JP2007139757A - Thermal insulation container for thermometry - Google Patents

Thermal insulation container for thermometry Download PDF

Info

Publication number
JP2007139757A
JP2007139757A JP2006271378A JP2006271378A JP2007139757A JP 2007139757 A JP2007139757 A JP 2007139757A JP 2006271378 A JP2006271378 A JP 2006271378A JP 2006271378 A JP2006271378 A JP 2006271378A JP 2007139757 A JP2007139757 A JP 2007139757A
Authority
JP
Japan
Prior art keywords
container
heat
logger
heat insulating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006271378A
Other languages
Japanese (ja)
Other versions
JP4809179B2 (en
Inventor
Shigeru Hanzawa
茂 半澤
Takashi Yasue
孝 安江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006271378A priority Critical patent/JP4809179B2/en
Publication of JP2007139757A publication Critical patent/JP2007139757A/en
Application granted granted Critical
Publication of JP4809179B2 publication Critical patent/JP4809179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact thermal insulation container for thermometry capable of prolonged use in a limited space, while having excellent thermal insulation performance. <P>SOLUTION: The thermal insulation container for the thermometry 1 comprises a logger storage container 2 capable of storing a logger 5 recording temperature data, a heat regenerator inner layer 3 filled with iced water 11 which is located outside of the logger storage container 2, an inner vessel 12 which is arranged outside of the heat regenerator inner layer 3, and is filled with the iced water 11, and a thermal insulation outer layer 4 including a low thermal conductivity material 13 which is arranged outside of the inner vessel 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、温度計測用断熱容器に関する。更に詳しくは、優れた断熱性能を有しながらもコンパクトであり、限られた空間内で長時間使用可能な温度計測用断熱容器に関する。   The present invention relates to an insulated container for temperature measurement. More specifically, the present invention relates to a heat-insulating container for temperature measurement that is compact while having excellent heat insulation performance and can be used for a long time in a limited space.

連続炉内における被熱処理物の温度データや、連続炉内部の温度データを計測するための装置として、被処理物等とともに連続炉内を移動させて用いられる温度計測装置がある。このような温度計測装置は、例えば図2に示すように、内層23、外層24、及び蓋体15を備えた温度計測用断熱容器10の内部に、外部(炉内)温度を計測する熱電対等の温度センサ6を接続したロガー5が収納されることにより構成されている。なお、内層23及び外層24を構成する材質は、晒される温度環境等により適宜選択されるが、熱拡散率が小さく、断熱性の高いレンガやセラミックスファイバ等が採用されている。   As a device for measuring the temperature data of the object to be heat-treated in the continuous furnace and the temperature data inside the continuous furnace, there is a temperature measuring device that is used by moving the inside of the continuous furnace together with the object to be processed. For example, as shown in FIG. 2, such a temperature measuring device includes a thermocouple that measures an external (in-furnace) temperature in a temperature measurement heat insulating container 10 including an inner layer 23, an outer layer 24, and a lid 15. The logger 5 to which the temperature sensor 6 is connected is housed. In addition, although the material which comprises the inner layer 23 and the outer layer 24 is suitably selected by the temperature environment etc. to which it is exposed, a thermal diffusivity is small and bricks, ceramic fiber, etc. with high heat insulation are employ | adopted.

この種の温度計測用断熱容器は、従来から各種分野の連続炉において利用されている。例えば、300℃以下程度の比較的低温の連続炉では、二重壁構造を有する真空断熱容器等が用いられる(例えば、特許文献1参照)。また、熱容量の大きい材質として、氷水を用いる例がある(例えば、特許文献2参照)。氷水を用いる場合には、その融解熱や蒸発潜熱も利用できるために、効果的に断熱することができるとされている。更に、データレコーダ(ロガー)を氷とともに真空瓶内に収容し、この真空瓶を断熱材で囲繞した構成を有する温度計測用断熱容器が開示されている(例えば、特許文献3参照)。   This type of temperature measurement insulated container has been conventionally used in continuous furnaces in various fields. For example, in a relatively low temperature continuous furnace of about 300 ° C. or lower, a vacuum heat insulating container or the like having a double wall structure is used (for example, see Patent Document 1). Further, there is an example in which ice water is used as a material having a large heat capacity (see, for example, Patent Document 2). In the case of using ice water, heat of fusion and latent heat of vaporization can be used, so that it can be effectively insulated. Furthermore, a heat-insulating container for temperature measurement having a configuration in which a data recorder (logger) is housed in a vacuum bottle together with ice and the vacuum bottle is surrounded by a heat insulating material is disclosed (for example, see Patent Document 3).

一般的に用いられるロガーの耐熱温度は、50〜90℃程度である。このため、このロガーを高温条件下で長時間使用するような場合には、より高い断熱性能を有する断熱容器を用いる必要がある。しかしながら、従来の断熱容器に高い断熱性能を持たせようとすると、寸法が大きくなる傾向にある。従って、連続炉内の通過断面積に制約があるような場合には、優れた断熱性能を発揮させるべく寸法を大きくした断熱容器を実質的に使用することができないという問題があった。
実開昭64−51815号公報 実開昭61−145300号公報 特開平9−280968号公報
The heat resistant temperature of a logger that is generally used is about 50 to 90 ° C. For this reason, when using this logger for a long time under high temperature conditions, it is necessary to use the heat insulation container which has higher heat insulation performance. However, when trying to give the conventional heat insulating container high heat insulating performance, the size tends to increase. Therefore, when there is a restriction on the passage cross-sectional area in the continuous furnace, there has been a problem that a heat insulating container having a large size in order to exhibit excellent heat insulating performance cannot be used.
Japanese Utility Model Publication No. 64-51815 Japanese Utility Model Publication No. 61-145300 JP 9-280968 A

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、優れた断熱性能を有しながらもコンパクトであり、限られた空間内で長時間使用可能な温度計測用断熱容器を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to be compact while having excellent heat insulation performance, and in a limited space for a long time. The object is to provide a heat insulating container for temperature measurement that can be used.

本発明者らは上記課題を達成すべく鋭意検討した結果、ロガーを収納するロガー収納容器の外側に、氷水が充填される蓄熱内層と、低熱伝導率材料を含む断熱外層を順次配置することによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have sequentially arranged a heat storage inner layer filled with ice water and a heat insulating outer layer containing a low thermal conductivity material on the outside of the logger storage container for storing the logger. The present inventors have found that the above-described problems can be achieved and have completed the present invention.

即ち、本発明によれば、以下に示す温度計測用断熱容器が提供される。   That is, according to the present invention, the following thermal insulation container for temperature measurement is provided.

[1]温度データを記録するロガーを収納可能なロガー収納容器と、前記ロガー収納容器の外側に配置され、氷水が充填される蓄熱内層と、前記蓄熱内層の外側に配置されて前記氷水を充填する内部容器、及び前記内部容器の外側に配置される低熱伝導率材料、を含む断熱外層と、を備えた温度計測用断熱容器。   [1] A logger storage container capable of storing a logger for recording temperature data, a heat storage inner layer disposed outside the logger storage container and filled with ice water, and disposed outside the heat storage inner layer and filled with the ice water And a heat insulating outer layer including a low thermal conductivity material disposed outside the inner container.

[2]前記ロガー収納容器が略中心部に配置されており、前記蓄熱内層の厚み(d)と前記断熱外層の厚み(d)の合計に対する、前記蓄熱内層の厚み(d)の比の値(d/(d+d))が、0.6〜0.7の範囲である前記[1]に記載の温度計測用断熱容器。 [2] The logger storage container is disposed substantially at the center, and the thickness (d 1 ) of the heat storage inner layer with respect to the sum of the thickness (d 1 ) of the heat storage inner layer and the thickness (d 2 ) of the heat insulation outer layer. The heat insulation container for temperature measurement according to [1], wherein the ratio value (d 1 / (d 1 + d 2 )) is in the range of 0.6 to 0.7.

[3]前記内部容器が、真空断熱容器である前記[1]又は[2]に記載の温度計測用断熱容器。   [3] The temperature measurement heat insulation container according to [1] or [2], wherein the inner container is a vacuum heat insulation container.

[4]前記低熱伝導率材料が、セラミックスファイバ、グラスウール、ロックウール、珪酸カルシウム保温材、及び微細多孔構造断熱材からなる群より選択される少なくとも一種である前記[1]〜[3]のいずれかに記載の温度計測用断熱容器。   [4] Any of the above [1] to [3], wherein the low thermal conductivity material is at least one selected from the group consisting of ceramic fiber, glass wool, rock wool, calcium silicate heat insulating material, and fine porous structure heat insulating material. A heat-insulating container for temperature measurement according to crab.

本発明の温度計測用断熱容器は、優れた断熱性能を有しながらもコンパクトであり、限られた空間内で長時間使用可能であるといった効果を奏するものである。   The heat-insulating container for temperature measurement of the present invention is compact while having excellent heat insulation performance, and has an effect that it can be used for a long time in a limited space.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

図1は、本発明の温度計測用断熱容器の一実施形態を模式的に示す断面図である。図1に示すように、本実施形態の温度計測用断熱容器1は、ロガー収納容器2、蓄熱内層3、及び断熱外層4を備えている。この温度計測用断熱容器1を実際に使用するに際しては、外部温度のデータを記録するロガー5が、ロガー収納容器2内の被断熱空間8に収納される。なお、ロガー5には、温度計測用断熱容器1の外部温度を計測可能な温度センサ6が接続される。   FIG. 1 is a cross-sectional view schematically showing one embodiment of a temperature measurement heat insulating container of the present invention. As shown in FIG. 1, the temperature measurement heat insulation container 1 of this embodiment includes a logger storage container 2, a heat storage inner layer 3, and a heat insulation outer layer 4. When actually using the heat insulation container 1 for temperature measurement, the logger 5 for recording data of the external temperature is stored in the heat insulating space 8 in the logger storage container 2. The logger 5 is connected to a temperature sensor 6 capable of measuring the external temperature of the temperature measurement heat insulating container 1.

ロガー収納容器2の外側に配置される蓄熱内層3には、氷水11が充填される。また、この蓄熱内層3の外側に配置される断熱外層4は、氷水11を充填可能な内部容器12と、この内部容器12の外側に配置される低熱伝導率材料13により構成されている。なお、図1中、符号14はロガー収納容器2が載置される支持台を示し、符号15は蓋体を示す。   The heat storage inner layer 3 disposed outside the logger storage container 2 is filled with ice water 11. Moreover, the heat insulation outer layer 4 arrange | positioned on the outer side of this heat storage inner layer 3 is comprised by the low thermal conductivity material 13 arrange | positioned on the outer side of this inner container 12 which can be filled with the ice water 11, and this inner container 12. FIG. In FIG. 1, reference numeral 14 denotes a support base on which the logger storage container 2 is placed, and reference numeral 15 denotes a lid.

外部の熱から保護されるロガー5に近い部分には、熱容量の大きい材質からなる層、即ち、蓄熱内層3を設ける。この蓄熱内層3の厚みは、例えば20〜100mmである。なお、蓄熱内層3を構成する材質の熱伝導率については、特に制限はない。蓄熱内層3を構成する熱容量の大きい材質は、氷水11である。氷水11を用いることにより、融解熱も利用することができる。氷は通常の氷製容器を用いて製造したものを用いることができる。内部容器12の内部にロガー収納容器2及び氷を入れ、氷の隙間を水で満たすことにより、例えば、氷の含有割合が50〜60体積%の蓄熱内層3を構成することができる。氷の含有割合の高い氷水11を用いることにより、より高い断熱効果が発揮される。内部容器12とロガー収納容器2との間の空間形状に合致するように氷を作製すれば、氷の含有割合が80〜90体積%の蓄熱内層3を構成することができる。   A layer made of a material having a large heat capacity, that is, a heat storage inner layer 3 is provided in a portion close to the logger 5 that is protected from external heat. The thickness of the heat storage inner layer 3 is, for example, 20 to 100 mm. In addition, there is no restriction | limiting in particular about the thermal conductivity of the material which comprises the thermal storage inner layer 3. FIG. A material having a large heat capacity constituting the heat storage inner layer 3 is ice water 11. By using ice water 11, heat of fusion can also be used. The ice produced using a normal ice container can be used. By putting the logger storage container 2 and ice in the inner container 12 and filling the ice gap with water, for example, the heat storage inner layer 3 having an ice content of 50 to 60 vol% can be configured. By using the ice water 11 having a high ice content, a higher heat insulation effect is exhibited. If ice is produced so as to match the space shape between the inner container 12 and the logger storage container 2, the heat storage inner layer 3 having an ice content of 80 to 90% by volume can be formed.

なお、通常のロガーの耐熱温度は、100℃未満である。但し、その耐熱温度が100℃以上のロガーを用いる場合には、水の蒸発潜熱をも利用して、更に優れた断熱効果を発揮させることも可能である。但し、蒸発した水分が連続炉内の雰囲気を乱す場合がある。従って、連続炉内に配置される被加熱物への影響等に配慮する必要性がある。   In addition, the heat-resistant temperature of a normal logger is less than 100 ° C. However, when a logger having a heat resistant temperature of 100 ° C. or higher is used, it is also possible to exert a further excellent heat insulating effect by utilizing the latent heat of vaporization of water. However, the evaporated water may disturb the atmosphere in the continuous furnace. Therefore, it is necessary to consider the influence on the object to be heated arranged in the continuous furnace.

蓄熱内層3の外側の部分には、低熱伝導率材料からなる層、即ち、断熱外層4を設ける。この断熱外層4の厚みは、例えば20〜100mmである。なお、断熱外層4の熱容量については、特に制限はない。断熱外層4を構成する低熱伝導率材料としては、空隙率の高い繊維状無機材料が好適に用いられる。より具体的には、軽量断熱材として一般的に用いられるセラミックスファイバ、グラスウール、ロックウール、珪酸カルシウム保温材、若しくは微細多孔構造断熱材、又はこれらの複数を組み合わせた混合積層体が好適に用いられる。   A layer made of a low thermal conductivity material, that is, a heat insulating outer layer 4 is provided on the outer portion of the heat storage inner layer 3. The thickness of this heat insulation outer layer 4 is 20-100 mm, for example. In addition, there is no restriction | limiting in particular about the heat capacity of the heat insulation outer layer 4. FIG. As the low thermal conductivity material constituting the heat insulation outer layer 4, a fibrous inorganic material having a high porosity is preferably used. More specifically, a ceramic fiber, glass wool, rock wool, calcium silicate heat insulating material, or a fine porous structure heat insulating material that is generally used as a lightweight heat insulating material, or a mixed laminate obtained by combining a plurality of these is preferably used. .

なお、前述の微細多孔構造断熱材とは、例えばシリカ、チタニア、アルミナ等の成分を含んでなる、その内部に微細な多孔構造が形成された断熱材のことをいう。より具体的には、商品名「マイクロサーム」(日本マイクロサーム株式会社製)等の市販品を好適例として挙げることができる。   The above-mentioned fine porous structure heat insulating material refers to a heat insulating material containing a component such as silica, titania, alumina, etc. and having a fine porous structure formed therein. More specifically, a commercially available product such as a trade name “Microtherm” (manufactured by Nippon Microtherm Co., Ltd.) can be mentioned as a suitable example.

断熱外層4の熱伝導率は、温度依存性があり、例えば500℃前後の温度域の連続炉内で使用される場合、0.03〜0.08kcal/(m・h・℃)程度である。   The thermal conductivity of the heat insulating outer layer 4 is temperature-dependent, and is, for example, about 0.03 to 0.08 kcal / (m · h · ° C.) when used in a continuous furnace in a temperature range around 500 ° C. .

内部容器12として、真空断熱容器を用いることが好ましい。真空断熱容器を内部容器12に用いると、この真空断熱容器を構成する真空断熱壁が、断熱外層4の一部として機能することになる。従って、断熱外層4全体としての熱伝導率が更に低減され、より優れた断熱効果が発揮される。   It is preferable to use a vacuum heat insulating container as the inner container 12. When a vacuum heat insulating container is used for the inner container 12, the vacuum heat insulating wall constituting the vacuum heat insulating container functions as a part of the heat insulating outer layer 4. Therefore, the heat conductivity as the whole heat insulation outer layer 4 is further reduced, and the more excellent heat insulation effect is exhibited.

真空断熱壁の構造は、通常、内壁と外壁との間に真空部分を有する二重壁構造である。このため、真空部分の理論上の熱伝導率は0である。但し、輻射による伝熱と、内壁と外壁を連結する部分からの熱伝導とを生ずるために、真空断熱壁全体として、ある程度の伝熱が生じ得る。しかし、300℃程度以下の低温条件下での伝熱は非常に少ない。例えば、真空断熱壁の厚みが7.5mmである場合、この真空断熱壁の見かけの熱伝導率は、0.005kcal/(m・h・℃)程度である。   The structure of the vacuum heat insulating wall is usually a double wall structure having a vacuum portion between the inner wall and the outer wall. For this reason, the theoretical thermal conductivity of the vacuum part is zero. However, since heat transfer by radiation and heat conduction from the portion connecting the inner wall and the outer wall occur, a certain amount of heat transfer can occur in the entire vacuum heat insulating wall. However, there is very little heat transfer under low temperature conditions of about 300 ° C. or lower. For example, when the thickness of the vacuum heat insulating wall is 7.5 mm, the apparent thermal conductivity of the vacuum heat insulating wall is about 0.005 kcal / (m · h · ° C.).

ここで、セラミックスファイバの厚みが80mm、熱伝導率が0.06kcal/(m・h・℃)程度と仮定すると、厚み7.5mmの真空断熱壁と、厚み80mmのセラミックスファイバとからなる断熱外層全体の熱伝導率は、(87.5/(7.5/0.005+80/0.06))=0.03kcal/(m・h・℃)程度となる。従って、例えばセラミックスファイバのみで厚み80mmの断熱外層を構成した場合と比べて、その80mmに更に7.5mmの真空断熱壁を施すことによって、伝熱量を半分にすることができる。   Here, assuming that the thickness of the ceramic fiber is 80 mm and the thermal conductivity is about 0.06 kcal / (m · h · ° C.), a heat insulating outer layer comprising a vacuum heat insulating wall having a thickness of 7.5 mm and a ceramic fiber having a thickness of 80 mm. The overall thermal conductivity is about (87.5 / (7.5 / 0.005 + 80 / 0.06)) = 0.03 kcal / (m · h · ° C.). Therefore, for example, compared with the case where the heat insulating outer layer having a thickness of 80 mm is formed only of ceramic fibers, the heat transfer amount can be halved by applying a vacuum heat insulating wall of 7.5 mm to the 80 mm.

なお、真空断熱壁は、雰囲気温度が高くなるに従って輻射による伝熱が生じ易くなる。即ち、真空断熱壁の見かけの熱伝導率は、雰囲気温度上昇に伴い飛躍的に増大する。このため、真空断熱壁の雰囲気温度(外側温度)が300℃以上になると、断熱性能がかえって低下する傾向にある。従って、断熱外層4の最内部に真空断熱壁(真空断熱容器)を配置し、真空断熱壁が高温条件に晒されない状態とすることが、より優れた断熱効果が発揮されるために好ましい。   Note that heat transfer due to radiation is more likely to occur in the vacuum heat insulating wall as the ambient temperature increases. That is, the apparent thermal conductivity of the vacuum heat insulating wall increases dramatically as the ambient temperature rises. For this reason, when the atmospheric temperature (outside temperature) of the vacuum heat insulating wall becomes 300 ° C. or higher, the heat insulating performance tends to be lowered. Therefore, it is preferable to place a vacuum heat insulating wall (vacuum heat insulating container) in the innermost part of the heat insulating outer layer 4 so that the vacuum heat insulating wall is not exposed to high temperature conditions because a more excellent heat insulating effect is exhibited.

ロガー収納容器2が、温度計測用断熱容器1の概ね略中心部に配置されるとともに、蓄熱内層の厚みdと、断熱外層の厚みdの合計(d+d)に対する、蓄熱内層の厚みdの比の値(d/(d+d))を、0.6〜0.7の範囲とすることが好ましく、0.625〜0.675の範囲とすることが更に好ましい。「d/(d+d)」を上記の数値範囲とすることにより、優れた断熱性能が、限られた寸法で発揮される。従って、本実施形態の温度計測用断熱容器1は、優れた断熱性能を有しながらもコンパクトなものであり、限られた空間内で長時間使用することが可能なものである。 The logger storage container 2 is disposed substantially at the center of the heat insulation container 1 for temperature measurement, and the heat storage inner layer with respect to the sum (d 1 + d 2 ) of the thickness d 1 of the heat storage inner layer and the thickness d 2 of the heat insulation outer layer. The value of the ratio of thickness d 1 (d 1 / (d 1 + d 2 )) is preferably in the range of 0.6 to 0.7, and more preferably in the range of 0.625 to 0.675. . By setting “d 1 / (d 1 + d 2 )” to the above numerical range, excellent heat insulation performance is exhibited with limited dimensions. Therefore, the heat-insulating container 1 for temperature measurement of the present embodiment is compact while having excellent heat insulating performance, and can be used for a long time in a limited space.

以上述べてきたように、本実施形態の温度計測用断熱容器1は、優れた断熱性能を有しながらもコンパクトなものである。従って、本実施形態の温度計測用断熱容器1は、各種の連続炉内において、被処理物等とともに連続炉内を移動させて用いられる温度計測装置を構成するための断熱容器として好適である。   As described above, the temperature measurement heat insulation container 1 of the present embodiment is compact while having excellent heat insulation performance. Therefore, the heat insulation container 1 for temperature measurement of the present embodiment is suitable as a heat insulation container for constituting a temperature measurement device that is used by moving the inside of the continuous furnace together with the workpieces in various continuous furnaces.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

(平面モデルを用いた非定常伝熱計算(参考例1〜5))
図3は、非定常伝熱計算用の平面モデルを模式的に示す断面図である。この平面モデル25は、それぞれの厚みが0.1mの内層23及び外層24からなるモデルであり、初期状態における内部温度T及び外部温度Tは、いずれも20℃である。表1に、内層及び外層の材質の組み合わせを示す。また、表2に、表1に示した各材質の物性値を示す。なお、表2において、水の熱伝導率λを「1000(kcal/m・h・℃)」と表記しているが、これは水の対流を考慮した数値である。この初期状態(T=T=20℃)から、外部温度Tのみ200℃に急変させた場合における、内部温度Tの変化を計算した。結果を図4に示す。
(Unsteady heat transfer calculation using a planar model (Reference Examples 1 to 5))
FIG. 3 is a cross-sectional view schematically showing a planar model for unsteady heat transfer calculation. The planar model 25 is a model composed of an inner layer 23 and an outer layer 24 each having a thickness of 0.1 m, and the internal temperature T 1 and the external temperature T 2 in the initial state are both 20 ° C. Table 1 shows combinations of materials of the inner layer and the outer layer. Table 2 shows physical property values of the materials shown in Table 1. In Table 2, the thermal conductivity λ of water is expressed as “1000 (kcal / m · h · ° C.)”, which is a numerical value considering water convection. From this initial state (T 1 = T 2 = 20 ° C.), the change in the internal temperature T 1 when only the external temperature T 2 was suddenly changed to 200 ° C. was calculated. The results are shown in FIG.

Figure 2007139757
Figure 2007139757

Figure 2007139757
Figure 2007139757

図4から明らかなように、熱拡散率が同一であっても、熱容量と熱伝導率が異なる材質を用いる場合には、より熱容量の大きい材質を内層に配置し、より熱伝導率の小さい材質を外層に配置することが好ましい(参考例3と参考例4を対比)。また、内層を水、外層をセラミックスファイバでそれぞれ構成した参考例5が、最も優れた断熱効果を示すことが明らかである。   As is clear from FIG. 4, even when the thermal diffusivity is the same, when a material having a different heat capacity and thermal conductivity is used, a material having a larger heat capacity is disposed in the inner layer, and a material having a lower thermal conductivity is used. Is preferably disposed in the outer layer (reference example 3 and reference example 4 are compared). Further, it is apparent that Reference Example 5 in which the inner layer is composed of water and the outer layer is composed of ceramic fibers exhibits the most excellent heat insulating effect.

(円柱形状モデルを用いた非定常伝熱計算)
図5は、非定常伝熱計算用の円柱形状モデルを模式的に示す断面図である。この円柱形状モデル35は、その直径と高さが同一の寸法である。また、被断熱空間38、蓄熱内層3、及び断熱外層4(熱伝導率=λ)は、互いに相似形である。なお、図5中、符号37は中心軸を示し、符号Dは、全層厚み(蓄熱内層の厚みdと断熱外層の厚みdの合計)を示し、符号Rは、被断熱空間半径を示す。
(Unsteady heat transfer calculation using a cylindrical model)
FIG. 5 is a cross-sectional view schematically showing a cylindrical model for unsteady heat transfer calculation. The cylindrical model 35 has the same diameter and height. The heat-insulated space 38, the heat storage inner layer 3, and the heat insulating outer layer 4 (thermal conductivity = λ) are similar to each other. In FIG. 5, reference numeral 37 indicates the central axis, reference numeral D indicates the total layer thickness (the sum of the thickness d 1 of the heat storage inner layer and the thickness d 2 of the heat insulating outer layer), and the reference symbol R i indicates the heat-insulated space radius. Indicates.

すべての領域の温度が一定(T=T=T(T:初期温度))の初期状態から、外部温度TのみT(℃)に急変させた場合における、内部温度Tの変化を計算した。結果を図6及び図7に示す。なお、内部温度Tと外部温度Tの温度差が、(T−T)の1/e(e≒2.718)になるまでに要する時間を「代表到達時間H」とした場合、この代表到達時間Hが長いほど、断熱性能に優れていると評価することができる。 Temperature of all areas is constant (T 1 = T 2 = T 0 (T 0: initial temperature)) from the initial state of, when obtained by a sudden change in the external temperature T 2 only T e (° C.), the internal temperatures T 1 The change of was calculated. The results are shown in FIGS. When the time required for the temperature difference between the internal temperature T 1 and the external temperature T 2 to become 1 / e (e≈2.718) of (T e −T 0 ) is “representative arrival time H”. It can be evaluated that the longer the representative arrival time H is, the better the heat insulation performance is.

図6及び図7は、円柱形状モデルを用いた非定常伝熱計算の結果を示すグラフである。図6では、断熱外層4の熱伝導率を一定(λ/R=1.7)とし、全層厚みのパラメータをD/R=4、D/R=5、及びD/R=6に設定した場合において、蓄熱内層の厚み/全層厚み(d/D)に対する、代表温度到達時間H(h)をプロットしている。図6から明らかなように、全層厚みのパラメータ(D/R)がいずれの値であっても、d/Dの値が0.6〜0.7の範囲内である場合に、優れた断熱効果が発揮されることが分かる。 6 and 7 are graphs showing the results of unsteady heat transfer calculation using a cylindrical model. In FIG. 6, the thermal conductivity of the heat insulating outer layer 4 is constant (λ / R i = 1.7), and the parameters of the total layer thickness are D / R i = 4, D / R i = 5, and D / R i In the case of setting = 6, the representative temperature arrival time H (h) is plotted against the thickness of the heat storage inner layer / the total layer thickness (d 1 / D). As is clear from FIG. 6, regardless of the value of the parameter (D / R i ) of the total layer thickness, when the value of d 1 / D is in the range of 0.6 to 0.7, It turns out that the outstanding heat insulation effect is exhibited.

図7では、断熱外層4の熱伝導率のパラメータをλ/R=0.3、λ/R=1.3、及びλ/R=3.3に設定した場合において、全層厚み(D/R)に対する、最適なd/D(d1 opti./D)の値をプロットしている。図7から明らかなように、熱伝導率のパラメータ(λ/R)がいずれの値であっても、最適なd/D(d1 opti./D)の値は、0.6〜0.7の範囲内であることが分かる。 In FIG. 7, when the parameters of the thermal conductivity of the heat insulating outer layer 4 are set to λ / R i = 0.3, λ / R i = 1.3, and λ / R i = 3.3, the total layer thickness The optimum d 1 / D (d 1 opt./D ) value is plotted against (D / R i ). As is clear from FIG. 7, regardless of the value of the thermal conductivity parameter (λ / R i ), the optimum value of d 1 / D (d 1 opt./D ) is 0.6 to It can be seen that it is within the range of 0.7.

(実施例1〜4、比較例1,2)
図1に示す構成の温度計測用断熱容器1(実施例1〜4、比較例1,2)を作製した。温度計測用断熱容器1を構成する各構成部材の寸法を表3に示す。また、蓄熱内層3の材質及び厚みd、断熱外層4の材質及び厚みd、並びに「d/(d+d)」の値を表4に示す。なお、ロガー収納容器2内には、ロガー収納容器2内の温度を計測すべく、ロガーを収納する代わりに熱電対を挿入した。また、実施例1〜4の温度計測用断熱容器1を作製するために用いた氷水の氷の含有割合は、約60体積%であった。
(Examples 1-4, Comparative Examples 1 and 2)
A temperature measurement insulated container 1 (Examples 1 to 4, Comparative Examples 1 and 2) having the configuration shown in FIG. 1 was produced. Table 3 shows the dimensions of the constituent members constituting the temperature measurement heat insulating container 1. Also shows the material and the thickness d 1 of the heat storage inner layer 3, the material and thickness d 2 of the heat insulating layer 4, and the value of "d 1 / (d 1 + d 2)" in Table 4. In addition, in order to measure the temperature in the logger storage container 2, a thermocouple was inserted into the logger storage container 2 instead of storing the logger. Moreover, the content rate of the ice water of the ice water used in order to produce the heat insulation container 1 for temperature measurement of Examples 1-4 was about 60 volume%.

作製した温度計測用断熱容器1をそれぞれバッチ式電気炉に入れ、図8に示すように、昇温5時間→500℃×3時間保持→降温2時間の温度プログラムで加熱した。それぞれの温度計測用断熱容器1についての、ロガー収納容器2内到達温度の測定結果を表4に示す。なお、図8は、各実施例及び比較例の温度計測用断熱容器について、時間(h)に対してロガー収納容器内の温度(℃)をプロットしたグラフである。   Each of the temperature-insulating heat insulation containers 1 thus prepared was placed in a batch type electric furnace, and as shown in FIG. 8, the temperature was increased by 5 hours → 500 ° C. × 3 hours hold → temperature decrease 2 hours. Table 4 shows the measurement results of the temperature reached in the logger storage container 2 for each of the temperature measurement heat insulation containers 1. FIG. 8 is a graph in which the temperature (° C.) in the logger storage container is plotted against the time (h) for the temperature measurement thermal insulation containers of each Example and Comparative Example.

Figure 2007139757
Figure 2007139757

Figure 2007139757
Figure 2007139757

表4に示すように、実施例1〜4の温度計測用断熱容器は、比較例1,2の温度計測用断熱容器に比してロガー収納容器内到達温度が低く、優れた断熱効果を有するものであることが明らかである。また、「d/(d+d)」の値を0.6〜0.7の範囲内とすることにより、ロガー収納容器内到達温度を更に低くすることが可能である(実施例2,4参照)。即ち、温度計測用断熱容器の寸法が同一であっても、蓄熱内層と断熱外層の厚みの比率を最適範囲内とすることによって、より優れた断熱効果が発揮されることが明らかである。 As shown in Table 4, the heat insulation containers for temperature measurement of Examples 1 to 4 have a lower temperature reached in the logger storage container than the heat insulation containers for temperature measurement of Comparative Examples 1 and 2, and have an excellent heat insulation effect. It is clear that it is. Further, by setting the value of “d 1 / (d 1 + d 2 )” within the range of 0.6 to 0.7, it is possible to further reduce the temperature reached in the logger storage container (Example 2). , 4). That is, it is clear that even if the dimensions of the temperature measurement heat insulation container are the same, a better heat insulation effect can be exhibited by setting the ratio of the thickness of the heat storage inner layer and the heat insulation outer layer within the optimum range.

内部容器として真空断熱容器を用いることにより、ロガー収納容器内到達温度を更に低くすることが可能である(実施例3,4参照)。なお、「d/(d+d)」の値を0.6〜0.7の範囲内に設定するとともに、真空断熱容器を用いることにより、ロガー収納容器内到達温度を実施例の中で最も低減可能であることが明らかである(実施例4参照)。 By using a vacuum heat insulating container as the internal container, it is possible to further lower the temperature reached in the logger storage container (see Examples 3 and 4). In addition, while setting the value of “d 1 / (d 1 + d 2 )” within the range of 0.6 to 0.7 and using a vacuum heat insulating container, the temperature reached in the logger storage container is set to It is clear that the maximum reduction is possible (see Example 4).

本発明の温度計測用断熱容器は、優れた断熱性能を有しながらもコンパクトなものである。従って、本発明の温度計測用断熱容器は、限られた空間内で長時間使用されることが想定される、セラミックス焼成用連続炉、食品製造用炉等をはじめとする各種の連続炉内において、被処理物等とともに連続炉内を移動させて用いられる温度計測装置を構成するための断熱容器として好適である。   The heat insulation container for temperature measurement of the present invention is compact while having excellent heat insulation performance. Therefore, the temperature measurement thermal insulation container of the present invention is assumed to be used for a long time in a limited space, in various continuous furnaces such as a ceramic firing continuous furnace and a food manufacturing furnace. It is suitable as a heat insulating container for constituting a temperature measuring device that is used by being moved in a continuous furnace together with the object to be processed.

本発明の温度計測用断熱容器の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the heat insulation container for temperature measurement of this invention. 従来の温度計測用断熱容器の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the conventional heat insulation container for temperature measurement. 非定常伝熱計算用の平面モデルを模式的に示す断面図である。It is sectional drawing which shows typically the planar model for unsteady heat-transfer calculation. 平面モデルを用いた非定常伝熱計算の結果を示すグラフである。It is a graph which shows the result of unsteady heat transfer calculation using a plane model. 非定常伝熱計算用の円柱形状モデルを模式的に示す断面図である。It is sectional drawing which shows typically the cylindrical shape model for unsteady heat transfer calculation. 円柱形状モデルを用いた非定常伝熱計算の結果を示すグラフである。It is a graph which shows the result of unsteady heat transfer calculation using a cylindrical shape model. 円柱形状モデルを用いた非定常伝熱計算の結果を示すグラフである。It is a graph which shows the result of unsteady heat transfer calculation using a cylindrical shape model. 時間(h)に対してロガー収納容器内の温度(℃)をプロットしたグラフである。It is the graph which plotted the temperature (degreeC) in a logger storage container with respect to time (h).

符号の説明Explanation of symbols

1,10:温度計測用断熱容器、2:ロガー収納容器、3:蓄熱内層、4:断熱外層、5:ロガー、6:温度センサ、8,38:被断熱空間、11:氷水、12:内部容器、13:低熱伝導率材料、14:支持台、15:蓋体、23:内層、24:外層、25:平面モデル、35:円柱形状モデル、37:中心軸、d:蓄熱内層の厚み、d:断熱外層の厚み、D:全層の厚み、R:被断熱空間半径、T:内部温度、T:外部温度 DESCRIPTION OF SYMBOLS 1,10: Thermal insulation container for temperature measurement, 2: Logger storage container, 3: Thermal storage inner layer, 4: Thermal insulation outer layer, 5: Logger, 6: Temperature sensor, 8, 38: Space to be insulated, 11: Ice water, 12: Inside Container, 13: Low thermal conductivity material, 14: Support base, 15: Lid, 23: Inner layer, 24: Outer layer, 25: Plane model, 35: Cylindrical model, 37: Center axis, d 1 : Thickness of heat storage inner layer , D 2 : thickness of the heat insulating outer layer, D: thickness of all layers, R i : heat-insulated space radius, T 1 : internal temperature, T 2 : external temperature

Claims (4)

温度データを記録するロガーを収納可能なロガー収納容器と、
前記ロガー収納容器の外側に配置され、氷水が充填される蓄熱内層と、
前記蓄熱内層の外側に配置されて前記氷水を充填する内部容器、及び前記内部容器の外側に配置される低熱伝導率材料、を含む断熱外層と、を備えた温度計測用断熱容器。
A logger storage container capable of storing a logger for recording temperature data;
A heat storage inner layer disposed outside the logger storage container and filled with ice water;
An insulated container for temperature measurement, comprising: an inner container disposed outside the heat storage inner layer and filled with the ice water; and a heat insulating outer layer including a low thermal conductivity material disposed outside the inner container.
前記ロガー収納容器が略中心部に配置されており、
前記蓄熱内層の厚み(d)と前記断熱外層の厚み(d)の合計に対する、前記蓄熱内層の厚み(d)の比の値(d/(d+d))が、0.6〜0.7の範囲である請求項1に記載の温度計測用断熱容器。
The logger storage container is disposed substantially at the center,
To the total of the heat storage inner layer thickness (d 1) and the thermal insulation layer of thickness (d 2), the ratio of the values of the thermal storage layer of the thickness (d 1) (d 1 / (d 1 + d 2)) is, 0 The insulated container for temperature measurement according to claim 1, which is in a range of .6 to 0.7.
前記内部容器が、真空断熱容器である請求項1又は2に記載の温度計測用断熱容器。   The temperature measurement heat insulation container according to claim 1 or 2, wherein the inner container is a vacuum heat insulation container. 前記低熱伝導率材料が、セラミックスファイバ、グラスウール、ロックウール、珪酸カルシウム保温材、及び微細多孔構造断熱材からなる群より選択される少なくとも一種である請求項1〜3のいずれか一項に記載の温度計測用断熱容器。   The said low thermal conductivity material is at least 1 type selected from the group which consists of ceramic fiber, glass wool, rock wool, a calcium silicate heat insulating material, and a microporous structure heat insulating material, The Claim 1 any one of Claims 1-3. Insulated container for temperature measurement.
JP2006271378A 2005-10-20 2006-10-03 Insulated container for temperature measurement Active JP4809179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271378A JP4809179B2 (en) 2005-10-20 2006-10-03 Insulated container for temperature measurement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005305217 2005-10-20
JP2005305217 2005-10-20
JP2006271378A JP4809179B2 (en) 2005-10-20 2006-10-03 Insulated container for temperature measurement

Publications (2)

Publication Number Publication Date
JP2007139757A true JP2007139757A (en) 2007-06-07
JP4809179B2 JP4809179B2 (en) 2011-11-09

Family

ID=38202776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271378A Active JP4809179B2 (en) 2005-10-20 2006-10-03 Insulated container for temperature measurement

Country Status (1)

Country Link
JP (1) JP4809179B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043376A (en) * 2009-08-20 2011-03-03 Toyota Motor Corp Heat-resistant case
JP2012112845A (en) * 2010-11-25 2012-06-14 Toyota Motor Corp Temperature measurement apparatus
JP2013238624A (en) * 2013-09-02 2013-11-28 Toyota Motor Corp Heat-resistant case
JP2014055843A (en) * 2012-09-12 2014-03-27 Toyota Motor Corp Temperature measuring device
JP2015161655A (en) * 2014-02-28 2015-09-07 株式会社神戸製鋼所 Temperature measurement device
KR101635747B1 (en) * 2015-01-06 2016-07-04 가톨릭관동대학교산학협력단 Data collection system having battery charging/discharging conrol function
JP2018146522A (en) * 2017-03-08 2018-09-20 日本碍子株式会社 Temperature measurement method of honeycomb molding, and temperature measurement device
CN111707095A (en) * 2020-06-10 2020-09-25 重庆新兴通用传动有限公司 Continuous heating furnace for temperature subsection detection
CN112820718A (en) * 2016-06-15 2021-05-18 科磊股份有限公司 Packaged instrumented substrate apparatus for obtaining measurement parameters in high temperature process applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130836U (en) * 1984-07-30 1986-02-24 川崎製鉄株式会社 Insulation structure of furnace temperature meter with electronic device
JPS61145300U (en) * 1985-02-28 1986-09-08
JPS6451815A (en) * 1987-08-24 1989-02-28 Seiko Electronic Components Longitudinal crystal resonator
JPH09280968A (en) * 1996-04-17 1997-10-31 Nittetsu Hokkaido Seigyo Syst Kk Temperature measuring apparatus for high-temperature moving object
JP2000130961A (en) * 1998-10-27 2000-05-12 Sumitomo Metal Ind Ltd Furnace measuring method and device
JP2002304689A (en) * 2001-04-04 2002-10-18 Nec San-Ei Instruments Ltd Remote temperature measuring instrument and heat resistant container therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130836U (en) * 1984-07-30 1986-02-24 川崎製鉄株式会社 Insulation structure of furnace temperature meter with electronic device
JPS61145300U (en) * 1985-02-28 1986-09-08
JPS6451815A (en) * 1987-08-24 1989-02-28 Seiko Electronic Components Longitudinal crystal resonator
JPH09280968A (en) * 1996-04-17 1997-10-31 Nittetsu Hokkaido Seigyo Syst Kk Temperature measuring apparatus for high-temperature moving object
JP2000130961A (en) * 1998-10-27 2000-05-12 Sumitomo Metal Ind Ltd Furnace measuring method and device
JP2002304689A (en) * 2001-04-04 2002-10-18 Nec San-Ei Instruments Ltd Remote temperature measuring instrument and heat resistant container therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043376A (en) * 2009-08-20 2011-03-03 Toyota Motor Corp Heat-resistant case
JP2012112845A (en) * 2010-11-25 2012-06-14 Toyota Motor Corp Temperature measurement apparatus
JP2014055843A (en) * 2012-09-12 2014-03-27 Toyota Motor Corp Temperature measuring device
JP2013238624A (en) * 2013-09-02 2013-11-28 Toyota Motor Corp Heat-resistant case
JP2015161655A (en) * 2014-02-28 2015-09-07 株式会社神戸製鋼所 Temperature measurement device
KR101635747B1 (en) * 2015-01-06 2016-07-04 가톨릭관동대학교산학협력단 Data collection system having battery charging/discharging conrol function
CN112820718A (en) * 2016-06-15 2021-05-18 科磊股份有限公司 Packaged instrumented substrate apparatus for obtaining measurement parameters in high temperature process applications
JP2021170034A (en) * 2016-06-15 2021-10-28 ケーエルエー コーポレイション Instrumentation board device and method
JP7194786B2 (en) 2016-06-15 2022-12-22 ケーエルエー コーポレイション Instrumentation board device and method
US11823925B2 (en) 2016-06-15 2023-11-21 Kla Corporation Encapsulated instrumented substrate apparatus for acquiring measurement parameters in high temperature process applications
JP2018146522A (en) * 2017-03-08 2018-09-20 日本碍子株式会社 Temperature measurement method of honeycomb molding, and temperature measurement device
CN111707095A (en) * 2020-06-10 2020-09-25 重庆新兴通用传动有限公司 Continuous heating furnace for temperature subsection detection

Also Published As

Publication number Publication date
JP4809179B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4809179B2 (en) Insulated container for temperature measurement
JPS6119431B2 (en)
JP4565159B2 (en) Temperature fixed point cell, temperature fixed point device, and thermometer calibration method
JPS5968645A (en) Sample quenching device
US3139206A (en) Thermal insulation
KR20090023097A (en) Heat-resisting protection box for thermometer, measuring apparatus of temperature thereof and method of measuring temperature
JPH04273990A (en) Heating device
JP6945554B2 (en) Transport container
JPS60168988A (en) Heat-insulating structure
JPWO2016114297A1 (en) Cold insulation container
US10174945B2 (en) Burner port block assembly
CN101542187B (en) Insulation arrangement
KR101758241B1 (en) Multi-layer type high temperature heat insulator with thermal conductivity gradient structure
JP2016156595A (en) Furnace wall structure of heating furnace and manufacturing method thereof
JP5953414B1 (en) Furnace wall structure
CN217809784U (en) Heat-preservation growth device
JP2010120673A (en) Returnable and storing box for cold-keeping and warm-keeping, and cold-keeping or warm-keeping method of item to be cold-kept or item to be warm-kept by the box
KR100730382B1 (en) thermal insulation material using porous ceramic
Beamish et al. Capillary Condensation and Hysteresis for 4 He in Aerogel
JPS5945878B2 (en) cryostat
CN201284358Y (en) Ceramic fiber insulation heat preserving furnace brick lining
JPS62437B2 (en)
WO2022130920A1 (en) Vacuum heat-insulating material, vacuum heat-insulating container, and pressure measurement method
JPS6125599Y2 (en)
SU516870A1 (en) Low temperature container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4809179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150