JP2007142075A - Cryostat - Google Patents

Cryostat Download PDF

Info

Publication number
JP2007142075A
JP2007142075A JP2005332546A JP2005332546A JP2007142075A JP 2007142075 A JP2007142075 A JP 2007142075A JP 2005332546 A JP2005332546 A JP 2005332546A JP 2005332546 A JP2005332546 A JP 2005332546A JP 2007142075 A JP2007142075 A JP 2007142075A
Authority
JP
Japan
Prior art keywords
vessel
pipe
cryogenic
cryostat
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005332546A
Other languages
Japanese (ja)
Other versions
JP4939039B2 (en
Inventor
Junichi Fujihira
潤一 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIHIRA KK
Original Assignee
FUJIHIRA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIHIRA KK filed Critical FUJIHIRA KK
Priority to JP2005332546A priority Critical patent/JP4939039B2/en
Publication of JP2007142075A publication Critical patent/JP2007142075A/en
Application granted granted Critical
Publication of JP4939039B2 publication Critical patent/JP4939039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cryostat easy to reduce in size and weight. <P>SOLUTION: The cryostat includes an approximately hermetically structured low temperature vessel 3 in which an extremely low temperature liquid 4 for cooling an object 6 to be cooled is stored, a vacuum vessel 2 for forming a vacuum and heat-insulated space 12 around the vessel 3, and an external through-pipe 5 having both ends supported on the vessel 3 and provided in the vicinity of the object 6. A diaphragm 3d for absorbing a difference in thermal expansions between the pipe 5 and the vessel 3 is formed on the support of the vessel 3 for supporting the external through-pipe 5. Since the diaphragm 3d absorbs the difference in thermal expansions between the pipe 5 and the vessel 3, distortion or stress can be prevented from occurring on the support of the vessel 3. In addition, since bellows protruding out of the vessel 3 can be eliminated, the vacuum vessel 2 for storing the low temperature vessel 3 can be downsized, thereby reducing size and weight of the entire cryostat. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超電導コイルや超電導センサ等の被冷却体を冷却する液体ヘリウムのような極低温液体を収容するクライオスタットに関する。   The present invention relates to a cryostat that contains a cryogenic liquid such as liquid helium that cools an object to be cooled such as a superconducting coil or a superconducting sensor.

従来超電導コイルや超電導センサ等を使用した各種工業製品や物理化学実験装置、検査装置、医療用装置には、超電導コイルや超電導センサ等の被冷却体を冷却するための極低温液体(寒剤)を収容したクライオスタットが使用されている。
このクライオスタットには、用途に応じて種々の構造のものがあるが、例えば特許文献1に、その一部が記載されている。
前記特許文献1に記載のクライオスタットは、内部に環状の空間が存在するように形成された真空容器と、この真空容器と同心的に収容された液体ヘリウム容器と、この液体ヘリウム容器と真空容器との間に二重構造に配置された輻射熱シールド板と、輻射熱シールドと真空容器との間及び輻射熱シールド板間にそれぞれ配置された多層断熱材とから構成されていて、液体ヘリウム容器内に、超伝導コイルを冷却する液体ヘリウムが収容されている。
Various industrial products, physicochemical experimental devices, inspection devices, and medical devices that have conventionally used superconducting coils and superconducting sensors have a cryogenic liquid (cooling agent) to cool the object to be cooled, such as superconducting coils and superconducting sensors. The housed cryostat is used.
There are various cryostats having various structures depending on the application, and for example, Patent Document 1 discloses a part thereof.
The cryostat described in Patent Document 1 includes a vacuum container formed so that an annular space exists therein, a liquid helium container concentrically housed with the vacuum container, the liquid helium container and the vacuum container, Between the radiant heat shield plate and the radiant heat shield and the vacuum vessel and between the radiant heat shield plates. Contains liquid helium that cools the conduction coil.

しかし前記構成のクライオスタットでは、室温から液体ヘリウム温度(−269℃)に冷却する際、一時的に温度分布の不均一が発生して、被冷却体の近傍に設けられた貫通管と液体ヘリウム容器の間に熱膨張差が発生するため、液体ヘリウム容器と貫通管の接続部に歪や応力が発生し、クライオスタットの耐久性や信頼性を低下させる等の問題がある。
かかる問題を解消するため例えば図3に示すように、熱膨張差をベローズにより吸収するようにしたクライオスタットが実用化されている。
However, in the cryostat having the above-described configuration, when cooling from room temperature to liquid helium temperature (−269 ° C.), the temperature distribution temporarily becomes nonuniform, and the through pipe and the liquid helium container provided in the vicinity of the object to be cooled. Since a difference in thermal expansion occurs between the liquid helium container and the through pipe, strain and stress are generated at the connection between the liquid helium container and the through pipe, thereby deteriorating the durability and reliability of the cryostat.
In order to solve this problem, for example, as shown in FIG. 3, a cryostat in which the difference in thermal expansion is absorbed by a bellows has been put into practical use.

図4に示すクライオスタットは、内部が真空となった真空容器a内に、液体ヘリウムや液体窒素等の極低温液体bが収容された低温容器cが設けられており、低温容器cの周囲に真空断熱空間kが形成されている。
低温容器cの中心部には、一端が低温容器cの一方の端板dに固着された外側貫通管eが設けられていて、この外側貫通管eの外周面に超電導コイルのような被冷却体fが取り付けられている。
外側貫通管eの他端は、低温容器cの他方の端板dの開口された透孔hより低温容器cの外側へ突出されており、外側貫通管eの先端と透孔hの開口縁の間には、外側貫通管eの線膨張を吸収しつつ、低温容器cの液密を保持する金属製のベローズiが設けられている。
また外側貫通管eの中心部には、外側貫通管eより小径な内側貫通管jが設けられていて、内側貫通管jの両端部は、真空容器aの端面に設けられた端板gに溶接等の手段で気密に固着されていたり、Oリングのようなシール手段を介して気密に接続されている。
The cryostat shown in FIG. 4 is provided with a cryogenic container c in which a cryogenic liquid b such as liquid helium or liquid nitrogen is accommodated in a vacuum container a whose inside is evacuated. A heat insulating space k is formed.
An outer through pipe e having one end fixed to one end plate d of the low temperature container c is provided at the center of the low temperature container c, and the outer through pipe e has an outer peripheral surface to be cooled like a superconducting coil. A body f is attached.
The other end of the outer through-pipe e protrudes outside the cryogenic vessel c from the through-hole h opened in the other end plate d of the cryogenic vessel c, and the tip of the outer through-pipe e and the opening edge of the through-hole h Between them, a metal bellows i that retains the liquid tightness of the cryogenic container c while absorbing the linear expansion of the outer through pipe e is provided.
Further, an inner through tube j having a smaller diameter than the outer through tube e is provided at the center of the outer through tube e, and both end portions of the inner through tube j are connected to an end plate g provided on the end surface of the vacuum vessel a. They are hermetically fixed by means such as welding, or are hermetically connected via sealing means such as an O-ring.

前記構成のクライオスタットを、例えば食品中の異物を検査する異物検査装置として使用する場合、被検体を内側貫通管j内に置き、極低温液体bにより冷却された被冷却体fに通電して内側貫通管j内に強磁界を発生させることにより、被検体中に金属等の異物が混入していないかを検査するが、室温状態のクライオスタットに極低温液体を供給して被冷却体fを冷却したり、使用を中止してクライオスタットを室温状態に戻す際に、被冷却体fの近傍に設けられた外側貫通管eが膨張したり収縮して、極低温液体を収容した低温容器cとの間で熱膨張差が発生するが、この熱膨張差をベローズiが吸収するため、低温容器cと外側貫通管eの接続部に歪や応力が発生しない構造となっている。
特開平7−22658号公報
When the cryostat having the above-described configuration is used as, for example, a foreign substance inspection apparatus for inspecting foreign substances in food, the subject is placed in the inner through-pipe j, and the object to be cooled f cooled by the cryogenic liquid b is energized. By generating a strong magnetic field in the through-tube j, it is inspected whether a foreign object such as a metal is mixed in the subject, but a cryogenic liquid is supplied to a cryostat in a room temperature state to cool the object f to be cooled. When the use is stopped and the cryostat is returned to the room temperature state, the outer through pipe e provided in the vicinity of the object to be cooled f expands or contracts, and the cryogenic container c containing the cryogenic liquid is stored. There is a difference in thermal expansion between them, but since the bellows i absorbs this difference in thermal expansion, no strain or stress is generated at the connection between the low temperature container c and the outer through pipe e.
Japanese Patent Laid-Open No. 7-22658

しかし前記従来のクライオスタットのように、低温容器cと外側貫通管eの熱膨張差をベローズiにより吸収するようにしたものでは、真空容器の内と低温容器c内の圧力差に十分に耐える構造の高価なベローズiを必要とする上、部品点数が多くなるため部品コストが嵩む等の問題がある。
また外側貫通管eの先端と低温容器cの端板dとベローズiの両端を液密に接続する作業に多くの工数を要するため、組み立て時の作業性が悪いと共に、ベローズi部分が低温容器cの外側へ突出するため、低温容器cを収容する真空容器が大型となり、クライオスタットを小型化する際の妨げとなる等の問題がある。
本発明はかかる問題を改善するためになされたもので、組み立て及び小型軽量化が容易なクライオスタットを提供することを目的とするものである。
However, as in the conventional cryostat, the structure in which the thermal expansion difference between the cryogenic vessel c and the outer through pipe e is absorbed by the bellows i is sufficiently resistant to the pressure difference between the vacuum vessel and the cryogenic vessel c. The expensive bellows i is required, and the number of parts increases, so that there is a problem that the parts cost increases.
In addition, since many man-hours are required for liquid-tightly connecting the tip of the outer through pipe e, the end plate d of the cryogenic container c, and both ends of the bellows i, the workability during assembly is poor, and the bellows i portion is the cryogenic container. Since it protrudes to the outside of c, there is a problem that the vacuum container that accommodates the cryogenic container c becomes large and obstructs the downsizing of the cryostat.
The present invention has been made to improve such a problem, and an object thereof is to provide a cryostat that can be easily assembled and reduced in size and weight.

本発明のクライオスタットは、被冷却体を冷却する極低温液体が収容されたほぼ密閉構造の低温容器と、低温容器の周囲に真空断熱空間を形成する真空容器と、低温容器に両端部が支持され、かつ被冷却体の近傍に取り付けられた外側貫通管とを備えたクライオスタットであって、外側貫通管を支持する低温容器の支持部に、外側貫通管と低温容器との熱膨張差を吸収するダイヤフラムを形成したものである。   The cryostat of the present invention is supported at both ends by a cryocontainer having a substantially sealed structure containing a cryogenic liquid that cools an object to be cooled, a vacuum container forming a vacuum insulation space around the cryocontainer, and a cryogenic container. And a cryostat including an outer through pipe attached in the vicinity of the cooled body, and a thermal expansion difference between the outer through pipe and the cryogenic container is absorbed by a support portion of the cryogenic container that supports the outer through pipe. A diaphragm is formed.

前記構成により、外側貫通管が膨張しり、収縮したために発生する低温容器との熱膨張差をダイヤフラムが吸収するため、低温容器の支持部に歪や応力が発生するのを防止することができ、これによってクライオスタットの耐久性及び信頼性を向上することができる。
また低温容器にダイヤフラムを形成するだけでよいため、従来のベローズを設けたものに比べて、低温容器と外側貫通管の接続部にベローズの両端を液密に接続する組み立て作業が不要となり、これによってクライオスタットの組み立て性が格段に向上すると共に、低温容器の外側へ突出するベローズが不要となるため、低温容器を収容する真空容器が小型化でき、これによってクライオスタット全体の小型軽量化が図れる。
With the above configuration, the diaphragm absorbs the thermal expansion difference between the outer through-tube and the low-temperature container that is generated due to the contraction, so that it is possible to prevent distortion and stress from being generated in the support part of the low-temperature container, This can improve the durability and reliability of the cryostat.
In addition, since it is only necessary to form a diaphragm in the cryocontainer, the assembly work of liquid-tightly connecting both ends of the bellows to the connecting portion of the cryocontainer and the outer through pipe is not required, as compared with the conventional one provided with the bellows. As a result, the assemblability of the cryostat is remarkably improved and the bellows protruding to the outside of the cryogenic container is not required, so that the vacuum container accommodating the cryogenic container can be miniaturized, and thereby the cryostat as a whole can be reduced in size and weight.

本発明のクライオスタットは、低温容器の支持部周辺の肉厚を、他の部分より薄肉にすることにより、ダイヤフラムを形成したものである。   In the cryostat of the present invention, the diaphragm is formed by making the thickness around the support portion of the cryogenic container thinner than other portions.

前記構成により、高価なベローズが不要な上、部品点数を少なくできるため、部品コスト削減が図れるようになる。   With the above configuration, an expensive bellows is not required and the number of parts can be reduced, so that the part cost can be reduced.

本発明のクライオスタットは、外側貫通管内に、両端が前記真空容器に気密に固着された内側貫通管を設けたものである。   The cryostat according to the present invention is provided with an inner through tube having both ends hermetically fixed to the vacuum vessel in the outer through tube.

前記構成により、各種工業製品や物理化学実験装置、検査装置、医療用装置に容易に適用することができる。   By the said structure, it can apply easily to various industrial products, a physicochemical experiment apparatus, a test | inspection apparatus, and a medical device.

本発明のクライオスタットによれば、外側貫通管と低温容器との熱膨張差をダイヤフラムが吸収するため、低温容器の支持部に歪や応力が発生するのを防止することができると共に、低温容器の外側へ突出するベローズが不要となるため、低温容器を収容する真空容器が小型化でき、これによってクライオスタット全体の小型軽量化が図れる。   According to the cryostat of the present invention, since the diaphragm absorbs the difference in thermal expansion between the outer through pipe and the cryogenic container, it is possible to prevent distortion and stress from being generated in the support portion of the cryogenic container, and Since the bellows projecting outward is not necessary, the vacuum container for accommodating the cryogenic container can be reduced in size, whereby the cryostat as a whole can be reduced in size and weight.

本発明の実施の形態を、図面を参照して詳述する。
図1はクライオスタットの断面図、図2はクライオスタットの要部を示す拡大図である。
図1に示すクライオスタット本体1は、密閉構造となった筒状の真空容器2を有している。
真空容器2は軸芯がほぼ水平となる筒体2aと、筒体2aの両端面を閉鎖する端板2bとからなり、全体がステンレスやアルミニウム等の金属、またはガラス繊維や、カーボン繊維により強化された繊維強化プラスチック(FRP)により形成されている。
真空容器2の一方の端板2bは着脱自在となっていて、ボルト等の固着具13により真空容器2の端部に形成されたフランジ2dに固定されており、端板2bとフランジ2dの間には、気密を保持するOリングよりなるシール手段14が介在されている。
真空容器2内には、真空容器2より小径な筒体3aと、筒体3aの両端面を閉鎖する端板3bとからなる低温容器3が同心的に収容されている。
低温容器3は、全体がガラス繊維またはカーボン繊維により強化されたFRPによりほぼ密閉構造に形成されていて、内部に液体ヘリウムや液体窒素からなる極低温液体4が収容されており、真空容器2内を真空状態にすることにより、低温容器3の周囲に真空断熱空間12が形成されている。
Embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view of a cryostat, and FIG. 2 is an enlarged view showing a main part of the cryostat.
A cryostat main body 1 shown in FIG. 1 has a cylindrical vacuum vessel 2 having a sealed structure.
The vacuum vessel 2 includes a cylindrical body 2a having a substantially horizontal axis and end plates 2b that close both end faces of the cylindrical body 2a, and is entirely reinforced with a metal such as stainless steel or aluminum, glass fiber, or carbon fiber. The fiber reinforced plastic (FRP) is formed.
One end plate 2b of the vacuum vessel 2 is detachable, and is fixed to a flange 2d formed at the end of the vacuum vessel 2 by a fastener 13 such as a bolt, and between the end plate 2b and the flange 2d. A sealing means 14 composed of an O-ring for maintaining airtightness is interposed between the two.
In the vacuum vessel 2, a cryogenic vessel 3 comprising a cylindrical body 3a having a smaller diameter than the vacuum vessel 2 and end plates 3b for closing both end faces of the cylindrical body 3a is concentrically housed.
The cryogenic vessel 3 is formed in an almost sealed structure entirely by FRP reinforced with glass fibers or carbon fibers, and contains a cryogenic liquid 4 made of liquid helium or liquid nitrogen inside. The vacuum heat insulating space 12 is formed around the cryogenic container 3 by making the vacuum state.

低温容器3は、図2に示すように一方の端板3bの中心部にねじ孔3cが開口されていて、このねじ孔3cに、低温容器3と同心的に設けられた外側貫通管5の一端が、エポキシ樹脂等の接着剤を塗布した後螺挿されている。
外側貫通管5の一端側には大径部5aが形成されていて、この大径部5aの外周面に、ねじ孔3cに螺挿するねじ部5bが形成されており、外側貫通管5の他端側には、低温容器3の他方の端板3bの中心部に形成された嵌合孔3dに液密に嵌合する嵌合部5cが形成されている。
嵌合部5cの低温容器3内側端部には、端板3bの内側面に当接するストッパ5dが円周方向に環状に突設されており、嵌合部5cのストッパ5dと反対側の端部には、ねじ部5eが形成されていて、このねじ部5eに螺挿したナット6を締め付けることにより、外側貫通管5の他端が低温容器3の他方の端板3bに固着されている。
As shown in FIG. 2, the cryogenic vessel 3 has a screw hole 3 c opened at the center of one end plate 3 b, and an outer through-tube 5 provided concentrically with the cryogenic vessel 3 in the screw hole 3 c. One end is screwed after applying an adhesive such as an epoxy resin.
A large-diameter portion 5a is formed on one end side of the outer through-tube 5, and a screw portion 5b that is screwed into the screw hole 3c is formed on the outer peripheral surface of the large-diameter portion 5a. On the other end side, a fitting portion 5c is formed that is liquid-tightly fitted into a fitting hole 3d formed in the center portion of the other end plate 3b of the cryogenic container 3.
A stopper 5d that abuts the inner surface of the end plate 3b is annularly projected in the circumferential direction at the inner end of the cryogenic container 3 of the fitting portion 5c, and the end of the fitting portion 5c opposite to the stopper 5d is provided. A threaded part 5e is formed in the part, and the other end of the outer through pipe 5 is fixed to the other end plate 3b of the cryogenic vessel 3 by tightening a nut 6 screwed into the threaded part 5e. .

また他方の端板3bの外側面には、嵌合部5cを囲むように環状の凹部3fが形成されている。
この凹部3fの幅Wは、嵌合部5cの外径を例えば50mmとした場合、例えば20mm程度となっており、深さDは、端板3bの厚さTを例えば15mmとした場合、10〜14mmとなっており、これによって凹部3cの内底部に、厚さtが1〜5mmの薄肉なダイヤフラム3dが形成されている。
そしてこのダイヤフラム3dにより後述する作用で、外側貫通管5と低温容器3の熱膨張や熱収縮差を吸収するようになっている。
外側貫通管5の外周部には、図1に示すように超電導コイルよりなる被冷却体6が設けられている。
被冷却体6には、図示しない給電線により電力が供給されるようになっており、低温容器3内に収容された極低温液体4により被冷却体6を冷却することにより、被冷却体6に超電導状態が得られるようになっている。
An annular recess 3f is formed on the outer surface of the other end plate 3b so as to surround the fitting portion 5c.
The width W of the recess 3f is, for example, about 20 mm when the outer diameter of the fitting portion 5c is, for example, 50 mm, and the depth D is 10 mm, when the thickness T of the end plate 3b is, for example, 15 mm. Accordingly, a thin diaphragm 3d having a thickness t of 1 to 5 mm is formed on the inner bottom portion of the recess 3c.
The diaphragm 3d absorbs thermal expansion and thermal contraction differences between the outer through pipe 5 and the cryogenic vessel 3 by an action described later.
As shown in FIG. 1, a cooled body 6 made of a superconducting coil is provided on the outer peripheral portion of the outer through pipe 5.
Electric power is supplied to the object 6 to be cooled by a power supply line (not shown), and the object 6 to be cooled is cooled by the cryogenic liquid 4 accommodated in the cryogenic container 3. A superconducting state can be obtained.

一方、外側貫通管5内には、外側貫通管5より小径な内側貫通管7が同心的に設けられている。
内側貫通管7の一端側は、真空容器2の端板2bの中心部に溶接等の手段で固着され、他端側は端板2bの中心部にOリングのようなシール手段15を介して気密に嵌合されており、各端板2bの外側に開口した端面開口部2cより内側貫通管7内に被検体(図示せず)が挿入できるようになっている。
また真空容器2の上部には、下端が真空容器2の外周面に気密に接続された筒状の導入管8が垂直方向に突設されており、導入管8内に信号線(図示せず)を外部へ引き出す極低温液体注入管9が同心的に設けられている。
極低温液体注入管9の上端は、導入管8の上端面を閉鎖する端板8aに気密に接続されていて、低温容器3や低温容器3内に設けられた被冷却体6の荷重を真空容器2が支持するようになっており、極低温液体注入管9の上面開口は蓋体10により閉鎖されていて、この蓋体10に、低温容器3内へ極低温液体4を注入したり、蒸発ガスを排出するための注入排出口11が設けられている。
On the other hand, an inner through pipe 7 having a smaller diameter than the outer through pipe 5 is concentrically provided in the outer through pipe 5.
One end side of the inner through tube 7 is fixed to the center portion of the end plate 2b of the vacuum vessel 2 by means such as welding, and the other end side is connected to the center portion of the end plate 2b via a sealing means 15 such as an O-ring. It is fitted in an airtight manner, and a subject (not shown) can be inserted into the inner through-tube 7 from an end surface opening 2c that opens to the outside of each end plate 2b.
In addition, a cylindrical introduction pipe 8 having a lower end hermetically connected to the outer peripheral surface of the vacuum container 2 is protruded in the vertical direction at the upper part of the vacuum container 2, and a signal line (not shown) is provided in the introduction pipe 8. ) Is provided concentrically.
The upper end of the cryogenic liquid injection tube 9 is hermetically connected to an end plate 8 a that closes the upper end surface of the introduction tube 8, and the load of the cryogenic vessel 3 and the cooled object 6 provided in the cryogenic vessel 3 is evacuated. The container 2 is supported, and the upper surface opening of the cryogenic liquid injection tube 9 is closed by a lid body 10, and the cryogenic liquid 4 is injected into the lid body 10 into the cryogenic container 3, An injection / discharge port 11 for discharging the evaporating gas is provided.

次に前記構成されたクライオスタットの作用を説明する。
クライオスタット本体1を異物検査装置に使用する場合は、真空容器2の両端板2bの中心部に開口された端部開口部2cより内側貫通管7内に被検体を挿入して、被検体に混入した金属片等の異物検査を行う。
異物検査に当たっては、低温容器3内に充填された極低温液体4により冷却された被冷却体6に通電して内側貫通管7内に強磁界を発生させるが、室温状態のクライオスタット本体1に極低温液体を供給して被冷却体6を冷却すると、低温容器3の内部温度に不均一が発生して、被冷却体6の近傍に設けられた外側貫通管5と極低温液体を収容した低温容器3との間で熱収縮差が発生する。
Next, the operation of the cryostat constructed as described above will be described.
When the cryostat body 1 is used for a foreign substance inspection apparatus, the subject is inserted into the inner through-tube 7 from the end opening 2c opened at the center of the both end plates 2b of the vacuum vessel 2 and mixed into the subject. Inspection of foreign matter such as metal pieces.
In the foreign matter inspection, the cooled object 6 cooled by the cryogenic liquid 4 filled in the cryogenic container 3 is energized to generate a strong magnetic field in the inner through-tube 7. When the cooled body 6 is cooled by supplying the cryogenic liquid, the internal temperature of the cryogenic vessel 3 becomes uneven, and the outer through pipe 5 provided in the vicinity of the cooled body 6 and the cryogenic liquid containing the cryogenic liquid are accommodated. A thermal contraction difference occurs between the container 3 and the container 3.

しかし両端が低温容器3の両端板3bに固着された外側貫通管5の他端側には、端板3bにダイヤフラム3dが形成されていて、外側貫通管5が収縮したために発生する低温容器3との熱収縮差をダイヤフラム3dが弾性変形することにより吸収するため、低温容器3と外側貫通管5の取り付け部に歪や応力が発生するのを防止することができる。
また使用を中止してクライオスタット本体1を室温状態に戻す際には、被冷却体6の近傍に設けられた外側貫通管5が熱膨張して、低温容器3と外側貫通管5との間で熱膨張差発生するが、このの熱膨張差をダイヤフラム3dが弾性変形することにより吸収するため、低温容器3と外側貫通管5の取り付け部に歪や応力が発生するのを防止することもできる。
さらに低温容器3の端板3bにダイヤフラム3dを形成するだけでよいため、従来のベローズを設けたものに比べて、低温容器3の端板3b及び外側貫通管5にベローズの両端を液密に接続する組み立て作業が不要となり、これによってクライオスタットの組み立て性が格段に向上すると共に、低温容器の外側へ突出するベローズが不要となるため、低温容器を収容する真空容器2が小型化でき、これによってクライオスタット全体の小型軽量化が図れるようになる。
However, a diaphragm 3d is formed on the end plate 3b on the other end side of the outer through pipe 5 whose both ends are fixed to the both end plates 3b of the low temperature container 3, and the low temperature container 3 generated when the outer through pipe 5 contracts. Is absorbed by the elastic deformation of the diaphragm 3d, so that it is possible to prevent distortion and stress from being generated in the attachment portion of the cryogenic vessel 3 and the outer through pipe 5.
Further, when the use is stopped and the cryostat body 1 is returned to the room temperature state, the outer through pipe 5 provided in the vicinity of the cooled object 6 is thermally expanded, and between the low temperature container 3 and the outer through pipe 5. Although a difference in thermal expansion occurs, the difference in thermal expansion is absorbed by the elastic deformation of the diaphragm 3d, so that it is possible to prevent distortion and stress from being generated in the attachment portion of the cryogenic vessel 3 and the outer through pipe 5. .
Furthermore, since it is only necessary to form the diaphragm 3d on the end plate 3b of the cryogenic container 3, both ends of the bellows are made liquid-tight on the end plate 3b and the outer through pipe 5 of the cryogenic container 3 as compared with the conventional bellows. Assembling work to be connected is not necessary, and as a result, the assemblability of the cryostat is remarkably improved, and the bellows protruding to the outside of the cryogenic container is unnecessary, so that the vacuum container 2 for housing the cryogenic container can be reduced in size. The entire cryostat can be reduced in size and weight.

一方前記実施の形態では、内側貫通管7と外側貫通管5を水平方向に設けた横型のクライオスタットについて説明したが、図3に示す変形例のように内側貫通管7と外側貫通管5が垂直となるように真空容器2を縦方向に設置して、縦型のクライオスタットとしてもよい。
この変形例では、低温容器3内に極低温液体を注入する極低温液体注入管9の下端が、低温容器3の端板3b側から低温容器3内に連通されており、極低温液体注入管9の上端側は、真空容器2の端板2bを貫通して真空容器2の上方へ突設されていて、極低温液体注入管9の上端部に、低温容器3内へ極低温液体4を注入したり、蒸発ガスする注入排出口11が設けられている。
On the other hand, in the above-described embodiment, the horizontal cryostat in which the inner through pipe 7 and the outer through pipe 5 are provided in the horizontal direction has been described. However, as in the modification shown in FIG. 3, the inner through pipe 7 and the outer through pipe 5 are perpendicular to each other. The vacuum vessel 2 may be installed in the vertical direction so that a vertical cryostat is obtained.
In this modification, the lower end of the cryogenic liquid injection tube 9 for injecting the cryogenic liquid into the cryogenic vessel 3 is communicated with the cryogenic vessel 3 from the end plate 3b side of the cryogenic vessel 3, and the cryogenic liquid injection tube is provided. The upper end side of 9 is penetrated through the end plate 2 b of the vacuum vessel 2 and protrudes above the vacuum vessel 2, and the cryogenic liquid 4 is introduced into the cryogenic vessel 3 at the upper end portion of the cryogenic liquid injection tube 9. An injection / discharge port 11 for injecting or evaporating gas is provided.

また極低温液体注入管9の外周面が端板2bに気密に接続されていて、低温容器3や低温容器3内に設けられた被冷却体6の荷重を真空容器2が支持するようになっている。
そして低温容器3の例えば上側の端板3bにダイヤフラム3dが形成されて、外側貫通管5が熱膨張したり、熱収縮したために発生する低温容器3との熱膨張、熱収縮差をダイヤフラム3dが弾性変形することにより吸収するようになっており、これによって低温容器3と外側貫通管5の取り付け部に歪や応力が発生するのを防止できるが、クライオスタット全体としての作用は、前記実施の形態と同様なので、その説明を省略する。
Further, the outer peripheral surface of the cryogenic liquid injection tube 9 is hermetically connected to the end plate 2b, and the vacuum vessel 2 supports the load of the cryogenic vessel 3 and the cooled object 6 provided in the cryogenic vessel 3. ing.
A diaphragm 3d is formed on, for example, the upper end plate 3b of the cryogenic vessel 3, and the diaphragm 3d determines the difference between thermal expansion and thermal contraction with the cryogenic vessel 3 generated due to thermal expansion or thermal contraction of the outer through pipe 5. Although it absorbs by elastically deforming, it can prevent generating a distortion and a stress in the attachment part of the cryogenic container 3 and the outer side penetration pipe 5, The effect | action as a whole cryostat is the said embodiment. The description is omitted.

なお前記実施の形態及び変形例では、低温容器3の端板3bの一方にのみダイヤフラム3dを形成したが、端板3bの両方にダイヤフラム3dを形成しても勿論よいと共に、外側貫通管5の周囲に環状凹部3cを設けてダイヤフラム3dを形成するようにしたが、外側貫通管5の周囲の同心円上に複数の円形凹部を等間隔に形成してもよく、環状凹部3cを円周方向に複数分割するようにしてもよい。
要は外側貫通管5を支持する低温容器3の支持部周辺の肉厚を、他の部分より薄肉にすることにより、ダイヤフラム3dを形成すればよい。
また被冷却体6としては、超電導コイルの他に、超電導磁気センサや、磁場を遮断する超電導シールド等であってもよく、これらを併用したものであってもよいと共に、前記クライオスタットは、異物検査装置のみならず、各種工業製品や、物理化学実験装置、医療用装置等にも適用できるものである。
In the embodiment and the modification, the diaphragm 3d is formed only on one of the end plates 3b of the cryogenic vessel 3. However, the diaphragm 3d may be formed on both of the end plates 3b, and the outer through-tube 5 may be formed. Although the diaphragm 3d is formed by providing the annular recess 3c around the periphery, a plurality of circular recesses may be formed at equal intervals on the concentric circle around the outer through pipe 5, and the annular recess 3c is formed in the circumferential direction. You may make it divide into multiple.
In short, the diaphragm 3d may be formed by making the thickness of the periphery of the supporting portion of the cryogenic container 3 that supports the outer through pipe 5 thinner than other portions.
In addition to the superconducting coil, the object to be cooled 6 may be a superconducting magnetic sensor, a superconducting shield that cuts off the magnetic field, or a combination of these, and the cryostat may be used for foreign object inspection. The present invention can be applied not only to apparatuses but also to various industrial products, physicochemical experimental apparatuses, medical apparatuses, and the like.

本発明の実施の形態になるクライオスタットの断面図である。1 is a cross-sectional view of a cryostat according to an embodiment of the present invention. 本発明の実施の形態になるクライオスタットの要部を示す拡大断面図である。It is an expanded sectional view showing the important section of the cryostat which becomes an embodiment of the invention. 本発明の実施の形態になるクライオスタットの変形例を示す断面図である。It is sectional drawing which shows the modification of the cryostat which becomes embodiment of this invention. 従来のクライオスタットの断面図である。It is sectional drawing of the conventional cryostat.

符号の説明Explanation of symbols

1 クライオスタット本体
2 真空容器
3 低温容器
3d ダイヤフラム
4 極低温液体
5 外側貫通管
6 超伝導コイル
7 内側貫通管
12 真空断熱空間
DESCRIPTION OF SYMBOLS 1 Cryostat main body 2 Vacuum container 3 Cryogenic container 3d Diaphragm 4 Cryogenic liquid 5 Outer through-pipe 6 Superconducting coil 7 Inner through-pipe 12 Vacuum insulation space

Claims (3)

被冷却体を冷却する極低温液体が収容されたほぼ密閉構造の低温容器と、前記低温容器の周囲に真空断熱空間を形成する真空容器と、前記低温容器に両端部が支持され、かつ前記被冷却体の近傍に取り付けられた外側貫通管とを備えたクライオスタットであって、前記外側貫通管を支持する前記低温容器の支持部に、前記外側貫通管と前記低温容器との熱膨張差を吸収するダイヤフラムを形成したことを特徴とするクライオスタット。   A substantially sealed cryogenic container containing a cryogenic liquid that cools the object to be cooled, a vacuum container that forms a vacuum insulation space around the cryogenic container, both ends supported by the cryogenic container, and the object to be cooled A cryostat including an outer through pipe attached in the vicinity of the cooling body, and a thermal expansion difference between the outer through pipe and the cryogenic container is absorbed by a support portion of the cryogenic container that supports the outer through pipe A cryostat characterized by the formation of a diaphragm. 前記低温容器の支持部周辺の肉厚を、ほかの部分より薄肉にすることにより、前記ダイヤフラムを形成してなる請求項1に記載のクライオスタット。   The cryostat according to claim 1, wherein the diaphragm is formed by making a wall thickness around the support portion of the cryogenic container thinner than other portions. 前記外側貫通管内に、両端が前記真空容器に気密に固着された内側貫通管を設けてなる請求項1または2に記載のクライオスタット。
The cryostat according to claim 1 or 2, wherein an inner through pipe having both ends hermetically fixed to the vacuum vessel is provided in the outer through pipe.
JP2005332546A 2005-11-17 2005-11-17 Cryostat Active JP4939039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332546A JP4939039B2 (en) 2005-11-17 2005-11-17 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332546A JP4939039B2 (en) 2005-11-17 2005-11-17 Cryostat

Publications (2)

Publication Number Publication Date
JP2007142075A true JP2007142075A (en) 2007-06-07
JP4939039B2 JP4939039B2 (en) 2012-05-23

Family

ID=38204602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332546A Active JP4939039B2 (en) 2005-11-17 2005-11-17 Cryostat

Country Status (1)

Country Link
JP (1) JP4939039B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126089A (en) * 1978-02-21 1979-09-29 Varian Associates Improvement of lowwtemperature vessel with external refrigerator for superconductive nmr spectrometer
JPS59182511A (en) * 1983-04-01 1984-10-17 Hitachi Ltd Cryostat
JPS63116409A (en) * 1986-11-04 1988-05-20 Sumitomo Electric Ind Ltd Cryostat
JPH0697515A (en) * 1992-09-16 1994-04-08 Mitsubishi Electric Corp Very low temperature insulating container
JP2000312036A (en) * 1999-04-26 2000-11-07 Sumitomo Heavy Ind Ltd Support structure for heavy structure arranged in low- temperature vessel
JP2003188426A (en) * 2001-12-14 2003-07-04 Mitsubishi Heavy Ind Ltd Hanging supporter of low-temperature vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126089A (en) * 1978-02-21 1979-09-29 Varian Associates Improvement of lowwtemperature vessel with external refrigerator for superconductive nmr spectrometer
JPS59182511A (en) * 1983-04-01 1984-10-17 Hitachi Ltd Cryostat
JPS63116409A (en) * 1986-11-04 1988-05-20 Sumitomo Electric Ind Ltd Cryostat
JPH0697515A (en) * 1992-09-16 1994-04-08 Mitsubishi Electric Corp Very low temperature insulating container
JP2000312036A (en) * 1999-04-26 2000-11-07 Sumitomo Heavy Ind Ltd Support structure for heavy structure arranged in low- temperature vessel
JP2003188426A (en) * 2001-12-14 2003-07-04 Mitsubishi Heavy Ind Ltd Hanging supporter of low-temperature vessel

Also Published As

Publication number Publication date
JP4939039B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US4526015A (en) Support for cryostat penetration tube
JP2961619B2 (en) Cryostat with cooling means
US10181372B2 (en) Assembly comprising a two-stage cryogenic refrigerator and associated mounting arrangement
US20120306492A1 (en) Penetration tube assemblies for reducing cryostat heat load
JP2015117778A (en) Vacuum heat insulation pipe and vacuum heat insulation transfer tube
WO2022155517A1 (en) Container for cryogenic storage and shipping
JP4939039B2 (en) Cryostat
JP2007051850A (en) Liquid helium recondensation device and method for analytical superconductive magnet
JP6163693B2 (en) Space environment test equipment
US20120309630A1 (en) Penetration tube assemblies for reducing cryostat heat load
JP6588264B2 (en) Cryogenic refrigerant supply system
JP6605380B2 (en) Insulated container
JPS6342424B2 (en)
JP2010003943A (en) Heat insulating support and superconducting apparatus equipped with the heat insulating support
CN112992465A (en) Superconducting magnet and magnetic resonance imaging system
US20230110192A1 (en) Superconducting magnet device and method for increasing temperature thereof
JP3845672B2 (en) Cryogenic cooling device
JP2765044B2 (en) Cryogenic support structure
JPH0734305Y2 (en) Sealing structure to prevent thermal oscillation in split cryostat
JP3845708B2 (en) Cryogenic cooling device
GB2513351A (en) Refrigerator Mounting Assembly for Cryogenic Refrigerator
CN118482331A (en) Vacuum heat insulation container for test
Martinez et al. Progress on the CUORE Cryogenic System
JPH06185819A (en) Plug-in mounting structure for cryogenic refrigerator
JPWO2019176557A1 (en) Superconducting coil device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250