JP2007139404A - Heat exchanger and manufacturing method for it - Google Patents

Heat exchanger and manufacturing method for it Download PDF

Info

Publication number
JP2007139404A
JP2007139404A JP2006285891A JP2006285891A JP2007139404A JP 2007139404 A JP2007139404 A JP 2007139404A JP 2006285891 A JP2006285891 A JP 2006285891A JP 2006285891 A JP2006285891 A JP 2006285891A JP 2007139404 A JP2007139404 A JP 2007139404A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
corrugated tube
spiral corrugated
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006285891A
Other languages
Japanese (ja)
Inventor
Naohiko Matsuda
直彦 松田
Katsuki Yagi
克記 八木
Shigeru Nojima
野島  繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006285891A priority Critical patent/JP2007139404A/en
Publication of JP2007139404A publication Critical patent/JP2007139404A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simply-constructed heat exchanger and a manufacturing method for it capable of efficient heating. <P>SOLUTION: An evaporator 10 serving as the heat exchanger heating water 2 by exhaust combustion gas 6 for vaporizing it is provided with a heating cylinder, which has a flow passage 10a axially formed spirally for passing flow of the exhaust combustion gas 6 on the inner circumferential face side and for passing flow of the water 2 in the circumference direction. The heating cylinder is provided with a cylindrical body 11, an outside spiral wavy tube 12 attached coaxially to the outer circumference of the cylindrical body 11 and provided with a rugged shape axially formed spirally, and a guide cylinder 13 arranged coaxially inside the cylindrical body 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱交換器及びその製造方法に関する。   The present invention relates to a heat exchanger and a manufacturing method thereof.

例えば、燃料電池発電システムにおいて、燃料電池本体に供給する燃料ガスを改質するために使用する水の蒸発器の従来の一例を図14に示す。   For example, FIG. 14 shows a conventional example of a water evaporator used to reform fuel gas supplied to a fuel cell main body in a fuel cell power generation system.

図14に示すように、従来の蒸発器210は、案内筒213を内側に同軸をなして配設した円筒体211の外周面にチューブ212を螺旋状に巻き付けたものであり、案内筒213と円筒体211との間に加熱ガス6を流通させると共に、炭化水素系ガスからなる都市ガス等の燃料ガス1及び水2をチューブ212内に供給することにより、円筒体211及びチューブ212を介して上記水2を加熱して水蒸気2aとして、後流側に配設された燃料改質触媒器へ上記燃料ガス1と共に送給することが簡単な構造でできるようになっている。   As shown in FIG. 14, a conventional evaporator 210 has a tube 212 spirally wound around an outer peripheral surface of a cylindrical body 211 in which a guide cylinder 213 is coaxially arranged inside. While circulating the heated gas 6 between the cylindrical body 211 and supplying the fuel gas 1 such as city gas made of hydrocarbon gas and water 2 into the tube 212, the cylindrical body 211 and the tube 212 are passed through. The water 2 can be heated and supplied as steam 2a together with the fuel gas 1 to a fuel reforming catalyst disposed on the downstream side with a simple structure.

特開平8−313177号公報JP-A-8-3131177

しかしながら、前述したような従来の蒸発器210においては、加熱ガス6で水2を加熱するにあたって、円筒体211に対して線接触するだけのチューブ212を介するため、効率よく加熱することが難しかった。   However, in the conventional evaporator 210 as described above, when the water 2 is heated with the heating gas 6, it is difficult to heat efficiently because the tube 212 is only in line contact with the cylindrical body 211. .

このような問題は、燃料電池発電システムに用いられる上述したような蒸発器210に限らず、加熱ガスで液体を加熱して気化させる蒸発器であれば、上述の場合と同様にして起こり得るのはもちろんのこと、第一の流体と第二の流体との間で熱交換させる熱交換器であっても、上述の場合と同様にして起こり得ることである。   Such a problem is not limited to the above-described evaporator 210 used in the fuel cell power generation system, but can be caused in the same manner as described above as long as it is an evaporator that heats and vaporizes a liquid with a heated gas. Of course, even a heat exchanger that exchanges heat between the first fluid and the second fluid can occur in the same manner as described above.

このようなことから、本発明は、簡単な構造でありながらも、効率よく加熱することができる熱交換器及びその製造方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a heat exchanger that can be efficiently heated while having a simple structure, and a method for manufacturing the same.

前述した課題を解決するための、第一番目の発明に係る熱交換器は、第一の流体と第二の流体との間で熱交換させる熱交換器であって、内周面側に前記第一の流体を流通させると共に、前記第二の流体を周方向に沿って流通させる流通路を軸方向に向かって螺旋状に形成した熱交換筒を備えていることを特徴とする。   A heat exchanger according to a first invention for solving the above-described problem is a heat exchanger for exchanging heat between a first fluid and a second fluid, and is arranged on the inner peripheral surface side. A heat exchange cylinder is provided, in which a flow passage for circulating the first fluid and circulating the second fluid along the circumferential direction is formed in a spiral shape in the axial direction.

第二番目の発明に係る熱交換器は、第一番目の発明において、前記熱交換筒が、軸方向に向かって螺旋状をなす溝形の流通路を外周面の周方向に沿って形成された円筒体と、前記円筒体の前記流通路の開口部を閉鎖するように当該円筒体の外周面に同軸をなして嵌合する蓋筒体とを備えていることを特徴とする。   A heat exchanger according to a second invention is the heat exchanger according to the first invention, wherein the heat exchange tube is formed with a groove-shaped flow passage spiraling in the axial direction along the circumferential direction of the outer peripheral surface. And a lid cylinder that is coaxially fitted to the outer peripheral surface of the cylindrical body so as to close the opening of the flow passage of the cylindrical body.

第三番目の発明に係る熱交換器は、第一番目の発明において、前記熱交換筒が、円筒体と、前記円筒体の外周面に同軸をなして取り付けられて軸方向に向かって螺旋状をなす凹凸を形成された外側螺旋波形管とを備えていることを特徴とする。   A heat exchanger according to a third invention is the heat exchanger according to the first invention, wherein the heat exchange cylinder is attached to a cylindrical body and an outer peripheral surface of the cylindrical body coaxially and spirals in the axial direction. And an outer spiral corrugated tube formed with unevenness.

第四番目の発明に係る熱交換器は、第一番目の発明において、前記熱交換筒が、円筒体と、前記円筒体の内周面に同軸をなして取り付けられて軸方向に向かって螺旋状をなす凹凸を形成された内側螺旋波形管とを備えていることを特徴とする。   A heat exchanger according to a fourth aspect is the heat exchanger according to the first aspect, wherein the heat exchange cylinder is attached to a cylindrical body and an inner peripheral surface of the cylindrical body coaxially and spirals in an axial direction. And an inner spiral corrugated tube formed with irregularities forming a shape.

第五番目の発明に係る熱交換器は、第一番目の発明において、前記熱交換筒が、軸方向に向かって螺旋状をなす凹凸を形成された内側螺旋波形管と、軸方向に向かって螺旋状をなす凹凸を形成されて前記内側螺旋波形管との間に軸方向に向かって螺旋状の前記流通路を形成するように当該内側螺旋波形管の外面に同軸をなして取り付けられた外側螺旋波形管とを備えていることを特徴とする。   A heat exchanger according to a fifth aspect of the present invention is the heat exchanger according to the first aspect, wherein the heat exchange tube has an inner spiral corrugated tube in which irregularities forming a spiral shape in the axial direction are formed, and toward the axial direction. An outer side formed coaxially on the outer surface of the inner spiral corrugated tube so as to form the spiral flow path in the axial direction between the inner spiral corrugated tube and a spiral irregularity formed And a spiral corrugated tube.

第六番目の発明に係る熱交換器は、第三番目の発明において、前記熱交換筒の前記円筒体の内周面に接触するように当該熱交換筒の内側に同軸をなして取り付けられて軸方向に向かって螺旋状をなす凹凸を形成された案内螺旋波形管を備えていることを特徴とする。   The heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to the third aspect, wherein the heat exchanger is attached coaxially to the inside of the heat exchange tube so as to contact the inner peripheral surface of the cylindrical body of the heat exchange tube. It has a guide spiral corrugated tube formed with irregularities spiraling in the axial direction.

第七番目の発明に係る熱交換器は、第四番目又は第五番目の発明において、前記熱交換筒の前記内側螺旋波形管に接触するように当該熱交換筒の内側に同軸をなして配設された案内筒を備えていることを特徴とする。   A heat exchanger according to a seventh aspect of the present invention is the fourth or fifth aspect of the present invention, wherein the heat exchanger is coaxially arranged inside the heat exchange tube so as to contact the inner spiral corrugated tube of the heat exchange tube. It is provided with a provided guide tube.

第八番目の発明に係る熱交換器は、第七番目の発明において、前記案内筒が、軸方向に向かって螺旋状をなす凹凸を形成されて前記熱交換筒の前記内側螺旋波形管との間に軸方向に向かって螺旋状の流通路を形成するように当該内側螺旋波形管の内面に同軸をなして取り付けられた案内螺旋波形管であることを特徴とする。   A heat exchanger according to an eighth aspect of the present invention is the heat exchanger according to the seventh aspect, wherein the guide tube is formed with concavities and convexities that spiral in the axial direction, and the inner spiral corrugated tube of the heat exchange tube The guide spiral corrugated tube is coaxially attached to the inner surface of the inner spiral corrugated tube so as to form a spiral flow passage in the axial direction therebetween.

また、前述した課題を解決するための、第九番目の発明に係る熱交換器の製造方法は、第二番目の発明に係る熱交換器の製造方法であって、前記流通路を形成された前記円筒体の外周面に前記蓋筒体を焼き嵌めすることを特徴とする。   Moreover, the manufacturing method of the heat exchanger which concerns on 9th invention for solving the subject mentioned above is a manufacturing method of the heat exchanger which concerns on 2nd invention, Comprising: The said flow path was formed The lid cylinder is shrink-fitted on the outer peripheral surface of the cylinder.

第十番目の発明に係る熱交換器の製造方法は、第二番目の発明に係る熱交換器の製造方法であって、前記流通路を形成された前記円筒体の外周面に板材を周方向に沿って設けて当該板材の端部同士を溶接接合することにより、当該円筒体の外周面に前記蓋筒体を取り付けることを特徴とする。   A heat exchanger manufacturing method according to a tenth aspect of the invention is a heat exchanger manufacturing method according to the second aspect of the invention, in which a plate material is circumferentially disposed on the outer peripheral surface of the cylindrical body in which the flow passage is formed. The lid cylinder is attached to the outer peripheral surface of the cylindrical body by welding and joining the end portions of the plate material.

第十一番目の発明に係る熱交換器の製造方法は、第二番目の発明に係る熱交換器の製造方法であって、前記流通路を形成された前記円筒体を筒材の内側に差し込んで、当該筒材に溶接ビードを形成して当該筒材の周方向の長さを収縮させることにより、当該円筒体の外周面に前記蓋筒体を取り付けることを特徴とする。   A heat exchanger manufacturing method according to a tenth invention is a heat exchanger manufacturing method according to the second invention, wherein the cylindrical body in which the flow passage is formed is inserted inside a tubular member. Thus, the cover cylinder is attached to the outer peripheral surface of the cylindrical body by forming a weld bead on the cylindrical material and contracting the circumferential length of the cylindrical material.

第十二番目の発明に係る熱交換器の製造方法は、第九番目から第十一番目の発明のいずれかにおいて、円筒管の両端側を支持しながら回転させ、当該円筒管の外周面にバイトを押し付けながら当該円筒管の軸方向に送り運動させて切削加工することにより、前記円筒体を作製することを特徴とする。   A heat exchanger manufacturing method according to a twelfth aspect of the invention is any one of the ninth to tenth aspects of the invention, wherein the heat exchanger is rotated while supporting both ends of the cylindrical tube, and the outer peripheral surface of the cylindrical tube is rotated. It is characterized in that the cylindrical body is manufactured by cutting by moving it in the axial direction of the cylindrical tube while pressing the cutting tool.

第十三番目の発明に係る熱交換器の製造方法は、第三番目の発明に係る熱交換器の製造方法であって、前記外側螺旋波形管を前記円筒体の外周面に焼き嵌めすることを特徴とする。   A heat exchanger manufacturing method according to a thirteenth invention is a heat exchanger manufacturing method according to the third invention, wherein the outer spiral corrugated tube is shrink-fitted onto the outer peripheral surface of the cylindrical body. It is characterized by.

第十四番目の発明に係る熱交換器の製造方法は、第三番目の発明に係る熱交換器の製造方法であって、前記外側螺旋波形管よりも小径の前記円筒体を当該外側螺旋波形管内に差し込んで、当該円筒体を拡径して径方向に均一に塑性変形させることを特徴とする。   A heat exchanger manufacturing method according to a fourteenth aspect of the invention is a heat exchanger manufacturing method according to the third aspect of the invention, in which the cylindrical body having a smaller diameter than the outer spiral corrugated tube is used as the outer spiral corrugation. It is characterized by being inserted into a pipe and expanding the diameter of the cylindrical body so as to be uniformly plastically deformed in the radial direction.

第十五番目の発明に係る熱交換器の製造方法は、第十三番目又は第十四番目の発明おいて、円筒管の両端側を押圧支持しながら回転させ、当該円筒管の外周面に球体を押し付けながら当該円筒管の軸方向に送り運動させてスピニング加工することにより、前記外側螺旋波形管を作製することを特徴とする。   In the fifteenth or fourteenth invention, the heat exchanger manufacturing method according to the fifteenth invention is rotated while pressing and supporting both end sides of the cylindrical tube, and the outer surface of the cylindrical tube is rotated. The outer spiral corrugated tube is manufactured by performing a spinning process by feeding and moving in the axial direction of the cylindrical tube while pressing a spherical body.

第十六番目の発明に係る熱交換器の製造方法は、第四番目の発明に係る熱交換器の製造方法であって、前記円筒体を前記内側螺旋波形管の外周面に焼き嵌めすることを特徴とする。   A heat exchanger manufacturing method according to the sixteenth invention is a heat exchanger manufacturing method according to the fourth invention, wherein the cylindrical body is shrink-fitted onto the outer peripheral surface of the inner spiral corrugated tube. It is characterized by.

第十七番目の発明に係る熱交換器の製造方法は、第四番目の発明に係る熱交換器の製造方法であって、前記内側螺旋波形管の外周面に板材を周方向に沿って設けて当該板材の端部同士を溶接接合することにより、当該内側螺旋波形管の外周面に前記円筒体を取り付けることを特徴とする。   A heat exchanger manufacturing method according to the seventeenth invention is a heat exchanger manufacturing method according to the fourth invention, wherein a plate material is provided along the circumferential direction on the outer peripheral surface of the inner spiral corrugated tube. The cylindrical body is attached to the outer peripheral surface of the inner spiral corrugated tube by welding and joining the ends of the plate members.

第十八番目の発明に係る熱交換器の製造方法は、第四番目の発明に係る熱交換器の製造方法であって、前記内側螺旋波形管を筒材の内側に差し込んで、当該筒材に溶接ビードを形成して当該筒材の周方向の長さを収縮させることにより、当該内側螺旋波形管の外周面に前記円筒体を取り付けることを特徴とする。   A heat exchanger manufacturing method according to an eighteenth aspect of the invention is a heat exchanger manufacturing method according to the fourth aspect of the invention, in which the inner spiral corrugated tube is inserted into the inner side of a cylindrical member, and the tube The cylindrical body is attached to the outer peripheral surface of the inner spiral corrugated tube by forming a weld bead on the material and contracting the circumferential length of the cylindrical member.

第十九番目の発明に係る熱交換器の製造方法は、第十六番目から第十八番目の発明のいずれかにおいて、円筒管の両端側を押圧支持しながら回転させ、当該円筒管の外周面に球体を押し付けながら当該円筒管の軸方向に送り運動させてスピニング加工することにより、前記内側螺旋波形管を作製することを特徴とする。   According to a nineteenth aspect of the present invention, there is provided a heat exchanger manufacturing method as defined in any one of the sixteenth to eighteenth aspects of the invention, wherein the both ends of the cylindrical tube are rotated while being pressed and supported. The inner spiral corrugated tube is manufactured by performing a spinning process by feeding and moving in the axial direction of the cylindrical tube while pressing a spherical body on the outer peripheral surface.

第二十番目の発明に係る熱交換器の製造方法は、第五番目の発明に係る熱交換器の製造方法であって、前記外側螺旋波形管を前記内側螺旋波形管の外周面に焼き嵌めすることを特徴とする。   A heat exchanger manufacturing method according to a twentieth invention is a heat exchanger manufacturing method according to the fifth invention, wherein the outer spiral corrugated tube is shrink-fitted onto the outer peripheral surface of the inner spiral corrugated tube. It is characterized by doing.

第二十一番目の発明に係る熱交換器の製造方法は、第二十番目の発明において、円筒管の両端側を押圧支持しながら回転させ、当該円筒管の外周面に球体を押し付けながら当該円筒管の軸方向に送り運動させてスピニング加工することにより、前記内側螺旋波形管及び前記内側螺旋波形管をそれぞれ作製することを特徴とする。   The heat exchanger manufacturing method according to the twentieth aspect of the invention is the twentieth aspect of the invention, wherein the two ends of the cylindrical tube are rotated while being pressed and supported, and the sphere is pressed against the outer peripheral surface of the cylindrical tube. The inner spiral corrugated tube and the inner spiral corrugated tube are respectively manufactured by performing a feeding process in the axial direction of the cylindrical tube and spinning.

また、第二十二番目の発明は、第一番目から第八番目の発明のいずれかの熱交換器を利用する蒸発器であって、前記第一の流体として加熱ガスを流通させると共に、前記第二の流体として液体を流通させることにより、当該加熱ガスで当該液体を加熱して気化させるものであることを特徴とする。   The twenty-second invention is an evaporator using any one of the heat exchangers of the first to eighth inventions, wherein a heating gas is circulated as the first fluid, and By circulating a liquid as the second fluid, the liquid is heated and vaporized with the heated gas.

また、第二十三番目の発明は、第二十二番目の発明に係る蒸発器と、前記蒸発器の前記熱交換筒の内周面側に加熱ガスを送給する加熱ガス送給手段と、前記蒸発器の前記熱交換筒の前記流通路に水を供給する水供給手段と、前記蒸発器の前記熱交換筒の前記流通路に炭化水素からなる燃料ガスを供給する燃料ガス供給手段と、前記蒸発器から送出された水蒸気と共に前記燃料ガスを水蒸気改質して水素ガスを含有する燃料ガスを生成させる燃料改質手段と、前記燃料改質手段で改質された前記燃料ガスが燃料極側に送給される燃料電池本体と、前記燃料電池本体の酸化極側に酸素を含有する酸化ガスを供給する酸化ガス供給手段とを備えていることを特徴とする燃料電池発電システムである。   The twenty-third invention includes an evaporator according to the twenty-second invention, and a heating gas supply means for supplying a heating gas to the inner peripheral surface side of the heat exchange cylinder of the evaporator. Water supply means for supplying water to the flow passage of the heat exchange cylinder of the evaporator, and fuel gas supply means for supplying fuel gas composed of hydrocarbons to the flow passage of the heat exchange cylinder of the evaporator; A fuel reforming means for generating a fuel gas containing hydrogen gas by steam reforming the fuel gas together with the steam delivered from the evaporator; and the fuel gas reformed by the fuel reforming means is a fuel. A fuel cell power generation system comprising: a fuel cell main body fed to the electrode side; and an oxidizing gas supply means for supplying an oxidizing gas containing oxygen to the oxidation electrode side of the fuel cell main body. .

第二十四番目の発明は、第二十三番目の発明において、前記加熱ガス送給手段が、前記蒸発器の前記熱交換筒の内側に配設されて、前記燃料電池本体から排出された燃料ガスを燃焼させて燃焼排ガスを送出する燃焼バーナであることを特徴とする燃料電池発電システムである。   According to a twenty-fourth invention, in the twenty-third invention, the heated gas supply means is disposed inside the heat exchange cylinder of the evaporator and discharged from the fuel cell main body. A fuel cell power generation system, characterized by being a combustion burner that combusts fuel gas and delivers combustion exhaust gas.

本発明に係る熱交換器によれば、熱交換筒を介して加熱ガスと液体とが面接触するようになるので、簡単な構造でありながらも、効率よく加熱することができる。   According to the heat exchanger according to the present invention, the heating gas and the liquid come into surface contact via the heat exchange cylinder, so that the heating can be efficiently performed even with a simple structure.

本発明に係る熱交換器及びその製造方法の実施形態を図面に基づいて以下に説明するが、本発明は、図面に基づいて以下に説明する実施形態のみに限定されるものではない。   Embodiments of a heat exchanger and a manufacturing method thereof according to the present invention will be described below with reference to the drawings. However, the present invention is not limited only to the embodiments described below with reference to the drawings.

[第一番目の実施形態]
本発明に係る熱交換器を蒸発器に利用した場合の第一番目の実施形態を図1,2に基づいて説明する。図1は、蒸発器の要部の概略構成図、図2は、図1の蒸発器を利用した燃料電池発電システムの概略構成図である。
[First embodiment]
A first embodiment in which the heat exchanger according to the present invention is used in an evaporator will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a main part of an evaporator, and FIG. 2 is a schematic configuration diagram of a fuel cell power generation system using the evaporator of FIG.

本実施形態に係る蒸発器は、図1に示すように、加熱ガスである燃焼排ガス6で液体である水2を加熱して気化させる蒸発器10であって、内周面側に第一の流体である燃焼排ガス6を流通させると共に、第二の流体である水2を周方向に沿って流通させる流通路10aを軸方向に向かって螺旋状に形成した熱交換筒である加熱筒を備えているものであり、この加熱筒が、円筒体11と、円筒体11の外周面に同軸をなして取り付けられて軸方向に向かって螺旋状をなす凹凸を形成された外側螺旋波形管12とを備えてなるものである。さらに、この蒸発器10は、円筒体11の内側に同軸をなして配設された案内筒13を備えている。   As shown in FIG. 1, the evaporator according to the present embodiment is an evaporator 10 that heats and vaporizes water 2 that is liquid with combustion exhaust gas 6 that is heating gas, and has a first on the inner peripheral surface side. A heating cylinder, which is a heat exchange cylinder in which a flow passage 10a for circulating the combustion exhaust gas 6 as a fluid and the water 2 as a second fluid along the circumferential direction is formed in a spiral shape in the axial direction, is provided. The heating cylinder includes a cylindrical body 11, and an outer spiral corrugated tube 12 that is coaxially attached to the outer peripheral surface of the cylindrical body 11 and has an irregular shape that spirals in the axial direction. Is provided. Further, the evaporator 10 includes a guide cylinder 13 disposed coaxially inside the cylindrical body 11.

このような本実施形態に係る蒸発器10において、上記外側螺旋波形管12は、円筒管の両端側を押圧支持しながら回転させ、当該円筒管の外周面に球体の押圧ローラを押し付けながら当該円筒管の軸方向に送り運動させてスピニング加工することにより、容易に作製することができる。   In the evaporator 10 according to the present embodiment, the outer spiral corrugated tube 12 is rotated while pressing and supporting both ends of the cylindrical tube, and the cylindrical tube is pressed while pressing a spherical pressing roller against the outer peripheral surface of the cylindrical tube. It can be easily manufactured by carrying out a spinning process by feeding it in the axial direction of the tube.

そして、上記外側螺旋波形管12を円筒体11の外周面に焼き嵌めすることや、上記外側螺旋波形管12よりも小径の円筒体11を当該外側螺旋波形管12内に差し込んだ後、当該円筒体11の内部に径方向に拡縮可能な拡径治具を差し込んで円筒体11を拡径して径方向に均一に塑性変形させることや、上記外側螺旋波形管12よりも小径の円筒体11を当該外側螺旋波形管12内に差し込んだ後、当該外側螺旋波形管12の内径と同等の外径を有するプラグを円筒体11の内側に嵌め込んで引き抜き、径方向に均一に塑性変形させること等により、本実施形態に係る蒸発器10を容易に作製することができる。   Then, the outer spiral corrugated tube 12 is shrink-fitted on the outer peripheral surface of the cylindrical body 11, or the cylindrical body 11 having a smaller diameter than the outer spiral corrugated tube 12 is inserted into the outer spiral corrugated tube 12, and then the cylinder. A diameter expanding jig capable of expanding and contracting in the radial direction is inserted into the body 11 to expand the diameter of the cylindrical body 11 and uniformly plastically deform in the radial direction, or the cylindrical body 11 having a smaller diameter than the outer spiral corrugated tube 12. Is inserted into the outer spiral corrugated tube 12, and then a plug having an outer diameter equivalent to the inner diameter of the outer spiral corrugated tube 12 is fitted into the cylindrical body 11 and pulled out to be uniformly plastically deformed in the radial direction. Thus, the evaporator 10 according to the present embodiment can be easily manufactured.

このようにして作製可能な本実施形態に係る蒸発器10においては、円筒体11の外周面と外側螺旋波形管12との間に形成される螺旋状の前記流通路10aに上方から水2を供給すると共に、円筒体11の内周面、すなわち、円筒体11と前記案内筒13との間に下方から燃焼排ガス6を流通させると、燃焼排ガス6の熱が上記円筒体11を介して上記流通路10a内を流通する水2に伝達し、当該水2が加熱されて水蒸気2aとなって下方から送出される。   In the evaporator 10 according to the present embodiment that can be produced in this manner, water 2 is supplied from above into the spiral flow passage 10 a formed between the outer peripheral surface of the cylindrical body 11 and the outer spiral corrugated tube 12. When the flue gas 6 is circulated from the lower side between the cylindrical body 11 and the guide tube 13 while being supplied, the heat of the flue gas 6 passes through the cylindrical body 11. It is transmitted to the water 2 flowing through the flow passage 10a, and the water 2 is heated to become water vapor 2a and is sent from below.

このとき、燃焼排ガス6が円筒体11に対して面接触すると共に、水2も円筒体11に対して面接触しているので、加熱効率が高まるようになる。   At this time, the combustion exhaust gas 6 is in surface contact with the cylindrical body 11, and the water 2 is also in surface contact with the cylindrical body 11, so that the heating efficiency is increased.

したがって、本実施形態に係る蒸発器10によれば、簡単な構造でありながらも、効率よく加熱することができる。   Therefore, according to the evaporator 10 which concerns on this embodiment, although it is a simple structure, it can heat efficiently.

次に、上述した本実施形態に係る蒸発器10を利用した燃料電池発電システムを図2に基づいて説明する。   Next, a fuel cell power generation system using the evaporator 10 according to the above-described embodiment will be described with reference to FIG.

本実施形態にかかる燃料電池発電システムは、図2に示すように、上述した蒸発器10と、蒸発器10の円筒体11の内周面側に加熱ガスである燃焼ガス6を送給する加熱ガス送給手段である燃焼バーナ111と、蒸発器10の前記流通路10aに水2を供給する水供給手段である水供給源122と、蒸発器10の前記流通路10aに炭化水素系ガスからなる都市ガス等の燃料ガス1を供給する燃料ガス供給手段である燃料ガス供給源121と、蒸発器10から送出された水蒸気2aと共に前記燃料ガス1を水蒸気改質して水素ガスを含有する燃料ガス1を生成させる燃料改質手段である、燃料改質触媒器131,CO変成触媒器132,PROX触媒器133と、これら燃料改質手段131〜133で改質された前記燃料ガス1が燃料極側に送給される燃料電池本体141と、燃料電池本体141の酸化極側に酸素を含有する酸化ガスである空気3を供給する酸化ガス供給手段である送風ファン123とを備えている。   As shown in FIG. 2, the fuel cell power generation system according to this embodiment is configured to supply the above-described evaporator 10 and the combustion gas 6 that is the heating gas to the inner peripheral surface side of the cylindrical body 11 of the evaporator 10. Combustion burner 111 serving as gas supply means, water supply source 122 serving as water supply means for supplying water 2 to the flow passage 10a of the evaporator 10, and hydrocarbon gas to the flow passage 10a of the evaporator 10 A fuel gas supply source 121 that is a fuel gas supply means for supplying a fuel gas 1 such as a city gas and a fuel containing hydrogen gas by steam reforming the fuel gas 1 together with the steam 2a sent from the evaporator 10 Fuel reforming means 131, CO shift catalytic converter 132, PROX catalyst 133, which are fuel reforming means for generating gas 1, and the fuel gas 1 reformed by these fuel reforming means 131-133 are used as fuel. Extreme side A fuel cell main body 141 to be fed, and a blower fan 123 is an oxide gas supply means for supplying air 3 is an oxidizing gas containing oxygen to the oxidizing electrode of the fuel cell main body 141.

前記蒸発器10は、円筒体11及び外側螺旋波形管12並びに案内筒13の基端側が、支持板14に支持されると共に、円筒体11の先端側が蓋板15で閉塞される。案内筒13の先端側と蓋板15との間には、隙間が形成される。   In the evaporator 10, the base end side of the cylindrical body 11, the outer spiral corrugated tube 12, and the guide tube 13 is supported by the support plate 14, and the distal end side of the cylindrical body 11 is closed by the lid plate 15. A gap is formed between the distal end side of the guide tube 13 and the cover plate 15.

前記燃焼バーナ111は、蒸発器10の円筒体11の内側に同軸をなすように前記支持板14に支持され、送給ファン112からの燃焼用の空気4及び燃料ガス供給源113からの燃焼用の都市ガス等の燃料ガス5と共に、前記燃料電池本体141から排出された燃料ガス1を燃焼させることにより、前記案内筒13の先端側と前記蓋板15との間の隙間を介して、燃焼排ガス6を蒸発器10の円筒体11と前記案内筒13との間に流通させることができるようになっている。   The combustion burner 111 is supported by the support plate 14 so as to be coaxial with the inner side of the cylindrical body 11 of the evaporator 10, and is used for combustion from the supply air 112 and the fuel gas supply source 113. By burning the fuel gas 1 discharged from the fuel cell main body 141 together with the fuel gas 5 such as the city gas, the fuel gas 1 is burned through the gap between the tip end side of the guide tube 13 and the lid plate 15. The exhaust gas 6 can be circulated between the cylindrical body 11 of the evaporator 10 and the guide tube 13.

前記燃料改質触媒器131は、蒸発器10の前記流通路10aから送出された燃料ガス1及び水蒸気2aとを反応させて一酸化炭素と水素とに改質する水蒸気改質反応(CH4+H2O→CO+3H2)を行うものであり、前記蒸発器10を構成する前記円筒体11の外周面の一部に周方向にわたって配設され、上記水蒸気改質反応を行うに際して、前記燃焼バーナ111からの燃焼排ガス6の熱を利用するようにしている。 The fuel reforming catalyst 131 reacts the fuel gas 1 sent from the flow passage 10a of the evaporator 10 and the water vapor 2a to reform to carbon monoxide and hydrogen (CH 4 + H). 2 O → CO + 3H 2 ), which is disposed on a part of the outer peripheral surface of the cylindrical body 11 constituting the evaporator 10 in the circumferential direction, and when performing the steam reforming reaction, the combustion burner 111 The heat of the combustion exhaust gas 6 from is used.

前記CO変成触媒器132は、前記燃料改質器131から送給された一酸化炭素と水蒸気2aとを反応させて二酸化炭素と水素とに変成するCO変成(COシフト)反応(CO+H2O→CO2+H2)を行うものである。 The CO shift catalytic converter 132 reacts with the carbon monoxide fed from the fuel reformer 131 and the water vapor 2a to convert it into carbon dioxide and hydrogen (CO shift) reaction (CO + H 2 O → CO 2 + H 2 ).

前記PROX触媒器133は、前記CO変成触媒器132から送出された一酸化炭素と酸素とを反応させて二酸化炭素に選択酸化反応(CO+1/2O2→CO2)を行うものである。 The PROX catalyst 133 performs a selective oxidation reaction (CO + 1 / 2O 2 → CO 2 ) on carbon dioxide by reacting carbon monoxide and oxygen delivered from the CO shift catalyst 132.

前記燃料電池本体141は、前記PROX触媒器133からの改質された燃料ガス1中の水素ガスと、送風ファン123からの空気3とを電気化学的に反応させて発電することができるものである。   The fuel cell main body 141 can generate electricity by electrochemically reacting the hydrogen gas in the reformed fuel gas 1 from the PROX catalyst 133 and the air 3 from the blower fan 123. is there.

このような本実施形態に係る燃料電池発電システムにおいては、送給ファン112及び燃料ガス供給源113から燃焼用の空気4及び燃料ガス5を燃焼バーナ111に供給し、燃焼バーナ111から火炎を生じさせて燃焼排ガス6を発生させると共に、燃料供給源121及び水供給源122から燃料ガス1及び水2を蒸発器10の前記流通路10aに上方から供給すると、上記燃焼排ガス6は、蒸発器10の案内筒13の内部を下方に流れて、当該案内筒13の先端側と蓋板15との間の隙間から円筒体11と案内筒13との間に流入して当該間を上昇する一方、燃料ガス1及び水2は、蒸発器10の円筒体11の外周面に沿って軸方向に向かって螺旋状に流下し、上記間を流通する燃焼排ガス6からの熱により加熱され、水2が水蒸気2aとなって燃料ガス1と共に燃料改質触媒器131に送給される。上記間を流通した燃焼排ガス6は、図示しない排気口から外部へ排出される。   In the fuel cell power generation system according to this embodiment, the combustion air 4 and the fuel gas 5 are supplied from the feed fan 112 and the fuel gas supply source 113 to the combustion burner 111, and a flame is generated from the combustion burner 111. When the combustion exhaust gas 6 is generated and the fuel gas 1 and water 2 are supplied from the fuel supply source 121 and the water supply source 122 to the flow passage 10a of the evaporator 10 from above, the combustion exhaust gas 6 is supplied to the evaporator 10. The inside of the guide tube 13 flows downward and flows between the cylindrical body 11 and the guide tube 13 through the gap between the front end side of the guide tube 13 and the cover plate 15 and rises between the two. The fuel gas 1 and the water 2 flow down spirally in the axial direction along the outer peripheral surface of the cylindrical body 11 of the evaporator 10 and are heated by the heat from the combustion exhaust gas 6 flowing between the above, and the water 2 is Water vapor 2a It is fed to the fuel reforming catalyst 131 together with the fuel gas 1. The combustion exhaust gas 6 that has circulated between the above is discharged to the outside from an exhaust port (not shown).

燃料改質触媒器131に送給された燃料ガス1及び水蒸気2aは、先に説明したように、一酸化炭素と水素とに改質された後、CO変成触媒器132に送給されて一酸化炭素と水蒸気2aとが二酸化炭素と水素とに変成されてから、PROX触媒器133に送給されて一酸化炭素と酸素とが二酸化炭素に選択酸化された後に燃料電池本体141の燃料極側に送給され、上記改質反応によって生成した水素ガスが、前記送風ファン123から燃料電池本体141の酸化極側に送給された空気3の酸素と電気化学的に反応することにより、発電する。   As described above, the fuel gas 1 and the water vapor 2a supplied to the fuel reforming catalyst 131 are reformed into carbon monoxide and hydrogen, and then supplied to the CO shift catalytic converter 132. After the carbon oxide and the water vapor 2a are converted into carbon dioxide and hydrogen, the carbon dioxide and oxygen are selectively oxidized to carbon dioxide after being supplied to the PROX catalyst 133, and then on the fuel electrode side of the fuel cell main body 141. The hydrogen gas generated by the above reforming reaction is electrochemically reacted with oxygen in the air 3 supplied from the blower fan 123 to the oxidation electrode side of the fuel cell main body 141 to generate electric power. .

燃料電池本体141で発電に使用された燃料ガス1は、前記燃焼バーナ111に送給され、前記送給ファン112及び前記燃料ガス供給源113からの燃焼用の空気4及び燃料ガス5と共に燃焼される一方、燃料電池本体141で発電に使用された空気3は、外部へ排出される。   The fuel gas 1 used for power generation in the fuel cell main body 141 is fed to the combustion burner 111 and burned together with the combustion air 4 and the fuel gas 5 from the feed fan 112 and the fuel gas supply source 113. On the other hand, the air 3 used for power generation in the fuel cell main body 141 is discharged to the outside.

このような本実施形態に係る燃料電池発電システムにおいては、簡単な構造でありながらも、効率よく加熱することができる蒸発器10を利用していることから、燃焼バーナ111からの燃焼排ガス6の熱量を小さくすることができるので、燃焼用の燃料ガス5の消費量を削減することができる。   In such a fuel cell power generation system according to the present embodiment, since the evaporator 10 that can be efficiently heated is used while having a simple structure, the combustion exhaust gas 6 from the combustion burner 111 is reduced. Since the amount of heat can be reduced, the consumption of fuel gas 5 for combustion can be reduced.

したがって、本実施形態に係る燃料電池発電システムによれば、ランニングコストを低減することができる。   Therefore, according to the fuel cell power generation system according to the present embodiment, the running cost can be reduced.

なお、例えば、前記蒸発器10を1kW級の燃料電池発電システムに適用する場合、蒸発器10の入口側での温度が、燃焼排ガス6で400〜600℃、水2と燃料ガス1との混合体で常温〜200℃、蒸発器10内を流れる流体の流量が、燃焼排ガス6で5〜30NL/分、水2で1〜20g/分、燃料ガス1で0〜5NL/分となり、当該条件から、前記蒸発器10の加熱筒の外側螺旋波形管12の管径D、管長L、伝熱面積A(=πDL)を設定する。   For example, when the evaporator 10 is applied to a 1 kW class fuel cell power generation system, the temperature on the inlet side of the evaporator 10 is 400 to 600 ° C. in the combustion exhaust gas 6, and the water 2 and the fuel gas 1 are mixed. The flow rate of the fluid flowing through the evaporator 10 at room temperature to 200 ° C. is 5-30 NL / min for the combustion exhaust gas 6, 1-20 g / min for the water 2, 0-5 NL / min for the fuel gas 1. Then, the tube diameter D, tube length L, and heat transfer area A (= πDL) of the outer spiral corrugated tube 12 of the heating cylinder of the evaporator 10 are set.

また、伝熱効率を高めるために、外側螺旋波形管12の波形のピッチPをできるだけ小さくする、すなわち、流通路10aの断面積Sをできるだけ小さく設定する。他方、水2が水蒸気2aとなる相変化を生じることから、相変化に十分に対応できるように、流通路10aの断面積Sの下限値を設定する。このような各種条件を十分に考慮して上述した各種値が設定される。このため、条件によっては、例えば、上記ピッチPを上方から下方へ順次小さくすることや、上記ピッチPを上方から下方へ順次大きくすると、より好ましい場合もある。   In order to increase the heat transfer efficiency, the corrugated pitch P of the outer spiral corrugated tube 12 is made as small as possible, that is, the cross-sectional area S of the flow passage 10a is set as small as possible. On the other hand, since the phase change in which the water 2 becomes the water vapor 2a occurs, the lower limit value of the cross-sectional area S of the flow passage 10a is set so as to sufficiently cope with the phase change. The various values described above are set in consideration of such various conditions. For this reason, depending on conditions, for example, it may be more preferable to decrease the pitch P sequentially from the upper side to the lower side, or increase the pitch P sequentially from the upper side to the lower side.

[第二番目の実施形態]
本発明に係る熱交換器を蒸発器に利用した場合の第二番目の実施形態を図3に基づいて説明する。図3は、蒸発器の要部の概略構成図である。なお、前述した第一番目の実施形態の場合と同様な部分については、前述した第一番目の実施形態の説明で用いた符号と同様な符号を本実施形態でも用いることにより、前述した第一番目の実施形態での説明と重複する説明を省略する。
[Second Embodiment]
A second embodiment when the heat exchanger according to the present invention is used in an evaporator will be described with reference to FIG. FIG. 3 is a schematic configuration diagram of a main part of the evaporator. In addition, about the part similar to the case of 1st embodiment mentioned above, the code | symbol similar to the code | symbol used in description of 1st embodiment mentioned above is used also in this embodiment, and 1st mentioned above. Description overlapping with that in the second embodiment is omitted.

本実施形態に係る蒸発器は、図3に示すように、加熱ガスである燃焼排ガス6で液体である水2を加熱して気化させる蒸発器20であって、内周面側に第一の流体である燃焼排ガス6を流通させると共に、第二の流体である水2を周方向に沿って流通させる流通路20aを軸方向に向かって螺旋状に形成した熱交換筒である加熱筒を備えているものであり、この加熱筒が、円筒体22と、円筒体22の内周面に同軸をなして取り付けられて軸方向に向かって螺旋状をなす凹凸を形成された内側螺旋波形管21とを備えてなるものである。さらに、この蒸発器20は、円筒体22の内側に同軸をなして配設された案内筒13を備えている。   As shown in FIG. 3, the evaporator according to the present embodiment is an evaporator 20 that heats and vaporizes water 2 that is liquid with combustion exhaust gas 6 that is heating gas, and has a first on the inner peripheral surface side. It has a heating cylinder that is a heat exchange cylinder in which a flow passage 20a that circulates the combustion exhaust gas 6 as a fluid and circulates the water 2 as a second fluid along the circumferential direction is formed in a spiral shape in the axial direction. This heating cylinder is attached to the cylindrical body 22 and the inner peripheral surface of the cylindrical body 22 coaxially, and an inner spiral corrugated tube 21 formed with concavities and convexities spiraling in the axial direction. Is provided. Further, the evaporator 20 includes a guide cylinder 13 disposed coaxially inside the cylindrical body 22.

このような本実施形態に係る蒸発器20において、上記内側螺旋波形管21は、前述した第一番目の実施形態の前記外側螺旋波形管12の場合と同様にして、円筒管から容易に作製することができる。   In the evaporator 20 according to this embodiment, the inner spiral corrugated tube 21 is easily manufactured from a cylindrical tube in the same manner as the outer spiral corrugated tube 12 of the first embodiment described above. be able to.

そして、前述した第一番目の実施形態の場合と同様にして、円筒体22を上記内側螺旋波形管21の外周面に焼き嵌めすることにより、本実施形態に係る蒸発器20を容易に作製することができる。   And the evaporator 20 which concerns on this embodiment is produced easily by shrink-fitting the cylindrical body 22 to the outer peripheral surface of the said inner side spiral corrugated tube 21 similarly to the case of 1st embodiment mentioned above. be able to.

また、例えば、図4に示すように、上記内側螺旋波形管21の外周面に板材22aを周方向に沿うように湾曲させて設けて、当該板材22aの端部同士を溶接接合すると共に、当該板材22aの縁端を当該内側螺旋波形管21に溶接接合することにより、当該内側螺旋波形管21の外周面に円筒体22を周方向に締め付けるようにして取り付けることによっても、本実施形態に係る蒸発器20を容易に作製することができる。   Further, for example, as shown in FIG. 4, the plate member 22 a is provided on the outer peripheral surface of the inner spiral corrugated tube 21 so as to be curved along the circumferential direction, and the end portions of the plate member 22 a are welded together, The edge of the plate member 22a is welded and joined to the inner spiral corrugated tube 21 so that the cylindrical body 22 is attached to the outer peripheral surface of the inner spiral corrugated tube 21 so as to be tightened in the circumferential direction. The evaporator 20 can be easily manufactured.

このような図4に示したような方法によれば、板材22aの上記周方向の長さと内側螺旋波形管21の径方向のサイズとに誤差が多少ある場合や、内側螺旋波形管21の真円度が高くない場合であっても、内側螺旋波形管21に対して円筒体22を密着させることが容易にできるので、非常に好ましい。   According to such a method as shown in FIG. 4, there is a slight error between the circumferential length of the plate member 22 a and the radial size of the inner spiral corrugated tube 21, or the trueness of the inner spiral corrugated tube 21. Even when the circularity is not high, the cylindrical body 22 can be easily brought into close contact with the inner spiral corrugated tube 21, which is very preferable.

また、例えば、図5に示すように、上記内側螺旋波形管21の外周面に複数(図4では2枚)の板材22bを湾曲させて設けて、当該板材22bの端部同士を溶接接合すると共に、当該板材22bの縁端を当該内側螺旋波形管21に溶接接合することにより、当該内側螺旋波形管21の外周面に円筒体22を周方向に締め付けるようにして取り付けることによっても、本実施形態に係る蒸発器20を容易に作製することができる。   Further, for example, as shown in FIG. 5, a plurality of (two in FIG. 4) plate members 22b are provided on the outer peripheral surface of the inner spiral corrugated tube 21, and the ends of the plate members 22b are welded together. In addition, the present embodiment can also be implemented by attaching the cylindrical body 22 to the outer peripheral surface of the inner spiral corrugated tube 21 in a circumferential direction by welding the edge of the plate member 22b to the inner spiral corrugated tube 21. The evaporator 20 which concerns on a form can be produced easily.

このような図5に示したような方法によれば、上述した図4に示した場合と同様に、当該板材22bの上記周方向の長さと内側螺旋波形管21の径方向のサイズとに誤差が多少ある場合や、内側螺旋波形管21の真円度が高くない場合であっても、内側螺旋波形管21に対して円筒体22を密着させることが容易にできるのはもちろんのこと、板材22bの溶接接合する端部同士の箇所が複数(図4では2箇所)あるので、内側螺旋波形管21に対する円筒体22の密着性(締め付け具合)を周方向に均一にすることが容易にできるので、さらに好ましい。   According to such a method as shown in FIG. 5, as in the case shown in FIG. 4 described above, there is an error in the circumferential length of the plate member 22 b and the radial size of the inner spiral corrugated tube 21. Of course, the cylindrical body 22 can be easily brought into close contact with the inner spiral corrugated tube 21 even when the inner spiral corrugated tube 21 is not high in roundness. Since there are a plurality of locations (2 locations in FIG. 4) between the end portions of the welded portion 22b, the adhesion (tightening degree) of the cylindrical body 22 to the inner spiral corrugated tube 21 can be easily made uniform in the circumferential direction. Therefore, it is more preferable.

なお、例えば、図6に示すように、上記内側螺旋波形管21を筒材22cの内側に差し込んで、当該筒材22cに溶接ビード22caを形成して当該筒材22cの周方向の長さを収縮させると共に、当該筒材22cの縁端を当該内側螺旋波形管21に溶接接合することにより、当該内側螺旋波形管21の外周面に円筒体22を周方向に締め付けるようにして取り付けることによっても、本実施形態に係る蒸発器20を容易に作製することが可能である。   For example, as shown in FIG. 6, the inner spiral corrugated tube 21 is inserted inside the cylindrical member 22c, and a weld bead 22ca is formed on the cylindrical member 22c so that the circumferential length of the cylindrical member 22c is increased. Also by shrinking and attaching the cylindrical body 22 to the outer peripheral surface of the inner spiral corrugated tube 21 in a circumferential direction by welding the edge of the cylindrical member 22c to the inner spiral corrugated tube 21. The evaporator 20 according to the present embodiment can be easily manufactured.

このようにして作製可能な本実施形態に係る蒸発器20においては、前述した第一番目の実施形態の場合と同様に、円筒体22の内周面と内側螺旋波形管21との間に形成される螺旋状の前記流通路20aに上方から水2を供給すると共に、内側螺旋波形管21の内周面、すなわち、内側螺旋波形管21と前記案内筒13との間に下方から燃焼排ガス6を流通させると、燃焼排ガス6の熱が上記内側螺旋波形管21を介して上記流通路20a内を流通する水2に伝達し、当該水2が加熱されて水蒸気2aとなって下方から送出される。   In the evaporator 20 according to the present embodiment that can be produced in this manner, it is formed between the inner peripheral surface of the cylindrical body 22 and the inner spiral corrugated tube 21 as in the case of the first embodiment described above. The water 2 is supplied to the spiral flow passage 20a from above, and the combustion exhaust gas 6 from below is provided between the inner peripheral surface of the inner spiral corrugated tube 21, that is, between the inner spiral corrugated tube 21 and the guide tube 13. , The heat of the combustion exhaust gas 6 is transmitted to the water 2 flowing through the flow passage 20a through the inner spiral corrugated tube 21, and the water 2 is heated to become water vapor 2a and sent from below. The

このとき、燃焼排ガス6が内側螺旋波形管21に対して面接触すると共に、水2も内側螺旋波形管21に対して面接触しているので、加熱効率が高まるようになる。   At this time, the combustion exhaust gas 6 is in surface contact with the inner spiral corrugated tube 21, and the water 2 is also in surface contact with the inner spiral corrugated tube 21, so that the heating efficiency is increased.

つまり、前述した第一番目の実施形態では、円筒体11の外周面に外側螺旋波形管12を取り付けて加熱筒を構成するようにしたが、本実施形態では、円筒体22の内周面に内側螺旋波形管21を取り付けて加熱筒を構成するようにしたのである。   That is, in the first embodiment described above, the outer spiral corrugated tube 12 is attached to the outer peripheral surface of the cylindrical body 11 to form a heating cylinder, but in this embodiment, the inner peripheral surface of the cylindrical body 22 is formed. The inner spiral corrugated tube 21 is attached to form a heating cylinder.

したがって、本実施形態に係る蒸発器20によれば、前述した第一番目の実施形態の場合と同様に、簡単な構造でありながらも、効率よく加熱することができるのはもちろんのこと、内側螺旋波形管21を介して燃焼排ガス6の熱を水2に伝達するようにしたので、前述した第一番目の実施形態の場合よりも伝熱面積をさらに増やすことができ、前述した第一番目の実施形態の場合よりもさらに効率よく加熱することができる。加えて、前記螺旋波形管21が、内周面側よりも外周面側で高い精度を有するため、外周面に円筒体22を取り付けることにより、前述した第一番目の実施形態の場合よりも流通路20aの精度を高めることができる。   Therefore, according to the evaporator 20 according to the present embodiment, as in the case of the first embodiment described above, it is possible to heat efficiently while having a simple structure. Since the heat of the combustion exhaust gas 6 is transmitted to the water 2 via the spiral corrugated tube 21, the heat transfer area can be further increased as compared with the case of the first embodiment described above. Heating can be performed more efficiently than in the case of the embodiment. In addition, since the spiral corrugated tube 21 has higher accuracy on the outer peripheral surface side than on the inner peripheral surface side, the cylindrical body 22 is attached to the outer peripheral surface, so that the circulation is greater than in the case of the first embodiment described above. The accuracy of the path 20a can be increased.

また、前述した第一番目の実施形態の蒸発器10の場合と同様にして、本実施形態に係る蒸発器20も燃料電池発電システムに利用することができ、前述した第一番目の実施形態の場合と同様な作用効果を得ることができる。   Similarly to the evaporator 10 of the first embodiment described above, the evaporator 20 according to the present embodiment can also be used in the fuel cell power generation system. The same effect as the case can be obtained.

[第三番目の実施形態]
本発明に係る熱交換器を蒸発器に利用した場合の第三番目の実施形態を図7に基づいて説明する。図7は、蒸発器の要部の概略構成図である。なお、前述した第一,二番目の実施形態の場合と同様な部分については、前述した第一,二番目の実施形態の説明で用いた符号と同様な符号を本実施形態でも用いることにより、前述した第一,二番目の実施形態での説明と重複する説明を省略する。
[Third embodiment]
A third embodiment when the heat exchanger according to the present invention is used in an evaporator will be described with reference to FIG. FIG. 7 is a schematic configuration diagram of a main part of the evaporator. For the same parts as those in the first and second embodiments described above, the same reference numerals as those used in the description of the first and second embodiments described above are used in this embodiment. Descriptions overlapping with those described in the first and second embodiments are omitted.

本実施形態に係る蒸発器は、図7に示すように、加熱ガスである燃焼排ガス6で液体である水2を加熱して気化させる蒸発器30であって、内周面側に第一の流体である燃焼排ガス6を流通させると共に、第二の流体である水2を周方向に沿って流通させる流通路30aを軸方向に向かって螺旋状に形成した熱交換筒である加熱筒を備えているものであり、この加熱筒が、軸方向に向かって螺旋状をなす凹凸を形成された内側螺旋波形管21と、軸方向に向かって螺旋状をなす凹凸を形成されて内側螺旋波形管21との間に軸方向に向かって螺旋状の前記流通路30aを形成するように内側螺旋波形管21の外面に同軸をなして取り付けられた外側螺旋波形管12とを備えてなるものである。さらに、この蒸発器30は、円筒体11の内側に同軸をなして配設された案内筒13を備えている。   As shown in FIG. 7, the evaporator according to the present embodiment is an evaporator 30 that heats and vaporizes water 2 that is liquid with combustion exhaust gas 6 that is heating gas, and has a first on the inner peripheral surface side. A heating cylinder which is a heat exchange cylinder in which a flow passage 30a for circulating the combustion exhaust gas 6 as a fluid and circulating the water 2 as a second fluid along the circumferential direction is formed in a spiral shape in the axial direction is provided. The heating cylinder has an inner spiral corrugated tube 21 formed with irregularities spiraling in the axial direction, and an inner spiral corrugated tube formed with irregularities spiraling in the axial direction. The outer spiral corrugated tube 12 is coaxially attached to the outer surface of the inner spiral corrugated tube 21 so as to form the spiral flow passage 30a in the axial direction between the outer spiral corrugated tube 21 and the outer spiral corrugated tube 21. . Further, the evaporator 30 includes a guide tube 13 disposed coaxially inside the cylindrical body 11.

このような本実施形態に係る蒸発器30は、前述した第一,二番目の実施形態の場合と同様にして円筒管から上記螺旋波形管12,21をそれぞれ容易に作製することができ、前述した第一番目の実施形態の場合と同様にして、外側螺旋波形管12を内側螺旋波形管21の外周面に焼き嵌めすること等により、容易に作製することができる。   The evaporator 30 according to this embodiment can easily produce the spiral corrugated tubes 12 and 21 from the cylindrical tube, respectively, in the same manner as in the first and second embodiments described above. As in the case of the first embodiment, the outer spiral corrugated tube 12 can be easily manufactured by shrink fitting the outer spiral surface of the inner spiral corrugated tube 21 or the like.

このようにして作製可能な本実施形態に係る蒸発器30においては、前述した第一,二番目の実施形態の場合と同様に、外側螺旋波形管12の内周面と内側螺旋波形管21の外周面との間に形成される螺旋状の前記流通路30aに上方から水2を供給すると共に、内側螺旋波形管21の内周面、すなわち、内側螺旋波形管21と前記案内筒13との間に下方から燃焼排ガス6を流通させると、燃焼排ガス6の熱が上記内側螺旋波形管21を介して上記流通路30a内を流通する水2に伝達し、当該水2が加熱されて水蒸気2aとなって下方から送出される。   In the evaporator 30 according to the present embodiment that can be produced in this manner, the inner peripheral surface of the outer spiral corrugated tube 12 and the inner spiral corrugated tube 21 are similar to the first and second embodiments described above. Water 2 is supplied from above to the spiral flow passage 30a formed between the outer peripheral surface and the inner peripheral surface of the inner spiral corrugated tube 21, that is, between the inner spiral corrugated tube 21 and the guide tube 13. When the combustion exhaust gas 6 is circulated from below, the heat of the combustion exhaust gas 6 is transmitted to the water 2 flowing through the flow passage 30a via the inner spiral corrugated tube 21, and the water 2 is heated to steam 2a. And sent from below.

このとき、燃焼排ガス6が内側螺旋波形管21に対して面接触すると共に、水2も内側螺旋波形管21に対して面接触しているので、加熱効率が高まるようになる。   At this time, the combustion exhaust gas 6 is in surface contact with the inner spiral corrugated tube 21, and the water 2 is also in surface contact with the inner spiral corrugated tube 21, so that the heating efficiency is increased.

つまり、前述した第一番目の実施形態では、円筒体11の外周面に外側螺旋波形管12を取り付けて加熱筒を構成し、前述した第二番目の実施形態では、円筒体22の内周面に内側螺旋波形管21を取り付けて加熱筒を構成するようにしたが、本実施形態では、内側螺旋波形管21の外周面に外側螺旋波形管12を取り付けて加熱筒を構成するようにしたのである。   That is, in the first embodiment described above, the outer spiral corrugated tube 12 is attached to the outer peripheral surface of the cylindrical body 11 to form a heating cylinder, and in the second embodiment described above, the inner peripheral surface of the cylindrical body 22. However, in this embodiment, the outer spiral corrugated tube 12 is attached to the outer peripheral surface of the inner spiral corrugated tube 21 to constitute the heating tube. is there.

したがって、本実施形態に係る蒸発器30によれば、前述した第一,二番目の実施形態の場合と同様に、簡単な構造でありながらも、効率よく加熱することができる。   Therefore, according to the evaporator 30 which concerns on this embodiment, it can heat efficiently, although it is a simple structure similarly to the case of the 1st, 2nd embodiment mentioned above.

また、前述した第一,二番目の実施形態の蒸発器10,20の場合と同様にして、本実施形態に係る蒸発器30も燃料電池発電システムに利用することができ、前述した第一,二番目の実施形態の場合と同様な作用効果を得ることができる。   Similarly to the case of the evaporators 10 and 20 of the first and second embodiments described above, the evaporator 30 according to the present embodiment can also be used in the fuel cell power generation system. The same effects as those of the second embodiment can be obtained.

[他の実施形態]
なお、前述した第二,三番目の実施形態では、図3,7に示したように、内側螺旋波形管21と前記案内筒13との間に隙間をあけるように当該案内筒13を配設するようにしたが、他の実施形態として、例えば、図8,9に示すように、内側螺旋波形管21に接触するように当該内側螺旋波形管21の内側に同軸をなして案内筒43を配設して、内側螺旋波形管21と案内筒43との間に軸方向に向かって螺旋状をなす流通路40bを形成した熱交換器である蒸発器40,50とし、燃焼排ガス6を上記流通路40bに流通させて下方から軸方向に向かって螺旋状に流すことにより、燃焼排ガス6による水2の加熱効率をさらに高めるようにすることも可能である。
[Other Embodiments]
In the second and third embodiments described above, as shown in FIGS. 3 and 7, the guide tube 13 is disposed so that a gap is formed between the inner spiral corrugated tube 21 and the guide tube 13. However, as another embodiment, for example, as shown in FIGS. 8 and 9, the guide tube 43 is coaxially formed inside the inner spiral corrugated tube 21 so as to contact the inner spiral corrugated tube 21. The evaporators 40 and 50 are heat exchangers that are arranged and formed with a flow passage 40b spiraling in the axial direction between the inner spiral corrugated tube 21 and the guide tube 43, and the combustion exhaust gas 6 is the above-described It is also possible to further increase the heating efficiency of the water 2 by the combustion exhaust gas 6 by flowing through the flow passage 40b and spirally flowing from below to the axial direction.

さらに、円筒管からなる前記案内筒43に代えて、例えば、図10〜12に示すように、軸方向に向かって螺旋状をなす凹凸を形成されて円筒体11や内側螺旋波形管21との間に軸方向に向かって螺旋状の流通路60b,70bを形成するように当該円筒体11や当該内側螺旋波形管21の内面に同軸をなして案内螺旋波形管63を配設することにより、熱交換器である蒸発器60,70,80を構成することも可能である。   Further, in place of the guide tube 43 formed of a cylindrical tube, for example, as shown in FIGS. 10 to 12, an unevenness that forms a spiral shape in the axial direction is formed so that the cylindrical body 11 and the inner spiral corrugated tube 21 By arranging the guide spiral corrugated tube 63 coaxially with the inner surface of the cylindrical body 11 or the inner spiral corrugated tube 21 so as to form spiral flow passages 60b and 70b in the axial direction therebetween, It is also possible to constitute the evaporators 60, 70 and 80 which are heat exchangers.

また、前述した各実施形態では、軸方向に向かって螺旋状をなす凹凸を形成された前記螺旋波形管を利用して軸方向に向かって螺旋状の流通路を形成するようにしたが、他の実施形態として、例えば、図13に示すように、熱交換筒である加熱筒が、軸方向に向かって螺旋状をなす溝形の流通路90aを外周面の周方向に沿って形成された円筒体91と、円筒体91の前記流通路90aの開口部を閉鎖するように当該円筒体91の外周面に同軸をなして嵌合する蓋筒体92とを備えて熱交換器である蒸発器90を構成することも可能である。   Further, in each of the above-described embodiments, the spiral corrugated tube is formed in the axial direction using the spiral corrugated tube formed with the concave and convex portions that spiral in the axial direction. As an embodiment of the present invention, for example, as shown in FIG. 13, a heating cylinder, which is a heat exchange cylinder, is formed with a groove-shaped flow passage 90 a spiraling in the axial direction along the circumferential direction of the outer peripheral surface. Evaporation, which is a heat exchanger, includes a cylindrical body 91 and a lid cylinder 92 that is coaxially fitted to the outer peripheral surface of the cylindrical body 91 so as to close the opening of the flow passage 90a of the cylindrical body 91. It is also possible to configure the device 90.

この蒸発器90は、円筒管の両端側を支持しながら回転させ、当該円筒管の外周面にバイトを押し付けながら当該円筒管の軸方向に送り運動させて切削加工することにより、上記円筒体91を容易に作製することができ、前述した第二番目の実施形態の場合と同様に、蓋筒体92を円筒体91の外周面に焼き嵌めすることや、上記円筒体91の外周面に板材を周方向に沿うように湾曲させて設けて、当該板材の端部同士を溶接接合すると共に、当該板材の縁端を当該円筒体91に溶接接合することにより、当該円筒体91の外周面に蓋筒体92を周方向に締め付けるようにして取り付けることや、上記円筒体91を筒材の内側に差し込んで、当該筒材に溶接ビードを形成して当該筒材の周方向の長さを収縮させると共に、当該筒材の縁端を当該円筒体91に溶接接合することにより、当該円筒体91の外周面に蓋筒体92を周方向に締め付けるようにして取り付けること等により、容易に作製することができる。   The evaporator 90 is rotated while supporting both ends of the cylindrical tube, and is cut by performing a feed movement in the axial direction of the cylindrical tube while pressing a cutting tool against the outer peripheral surface of the cylindrical tube. As in the case of the second embodiment described above, the cover cylinder 92 is shrink-fitted on the outer peripheral surface of the cylindrical body 91, or the plate material is attached to the outer peripheral surface of the cylindrical body 91. Are provided so as to be curved along the circumferential direction, and the end portions of the plate members are welded to each other, and the edge of the plate member is welded to the cylindrical body 91, whereby the outer peripheral surface of the cylindrical body 91 is bonded. The lid cylinder 92 is attached so as to be tightened in the circumferential direction, or the cylindrical body 91 is inserted inside the cylinder, and a weld bead is formed on the cylinder to shrink the circumferential length of the cylinder. The edge of the cylinder By welding the cylindrical body 91, by such mounting as tightening the cover cylinder 92 on the outer peripheral surface of the cylindrical body 91 in the circumferential direction, can be easily manufactured.

本発明に係る熱交換器は、簡単な構造でありながらも、効率よく加熱することができることから、例えば、燃料電池発電システムの蒸発器に利用すれば、ランニングコストを低減することができるので、産業上、極めて有益に利用することができる。   Since the heat exchanger according to the present invention can be efficiently heated while having a simple structure, for example, if used in an evaporator of a fuel cell power generation system, the running cost can be reduced. It can be used extremely beneficially in industry.

本発明に係る熱交換器を蒸発器に利用した場合の第一番目の実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of 1st embodiment at the time of utilizing the heat exchanger which concerns on this invention for an evaporator. 図1の蒸発器を利用した燃料電池発電システムの概略構成図である。It is a schematic block diagram of the fuel cell power generation system using the evaporator of FIG. 本発明に係る熱交換器を蒸発器に利用した場合の第二番目の実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of 2nd embodiment at the time of utilizing the heat exchanger which concerns on this invention for an evaporator. 図3の蒸発器の製造方法の一例の説明図である。It is explanatory drawing of an example of the manufacturing method of the evaporator of FIG. 図3の蒸発器の製造方法の他の例の説明図である。It is explanatory drawing of the other example of the manufacturing method of the evaporator of FIG. 図3の蒸発器の製造方法のさらに他の例の説明図である。It is explanatory drawing of the further another example of the manufacturing method of the evaporator of FIG. 本発明に係る熱交換器を蒸発器に利用した場合の第三番目の実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of 3rd embodiment at the time of utilizing the heat exchanger which concerns on this invention for an evaporator. 本発明に係る熱交換器を蒸発器に利用した場合の他の実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of other embodiment at the time of utilizing the heat exchanger which concerns on this invention for an evaporator. 本発明に係る熱交換器を蒸発器に利用した場合の他の実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of other embodiment at the time of utilizing the heat exchanger which concerns on this invention for an evaporator. 本発明に係る熱交換器を蒸発器に利用した場合の他の実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of other embodiment at the time of utilizing the heat exchanger which concerns on this invention for an evaporator. 本発明に係る熱交換器を蒸発器に利用した場合の他の実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of other embodiment at the time of utilizing the heat exchanger which concerns on this invention for an evaporator. 本発明に係る熱交換器を蒸発器に利用した場合の他の実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of other embodiment at the time of utilizing the heat exchanger which concerns on this invention for an evaporator. 本発明に係る熱交換器を蒸発器に利用した場合の他の実施形態の要部の概略構成図である。It is a schematic block diagram of the principal part of other embodiment at the time of utilizing the heat exchanger which concerns on this invention for an evaporator. 従来の蒸発器の一例の要部の概略構成図である。It is a schematic block diagram of the principal part of an example of the conventional evaporator.

符号の説明Explanation of symbols

1 燃料ガス
2 水
2a 水蒸気
3 空気
4 空気(燃焼用)
5 燃料ガス(燃焼用)
6 燃焼排ガス
10 蒸発器
10a 流通路
11 円筒体
12 外側螺旋波形管
13 案内筒
14 支持板
15 蓋板
20 蒸発器
20a 流通路
21 内側螺旋波形管
22 円筒体
22a〜22c 板材
22ca 溶接ビード
30 蒸発器
30a 流通路
40,50,60,70,80 蒸発器
40b,60b,70b 流通路
90 蒸発器
90a 流通路
91 円筒体
92 蓋筒体
111 燃焼バーナ
112 送風ファン(燃焼用)
113 燃料ガス供給源(燃焼用)
121 燃料ガス供給源
122 水供給源
123 送風ファン
131 燃料改質触媒器
132 CO変成触媒器
133 PROX触媒器
141 燃料電池本体
1 Fuel gas 2 Water 2a Water vapor 3 Air 4 Air (for combustion)
5 Fuel gas (for combustion)
6 Combustion exhaust gas 10 Evaporator 10a Flow path 11 Cylindrical body 12 Outer spiral corrugated pipe 13 Guide tube 14 Support plate 15 Cover plate 20 Evaporator 20a Flow path 21 Inner spiral corrugated pipe 22 Cylindrical body 22a-22c Plate material 22ca Weld bead 30 Evaporator 30a Flow path 40, 50, 60, 70, 80 Evaporator 40b, 60b, 70b Flow path 90 Evaporator 90a Flow path 91 Cylindrical body 92 Lid cylinder 111 Combustion burner 112 Blower fan (for combustion)
113 Fuel gas supply source (for combustion)
121 Fuel gas supply source 122 Water supply source 123 Blower fan 131 Fuel reforming catalyst device 132 CO shift catalyst device 133 PROX catalyst device 141 Fuel cell main body

Claims (24)

第一の流体と第二の流体との間で熱交換させる熱交換器であって、
内周面側に前記第一の流体を流通させると共に、前記第二の流体を周方向に沿って流通させる流通路を軸方向に向かって螺旋状に形成した熱交換筒を備えている
ことを特徴とする熱交換器。
A heat exchanger for exchanging heat between a first fluid and a second fluid,
A heat exchange cylinder in which the first fluid is circulated on the inner peripheral surface side, and a flow passage that circulates the second fluid along the circumferential direction is formed in a spiral shape in the axial direction. Features heat exchanger.
請求項1において、
前記熱交換筒が、
軸方向に向かって螺旋状をなす溝形の流通路を外周面の周方向に沿って形成された円筒体と、
前記円筒体の前記流通路の開口部を閉鎖するように当該円筒体の外周面に同軸をなして嵌合する蓋筒体と
を備えていることを特徴とする熱交換器。
In claim 1,
The heat exchange tube is
A cylindrical body formed with a groove-shaped flow passage spiraling in the axial direction along the circumferential direction of the outer peripheral surface;
A heat exchanger comprising: a lid cylinder that is coaxially fitted to an outer peripheral surface of the cylindrical body so as to close an opening of the flow passage of the cylindrical body.
請求項1において、
前記熱交換筒が、
円筒体と、
前記円筒体の外周面に同軸をなして取り付けられて軸方向に向かって螺旋状をなす凹凸を形成された外側螺旋波形管と
を備えていることを特徴とする熱交換器。
In claim 1,
The heat exchange tube is
A cylinder,
A heat exchanger comprising: an outer spiral corrugated tube that is attached coaxially to the outer peripheral surface of the cylindrical body and has an unevenness that spirals in the axial direction.
請求項1において、
前記熱交換筒が、
円筒体と、
前記円筒体の内周面に同軸をなして取り付けられて軸方向に向かって螺旋状をなす凹凸を形成された内側螺旋波形管と
を備えていることを特徴とする熱交換器。
In claim 1,
The heat exchange tube is
A cylinder,
A heat exchanger comprising: an inner spiral corrugated tube that is coaxially attached to an inner peripheral surface of the cylindrical body and has an unevenness that spirals in an axial direction.
請求項1において、
前記熱交換筒が、
軸方向に向かって螺旋状をなす凹凸を形成された内側螺旋波形管と、
軸方向に向かって螺旋状をなす凹凸を形成されて前記内側螺旋波形管との間に軸方向に向かって螺旋状の前記流通路を形成するように当該内側螺旋波形管の外面に同軸をなして取り付けられた外側螺旋波形管と
を備えていることを特徴とする熱交換器。
In claim 1,
The heat exchange tube is
An inner spiral corrugated tube formed with irregularities spiraling in the axial direction;
The outer spiral surface of the inner spiral corrugated tube is coaxial with the inner spiral corrugated tube so as to form an axial spiral passage between the inner spiral corrugated tube and the inner spiral corrugated tube. And an outer spiral corrugated tube attached thereto.
請求項3において、
前記熱交換筒の前記円筒体の内周面に接触するように当該熱交換筒の内側に同軸をなして取り付けられて軸方向に向かって螺旋状をなす凹凸を形成された案内螺旋波形管を備えている
ことを特徴とする熱交換器。
In claim 3,
A guide spiral corrugated tube that is coaxially attached to the inside of the heat exchange tube so as to be in contact with the inner peripheral surface of the cylindrical body of the heat exchange tube, and is formed with irregularities that spiral in the axial direction. A heat exchanger characterized by comprising.
請求項4又は請求項5において、
前記熱交換筒の前記内側螺旋波形管に接触するように当該熱交換筒の内側に同軸をなして配設された案内筒を備えている
ことを特徴とする熱交換器。
In claim 4 or claim 5,
A heat exchanger comprising: a guide tube arranged coaxially inside the heat exchange tube so as to contact the inner spiral corrugated tube of the heat exchange tube.
請求項7において、
前記案内筒が、軸方向に向かって螺旋状をなす凹凸を形成されて前記熱交換筒の前記内側螺旋波形管との間に軸方向に向かって螺旋状の流通路を形成するように当該内側螺旋波形管の内面に同軸をなして取り付けられた案内螺旋波形管である
ことを特徴とする熱交換器。
In claim 7,
The guide tube is formed with irregularities that form a spiral shape in the axial direction so as to form a spiral flow passage in the axial direction between the guide tube and the inner spiral corrugated tube of the heat exchange tube. A heat exchanger characterized in that it is a guide spiral corrugated tube attached coaxially to the inner surface of the spiral corrugated tube.
請求項2の熱交換器の製造方法であって、
前記流通路を形成された前記円筒体の外周面に前記蓋筒体を焼き嵌めする
ことを特徴とする熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 2, Comprising:
The method of manufacturing a heat exchanger, wherein the cover cylinder is shrink-fitted on an outer peripheral surface of the cylinder formed with the flow passage.
請求項2の熱交換器の製造方法であって、
前記流通路を形成された前記円筒体の外周面に板材を周方向に沿って設けて当該板材の端部同士を溶接接合することにより、当該円筒体の外周面に前記蓋筒体を取り付ける
ことを特徴とする熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 2, Comprising:
The cover cylinder is attached to the outer peripheral surface of the cylindrical body by providing a plate material along the circumferential direction on the outer peripheral surface of the cylindrical body in which the flow path is formed and welding the end portions of the plate material to each other. The manufacturing method of the heat exchanger characterized by these.
請求項2の熱交換器の製造方法であって、
前記流通路を形成された前記円筒体を筒材の内側に差し込んで、当該筒材に溶接ビードを形成して当該筒材の周方向の長さを収縮させることにより、当該円筒体の外周面に前記蓋筒体を取り付ける
ことを特徴とする熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 2, Comprising:
The outer peripheral surface of the cylindrical body is formed by inserting the cylindrical body in which the flow path is formed inside the cylindrical material, forming a weld bead on the cylindrical material, and contracting the circumferential length of the cylindrical material. A method of manufacturing a heat exchanger, wherein the lid cylinder is attached to a heat exchanger.
請求項9から請求項11のいずれかにおいて、
円筒管の両端側を支持しながら回転させ、当該円筒管の外周面にバイトを押し付けながら当該円筒管の軸方向に送り運動させて切削加工することにより、前記円筒体を作製する
ことを特徴とする熱交換器の製造方法。
In any one of Claims 9-11,
The cylindrical body is manufactured by rotating while supporting both ends of the cylindrical tube, and cutting by moving the cylindrical tube by feeding it in the axial direction while pressing a cutting tool against the outer peripheral surface of the cylindrical tube. A method for manufacturing a heat exchanger.
請求項3の熱交換器の製造方法であって、
前記外側螺旋波形管を前記円筒体の外周面に焼き嵌めする
ことを特徴とする熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 3, Comprising:
The outer spiral corrugated tube is shrink-fitted on the outer peripheral surface of the cylindrical body. A method of manufacturing a heat exchanger, wherein:
請求項3の熱交換器の製造方法であって、
前記外側螺旋波形管よりも小径の前記円筒体を当該外側螺旋波形管内に差し込んで、当該円筒体を拡径して径方向に均一に塑性変形させる
ことを特徴とする熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 3, Comprising:
A method of manufacturing a heat exchanger, wherein the cylindrical body having a smaller diameter than the outer spiral corrugated tube is inserted into the outer spiral corrugated tube, and the cylindrical body is expanded in diameter and uniformly plastically deformed in a radial direction.
請求項13又は請求項14において、
円筒管の両端側を押圧支持しながら回転させ、当該円筒管の外周面に球体を押し付けながら当該円筒管の軸方向に送り運動させてスピニング加工することにより、前記外側螺旋波形管を作製する
ことを特徴とする熱交換器の製造方法。
In claim 13 or claim 14,
The outer spiral corrugated tube is produced by rotating while pressing and supporting both end sides of the cylindrical tube, and performing a spinning process by feeding and moving in the axial direction of the cylindrical tube while pressing a sphere against the outer peripheral surface of the cylindrical tube. The manufacturing method of the heat exchanger characterized by these.
請求項4の熱交換器の製造方法であって、
前記円筒体を前記内側螺旋波形管の外周面に焼き嵌めする
ことを特徴とする熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 4, Comprising:
The method of manufacturing a heat exchanger, wherein the cylindrical body is shrink-fitted on an outer peripheral surface of the inner spiral corrugated tube.
請求項4の熱交換器の製造方法であって、
前記内側螺旋波形管の外周面に板材を周方向に沿って設けて当該板材の端部同士を溶接接合することにより、当該内側螺旋波形管の外周面に前記円筒体を取り付ける
ことを特徴とする熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 4, Comprising:
The cylindrical body is attached to the outer peripheral surface of the inner spiral corrugated tube by providing a plate member along the circumferential direction on the outer peripheral surface of the inner spiral corrugated tube and welding the end portions of the plate member together. Manufacturing method of heat exchanger.
請求項4の熱交換器の製造方法であって、
前記内側螺旋波形管を筒材の内側に差し込んで、当該筒材に溶接ビードを形成して当該筒材の周方向の長さを収縮させることにより、当該内側螺旋波形管の外周面に前記円筒体を取り付ける
ことを特徴とする熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 4, Comprising:
The inner spiral corrugated tube is inserted into the inner side of the tubular member, and a weld bead is formed on the tubular member to shrink the circumferential length of the tubular member, thereby the outer spiral surface of the inner spiral corrugated tube A method of manufacturing a heat exchanger, characterized by attaching a body.
請求項16から請求項18のいずれかにおいて、
円筒管の両端側を押圧支持しながら回転させ、当該円筒管の外周面に球体を押し付けながら当該円筒管の軸方向に送り運動させてスピニング加工することにより、前記内側螺旋波形管を作製する
ことを特徴とする熱交換器の製造方法。
In any one of Claims 16-18,
The inner spiral corrugated tube is manufactured by rotating while pressing and supporting both ends of the cylindrical tube, and by performing a spinning process by feeding and moving in the axial direction of the cylindrical tube while pressing a sphere against the outer peripheral surface of the cylindrical tube. The manufacturing method of the heat exchanger characterized by these.
請求項5の熱交換器の製造方法であって、
前記外側螺旋波形管を前記内側螺旋波形管の外周面に焼き嵌めする
ことを特徴とする熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 5, Comprising:
The outer spiral corrugated tube is shrink-fitted on the outer peripheral surface of the inner spiral corrugated tube.
請求項20において、
円筒管の両端側を押圧支持しながら回転させ、当該円筒管の外周面に球体を押し付けながら当該円筒管の軸方向に送り運動させてスピニング加工することにより、前記内側螺旋波形管及び前記内側螺旋波形管をそれぞれ作製する
ことを特徴とする熱交換器の製造方法。
In claim 20,
The inner spiral corrugated tube and the inner spiral are rotated by pressing and supporting both end sides of the cylindrical tube, and by performing a spinning process by feeding it in the axial direction of the cylindrical tube while pressing a sphere against the outer peripheral surface of the cylindrical tube. A method of manufacturing a heat exchanger, characterized by producing each corrugated tube.
請求項1から請求項8のいずれかの熱交換器を利用する蒸発器であって、
前記第一の流体として加熱ガスを流通させると共に、前記第二の流体として液体を流通させることにより、当該加熱ガスで当該液体を加熱して気化させるものである
ことを特徴とする蒸発器。
An evaporator using the heat exchanger according to any one of claims 1 to 8,
An evaporator, wherein a heating gas is circulated as the first fluid and a liquid is circulated as the second fluid, whereby the liquid is heated and vaporized with the heating gas.
請求項22の蒸発器と、
前記蒸発器の前記熱交換筒の内周面側に加熱ガスを送給する加熱ガス送給手段と、
前記蒸発器の前記熱交換筒の前記流通路に水を供給する水供給手段と、
前記蒸発器の前記熱交換筒の前記流通路に炭化水素からなる燃料ガスを供給する燃料ガス供給手段と、
前記蒸発器から送出された水蒸気と共に前記燃料ガスを水蒸気改質して水素ガスを含有する燃料ガスを生成させる燃料改質手段と、
前記燃料改質手段で改質された前記燃料ガスが燃料極側に送給される燃料電池本体と、
前記燃料電池本体の酸化極側に酸素を含有する酸化ガスを供給する酸化ガス供給手段と
を備えていることを特徴とする燃料電池発電システム。
The evaporator of claim 22;
Heating gas feeding means for feeding a heating gas to the inner peripheral surface side of the heat exchange cylinder of the evaporator;
Water supply means for supplying water to the flow passage of the heat exchange cylinder of the evaporator;
Fuel gas supply means for supplying a fuel gas composed of hydrocarbons to the flow passage of the heat exchange cylinder of the evaporator;
Fuel reforming means for steam reforming the fuel gas together with the steam delivered from the evaporator to produce a fuel gas containing hydrogen gas;
A fuel cell body in which the fuel gas reformed by the fuel reforming means is fed to the fuel electrode side;
An oxidizing gas supply means for supplying an oxidizing gas containing oxygen to the oxidation electrode side of the fuel cell main body.
請求項23において、
前記加熱ガス送給手段が、
前記蒸発器の前記熱交換筒の内側に配設されて、前記燃料電池本体から排出された燃料ガスを燃焼させて燃焼排ガスを送出する燃焼バーナである
ことを特徴とする燃料電池発電システム。
In claim 23,
The heating gas feeding means is
A fuel cell power generation system, characterized in that it is a combustion burner that is disposed inside the heat exchange cylinder of the evaporator and combusts fuel gas discharged from the fuel cell main body to send out combustion exhaust gas.
JP2006285891A 2005-10-21 2006-10-20 Heat exchanger and manufacturing method for it Withdrawn JP2007139404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285891A JP2007139404A (en) 2005-10-21 2006-10-20 Heat exchanger and manufacturing method for it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005306634 2005-10-21
JP2006285891A JP2007139404A (en) 2005-10-21 2006-10-20 Heat exchanger and manufacturing method for it

Publications (1)

Publication Number Publication Date
JP2007139404A true JP2007139404A (en) 2007-06-07

Family

ID=38202486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285891A Withdrawn JP2007139404A (en) 2005-10-21 2006-10-20 Heat exchanger and manufacturing method for it

Country Status (1)

Country Link
JP (1) JP2007139404A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210139A (en) * 2009-03-10 2010-09-24 Orion Mach Co Ltd Water-cooled condenser and refrigerating cycle device
JP2015503209A (en) * 2011-12-23 2015-01-29 ポスコエナジー株式会社Poscoenergy Co.,Ltd. Humidification heat exchanger for fuel cells
JP2016024872A (en) * 2014-07-16 2016-02-08 東京瓦斯株式会社 Fuel battery module
WO2016094817A1 (en) * 2014-12-11 2016-06-16 Fulton Group N.A., Inc. Tubeless heat exchanger for a fluid heating system and methods of manufacture thereof
US10240813B2 (en) 2014-12-11 2019-03-26 Fulton Group N.A., Inc. Fully-wetted, refractory-free tubeless fluid heating system with negligible thermal expansion stress
EP2626657B1 (en) * 2012-02-08 2019-10-02 Lingyu Dong Direct expansion evaporator
WO2021124582A1 (en) * 2019-12-20 2021-06-24 エム・テクニック株式会社 Heat exchanger
WO2021220534A1 (en) * 2020-05-01 2021-11-04 株式会社Eサーモジェンテック Tube-type heat exchanger with thermoelectric power generation function, manufacturing method thereof, and thermoelectric power generation apparatus using same
CN115307459A (en) * 2022-08-11 2022-11-08 深圳中科精艺设计有限公司 Closed type multilayer square-shaped flow passage efficient heat exchanger

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210139A (en) * 2009-03-10 2010-09-24 Orion Mach Co Ltd Water-cooled condenser and refrigerating cycle device
JP2015503209A (en) * 2011-12-23 2015-01-29 ポスコエナジー株式会社Poscoenergy Co.,Ltd. Humidification heat exchanger for fuel cells
EP2626657B1 (en) * 2012-02-08 2019-10-02 Lingyu Dong Direct expansion evaporator
JP2016024872A (en) * 2014-07-16 2016-02-08 東京瓦斯株式会社 Fuel battery module
US10240813B2 (en) 2014-12-11 2019-03-26 Fulton Group N.A., Inc. Fully-wetted, refractory-free tubeless fluid heating system with negligible thermal expansion stress
WO2016094069A1 (en) * 2014-12-11 2016-06-16 Fulton Group N.A., Inc. Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof
GB2550075A (en) * 2014-12-11 2017-11-08 Fulton Group N A Inc Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof
US10228190B2 (en) 2014-12-11 2019-03-12 Fulton Group N.A., Inc. Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof
WO2016094070A1 (en) * 2014-12-11 2016-06-16 Fulton Group N.A., Inc. Ridged tubeless heat exchanger for fluid heating systems including a ridged component and methods of manufacture thereof
WO2016094817A1 (en) * 2014-12-11 2016-06-16 Fulton Group N.A., Inc. Tubeless heat exchanger for a fluid heating system and methods of manufacture thereof
GB2550075B (en) * 2014-12-11 2021-02-24 Fulton Group N A Inc Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof
WO2021124582A1 (en) * 2019-12-20 2021-06-24 エム・テクニック株式会社 Heat exchanger
JPWO2021124582A1 (en) * 2019-12-20 2021-06-24
US20230020370A1 (en) * 2019-12-20 2023-01-19 M. Technique Co., Ltd. Heat exchanger
WO2021220534A1 (en) * 2020-05-01 2021-11-04 株式会社Eサーモジェンテック Tube-type heat exchanger with thermoelectric power generation function, manufacturing method thereof, and thermoelectric power generation apparatus using same
CN115307459A (en) * 2022-08-11 2022-11-08 深圳中科精艺设计有限公司 Closed type multilayer square-shaped flow passage efficient heat exchanger
CN115307459B (en) * 2022-08-11 2023-03-24 深圳中科精艺设计有限公司 Closed type multilayer square-shaped flow passage efficient heat exchanger

Similar Documents

Publication Publication Date Title
JP2007139404A (en) Heat exchanger and manufacturing method for it
JP4151001B2 (en) Heat exchanger
JP2008063193A (en) Hydrogen generator and fuel cell system
JP4479117B2 (en) Fuel reformer
JP2007528340A (en) Highly integrated fuel processor for distributed hydrogen production
JP2006317036A (en) Heat exchanger and water heating device comprising the same
JP5044048B2 (en) Hydrogen generator
KR20100068624A (en) Heater module assembly
JP3920516B2 (en) Reformer
JP4477890B2 (en) Hydrogen generator
JP2006317034A (en) Heat exchanger and water heating device comprising the same
JP5603510B2 (en) Fuel processor
CN112151831B (en) Reformer and fuel cell power generation system thereof
JP4918629B2 (en) Fuel processor
KR101003191B1 (en) Tubes for a reformer for hydrogen production or a heat exchanger
JP2001220106A (en) Reformer
JP4450756B2 (en) Fuel reformer
WO2022113658A1 (en) Heater, heater production method, and heater attachment method
US6805850B2 (en) Co-shift device
JP5874667B2 (en) Evaporator, manufacturing method thereof, hydrogen generator and fuel cell system
JP4450755B2 (en) Fuel reformer
JP6646814B2 (en) Hydrogen generator
JP2021076292A (en) Heat exchanger and reformation system
JP5196540B2 (en) Gas treatment device for fuel cell
JP2004115320A (en) Reforming apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105