior application invention is improved or changed.
  • the chips remain in a ring shape in the concave curve of the cutting edge ridgeline immediately before drilling, and are maintained in a substantially intact state. Since it is cut off at or immediately after that, the fiber member at the hole exit portion is surely cut.
  • the specific structure of the outer peripheral blade portion is such that a sharp cutting edge shape is formed by setting the outer peripheral scooping angle to 20 ° to 40 °.
  • This sharp outer peripheral blade portion may be either formed by scooping using a grindstone, or formed by molding, such as an edge head with a replaceable blade tip described later.
  • the tip cutting edge may of course have a two-blade structure in which the cutting blades are arranged at opposing positions in the diameter direction. Preferably there is.
  • the tip angle forming the tip cutting edge of the drill body is typically 118 ° to 130 °, but in order to make the concave curve of the cutting edge ridge line more effective, the tip angle is 140 °. It is preferable that the angle is from 150 ° to 150 °.
  • the cutting resistance in the thrust direction is increased, and in order to reduce the resistance, the central portion of the tip is set to about 120 °, and the outer periphery thereof is changed in two steps from 140 ° to 150 °. Good.
  • the drill body is preferably provided with a structure for cooling the tip cutting edge.
  • a coolant path is drilled in the center of the axis of the drill body, a cooling hole branched from the coolant path is opened at the front part in each of the lead grooves, and the coolant injected from the opening of the cooling hole is Spray toward the edge of the cutting edge.
  • the drill body may have a blade tip exchange type, that is, the tip head portion may be formed separately from the drill body and detachably attached to the tip of the drill body.
  • the tip head is generally cut and ground with a cemented carbide material with a grindstone, or an ultra-high pressure sintered body or a diamond blade tip is attached, or the surface is coated with a hard film such as diamond.
  • a molding method or pressure molding method that can handle complex shapes, and the tip head in particular is sintered at a high pressure using diamond powder or a high-density powder of super hard material as the raw material.
  • it is a molded product.
  • the tip head may optionally be provided with a hard coating such as diamond or DLC (Diamond Like Carbon) on the surface of the molded body, and the tip head is formed of ceramics such as silicon carbide, silicon nitride, and alumina. In that case, it is preferable to form a hard coating such as diamond or DLC on the head surface.
  • a hard coating such as diamond or DLC (Diamond Like Carbon)
  • the composite material containing difficult-to-cut material such as CFRP is drilled as a workpiece. Even when processing, the surface layer is prevented from curling P, and the concave curved ridge line formed on the sharp outer peripheral edge portion reliably cuts the fiber member at the perforation outlet portion. Generation of burrs Q can also be prevented.
  • the tip cutting edge has a three-blade structure, a drill with high processing accuracy can be provided, such as ensuring a perfect circular perforation in combination with preventing the above-mentioned curling and wrinkle burrs.
  • a coolant such as air is directly sprayed from the inside of the twisted lead groove in the tip head portion toward the cutting edge ridge line through the coolant passage provided in the drill body, so that a high cooling effect of the cutting edge can be obtained and Durability can be improved and the chip discharge effect is further improved by the refrigerant flow that is reversed at the tip in the lead groove.
  • the tip head can be replaced or re-polished to ensure the best cutting performance. it can.
  • the tip head part can be molded by the blade tip replacement method, so that a tip head with a complicated structure and shape that cannot be obtained by conventional grinding and polishing processes can be obtained, providing a more functional drill than ever. can do.
  • the wear resistance is improved by forming a hard coating layer such as diamond on the surface of the tip head, or the toughness of the portion is enhanced by making the tip head portion a ceramic molded body.
  • a drill suitable for difficult-to-cut materials can be provided.
  • FIGS. 1 to 4 illustrate the basic form of the drill A of the present invention
  • FIG. 1 is a side view
  • FIG. FIG. 3 is a sectional view taken along line (3)-(3).
  • the drill body 1 is made of a super hard material such as cemented carbide or high-speed steel, and includes a shank 2 on one side (rear side) of a substantially columnar shape rotated around an axis, and for chip discharge on the front side.
  • the land portion 4 in which the three twisted lead grooves 3, 3 and 3 are formed is provided, and the head portion 10 at the tip includes cutting blades 5, 5, and 5 formed by the tip angle ⁇ , and each cutting blade.
  • the drill body 1 has a coolant passage 9 opened in the center of the shaft from the end face of the shank 2 toward the tip head portion 10.
  • the cutting blades 5, 5, 5 exemplify a three-blade structure arranged at a central angle of 120 ° by the three twisted lead grooves 3, 3, 3, and each cutting blade 5 has the chisel edge 8, the chisel edge 8 functions as a primary cutting blade, and the cutting blade 5 functions as a secondary cutting blade.
  • Each of the torsion lead grooves 3 is generally opened from the tip head portion 10 toward the shank 2 at a constant lead angle (twist angle) ⁇ in the range of 20 ° to 30 °.
  • the lead angle (tip lead angle) ⁇ a of only the tip head portion 10 is set to an angle (5 ° in the illustrated example) smaller than the lead angle ⁇ as shown in FIG.
  • the tip lead portion 3 a is formed on the substrate 10. That is, the torsion lead groove 3 has a tip lead portion 3a having a lead angle ⁇ a of 5 ° in the tip head portion 10 and changes from there to a predetermined lead angle ⁇ (not particularly limited, but 20 ° to 30 °). It is.
  • the tip lead angle ⁇ a is not limited to the above 5 °, but is effective at a constant value in the range of ⁇ 10 ° to + 10 ° corresponding to the lead angle of the twisted lead groove 3 and the material of the workpiece. Yes (see FIG. 4). That is, if the lead angle ⁇ a exceeds 10 °, the function of preventing the rolling-up P cannot be achieved, and if it is less than ⁇ 10 °, the machinability itself is deteriorated. Further, the preferable range of the tip lead angle ⁇ a is ⁇ 5 ° to + 5 °.
  • the tip head portion 10 has an outer periphery having a sharp cutting edge shape on the outer periphery of the tip cutting edge 5 by setting the torsion lead groove 3 to a large outer peripheral chamfer angle ⁇ .
  • the blade part 5a is formed.
  • This outer peripheral scooping angle ⁇ is set to a constant value of 20 ° to 40 °, preferably 30 ° to 40 °, taking into account the machinability and the strength of the cutting edge of the outer peripheral blade portion 5a. This is because if the outer peripheral scoop angle ⁇ is less than 20 °, the desired machinability cannot be obtained, and if it exceeds 40 °, the edge strength is low and durability cannot be obtained.
  • each cutting blade 5 is not only formed with the sharp outer peripheral cutting portion 5a, but also from each end of the chisel edge 8 toward the outer peripheral cutting portion 5a.
  • the cutting edge ridge line is formed in a concave curve shape.
  • the concave curve shape of the cutting edge ridge line changes depending on the tip angle ⁇ when the outer peripheral scoop angle ⁇ is the same. Specifically, since the standard tip angle ⁇ is 118 ° to 130 °, FIG. 1 illustrates the case where the tip angle ⁇ is 120 °, but the tip angle ⁇ is set to 140 ° as shown in FIG.
  • the concave curvature depth of the cutting edge ridgeline is larger than that in the case of FIG. 1, that is, the concave curve depth becomes deeper as the tip angle ⁇ is larger.
  • the concave curve depth of the cutting edge ridge line is deep. It is preferable.
  • the tip angle ⁇ is changed in two steps, that is, the tip angle of the central portion is set to around 120 °, and the tip of the outer periphery is changed.
  • the angle may be set in the range of 140 ° to 150 ° (FIG. 14).
  • the blade tip replaceable tip head 20 is illustrated, but it is needless to say that it can be applied to the tip head portion 10.
  • the refrigerant path 9 has a rear end opened to the rear end face of the shank 2 and extends to the center of the axis of the drill main body 1, and a front end in the vicinity of the tip lead portion 3 a of the tip head portion 10, specifically, A cooling hole 9a is formed at a position slightly behind the tip lead portion 3a and branched into three at the tip, and the tip of each cooling hole 9a is opened into the twisted lead groove 3.
  • Refrigerant is supplied to each cooling hole 9a through the refrigerant path 9 when drilling, and the refrigerant is twisted from the inside of the lead groove 3 toward the ridge line of the tip cutting edge 5, more preferably the cutting edge 5.
  • the outer peripheral blade portion 5a and the tip lead portion 3a are sprayed to cool the portion, and the cut chips are twisted and discharged to the rear in the lead groove 3.
  • the drill A is rotated at a high speed while supplying air to the refrigerant path 9 to start drilling the CFRP material W.
  • the center of the tip head portion 10 abuts and is cut by each chisel edge 8. Centering is performed, and immediately after that, the sharp outer peripheral blade portion 5a starts cutting while pushing down the surface of the CFRP material W with the tip lead portion 3a (see FIG. 6 (1)).
  • the outer peripheral blade portion 5a is cut while drawing a circle, and the force component acting in the radial direction of the distal end lead portion 3a is thrust by setting the distal end lead angle ⁇ a of the distal end lead portion 3a following the outer circumferential blade portion 5a.
  • the direction closer to the direction, that is, the cutting force of the carbon fiber by the outer peripheral blade part 5a acts downward rather than acting upward with respect to the traveling direction of the drill. As a result, the surface curling P as shown in FIG. 18 can be prevented.
  • the chips supplied by the air supplied to the refrigerant passage 9 during the drilling process are twisted and discharged rearward through the lead groove 3, and are injected and cooled toward the outer peripheral blade portion 5a and the tip lead portion 3a of the tip cutting blade 5. Of course, it acts. In particular, as described above, it is possible to quickly discharge a large amount of chips in the processing of the CFRP material W due to the supply of air as a refrigerant and the concave curve depth of the cutting edge ridgeline.
  • FIGS. 7 to 12 show another embodiment of the present invention.
  • the tip head 20 corresponding to the tip head portion 10 described above is formed separately from the drill main body 11 and the drill head 11 is drilled. This is a case where the blade tip is replaceable with respect to the main body 11.
  • the drill main body 11 has the three twisted lead grooves 13, 13, 13 and the land portions 14, 14, 14 and is made of a cemented carbide or the like in the same manner as the drill main body 1 described above.
  • the drill body 11 forms a coolant passage 19 that penetrates the axial center portion thereof, and is provided with attachment grooves 21 that extend radially from the center to the land portions 14 on the end face, that is, the end face to which the tip head 20 is joined, The engagement protrusion 22 of the tip head 20 is fitted into the mounting groove 21. Further, in the drill body 11, a cooling hole port 19 a is opened in each twist lead groove 13 on the outer peripheral surface of the tip of the refrigerant path 19, and the refrigerant (air) supplied to the refrigerant path 19 is cut by the cutting edge 15 of the tip head 20. Inject toward
  • the tip head 20 forms a cutting edge 15 having a concave curved ridgeline, a sharp outer peripheral edge 15a is formed on the outer periphery thereof, and is smaller than the lead angle ⁇ of the twisted lead groove 13
  • the formation of the tip lead portion 13a having an angled tip lead angle ⁇ a is the same as that of the tip tip head portion 10 shown together with the functions thereof, and thus detailed description thereof is omitted.
  • the tip lead portion 13a of FIG. 7 is formed in an area extending from the outer peripheral blade portion 15a to the back surface or rear surface of the tip head 20, that is, the zone is formed at a constant tip lead angle ⁇ a, and the drill body at the rear end thereof.
  • the tip head 20 has engaging projections 22 that fit into the mounting grooves 21 of the drill body 11 on the back surface thereof.
  • Each mounting groove 21 is a substantially V-shaped groove, and each engaging protrusion 22 is approximately V-shaped. As a shape, both are fitted and positioned without backlash. That is, by fitting the mounting grooves 21 and the engaging protrusions 22, the twist lead grooves 13 of the drill body 11 can be joined to the tip head 20 so as to be continuous. Further, the fitting structure between the mounting grooves 21 and the engaging protrusions 22 supports the rotational torque of the tip head 20.
  • the tip head 20 can be integrally coupled by brazing to the tip surface of the drill body 11, and can be removed from the drill body 11 by melting the wax if necessary, such as during re-polishing. Further, when the drill diameter is large, instead of brazing, as shown in FIG. 13, it is optional to attach the tip head 20 to the drill body 11 detachably by bolting 23 at three locations. is there. In addition, since it is easily understood that the above-described action for preventing the rolling-up P and the flashing burr Q can be obtained by using this blade-tip-exchangeable drill, details are omitted for the sake of explanation.
  • the tip head 20a of FIG. 14 is a case where the tip angle ⁇ is changed in two steps, specifically, the central portion is set to 120 ° and the outer peripheral portion thereof is set to 140 °.
  • the cutting resistance at the time of cutting by the tip head 20 is reduced, and the concave curve depth of the cutting edge ridge line is secured, and the occurrence of the rolling-up P and wrinkle burrs Q of the CFRP material W is more reliably prevented. It is a thing.
  • the tip head 20b in FIG. 15 is a case where the length of the tip lead portion 13a is shortened. That is, in the tip head 20 of FIG. 7, the tip lead portion 13a is an area from the outer peripheral blade portion 15a to the back surface of the tip head 20, but the tip head 20b is formed by shortening the area. . Specifically, the tip lead portion 13a is formed to have a length of about 1/5 of the area from the outer peripheral blade portion 15a to the back surface of the tip head 20b, and the lead angle ⁇ that is the same as that of the twisted lead groove 13 behind the tip lead portion 13a.
  • the connection lead part 13b which has is interposed. According to the tip head 20b, the length of the tip lead portion 13a is short, so that the machining operation is facilitated when the edge portion is re-polished.
  • the tip head 20b the case where the tip lead angle ⁇ a is a negative angle ( ⁇ 5 °) is illustrated, and the tip head of FIG. 7 is at the displacement point where the tip lead portion 13a and the connecting lead portion 13b are connected.
  • the lead angle of the connecting lead portion 13b is the same as the lead angle ⁇ of the twisted lead groove 13 on the rear side thereof.
  • the lead angle ⁇ a of the tip lead portion 13a and the lead angle ⁇ of the twisted lead groove 13 are The lead angle of the connecting lead portion 13b is larger than the leading end lead angle ⁇ a and smaller than the lead angle ⁇ of the twisted lead groove 13, that is, by interposing the connecting lead portion 13b.
  • the twisted lead groove 13 may be smoothly connected from the lead portion 13a.
  • the configuration of the tip head 20b can be applied to the tip head portion 10 of FIG.
  • the method of forming the drill main body 11 and the tip head 20 or 20a, 20b will be described.
  • the drill main body 11 is ground and polished on the three twisted lead grooves 13 using a rotating grindstone, as in the case of normal drill forming.
  • a method of grinding and polishing the groove 21 or a method of extruding the twisted lead groove 13 is employed.
  • the tip head 20 or 20a, 20b may be formed by grinding / polishing using a rotating grindstone as in the case of the drill body 11, but preferably a high-density powder such as diamond powder or super hard material is used as the material.
  • the entire tip head 20 is sintered and formed by molding the powder material at ultrahigh pressure and high temperature, or by performing additional processing such as electric discharge machining or grinding in addition to that.
  • the drill with high durability (lifetime) can be obtained by increasing the strength.
  • the tip head 20 or 20a, 20b is formed as a ceramic molded body.
  • silicon carbide (SiC), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), partially stabilized zirconia (Y— PSZ), boron carbide (B 4 C), boron nitride (BN) and other ceramic powder materials can be used, for example, cold isostatic pressing (CIP) or hot isostatic pressing (Hot Isostatic Press): It is also possible to employ a pressure molding method such as HIP).
  • a diamond coating layer is formed on the surface of the tip head, preferably using diamond nanoparticles. It is preferable to use a covering layer. And when forming a diamond coating layer, in order to increase the adhesion strength of the diamond coating layer, an intermediate layer that is compatible with both materials is formed between the cemented carbide material molded body or the ceramic molded body and the diamond coating layer. It is preferable to do. Further, in place of the diamond coating layer, a coating layer of the DLC or cubic boron nitride (cBN) may be formed, or a composite layer of a nanodiamond layer and DLC may be arbitrarily formed.
  • cBN cubic boron nitride
  • the tip lead portions 3a and 13a shown in FIGS. 1, 4, 7, 14 and 15 are exemplified by the case where the entire length is linearly formed.
  • the present invention is not limited thereto.
  • a smooth convex shape (convex R shape) or a concave shape (concave R shape) is also optional.
  • the change in the core thickness of the drill body and the groove width and groove depth of the twisted lead groove are not particularly described, but they are not limited thereto. That is, the core thickness is constant, increases, or decreases from the tip toward the shank side, and the lead groove also has a constant or variable groove width and depth, or the lead angle ⁇ changes from the middle. Either can be applied to the present invention.
  • the drill diameter is 1/8 to 1 inch (about 3.175 to 25.4 mm)
  • the drill A in the example shown is about 6 mm
  • the length of the tip lead part 3a is CFRP material. It is 50% or less of the thickness of the work material such as W (1 to 1.5 mm in the illustrated example).
  • Table 1 shows examples of the groove width ratio, the core thickness, and the shaft groove ratio in FIGS.
  • the drill having a three-blade structure has been mainly described. However, as described above, it is naturally possible to apply the drill to the two-blade structure.
  • FIG. 16 and FIG. This is illustrated by FIG. Except for the tip blade 115 having a two-blade structure, the characteristic elements such as the lead angle and the tip lead angle are the same as those in the case of the three-blade structure, and thus description thereof is omitted.
  • FIG. 16 is a front view of the tip of a two-blade tip head 120 compared to FIG. 13.
  • This tip head 120 is detachably attached to the drill body 111 at two locations by bolts 123 as shown in FIG. It is done.
  • the positioning of the drill main body 111 and the distal end head 120 can be arbitrarily performed by fitting the substantially V-shaped mounting groove 21 and the engaging protrusion 22 as illustrated in FIG. 12, for example.
  • a positioning method using a boss is adopted.
  • the drill body 111 is provided with a boss portion 131 projecting from two screw holes 130 that open to the tip surface, and the tip head 120 is continuously extended from the bolt hole 132 through which the bolt 123 passes.
  • a diameterd engagement hole 132a is formed, and the engagement hole 132a is positioned by being fitted to the boss portion 131.
  • the bolt 123 is inserted into the bolt hole 132 with the engagement holes 130 a of the tip head 120 fitted to the two boss portions 131 of the drill body 111.
  • the tip head 120 is attached and fixed to the drill body 111 by being screwed into the screw hole 130.
  • the present invention is not limited to this, and the present invention can be applied to a composite material having the same degree of difficult-to-cut property. Of course, it is applicable to composite materials and other workpieces that are easier to cut.
  • FIG. 8 is a cross-sectional view taken along line (9)-(9) of FIG.
  • FIG. 10 is a cross-sectional view taken along line (10)-(10) in FIG.
  • FIG. 8 is a cross-sectional view taken along line (9)-(9) of FIG.
  • FIG. 10 is a cross-sectional view taken along line (11)-(11) of FIG. 8 is a perspective view of the drill of FIG. 7, in which (1) is an assembled state, (2) is a rear perspective view of the disassembled tip head, and (3) is an exploded drill body. It is a front view of the front end of an embodiment in which the front end head is attached by bolting. It is a side view of other examples of a tip head which changed a tip angle two steps. It is a side view of the further another Example of the front-end
  • FIG. 17 is a cross-sectional view taken along line (17)-(17) of FIG. It is sectional drawing which shows the problem at the time of processing with a conventional drill.
  • Drill body 3 Twisted lead groove 3a: Tip lead portion 5: Tip cutting edge 5a: Outer peripheral blade portion 9: Refrigerant passage 9a: Cooling hole 10: Tip head portion ⁇ : Lead angle of twist lead groove ⁇ a: Tip lead angle ⁇ : outer peripheral scooping angle 11: drill main body 13: twist lead groove 13a: tip lead portion 15: tip cutting edge 15a: outer peripheral blade portion 19: refrigerant path 19a: cooling hole port 20: tip head 20a: tip head 20b: tip head 21: Mounting groove 22: Engagement protrusion 23: Bolt stop 111: Drill body 115: Tip cutting edge 120: Tip head

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)

Abstract

A drill of high machining precision obtained by preventing the problem of a composite material including a hard-to-cut material such as CFRP, i.e. curling of the surface layer and generation of whisker burr (Q) in the backside layer. In a drill having a spiral lead flute (3) of predetermined lead angle β formed in the outer circumferential surface of the drill body (1), and a cutting edge (5) formed on the tip end face at a point angle α, point lead portions (3a) having a point lead angle βa of the spiral lead flute set at a fixed value in the range of -10° to +10° smaller than the lead angle β are formed at the tip head portions (10, 20) of the drill body, an outer circumferential edge portion (5a) of sharp edge profile is formed in the cutting edge (5) by setting an outer circumferential rake angle θ and the cutting edge (5) is made to have a concave curve ridge line.

Description

ドリルDrill
 本発明はドリルに関し、特に航空機用素材として多用されている炭素繊維強化樹脂(CFRP)など難削材を含む材料が積層された複合材料に適用して有用なドリルであって、ドリル本体の外周面に捩れリード溝を形成し、先端面に先端角により形成される切り刃を有するツイストドリルの改良に関する。 The present invention relates to a drill, and more particularly to a drill useful for applying to a composite material in which materials including difficult-to-cut materials such as carbon fiber reinforced resin (CFRP), which are frequently used as aircraft materials, are laminated. The present invention relates to an improvement in a twist drill having a twisted lead groove formed on a surface and a cutting blade formed on a tip surface with a tip angle.
 一般に、航空機の主要部品として多用されているCFRPなど難削材を含む複合材料Wをワーク(被穿孔材料)としてドリルで穿孔加工を行う場合に、炭素繊維の毛羽立ちが原因となって図18に示すように、表面の孔周辺が捲れ上がった状態Pや裏面の孔周辺に髭バリが突出した状態Qが発生するなど加工精度および品質上の問題点があった。
 上記問題点を解決せんとして、従来、ドリル本体の外径を変化させるバックテーパ部を形成し、捩れリード溝のリード角に対して先端角を二段変化させる改良(特許文献1)、あるいは、センタリング切刃を中心としてその両側円周面に先端が被穿孔面に対し弧状をなす略三日月形の主切刃を形成し、前記センタリング切刃と主切刃間には切込み刃を形成して、それらが正面から見て略M字形状の刃先形状となるような改良(特許文献2)などがみられた。
In general, when drilling with a composite material W including a difficult-to-cut material such as CFRP, which is frequently used as a major part of an aircraft, as a work (material to be drilled), the fluffing of carbon fibers causes a problem in FIG. As shown, there were problems in processing accuracy and quality, such as a state P in which the periphery of the hole on the front surface was rolled up and a state Q in which the burrs were protruded around the hole on the back surface.
In order to solve the above problems, conventionally, a back taper portion that changes the outer diameter of the drill body is formed, and an improvement in which the tip angle is changed in two steps with respect to the lead angle of the twisted lead groove (Patent Document 1), or A substantially crescent-shaped main cutting edge is formed on the circumferential surface of both sides around the centering cutting edge, the tip of which forms an arc with respect to the drilled surface, and a cutting edge is formed between the centering cutting edge and the main cutting edge. The improvement (patent document 2) etc. etc. in which they became a substantially M-shaped blade-tip shape seeing from the front etc. were seen.
 また、本願の発明者らは、特に高強度繊維複合材料、例えばミリ波レーダーアンテナのアンテナ基板を穿孔することに好適なドリルを開発し出願している(特許文献3:特願2005-338841号)。
 この先願ドリルの基本構造は、ドリル本体の先端部分に、先端角により形成される一対の切り刃および逃げ面が形成されるが、その逃げ面の外周肩部をR面取りした湾曲面とし、切り刃および前記肩部近傍の捩れリード溝に掬い部を設け、かつ切り刃の稜線を先端部から外周端に向けた凹曲線状とそれに続く湾曲状にし、全体として切り刃を側面視S字曲線からなる鋭利な刃先形状としたものであり、それにより、表面層の捲れ上がり、孔内の髭残りや裏面層の下バリ発生を防止するものである。
Further, the inventors of the present application developed and filed a drill suitable for punching an antenna substrate of a high-strength fiber composite material, for example, a millimeter wave radar antenna (Patent Document 3: Japanese Patent Application No. 2005-338841). ).
The basic structure of this prior application drill is that a pair of cutting blades and a flank formed by the tip angle are formed at the tip of the drill body. The outer peripheral shoulder of the flank is a curved surface with a rounded chamfer. The blade and the torsion lead groove near the shoulder are provided with a scooping portion, and the ridge line of the cutting blade is formed in a concave curve shape from the tip portion toward the outer peripheral end and a curved shape subsequent thereto, and the cutting blade as a whole is an S-curve in side view. In this way, the surface layer is rolled up to prevent wrinkles remaining in the holes and lower burrs from occurring on the back layer.
実公昭59-33546号公報Japanese Utility Model Publication No.59-33546 特開平8-71824号公報JP-A-8-71824 特願2007-144526号Japanese Patent Application No. 2007-144526
 しかしながら、上記特許文献1や特許文献2の従来技術においても、CFRP材料Wを穿孔した際の捲れ上がりPや強靱な繊維の髭バリQの発生に対して十分に効果的な解決手段を得ることはできず、特許文献3の従来技術を採用したときでも、CFRP材料Wに適用した場合には、孔内の髭残りや裏面層の髭バリQの発生を防止できたものの表面層の捲れ上がりPの防止に十分ではなかった。 However, in the prior arts of Patent Document 1 and Patent Document 2 described above, a sufficiently effective solution can be obtained for the occurrence of the bulging P and the burrs Q of tough fibers when the CFRP material W is drilled. Even when the prior art of Patent Document 3 is adopted, when applied to the CFRP material W, it is possible to prevent the generation of wrinkles remaining in the holes and wrinkle burrs Q on the back surface layer, but the surface layer is swollen. It was not enough to prevent P.
 本発明は上記従来事情に鑑み、上記特許文献3のドリルをさらに改良することを基本として、CFRPなど難削材を含む複合材料に対する課題であった表面層の捲れ上がりPおよび裏面層の髭バリQの発生を効果的に防止して加工精度の高いドリルを提供することを目的とする。
 また、本発明の他の目的は、ドリル本体の先端ヘッド部分の構造や材質の改良によりドリルの製作性および耐久性を向上させることにある。
In view of the above-described conventional circumstances, the present invention is based on the further improvement of the drill disclosed in Patent Document 3, and the surface layer bulge P and the back surface burrs, which were problems with composite materials containing difficult-to-cut materials such as CFRP. An object is to provide a drill with high machining accuracy by effectively preventing the generation of Q.
Another object of the present invention is to improve the manufacturability and durability of the drill by improving the structure and material of the tip head portion of the drill body.
 斯る本発明は、ドリル本体の外周面に所定のリード角βをもつ捩れリード溝を形成し、先端面に先端角により形成される切り刃を有するドリルにおいて、そのドリル本体の先端ヘッド部分に、前記捩れリード溝の先端リード角βaを前記リード角βより小さな角度-10°~+10°の範囲の一定値に設定した先端リード部を形成し、外周掬い角の設定により前記切り刃に刃先形状を鋭利にした外周刃部を形成するとともに切り刃の稜線を凹曲線状となしたことを特徴とする。すなわち、一般的な捩れリード溝は先端まで一定であって、そのリード角βが20°~30°であるところ、先端リード角βaを-10°~+10°の角度に変化させたことを第1の特徴とし、外周刃部を鋭利にし、かつ切り刃稜線を凹曲線状となしたことを第2の特徴とするものである。
 なお、第2の特徴は、前記特許文献3の先願発明を実質的に応用した構成、第1の特徴が先願発明を改良・変更した構成である。
The present invention provides a drill having a torsional lead groove having a predetermined lead angle β on the outer peripheral surface of the drill body and a cutting edge formed by the tip angle on the tip surface. The tip lead angle βa of the torsion lead groove is set to a constant value in the range of −10 ° to + 10 ° smaller than the lead angle β, and the cutting edge is set on the cutting edge by setting the outer peripheral rake angle. The outer peripheral blade portion having a sharp shape is formed, and the ridge line of the cutting blade is a concave curve. That is, a general twist lead groove is constant up to the tip, and the lead angle β is 20 ° to 30 °, and the tip lead angle βa is changed to an angle of −10 ° to + 10 °. The second feature is that the outer edge portion is sharpened and the cutting edge ridge is formed into a concave curve.
The second feature is a configuration in which the prior application invention of Patent Document 3 is substantially applied, and the first feature is a configuration in which the prior application invention is improved or changed.
 上記第1の特徴によれば、穿孔加工の初期において先端リード部3aのラジアル方向に作用する力成分がスラスト方向寄りの向きになるので、外周刃部およびそれに続く先端リード部による切り上がりが抑制されて確実な切り込みが開始され、また第2の特徴によれば、穿孔加工の貫通直前に切り刃稜線の凹曲線内に切屑がリング状で残り、それが略そのままの状態で維持されて貫通時またはその直後に切り離されるので、孔出口部分の繊維部材が確実に切断される。 According to the first feature, since the force component acting in the radial direction of the tip lead portion 3a in the initial stage of the drilling process is oriented toward the thrust direction, the rounding up by the outer peripheral blade portion and the subsequent tip lead portion is suppressed. In addition, according to the second feature, the chips remain in a ring shape in the concave curve of the cutting edge ridgeline immediately before drilling, and are maintained in a substantially intact state. Since it is cut off at or immediately after that, the fiber member at the hole exit portion is surely cut.
 そして、上記外周刃部の具体的な構造は、外周掬い角を20°~40°に設定することにより鋭利な刃先形状が形成される。この鋭利な外周刃部は、砥石を使用した掬い加工により形成する方式、あるいは後述の刃先交換可能な先端ヘッドのように型成形により形成する方式の何れでもよい。もっとも、前者の掬い加工により外周刃部を形成する場合には、先端切り刃稜線の凹曲線も必然的に同時に形成されものである。
 また、上記先端切り刃は、直径方向の対向位置にそれぞれ切り刃が配置される二枚刃構造でもよいこと勿論であるが、それに比べて求心性による安定した穿孔切削が可能な三枚刃であることが好ましい。
 さらに、上記ドリル本体の先端切り刃を形成する先端角は、標準的には118°~130°であるところ、前記切り刃稜線の凹曲線をより効果的にするために、標準より鈍角な140°~150°とすることが好ましい。もっとも三枚刃構造の場合は、スラスト方向の切削抵抗が大きくなるので、その抵抗を軽減するために先端中央部を120°程度とし、その外周を140°~150°として二段変化させることもよい。
The specific structure of the outer peripheral blade portion is such that a sharp cutting edge shape is formed by setting the outer peripheral scooping angle to 20 ° to 40 °. This sharp outer peripheral blade portion may be either formed by scooping using a grindstone, or formed by molding, such as an edge head with a replaceable blade tip described later. However, when the outer peripheral edge is formed by the former scooping process, the concave curve of the tip cutting edge ridge line is necessarily formed simultaneously.
In addition, the tip cutting edge may of course have a two-blade structure in which the cutting blades are arranged at opposing positions in the diameter direction. Preferably there is.
Furthermore, the tip angle forming the tip cutting edge of the drill body is typically 118 ° to 130 °, but in order to make the concave curve of the cutting edge ridge line more effective, the tip angle is 140 °. It is preferable that the angle is from 150 ° to 150 °. However, in the case of a three-blade structure, the cutting resistance in the thrust direction is increased, and in order to reduce the resistance, the central portion of the tip is set to about 120 °, and the outer periphery thereof is changed in two steps from 140 ° to 150 °. Good.
 上記ドリル本体には先端切り刃を冷却する構造を付設することが好ましい。
 その冷却構造としては、ドリル本体の軸中心に冷媒路を穿孔し、その冷媒路より分岐させた冷却孔を上記各リード溝内の先方部に開口し、該冷却孔の開口より噴射する冷媒が先端切り刃の稜線に向けて噴射するようにする。
 また、上記ドリル本体は刃先交換式、つまり、上記先端ヘッド部分がドリル本体と別体に成形され、ドリル本体の先端に着脱可能に取り付けられた構造であってもよい。その刃先交換式の場合、先端ヘッドは、超硬合金素材を砥石で切削・研削加工し、あるいは超高圧焼結体やダイヤモンド刃先を付設し、又は表面にダイヤモンドなどの硬質被膜を被覆する一般的な成形法でもよいが、複雑な形状に対応できる型成形ないし加圧成形法によることがよく、特に先端ヘッド全体が、ダイヤモンド粉末や超硬材料の高密度粉末を素材として超高圧で焼結させた成形品であることが好ましい。
The drill body is preferably provided with a structure for cooling the tip cutting edge.
As the cooling structure, a coolant path is drilled in the center of the axis of the drill body, a cooling hole branched from the coolant path is opened at the front part in each of the lead grooves, and the coolant injected from the opening of the cooling hole is Spray toward the edge of the cutting edge.
The drill body may have a blade tip exchange type, that is, the tip head portion may be formed separately from the drill body and detachably attached to the tip of the drill body. In the case of the blade tip exchange type, the tip head is generally cut and ground with a cemented carbide material with a grindstone, or an ultra-high pressure sintered body or a diamond blade tip is attached, or the surface is coated with a hard film such as diamond. However, it is preferable to use a molding method or pressure molding method that can handle complex shapes, and the tip head in particular is sintered at a high pressure using diamond powder or a high-density powder of super hard material as the raw material. Preferably, it is a molded product.
 さらに、上記先端ヘッドは、その成形体の表面にダイヤモンドあるいはDLC(Diamond Like Carbon)などの硬質被覆を形成することも任意であり、また、先端ヘッドを炭化ケイ素、窒化ケイ素、アルミナなどのセラミックス成形品とすることもよく、その場合には、それらのヘッド表面に前記ダイヤモンドあるいはDLCなどの硬質被覆を形成することが好ましい。 Furthermore, the tip head may optionally be provided with a hard coating such as diamond or DLC (Diamond Like Carbon) on the surface of the molded body, and the tip head is formed of ceramics such as silicon carbide, silicon nitride, and alumina. In that case, it is preferable to form a hard coating such as diamond or DLC on the head surface.
 本発明によれば、穿孔加工の初期において、外周刃部およびそれに続く先端リード部による切り上がりが抑制されて確実な切り込みが開始されるので、CFRPなど難削材を含む複合材料をワークとして穿孔加工する場合でも、その表面層の捲れ上がりPが防止されるとともに、鋭利な外周刃部に形成される凹曲線状稜線によって、穿孔出口部分の繊維部材が確実に切断されるので裏面層の髭バリQの発生も防止することができる。しかも、先端切り刃を三枚刃構造とすれば、前記捲れ上がりおよび髭バリの防止と併せて真円形状の穿孔が確保されるなど加工精度の高いドリルを提供することができる。
 また、ドリル本体に設けた冷媒路を通してエアーなどの冷媒を、先端ヘッド部分における捩れリード溝内から切り刃稜線に向けて直接に噴射することにより、切り刃の高い冷却効果が得られてドリルの耐久性を向上させることができるとともにリード溝内の先端で反転する冷媒流により切屑の排出効果が一段と向上する。
According to the present invention, at the initial stage of drilling, since the cutting by the outer peripheral blade portion and the leading end lead portion thereafter is suppressed and reliable cutting is started, the composite material containing difficult-to-cut material such as CFRP is drilled as a workpiece. Even when processing, the surface layer is prevented from curling P, and the concave curved ridge line formed on the sharp outer peripheral edge portion reliably cuts the fiber member at the perforation outlet portion. Generation of burrs Q can also be prevented. In addition, if the tip cutting edge has a three-blade structure, a drill with high processing accuracy can be provided, such as ensuring a perfect circular perforation in combination with preventing the above-mentioned curling and wrinkle burrs.
In addition, a coolant such as air is directly sprayed from the inside of the twisted lead groove in the tip head portion toward the cutting edge ridge line through the coolant passage provided in the drill body, so that a high cooling effect of the cutting edge can be obtained and Durability can be improved and the chip discharge effect is further improved by the refrigerant flow that is reversed at the tip in the lead groove.
 そして、先端ヘッド部分をドリル本体に着脱可能な刃先交換式とすれば、CFRP材料など刃先部分が摩耗し易い場合でも、先端ヘッドを交換または再研磨して常に最良な切削性を確保することができる。
 しかも、刃先交換方式により先端ヘッド部分を型成形することもできるので、従来の研削・研磨加工では得られない複雑な構造・形状の先端ヘッドが得られ、これまで以上に機能的なドリルを提供することができる。
 また、先端ヘッドの表面にダイヤモンドなどの硬質被覆層を形成することによって耐摩耗性を向上させ、あるいは先端ヘッド部分をセラミックス成形体とすることにより当該部分の強靭性を高め、それらによって、特にCFRPなど難削性材料に好適なドリルを提供することができる。
If the tip of the tip can be attached to and detached from the drill body, even if the tip of the tip, such as CFRP material, is easily worn, the tip head can be replaced or re-polished to ensure the best cutting performance. it can.
In addition, the tip head part can be molded by the blade tip replacement method, so that a tip head with a complicated structure and shape that cannot be obtained by conventional grinding and polishing processes can be obtained, providing a more functional drill than ever. can do.
Further, the wear resistance is improved by forming a hard coating layer such as diamond on the surface of the tip head, or the toughness of the portion is enhanced by making the tip head portion a ceramic molded body. A drill suitable for difficult-to-cut materials can be provided.
 本発明の実施の形態を図面により説明すると、図1~図4は本発明ドリルAの基本形態を例示するもので、図1は側面図、図2は先端面側をみた正面図、図3は(3)-(3)線に沿う断面図である。
 ドリル本体1は、超硬合金や高速度鋼など超硬質材料製であって、軸線回りに回転される略円柱状の一側(後方側)にシャンク2を備え、先方側には切屑排出用の3条の捩れリード溝3,3,3を形成したランド部4を設けており、先端のヘッド部分10には、先端角αにより形成される切り刃5,5,5と、各切り刃から円周方向へ連なる逃げ面6および切屑を排出しやすくするためのシンニング7と、シンニングにより形成されるチゼルエッジ8を備えている。
 また、ドリル本体1は、前記シャンク2の端面から先端ヘッド部分10に向けた軸中心に冷媒路9を開孔している。
The embodiment of the present invention will be described with reference to the drawings. FIGS. 1 to 4 illustrate the basic form of the drill A of the present invention, FIG. 1 is a side view, FIG. FIG. 3 is a sectional view taken along line (3)-(3).
The drill body 1 is made of a super hard material such as cemented carbide or high-speed steel, and includes a shank 2 on one side (rear side) of a substantially columnar shape rotated around an axis, and for chip discharge on the front side. The land portion 4 in which the three twisted lead grooves 3, 3 and 3 are formed is provided, and the head portion 10 at the tip includes cutting blades 5, 5, and 5 formed by the tip angle α, and each cutting blade. And a thinning 7 for facilitating discharge of chips and a chisel edge 8 formed by thinning.
Further, the drill body 1 has a coolant passage 9 opened in the center of the shaft from the end face of the shank 2 toward the tip head portion 10.
 上記切り刃5,5,5は、前記3条の捩れリード溝3,3,3により中心角120°毎に配置された三枚刃構造を例示しており、その各切り刃5は前記チゼルエッジ8の各端から外周端に向けて形成され、実質的には、チゼルエッジ8が一次切り刃として機能し、前記切り刃5が二次切り刃として機能するものである。 The cutting blades 5, 5, 5 exemplify a three-blade structure arranged at a central angle of 120 ° by the three twisted lead grooves 3, 3, 3, and each cutting blade 5 has the chisel edge 8, the chisel edge 8 functions as a primary cutting blade, and the cutting blade 5 functions as a secondary cutting blade.
 上記各捩れリード溝3は、先端ヘッド部分10からシャンク2側へ向けて、一般には、リード角(捩れ角)βを20°~30°の範囲の中から一定値で開溝されるものであるが、本発明においては、先端ヘッド部分10だけのリード角(先端リード角)βaを、図1に示すようにリード角βより小さな角度(図示例では5°)に設定し、先端ヘッド部分10に先端リード部3aを形成する。すなわち、捩れリード溝3は、先端ヘッド部分10においてリード角βaが5°の先端リード部3aを有し、そこから所定のリード角β(特に限定されないが20°~30°)に変化するものである。
 なお、上記先端リード角βaは、前記5°に限定されるものではなく、捩れリード溝3のリード角やワークの材質等に対応して-10°~+10°の範囲の一定値で有効である(図4参照)。すなわち、リード角βaが10°を超えると捲れ上がりPを防止する機能が達成できず、-10°未満になると切削性自体が低下することになるからである。さらに先端リード角βaの好ましい範囲は-5°~+5°である。
Each of the torsion lead grooves 3 is generally opened from the tip head portion 10 toward the shank 2 at a constant lead angle (twist angle) β in the range of 20 ° to 30 °. However, in the present invention, the lead angle (tip lead angle) βa of only the tip head portion 10 is set to an angle (5 ° in the illustrated example) smaller than the lead angle β as shown in FIG. The tip lead portion 3 a is formed on the substrate 10. That is, the torsion lead groove 3 has a tip lead portion 3a having a lead angle βa of 5 ° in the tip head portion 10 and changes from there to a predetermined lead angle β (not particularly limited, but 20 ° to 30 °). It is.
The tip lead angle βa is not limited to the above 5 °, but is effective at a constant value in the range of −10 ° to + 10 ° corresponding to the lead angle of the twisted lead groove 3 and the material of the workpiece. Yes (see FIG. 4). That is, if the lead angle βa exceeds 10 °, the function of preventing the rolling-up P cannot be achieved, and if it is less than −10 °, the machinability itself is deteriorated. Further, the preferable range of the tip lead angle βa is −5 ° to + 5 °.
 また、先端ヘッド部分10においては、図2、図3に示すように、捩れリード溝3を大きな外周掬い角θに設定することにより前記先端切り刃5の外周に鋭利な刃先形状をもった外周刃部5aを形成する。
 この外周掬い角θは、外周刃部5aの切削性および刃先強度を考慮して20°~40°、好ましくは30°~40°の中の一定値に設定する。外周掬い角θが20°未満では所望の切削性が得られず、40°を超えると刃先強度が低く耐久性が得られないからである。
2 and 3, the tip head portion 10 has an outer periphery having a sharp cutting edge shape on the outer periphery of the tip cutting edge 5 by setting the torsion lead groove 3 to a large outer peripheral chamfer angle θ. The blade part 5a is formed.
This outer peripheral scooping angle θ is set to a constant value of 20 ° to 40 °, preferably 30 ° to 40 °, taking into account the machinability and the strength of the cutting edge of the outer peripheral blade portion 5a. This is because if the outer peripheral scoop angle θ is less than 20 °, the desired machinability cannot be obtained, and if it exceeds 40 °, the edge strength is low and durability cannot be obtained.
 そして、上記外周掬い角θの掬い面を形成することにより、各切り刃5は、鋭利な前記外周刃部5aが形成されるばかりでなく、前記チゼルエッジ8の各端から外周刃部5aに向けた切り刃稜線が凹曲線状に形成される。
 この切り刃稜線の凹曲線形状は、外周掬い角θが同じ場合では前記先端角αにより変化する。具体的には、標準的な先端角αは118°~130°であるので、図1においては先端角αが120°の場合を例示するが、図5のように先端角αを140°にすると、切り刃稜線の凹曲深さが図1の場合よりも大きく、すなわち、先端角αが大きい場合ほど凹曲線深さが深くなる。
 なお、CFRP材料Wの加工においては、切屑が非常に硬く粉状になるため大容量の切屑を迅速に排出することが重要であることを考慮すると、前記切り刃稜線の凹曲線深さは深いことが好ましい。
Further, by forming a scooping surface having the outer peripheral scooping angle θ, each cutting blade 5 is not only formed with the sharp outer peripheral cutting portion 5a, but also from each end of the chisel edge 8 toward the outer peripheral cutting portion 5a. The cutting edge ridge line is formed in a concave curve shape.
The concave curve shape of the cutting edge ridge line changes depending on the tip angle α when the outer peripheral scoop angle θ is the same. Specifically, since the standard tip angle α is 118 ° to 130 °, FIG. 1 illustrates the case where the tip angle α is 120 °, but the tip angle α is set to 140 ° as shown in FIG. Then, the concave curvature depth of the cutting edge ridgeline is larger than that in the case of FIG. 1, that is, the concave curve depth becomes deeper as the tip angle α is larger.
In the processing of the CFRP material W, considering that it is important to quickly discharge a large volume of chips because the chips become very hard and powdery, the concave curve depth of the cutting edge ridge line is deep. It is preferable.
 一方、三枚刃構造のドリルAにおいては、先端角αが大きくなるとスラスト方向(穿孔方向)の切削抵抗が大きくなることを考慮して、先端角αを標準角度より大きくする場合でも140°~150°の範囲に設定する。
 なお、切削抵抗をより軽減させるためには、上記の先端角140°~150°の範囲であっても、先端角を二段変化、つまり中央部の先端角を120°前後にし、その外周先端角を140°~150°の範囲に設定すればよい(図14)。なお、図14においては、刃先交換式の先端ヘッド20について図示するが、前記先端ヘッド部分10に適用できること勿論である。
On the other hand, in the drill A having a three-blade structure, considering that the cutting resistance in the thrust direction (drilling direction) increases as the tip angle α increases, even when the tip angle α is larger than the standard angle, 140 ° to Set in the range of 150 °.
In order to further reduce the cutting resistance, even if the tip angle is in the range of 140 ° to 150 °, the tip angle is changed in two steps, that is, the tip angle of the central portion is set to around 120 °, and the tip of the outer periphery is changed. The angle may be set in the range of 140 ° to 150 ° (FIG. 14). In FIG. 14, the blade tip replaceable tip head 20 is illustrated, but it is needless to say that it can be applied to the tip head portion 10.
 上記冷媒路9は、その後端を前記シャンク2の後端面に開口してドリル本体1の軸中心に延設され、先端を先端ヘッド部分10の前記先端リード部3aの近傍、具体的には、先端リード部3aの僅か後部位に配置して該先端に三本に分岐させた冷却孔9aを形成し、その各冷却孔9aの先端を前記捩れリード溝3内に開口する。
 各冷却孔9aには、ドリルの穿孔加工時に冷媒路9を介して冷媒が供給されるが、その冷媒が捩れリード溝3内から先端切り刃5の稜線に向けて、より好ましくは切り刃5の外周刃部5aおよび先端リード部3aに向けて噴射し該部分を冷却するとともに切削された切屑を捩れリード溝3内後方へ排出するようにする。
The refrigerant path 9 has a rear end opened to the rear end face of the shank 2 and extends to the center of the axis of the drill main body 1, and a front end in the vicinity of the tip lead portion 3 a of the tip head portion 10, specifically, A cooling hole 9a is formed at a position slightly behind the tip lead portion 3a and branched into three at the tip, and the tip of each cooling hole 9a is opened into the twisted lead groove 3.
Refrigerant is supplied to each cooling hole 9a through the refrigerant path 9 when drilling, and the refrigerant is twisted from the inside of the lead groove 3 toward the ridge line of the tip cutting edge 5, more preferably the cutting edge 5. The outer peripheral blade portion 5a and the tip lead portion 3a are sprayed to cool the portion, and the cut chips are twisted and discharged to the rear in the lead groove 3.
 なお、冷媒としてはエアー、水、油などが使用されるが、CFRP材料Wを穿孔する場合には、切屑が非常に硬く粉状になるため水、油など液体の使用は不適合であることを考慮し、しかも膨張による冷却率の高いエアーを使用することが好ましい。 Note that air, water, oil, etc. are used as the refrigerant. However, when the CFRP material W is drilled, the chips are very hard and powdery. In consideration of this, it is preferable to use air having a high cooling rate due to expansion.
 而して、上記ドリルA(先端角αは図5の140°を例示)を用いてCFRP材料Wを穿孔加工する場合の作用について図6により説明する。
 先ず、冷媒路9にエアーを供給しながらドリルAを高速回転させてCFRP材料Wに穿孔加工を開始するが、その初期には、先端ヘッド部分10の中心が当接し各チゼルエッジ8により切削して芯出しがなされ、その直後から鋭利な外周刃部5aがCFRP材料Wの表面を先端リード部3aで押し下げながら切り込みを開始する(図6(1)参照)。この切り込み初期において、外周刃部5aが円形を描きながら切り込むとともに、外周刃部5aに続く先端リード部3aの先端リード角βaの設定により,先端リード部3aのラジアル方向に作用する力成分がスラスト方向寄りの向き、すなわち外周刃部5aによる炭素繊維の切削力がドリルの進行方向に対して上向きに作用するのでなく下向きに作用する。それによって、図18に示したような表面の捲れ上がりPを防止することができる。
Thus, the operation in the case of drilling the CFRP material W using the drill A (the tip angle α is exemplified by 140 ° in FIG. 5) will be described with reference to FIG.
First, the drill A is rotated at a high speed while supplying air to the refrigerant path 9 to start drilling the CFRP material W. At the initial stage, the center of the tip head portion 10 abuts and is cut by each chisel edge 8. Centering is performed, and immediately after that, the sharp outer peripheral blade portion 5a starts cutting while pushing down the surface of the CFRP material W with the tip lead portion 3a (see FIG. 6 (1)). In the initial stage of cutting, the outer peripheral blade portion 5a is cut while drawing a circle, and the force component acting in the radial direction of the distal end lead portion 3a is thrust by setting the distal end lead angle βa of the distal end lead portion 3a following the outer circumferential blade portion 5a. The direction closer to the direction, that is, the cutting force of the carbon fiber by the outer peripheral blade part 5a acts downward rather than acting upward with respect to the traveling direction of the drill. As a result, the surface curling P as shown in FIG. 18 can be prevented.
 次いで、ドリルAが進行する穿孔中においては、外周刃部5aの鋭利な刃先形状により切削されるので、炭素繊維が確実に切断されて孔内における髭残りが防止できるとともに、穿孔が貫通する直前には、図6(2)に示すように、切り刃5の稜線で形成される凹曲線部内に切屑がリング状に残り、その切屑が穿孔貫通時に略そのままの状態で切り離されるので(図6(3)参照)、図18に示したような裏面における髭バリQの発生を防止することができる。
 なお、上記穿孔加工中に冷媒路9に供給されたエアーにより、切屑が捩れリード溝3を通して後方へ排出され、また先端切り刃5の外周刃部5aおよび先端リード部3aに向けて噴射され冷却作用を及ぼすことは勿論である。特に、冷媒としてエアーの供給、切り刃稜線の凹曲線深さにより、CFRP材料Wの加工において、大容量の切屑を迅速に排出することが可能なことは前述のとおりである。
Next, during drilling in which the drill A advances, cutting is performed with the sharp cutting edge shape of the outer peripheral blade portion 5a, so that the carbon fiber can be reliably cut to prevent residue in the hole and immediately before the drilling penetrates. As shown in FIG. 6 (2), the chips remain in a ring shape in the concave curve portion formed by the ridge line of the cutting blade 5, and the chips are cut off as they are when they are drilled (FIG. 6). (See (3)), it is possible to prevent wrinkle burrs Q on the back surface as shown in FIG.
Note that the chips supplied by the air supplied to the refrigerant passage 9 during the drilling process are twisted and discharged rearward through the lead groove 3, and are injected and cooled toward the outer peripheral blade portion 5a and the tip lead portion 3a of the tip cutting blade 5. Of course, it acts. In particular, as described above, it is possible to quickly discharge a large amount of chips in the processing of the CFRP material W due to the supply of air as a refrigerant and the concave curve depth of the cutting edge ridgeline.
 次に、図7~図12は本発明の他の実施例を示すもので、詳しくは、上述した先端ヘッド部分10に相当する先端ヘッド20をドリル本体11と別体に成形し、それをドリル本体11に着脱可能とした刃先交換式の場合である。
 ドリル本体11が、3条の捩れリード溝13,13,13、ランド部14,14,14を有することや材質を超硬合金等にすることは前示ドリル本体1と同様である。
 ドリル本体11は、その軸心部を貫通する冷媒路19を形成し、先端面すなわち先端ヘッド20を接合させる端面には、中心から各ランド部14へ放射状に延びる取付溝21を形成し、各取付溝21に先端ヘッド20の係合突起22を嵌め合ようにする。
 また、ドリル本体11には、前記冷媒路19の先端外周面に各捩れリード溝13に冷却孔口19aを開口し、冷媒路19へ供給される冷媒(エアー)が先端ヘッド20の切れ刃15へ向けて噴射するようにする。
Next, FIGS. 7 to 12 show another embodiment of the present invention. Specifically, the tip head 20 corresponding to the tip head portion 10 described above is formed separately from the drill main body 11 and the drill head 11 is drilled. This is a case where the blade tip is replaceable with respect to the main body 11.
The drill main body 11 has the three twisted lead grooves 13, 13, 13 and the land portions 14, 14, 14 and is made of a cemented carbide or the like in the same manner as the drill main body 1 described above.
The drill body 11 forms a coolant passage 19 that penetrates the axial center portion thereof, and is provided with attachment grooves 21 that extend radially from the center to the land portions 14 on the end face, that is, the end face to which the tip head 20 is joined, The engagement protrusion 22 of the tip head 20 is fitted into the mounting groove 21.
Further, in the drill body 11, a cooling hole port 19 a is opened in each twist lead groove 13 on the outer peripheral surface of the tip of the refrigerant path 19, and the refrigerant (air) supplied to the refrigerant path 19 is cut by the cutting edge 15 of the tip head 20. Inject toward
 先端ヘッド20が、凹曲線状の稜線を有する切り刃15を形成していること、その外周に鋭利な外周刃部15aを形成していること、および前記捩れリード溝13のリード角βより小さな角度の先端リード角βaを有する先端リード部13aを形成していることは、それらの機能と併せて前示先端ヘッド部分10と同様であるので詳細な説明は省略する。
 この図7の先端リード部13aは、前記外周刃部15aから先端ヘッド20の裏面つまり後面に至る区域に形成され、すなわち、その区域が一定の先端リード角βaに形成され、その後端においてドリル本体11の捩れリード溝13に接続、つまりリード角βに変位する場合を例示している。なお、その変位点においては、製作性および耐久性を高めるために滑らかな角度変化となるようにR接続にする。
The tip head 20 forms a cutting edge 15 having a concave curved ridgeline, a sharp outer peripheral edge 15a is formed on the outer periphery thereof, and is smaller than the lead angle β of the twisted lead groove 13 The formation of the tip lead portion 13a having an angled tip lead angle βa is the same as that of the tip tip head portion 10 shown together with the functions thereof, and thus detailed description thereof is omitted.
The tip lead portion 13a of FIG. 7 is formed in an area extending from the outer peripheral blade portion 15a to the back surface or rear surface of the tip head 20, that is, the zone is formed at a constant tip lead angle βa, and the drill body at the rear end thereof. 11 illustrates a case in which it is connected to the 11 twisted lead grooves 13, that is, displaced to the lead angle β. In addition, at the displacement point, in order to improve manufacturability and durability, an R connection is made so that the angle changes smoothly.
 この先端ヘッド20は、その裏面に前記ドリル本体11の各取付溝21に嵌め合う係合突起22を形成しており、各取付溝21は略V形溝とし、各係合突起22は略V形状として両者がガタツキなく嵌め合って位置決めされるようにする。すなわち、各取付溝21と各係合突起22との嵌合により、ドリル本体11の各捩れリード溝13が先端ヘッド20へ連続するように接合可能にする。また、上記各取付溝21と各係合突起22との嵌合構造は、先端ヘッド20の回転トルクを支承するものである。 The tip head 20 has engaging projections 22 that fit into the mounting grooves 21 of the drill body 11 on the back surface thereof. Each mounting groove 21 is a substantially V-shaped groove, and each engaging protrusion 22 is approximately V-shaped. As a shape, both are fitted and positioned without backlash. That is, by fitting the mounting grooves 21 and the engaging protrusions 22, the twist lead grooves 13 of the drill body 11 can be joined to the tip head 20 so as to be continuous. Further, the fitting structure between the mounting grooves 21 and the engaging protrusions 22 supports the rotational torque of the tip head 20.
 上記先端ヘッド20は、ドリル本体11の先端面にろう付けすることにより一体的に結合し、再研磨時など必要に応じてろうを溶融させることによりドリル本体11から取り外すことも可能である。また、ドリル径が大きい場合には、ろう付けに代えて、図13に例示するように、3箇所をボルト止め23により先端ヘッド20をドリル本体11に着脱可能に取り付けるようにすることも任意である。
 なお、この刃先交換式のドリルを使用することにより、捲れ上がりPおよび髭バリQを防止する前述した作用が得られることは容易に理解されるので、説明の便宜上詳細は省略する。
The tip head 20 can be integrally coupled by brazing to the tip surface of the drill body 11, and can be removed from the drill body 11 by melting the wax if necessary, such as during re-polishing. Further, when the drill diameter is large, instead of brazing, as shown in FIG. 13, it is optional to attach the tip head 20 to the drill body 11 detachably by bolting 23 at three locations. is there.
In addition, since it is easily understood that the above-described action for preventing the rolling-up P and the flashing burr Q can be obtained by using this blade-tip-exchangeable drill, details are omitted for the sake of explanation.
 図14および図15は上記先端ヘッド20を改良した他の実施例を示すものである。
 図14の先端ヘッド20aは、前述したとおり、先端角αを二段変化、具体的には中央部を120°、その外周部を140°に設定した場合である。それにより、先端ヘッド20による切り込み時における切削抵抗を軽減させるとともに切り刃稜線の凹曲線深さを確保させて、CFRP材料Wの捲れ上がりPおよび髭バリQの発生を一層確実に防止させる構造としたものである。
14 and 15 show another embodiment in which the tip head 20 is improved.
As described above, the tip head 20a of FIG. 14 is a case where the tip angle α is changed in two steps, specifically, the central portion is set to 120 ° and the outer peripheral portion thereof is set to 140 °. Thereby, the cutting resistance at the time of cutting by the tip head 20 is reduced, and the concave curve depth of the cutting edge ridge line is secured, and the occurrence of the rolling-up P and wrinkle burrs Q of the CFRP material W is more reliably prevented. It is a thing.
 図15の先端ヘッド20bは、先端リード部13aの長さを短くした場合である。すなわち、先の図7の先端ヘッド20においては、先端リード部13aを外周刃部15aから先端ヘッド20の裏面までの区域としたが、先端ヘッド20bにおいては、その区域を短く形成したものである。
 具体的には、先端リード部13aは、外周刃部15aから先端ヘッド20bの裏面までの区域の略1/5程度の長さに形成し、その後方に捩れリード溝13と同一のリード角βを有する繋ぎリード部13bを介在させたものである。この先端ヘッド20bによれば、先端リード部13aの長さが短いので、刃先部分を再研磨する場合にその加工作業が容易になる。
The tip head 20b in FIG. 15 is a case where the length of the tip lead portion 13a is shortened. That is, in the tip head 20 of FIG. 7, the tip lead portion 13a is an area from the outer peripheral blade portion 15a to the back surface of the tip head 20, but the tip head 20b is formed by shortening the area. .
Specifically, the tip lead portion 13a is formed to have a length of about 1/5 of the area from the outer peripheral blade portion 15a to the back surface of the tip head 20b, and the lead angle β that is the same as that of the twisted lead groove 13 behind the tip lead portion 13a. The connection lead part 13b which has is interposed. According to the tip head 20b, the length of the tip lead portion 13a is short, so that the machining operation is facilitated when the edge portion is re-polished.
 また、上記先端ヘッド20bにおいては、先端リード角βaとして負角(-5°)の場合を例示しているとともに先端リード部13aと繋ぎリード部13bが接続する変位点においては図7の先端ヘッド20で説明したと同様にR接続としている。
 上記繋ぎリード部13bは、その後方の捩れリード溝13のリード角βと同一のリード角とした場合を説明したが、先端リード部13aの先端リード角βaと捩れリード溝13のリード角βとの角度差が大きい場合には、繋ぎリード部13bのリード角を、前記先端リード角βaより大きく捩れリード溝13のリード角βよりも小さくすること、すなわち、繋ぎリード部13bの介在により、先端リード部13aから捩れリード溝13を滑らかに接続するようにしてもよい。
 なお、上記先端ヘッド20bの構成を前記図1の先端ヘッド部分10に適用することができることも勿論である。
Further, in the tip head 20b, the case where the tip lead angle βa is a negative angle (−5 °) is illustrated, and the tip head of FIG. 7 is at the displacement point where the tip lead portion 13a and the connecting lead portion 13b are connected. In the same manner as described in FIG.
The case where the lead angle of the connecting lead portion 13b is the same as the lead angle β of the twisted lead groove 13 on the rear side thereof has been described. However, the lead angle βa of the tip lead portion 13a and the lead angle β of the twisted lead groove 13 are The lead angle of the connecting lead portion 13b is larger than the leading end lead angle βa and smaller than the lead angle β of the twisted lead groove 13, that is, by interposing the connecting lead portion 13b. The twisted lead groove 13 may be smoothly connected from the lead portion 13a.
Of course, the configuration of the tip head 20b can be applied to the tip head portion 10 of FIG.
 上記ドリル本体11、先端ヘッド20または20a,20bの成形法について説明すると、ドリル本体11は通常のドリル成形と同様に、回転砥石を用いて3条の捩れリード溝13を研削・研磨するとともに取付溝21を研削研磨加工する方法、あるいは捩れリード溝13を押し出し成形する方法が採用される。
 先端ヘッド20または20a,20bの成形には、ドリル本体11と同様に回転砥石を用いた研削・研磨加工とすることもよいが、好ましくは、ダイヤモンド粉末や超硬材料などの高密度粉末を素材として型成形する方法、具体的には、それら粉末素材を超高圧および高温で型成形することにより、又はそれに加えて放電加工や研削加工などの追加工を施すことにより先端ヘッド20全体を焼結成形体とすることがよい。
 この型成形法によれば、砥石が干渉して成形し得ない複雑、緻密な掬い部や先端リード溝などの形状を作製すること可能となり、また、特にダイヤモンド粉末を素材として使用すれば刃先部分の強度を高めて耐久性(寿命)の高いドリルが得られる。
The method of forming the drill main body 11 and the tip head 20 or 20a, 20b will be described. The drill main body 11 is ground and polished on the three twisted lead grooves 13 using a rotating grindstone, as in the case of normal drill forming. A method of grinding and polishing the groove 21 or a method of extruding the twisted lead groove 13 is employed.
The tip head 20 or 20a, 20b may be formed by grinding / polishing using a rotating grindstone as in the case of the drill body 11, but preferably a high-density powder such as diamond powder or super hard material is used as the material. The entire tip head 20 is sintered and formed by molding the powder material at ultrahigh pressure and high temperature, or by performing additional processing such as electric discharge machining or grinding in addition to that. It may be a form.
According to this mold forming method, it becomes possible to produce complicated and dense scooping parts and tip lead grooves that cannot be formed due to interference by the grindstone, and especially when using diamond powder as the material, the cutting edge part The drill with high durability (lifetime) can be obtained by increasing the strength.
 また、先端ヘッド20または20a,20bをセラミックス成形体とすること、詳しくは、炭化ケイ素(SiC)、窒化ケイ素(Si34)、アルミナ(Al23)、部分安定化ジルコニア(Y-PSZ)、炭化ホウ素(B4C)、窒化ホウ素(BN)などのセラミックス粉末材料を、例えば、冷間静水圧加圧法(Cold Isostatic  Press:CIP)や熱間静水圧加圧法(Hot Isostatic  Press:HIP)などの加圧成形法を採用することもよい。
 さらに、先端ヘッド20、または20a,20bを超硬材料の成形体や、セラミックス成形体とした場合には、それら先端ヘッドの表面にダイヤモンド被覆層を形成すること、好ましくはダイヤモンドのナノ粒子を用いた被覆層とすることがよい。そして、ダイヤモンド被覆層を形成する場合には、ダイヤモンド被覆層の密着強度を高めるために、超硬材料成形体やセラミックス成形体とダイヤモンド被覆層との間に両材料に相互に馴染む中間層を形成することが好ましい。
 また、上記ダイヤモンド被覆層に代えて、前記DLCや立方晶窒化ホウ素(cBN)の被覆層を形成すること、あるいは、ナノダイヤモンド層とDLCとの複合層とすることも任意である。
Further, the tip head 20 or 20a, 20b is formed as a ceramic molded body. Specifically, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), partially stabilized zirconia (Y— PSZ), boron carbide (B 4 C), boron nitride (BN) and other ceramic powder materials can be used, for example, cold isostatic pressing (CIP) or hot isostatic pressing (Hot Isostatic Press): It is also possible to employ a pressure molding method such as HIP).
Further, when the tip head 20 or 20a, 20b is formed of a cemented carbide material or a ceramic molded body, a diamond coating layer is formed on the surface of the tip head, preferably using diamond nanoparticles. It is preferable to use a covering layer. And when forming a diamond coating layer, in order to increase the adhesion strength of the diamond coating layer, an intermediate layer that is compatible with both materials is formed between the cemented carbide material molded body or the ceramic molded body and the diamond coating layer. It is preferable to do.
Further, in place of the diamond coating layer, a coating layer of the DLC or cubic boron nitride (cBN) may be formed, or a composite layer of a nanodiamond layer and DLC may be arbitrarily formed.
 なお、上記の型成形による焼結成形体を採用する場合、又はセラミック成形体、あるいはそれにダイヤモンド被覆層などを形成した先端ヘッドの場合には、上記説明で開示した先端ヘッドの構造・形状に限定されることなく、通常の刃先交換式の先端ヘッドにも適用可能である。 In addition, in the case of employing a sintered compact by the above molding, or in the case of a ceramic molded body or a tip head formed with a diamond coating layer or the like, it is limited to the structure and shape of the tip head disclosed in the above description. The present invention can also be applied to an ordinary tip replacement type head.
 上記実施の形態の説明において、図1,4,7,14,15に示す先端リード部3a,13aは、何れもその全長を直線状に形成した場合を例示したが、それに限定されるものではなく、例えば、滑らかな凸面状(凸R形)や凹面状(凹R形)とすることも任意である。 In the description of the above-described embodiment, the tip lead portions 3a and 13a shown in FIGS. 1, 4, 7, 14 and 15 are exemplified by the case where the entire length is linearly formed. However, the present invention is not limited thereto. For example, a smooth convex shape (convex R shape) or a concave shape (concave R shape) is also optional.
 上記実施の形態の説明において、ドリル本体の芯厚の変化や捩れリード溝の溝幅、溝深さについて特に説明していないが、それらについて限定されるものではない。すなわち、芯厚については先端からシャンク側に向けて一定、増大、減少するもの、リード溝についても、その溝幅および深さが一定あるいは変化するもの、あるいはリード角βが途中から変化するものなどいずれでも本発明に適用できるものである。
 各部寸法の具体値を例示すれば、ドリル径は1/8~1インチ(約3.175~25.4mm)で、図示例のドリルAでは約6mm、先端リード部3aの長さはCFRP材料Wなど被削材の厚さの50%以下(図示例で1~1.5mm)である。
 また、図9~図11における溝幅比、芯厚、軸溝比を例示すれば表1のとおりである。
In the description of the above embodiment, the change in the core thickness of the drill body and the groove width and groove depth of the twisted lead groove are not particularly described, but they are not limited thereto. That is, the core thickness is constant, increases, or decreases from the tip toward the shank side, and the lead groove also has a constant or variable groove width and depth, or the lead angle β changes from the middle. Either can be applied to the present invention.
Explaining the specific values of the dimensions of each part, the drill diameter is 1/8 to 1 inch (about 3.175 to 25.4 mm), the drill A in the example shown is about 6 mm, and the length of the tip lead part 3a is CFRP material. It is 50% or less of the thickness of the work material such as W (1 to 1.5 mm in the illustrated example).
Further, Table 1 shows examples of the groove width ratio, the core thickness, and the shaft groove ratio in FIGS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の実施の形態においては主として三枚刃構造のドリルを説明したが、前述のとおり二枚刃構造に適用することも当然可能であり、それの形態を刃先交換式の場合について図16及び図17により例示する。なお、先端切り刃115が二枚刃構造である以外、リード角、先端リード角等の特徴要素は三枚刃構造の場合と同様であるので説明を省略する。 In the above embodiment, the drill having a three-blade structure has been mainly described. However, as described above, it is naturally possible to apply the drill to the two-blade structure. FIG. 16 and FIG. This is illustrated by FIG. Except for the tip blade 115 having a two-blade structure, the characteristic elements such as the lead angle and the tip lead angle are the same as those in the case of the three-blade structure, and thus description thereof is omitted.
 図16は二枚刃の先端ヘッド120を図13に対比させた先端正面図であり、この先端ヘッド120は、図17に示すように、2箇所をボルト123によってドリル本体111に着脱可能に取り付けられる。
 そして、ドリル本体111と先端ヘッド120との位置決めは、例えば図12で説明したような、略V形の取付溝21と係合突起22との嵌め合いとすることも任意であるが、図示例では、ボスによる位置決め方式としている。
 具体的には、ドリル本体111に、先端面に開口する二つのネジ孔130にボス部131を突設し、先端ヘッド120には、ボルト123を通すボルト孔132に連続して該孔より拡径した係合孔132aを形成し、その係合孔132aを前記ボス部131に嵌め合うことにより位置決めするものである。
FIG. 16 is a front view of the tip of a two-blade tip head 120 compared to FIG. 13. This tip head 120 is detachably attached to the drill body 111 at two locations by bolts 123 as shown in FIG. It is done.
The positioning of the drill main body 111 and the distal end head 120 can be arbitrarily performed by fitting the substantially V-shaped mounting groove 21 and the engaging protrusion 22 as illustrated in FIG. 12, for example. In this case, a positioning method using a boss is adopted.
Specifically, the drill body 111 is provided with a boss portion 131 projecting from two screw holes 130 that open to the tip surface, and the tip head 120 is continuously extended from the bolt hole 132 through which the bolt 123 passes. A diameterd engagement hole 132a is formed, and the engagement hole 132a is positioned by being fitted to the boss portion 131.
 すなわち、先端ヘッド120の裏面をドリル本体111に接合する際に、ドリル本体111の二つのボス部131に先端ヘッド120の係合孔130aを嵌め合わせた状態でボルト123をボルト孔132に差込み、ネジ孔130に螺着させることにより先端ヘッド120をドリル本体111に取り付け固定するものである。
 この位置決め方式によれば、二枚刃の場合には、略V形の取付溝と係合突起との嵌め合い方式に比べて、横ずれを阻止できるので正確に芯出しされた取り付けが可能である。
That is, when joining the back surface of the tip head 120 to the drill body 111, the bolt 123 is inserted into the bolt hole 132 with the engagement holes 130 a of the tip head 120 fitted to the two boss portions 131 of the drill body 111. The tip head 120 is attached and fixed to the drill body 111 by being screwed into the screw hole 130.
According to this positioning method, in the case of a two-blade, as compared with the fitting method of the substantially V-shaped mounting groove and the engaging protrusion, the lateral displacement can be prevented, so that the centered mounting can be performed accurately. .
 なお、二枚刃構造であっても、前述したような略V形の取付溝と係合突起との嵌め合い方式とすること、或いはボルト止めに代えてろう付け方式を採用することも任意である。
 また、図17のボスによる位置決め方式は、上述した三枚刃構造の刃先交換式の場合に適用することも勿論任意である。
Even with a two-blade structure, it is optional to adopt a method of fitting the substantially V-shaped mounting groove and the engaging projection as described above, or to adopt a brazing method instead of bolting. is there.
Also, the positioning method using the boss shown in FIG. 17 is of course arbitrary when applied to the above-described three-blade structure blade tip replacement type.
 また、上記実施の形態においては、難削材を含む複合材料としてCFRP材料の場合について説明したが、それに限定されるものではなく、それと同程度の難削性を有する複合材料に適用可能であること、それより切削容易な複合材料その他のワークに適用可能であることはもちろんである。 Further, in the above-described embodiment, the case of the CFRP material as the composite material including the difficult-to-cut material has been described. However, the present invention is not limited to this, and the present invention can be applied to a composite material having the same degree of difficult-to-cut property. Of course, it is applicable to composite materials and other workpieces that are easier to cut.
本発明ドリルの側面図である。It is a side view of this invention drill. 同ドリルの先端拡大正面図である。It is a front-end enlarged front view of the drill. 図1の(3)-(3)線に沿う拡大断面図であるFIG. 2 is an enlarged sectional view taken along line (3)-(3) in FIG. 本発明において適用される先端リード角の範囲を示す側面図である。It is a side view which shows the range of the tip lead angle applied in this invention. 本発明において先端角を140°とした場合の側面図である。It is a side view when the tip angle is 140 ° in the present invention. 本発明の作用を説明する断面図である。It is sectional drawing explaining the effect | action of this invention. 本発明の他の実施形態のドリルを示す部分拡大側面図である。It is a partial expanded side view which shows the drill of other embodiment of this invention. 同ドリルの先端正面図である。It is a front view of the tip of the drill. 図7の(9)-(9)線に沿う断面図である。FIG. 8 is a cross-sectional view taken along line (9)-(9) of FIG. 図9の(10)-(10)線に沿う断面図である。FIG. 10 is a cross-sectional view taken along line (10)-(10) in FIG. 図9の(11)-(11)線に沿う断面図である。FIG. 10 is a cross-sectional view taken along line (11)-(11) of FIG. 図7のドリルの斜視図であり、その(1)は組立状態、(2)は分解した先端ヘッドの裏側斜視図、(3)は分解したドリル本体である。8 is a perspective view of the drill of FIG. 7, in which (1) is an assembled state, (2) is a rear perspective view of the disassembled tip head, and (3) is an exploded drill body. 先端ヘッドをボルト止めにより取り付ける実施例の先端正面図である。It is a front view of the front end of an embodiment in which the front end head is attached by bolting. 先端角を二段変化させた先端ヘッドの他の実施例の側面図である。It is a side view of other examples of a tip head which changed a tip angle two steps. 先端リード部を改良した先端ヘッドのさらに他の実施例の側面図である。It is a side view of the further another Example of the front-end | tip head which improved the front-end | tip lead part. 二枚刃構造の先端ヘッドを例示する先端正面図である。It is a front end view illustrating a front end head having a two-blade structure. 図16の(17)-(17)線に沿う断面図である。FIG. 17 is a cross-sectional view taken along line (17)-(17) of FIG. 従来ドリルで加工した場合における問題点を示す断面図である。It is sectional drawing which shows the problem at the time of processing with a conventional drill.
符号の説明Explanation of symbols
  1:ドリル本体         3:捩れリード溝
 3a:先端リード部        5:先端切り刃
 5a:外周刃部          9:冷媒路
 9a:冷却孔          10:先端ヘッド部分
  β:捩れリード溝のリード角  βa:先端リード角
  θ:外周掬い角        11:ドリル本体
 13:捩れリード溝      13a:先端リード部
 15:先端切り刃       15a:外周刃部
 19:冷媒路         19a:冷却孔口
 20:先端ヘッド       20a:先端ヘッド
20b:先端ヘッド        21:取付溝
 22:係合突起         23:ボルト止め
111:ドリル本体       115:先端切り刃
120:先端ヘッド
1: Drill body 3: Twisted lead groove 3a: Tip lead portion 5: Tip cutting edge 5a: Outer peripheral blade portion 9: Refrigerant passage 9a: Cooling hole 10: Tip head portion β: Lead angle of twist lead groove βa: Tip lead angle θ: outer peripheral scooping angle 11: drill main body 13: twist lead groove 13a: tip lead portion 15: tip cutting edge 15a: outer peripheral blade portion 19: refrigerant path 19a: cooling hole port 20: tip head 20a: tip head 20b: tip head 21: Mounting groove 22: Engagement protrusion 23: Bolt stop 111: Drill body 115: Tip cutting edge 120: Tip head

Claims (10)

  1.  ドリル本体の外周面に所定のリード角βをもつ捩れリード溝を形成し、先端面に先端角により形成される切り刃を有するドリルにおいて、そのドリル本体の先端ヘッド部分に、前記捩れリード溝の先端リード角βaを前記リード角βより小さな角度-10°~+10°の範囲の一定値に設定した先端リード部を形成し、外周掬い角の設定により前記切り刃に刃先形状を鋭利にした外周刃部を形成するとともに切り刃の稜線を凹曲線状となしたことを特徴とするドリル。 In a drill having a torsion lead groove having a predetermined lead angle β on the outer peripheral surface of the drill body and a cutting edge formed by a tip angle on the tip surface, the tip head portion of the drill body has the twist lead groove on the tip body. The tip lead angle βa is set to a constant value in the range of −10 ° to + 10 ° smaller than the lead angle β, and the outer periphery has a sharp cutting edge shape by setting the outer periphery rake angle. A drill characterized by forming a blade part and forming a ridge line of the cutting blade into a concave curve.
  2.  上記外周掬い角が20°~40°であることを特徴とする請求項1記載のドリル。 The drill according to claim 1, wherein the outer peripheral rake angle is 20 ° to 40 °.
  3.  上記先端切り刃が、3条の捩れリード溝により中心角120°毎に配置される三枚刃であることを特徴とする請求項1または2記載のドリル。 The drill according to claim 1 or 2, wherein the tip cutting edge is a three-blade arranged at a central angle of 120 ° by three twisted lead grooves.
  4.  上記先端ヘッド部分の先端角を140°~150°としたことを特徴とする請求項1記載のドリル。 The drill according to claim 1, wherein the tip angle of the tip head portion is set to 140 ° to 150 °.
  5.  上記先端角が、先端中央部を約120°とし、その外周を140°~150°としたことを特徴とする請求項4記載のドリル。 The drill according to claim 4, wherein the tip angle is about 120 ° at the center of the tip and 140 ° to 150 ° at the outer periphery.
  6.  ドリル本体の軸中心に冷媒路を穿孔し、その冷媒路より分岐させた冷却孔を上記各リード溝内の先方部に開口し、該冷却孔の開口より噴射する冷媒が先端切り刃の稜線に向けて噴射するようにしたことを特徴とする請求項1記載のドリル。 A coolant path is drilled in the center of the axis of the drill body, and a cooling hole branched from the coolant path is opened at the tip of each of the lead grooves, and the coolant sprayed from the opening of the cooling hole reaches the ridgeline of the tip cutting edge. The drill according to claim 1, wherein the drill is jetted toward.
  7.  上記先端ヘッド部分が、ドリル本体と別体であってドリル本体の先端に着脱可能に取り付けられた刃先交換式であることを特徴とする請求項1または6記載のドリル。 The drill according to claim 1 or 6, wherein the tip head portion is a blade tip exchange type that is separate from the drill body and is detachably attached to the tip of the drill body.
  8.  上記先端ヘッド部分が粉末材料を型成形により形成した焼結成形体であることを特徴とする請求項7記載のドリル。 The drill according to claim 7, wherein the tip head portion is a sintered compact formed by molding a powder material.
  9.  上記先端ヘッド部分が、その表面にダイヤモンドなどの硬質被覆層を形成していることを特徴とする請求項8記載のドリル。 The drill according to claim 8, wherein the tip head portion has a hard coating layer such as diamond formed on the surface thereof.
  10.  上記先端ヘッド部分が炭化ケイ素、窒化ケイ素、アルミナなどのセラミックス成形体であることを特徴とする請求項8記載のドリル。 The drill according to claim 8, wherein the tip head portion is a ceramic molded body such as silicon carbide, silicon nitride, or alumina.
PCT/JP2008/070603 2008-11-12 2008-11-12 Drill WO2010055559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070603 WO2010055559A1 (en) 2008-11-12 2008-11-12 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070603 WO2010055559A1 (en) 2008-11-12 2008-11-12 Drill

Publications (1)

Publication Number Publication Date
WO2010055559A1 true WO2010055559A1 (en) 2010-05-20

Family

ID=42169708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070603 WO2010055559A1 (en) 2008-11-12 2008-11-12 Drill

Country Status (1)

Country Link
WO (1) WO2010055559A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302101A1 (en) * 2010-09-17 2013-11-14 Terry Scanlon Twist drill assembly, components for same and method for making same
JP2014511776A (en) * 2011-04-19 2014-05-19 ティーシーエム インターナショナル ツール コンサルティング アンド マネージメント ゲーエムベーハー Ceramic drills for high performance drilling of iron-casting materials
WO2018108311A1 (en) * 2016-12-16 2018-06-21 Ceratizit Luxembourg S.A.R.L. Self-centring cutting head
CN112692800A (en) * 2020-12-17 2021-04-23 东台升华工具有限公司 Drill bit drilling and milling system convenient to maintain and manage
US20220184714A1 (en) * 2019-03-18 2022-06-16 Mitsubishi Materials Corporation Indexable drill, cutting insert and drill main body
US20220314341A1 (en) * 2021-04-05 2022-10-06 Tungaloy Corporation Cutting tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508829A (en) * 1995-07-14 1999-08-03 ケンナメタル ヘルテル アクチェンゲゼルシャフト ウェルクツォイゲ ウント ハルトシュトッフェ Drill with cooling lubricant passage
JP2003181711A (en) * 2001-12-18 2003-07-02 Asahi Diamond Industrial Co Ltd Super-high pressure sintered drill
US6629805B1 (en) * 1998-10-30 2003-10-07 Karl Eischeid Hard metal drill bit for use on a drill
JP2005169590A (en) * 2003-12-12 2005-06-30 Fuji Bc Engineering Co Ltd Drill
JP2007144526A (en) * 2005-11-24 2007-06-14 Next I&D株式会社 Twist drill
JP2008000836A (en) * 2006-06-21 2008-01-10 Sumitomo Electric Hardmetal Corp Drill
JP2008142834A (en) * 2006-12-11 2008-06-26 Mitsubishi Materials Corp Drill

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508829A (en) * 1995-07-14 1999-08-03 ケンナメタル ヘルテル アクチェンゲゼルシャフト ウェルクツォイゲ ウント ハルトシュトッフェ Drill with cooling lubricant passage
US6629805B1 (en) * 1998-10-30 2003-10-07 Karl Eischeid Hard metal drill bit for use on a drill
JP2003181711A (en) * 2001-12-18 2003-07-02 Asahi Diamond Industrial Co Ltd Super-high pressure sintered drill
JP2005169590A (en) * 2003-12-12 2005-06-30 Fuji Bc Engineering Co Ltd Drill
JP2007144526A (en) * 2005-11-24 2007-06-14 Next I&D株式会社 Twist drill
JP2008000836A (en) * 2006-06-21 2008-01-10 Sumitomo Electric Hardmetal Corp Drill
JP2008142834A (en) * 2006-12-11 2008-06-26 Mitsubishi Materials Corp Drill

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302101A1 (en) * 2010-09-17 2013-11-14 Terry Scanlon Twist drill assembly, components for same and method for making same
US9302332B2 (en) * 2010-09-17 2016-04-05 Element Six Limited Twist drill assembly, components for same and method for making same
JP2014511776A (en) * 2011-04-19 2014-05-19 ティーシーエム インターナショナル ツール コンサルティング アンド マネージメント ゲーエムベーハー Ceramic drills for high performance drilling of iron-casting materials
WO2018108311A1 (en) * 2016-12-16 2018-06-21 Ceratizit Luxembourg S.A.R.L. Self-centring cutting head
US20220184714A1 (en) * 2019-03-18 2022-06-16 Mitsubishi Materials Corporation Indexable drill, cutting insert and drill main body
CN112692800A (en) * 2020-12-17 2021-04-23 东台升华工具有限公司 Drill bit drilling and milling system convenient to maintain and manage
CN112692800B (en) * 2020-12-17 2023-01-10 东台升华工具有限公司 Drill bit drilling and milling system convenient to maintain and manage
US20220314341A1 (en) * 2021-04-05 2022-10-06 Tungaloy Corporation Cutting tool

Similar Documents

Publication Publication Date Title
JP5358806B2 (en) drill
JP5600765B2 (en) Twist drill and laminating method
JP6589506B2 (en) Drill and drill head
US8206067B2 (en) Ceramic drill bit for high-speed drilling of composites
WO2010055559A1 (en) Drill
KR101791703B1 (en) A rotatable drilling tool as well as a basic body therefor
JP2003300110A (en) Drill and manufacturing method therefor
CN112059306B (en) Machining tool and machining method for deep taper hole of cavitation pipe of liquid rocket engine
TW201429584A (en) Drill and bore formation method
WO2006107038A1 (en) Drilling tool
CN112297122A (en) Drill and method for manufacturing article to be drilled
WO2007039949A1 (en) Boring tool and method of boring pilot hole
JP4394269B2 (en) Machining tools
CN110744108B (en) Method for machining drill bit with edge-inclined groove structure for machining composite material
KR102074650B1 (en) Interchangeable Rotary Cutting Tools and Inserts
JP2008142834A (en) Drill
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
JP2008062369A (en) Method of producing tip to be mounted on boring tool, method of producing boring tool, and boring tool
JP3822506B2 (en) Tool holder, cutting edge member and cutting tool
WO2016047803A1 (en) Drill and drill head
JP4608062B2 (en) Burnishing drill
JP6086180B1 (en) Replaceable blade cutting tool and insert
JPH0569214A (en) Drilling tool
JP4142930B2 (en) Deep hole cutting tool
JP3851804B2 (en) Replaceable twist drill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP