JP5874667B2 - Evaporator, manufacturing method thereof, hydrogen generator and fuel cell system - Google Patents

Evaporator, manufacturing method thereof, hydrogen generator and fuel cell system Download PDF

Info

Publication number
JP5874667B2
JP5874667B2 JP2013059683A JP2013059683A JP5874667B2 JP 5874667 B2 JP5874667 B2 JP 5874667B2 JP 2013059683 A JP2013059683 A JP 2013059683A JP 2013059683 A JP2013059683 A JP 2013059683A JP 5874667 B2 JP5874667 B2 JP 5874667B2
Authority
JP
Japan
Prior art keywords
evaporator
spiral
outer cylinder
inner cylinder
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013059683A
Other languages
Japanese (ja)
Other versions
JP2014185045A (en
Inventor
信 稲垣
信 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2013059683A priority Critical patent/JP5874667B2/en
Publication of JP2014185045A publication Critical patent/JP2014185045A/en
Application granted granted Critical
Publication of JP5874667B2 publication Critical patent/JP5874667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素生成装置用の蒸発器と、この蒸発器の製造方法と、この蒸発器を備えた水素生成装置及び燃料電池システムに関する。   The present invention relates to an evaporator for a hydrogen generator, a method for manufacturing the evaporator, a hydrogen generator including the evaporator, and a fuel cell system.

一般に、燃料電池発電システムにおいては、まず、改質部によって炭化水素化合物と水蒸気を原料として水蒸気改質反応により水素、二酸化炭素、一酸化炭素、未反応の炭化水素化合物及び水蒸気等を含む改質ガスを生成させる。つぎに、変成部や選択酸化部などの一酸化炭素低減部によって一酸化炭素を除去して燃料ガスを生成させ、得られた燃料ガスを用いて燃料電池で発電を行う。   In general, in a fuel cell power generation system, first, a reforming unit reforms containing hydrogen, carbon dioxide, carbon monoxide, unreacted hydrocarbon compound, steam, and the like by a steam reforming reaction using a hydrocarbon compound and steam as raw materials. Generate gas. Next, carbon monoxide is removed by a carbon monoxide reduction unit such as a shift conversion unit or a selective oxidation unit to generate a fuel gas, and electric power is generated in the fuel cell using the obtained fuel gas.

水蒸気改質反応に必要な水蒸気は、改質部の上流に設けた蒸発部で、水を蒸発させることにより得られる。蒸発に要する熱としては、通常、燃料電池から排出されるアノードオフガスを燃焼部で燃焼して得られる熱が用いられる(例えば、特許文献1)。   The water vapor necessary for the steam reforming reaction is obtained by evaporating water in an evaporation section provided upstream of the reforming section. As the heat required for evaporation, the heat obtained by burning the anode off gas discharged from the fuel cell in the combustion section is usually used (for example, Patent Document 1).

以下に、特許文献1に示された水素生成装置について、図6を用いて説明する。図6は、水素生成装置の縦断面図である。   Hereinafter, the hydrogen generator shown in Patent Document 1 will be described with reference to FIG. FIG. 6 is a longitudinal sectional view of the hydrogen generator.

この水素生成装置1は、バーナ2、改質触媒3、変成触媒4、選択酸化触媒5、蒸発部8およびこれらを囲む断熱材14を備えている。原料となる炭化水素と水は原料供給口7から供給され、バーナ2の燃焼ガスは排気口6から排気される。   The hydrogen generator 1 includes a burner 2, a reforming catalyst 3, a shift catalyst 4, a selective oxidation catalyst 5, an evaporator 8, and a heat insulating material 14 surrounding them. Hydrocarbon and water as raw materials are supplied from the raw material supply port 7, and the combustion gas of the burner 2 is exhausted from the exhaust port 6.

水蒸気改質反応に必要な反応熱を供給するバーナ2の燃料としては、燃料電池から排出されるアノードオフガスが用いられる。ルテニウムを主成分とする改質触媒3の作用により、原料と水蒸気とが反応して、水素、二酸化炭素、一酸化炭素、未反応のメタン及び水蒸気等を含む改質ガスが生成する。改質ガスに含まれる一酸化炭素は、変成触媒4によって改質ガス中の水蒸気と反応して1%以下程度の濃度にまで低減される。さらに、改質ガスは、空気供給口12から供給された空気と混合され、選択酸化触媒5によって一酸化炭素が選択的に燃焼除去され、水素含有ガスが生成する。   As the fuel for the burner 2 that supplies reaction heat necessary for the steam reforming reaction, anode off-gas discharged from the fuel cell is used. By the action of the reforming catalyst 3 containing ruthenium as a main component, the raw material reacts with steam to generate reformed gas containing hydrogen, carbon dioxide, carbon monoxide, unreacted methane, steam, and the like. Carbon monoxide contained in the reformed gas reacts with water vapor in the reformed gas by the shift catalyst 4 and is reduced to a concentration of about 1% or less. Further, the reformed gas is mixed with the air supplied from the air supply port 12, and carbon monoxide is selectively burned and removed by the selective oxidation catalyst 5 to generate a hydrogen-containing gas.

生成した水素含有ガスは、水素含有ガス出口13から燃料電池へ供給される。   The generated hydrogen-containing gas is supplied from the hydrogen-containing gas outlet 13 to the fuel cell.

改質触媒3に供給される水蒸気は、バーナ2で燃焼した燃焼ガス、変性触媒や選択酸化触媒の反応熱、改質ガス、水素含有ガスによって蒸発部8内で水を加熱することにより得られる。蒸発部8は、内筒9及び外筒10と、それらに挟まれたらせん棒11とから構成される。   The water vapor supplied to the reforming catalyst 3 is obtained by heating water in the evaporation section 8 with the combustion gas burned in the burner 2, the reaction heat of the modified catalyst or the selective oxidation catalyst, the reformed gas, and the hydrogen-containing gas. . The evaporation unit 8 includes an inner cylinder 9 and an outer cylinder 10 and a spiral rod 11 sandwiched between them.

原料供給口7から供給された原料と水は、らせん棒11によって区切られたらせん状の空間(流路)8Bを流下しながらバーナ2で生じた燃焼ガス等により加熱される。内筒9と外筒10との間にらせん棒11を配置することにより、水を蒸発させるのに十分な伝熱面積を確保している。   The raw material and water supplied from the raw material supply port 7 are heated by the combustion gas generated in the burner 2 while flowing down the spiral space (flow path) 8B separated by the helical rod 11. By disposing the spiral rod 11 between the inner cylinder 9 and the outer cylinder 10, a heat transfer area sufficient to evaporate water is secured.

特許文献1には、このらせん棒11を内筒9と外筒10との間に固定設置する方法として、内筒9と外筒10との間にらせん棒11を配置した後、外筒10を縮径させるか又は内筒9を拡径させてらせん棒11をカシメることが記載されている。   In Patent Document 1, as a method of fixing and installing the helical rod 11 between the inner cylinder 9 and the outer cylinder 10, the helical rod 11 is disposed between the inner cylinder 9 and the outer cylinder 10, and then the outer cylinder 10. It is described that the helical rod 11 is crimped by reducing the diameter of the inner cylinder 9 or expanding the diameter of the inner cylinder 9.

特許第4880086号Patent No. 4880086

上記特許文献1のように外筒10を縮径させるか又は内筒9を拡径させてらせん棒11を内筒9及び外筒10に押し付けても、らせん棒11と内筒9及び外筒10とは十分には水密的に固着せず、らせん棒11と内筒9又は外筒10との間の微小な隙間を通って水が短絡的に流れ易く、蒸発効率が低いものとなり易い。また、高温の金属平滑面は疎水性が高く、水滴がその場にとどまらずに急速に流下してしまい蒸発効率が下がる。これを防ぐためにワイヤーメッシュを使用することが提案されている。(特開2010-129411)   Even if the diameter of the outer cylinder 10 is reduced or the diameter of the inner cylinder 9 is increased and the helical rod 11 is pressed against the inner cylinder 9 and the outer cylinder 10 as in Patent Document 1, the helical rod 11, the inner cylinder 9 and the outer cylinder are pressed. 10 is not sufficiently watertightly fixed, and water tends to flow in a short-circuit manner through a minute gap between the spiral rod 11 and the inner cylinder 9 or the outer cylinder 10, and the evaporation efficiency tends to be low. In addition, the high-temperature metal smooth surface has high hydrophobicity, and water droplets do not stay in place but rapidly flow down, resulting in a decrease in evaporation efficiency. In order to prevent this, it has been proposed to use a wire mesh. (JP 2010-129411)

本発明は、上記従来の問題点を解決し、らせん流路が水密的に区画形成された蒸発器と、この蒸発器の製造方法と、この蒸発器を備えた水素生成装置及び燃料電池システムを提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides an evaporator in which a spiral flow path is formed in a watertight manner, a method for manufacturing the evaporator, a hydrogen generation apparatus and a fuel cell system including the evaporator. The purpose is to provide.

本発明の蒸発器は、水素生成装置の改質部に供給する水を蒸発させるための蒸発器であって、内筒及び外筒と、該内筒と外筒との間にらせん状に設けられたらせん体とを備え、該内筒及び外筒の軸心線方向が上下方向となるように設置され、該らせん体に沿うらせん流路に水が供給され、該内筒内側又は外筒外側からの熱により水を蒸発させる蒸発器において、該らせん体は、前記内筒と外筒とに連なる、金属粉末の溶融、固化物である溶接金属よりなることを特徴とする。 An evaporator according to the present invention is an evaporator for evaporating water supplied to a reforming section of a hydrogen generator, and is provided in a spiral shape between an inner cylinder and an outer cylinder, and the inner cylinder and the outer cylinder. And the inner cylinder and the outer cylinder are installed so that the axial direction of the inner cylinder and the outer cylinder are in the vertical direction, and water is supplied to the spiral flow path along the spiral body, and the inner cylinder or the outer cylinder In the evaporator for evaporating water by heat from the outside, the helical body is made of a weld metal that is a molten or solidified metal powder that is connected to the inner cylinder and the outer cylinder.

本発明の蒸発器の製造方法は、かかる本発明の蒸発器を製造する方法であって、前記内筒と外筒との間に金属粉末を充填する工程と、該外筒の外周から高エネルギー線を照射することにより、この照射部位の外筒と、それに対峙する内筒の外面と、両者の間の前記金属粉末を溶融させ、次いで溶融物を固化させて前記溶接金属を形成する工程と、を有し、前記照射部位をらせん状に移動させることにより、前記らせん体を形成することを特徴とする。   An evaporator manufacturing method of the present invention is a method of manufacturing the evaporator of the present invention, comprising a step of filling metal powder between the inner cylinder and the outer cylinder, and high energy from the outer periphery of the outer cylinder. Irradiating a line, melting the outer cylinder of the irradiated part, the outer surface of the inner cylinder opposite to the outer part, and melting the metal powder between the two, and then solidifying the melt to form the weld metal; The helical body is formed by moving the irradiation site in a spiral shape.

本発明の水素生成装置は、本発明の蒸発器と、該蒸発器からの水蒸気と炭化水素ガスとを反応させて水素含有ガスを生成させる改質部とを有する。   The hydrogen generator of the present invention includes the evaporator of the present invention, and a reforming unit that reacts water vapor from the evaporator and a hydrocarbon gas to generate a hydrogen-containing gas.

本発明の燃料電池システムは、かかる水素生成装置と、該水素生成装置から供給される水素含有ガスと空気とにより発電作動する燃料電池とを有する。   The fuel cell system of the present invention has such a hydrogen generator, and a fuel cell that generates electricity by using a hydrogen-containing gas and air supplied from the hydrogen generator.

本発明の蒸発器では、らせん流路を構成するらせん体が溶接金属よりなり、この溶接金属が内筒及び外筒に溶着して一体化しているため、らせん体と内筒及び外筒との結合部分が水密的に構成されている。このため、本発明の蒸発器では水が短絡的に流れることがなく、水の蒸発効率が良好である。   In the evaporator of the present invention, the helical body constituting the helical flow path is made of a weld metal, and this weld metal is welded and integrated with the inner cylinder and the outer cylinder. The joint portion is watertight. For this reason, in the evaporator of this invention, water does not flow short-circuiting, but the evaporation efficiency of water is favorable.

本発明の水素生成装置及び燃料電池システムは、かかる蒸発器を備えたものであるので、水素が効率よく製造され、発電効率も良好となる。   Since the hydrogen generator and the fuel cell system of the present invention are equipped with such an evaporator, hydrogen is efficiently produced and power generation efficiency is also improved.

実施の形態に係る蒸発器及びその製造方法を示す説明図である。It is explanatory drawing which shows the evaporator which concerns on embodiment, and its manufacturing method. 別の実施の形態に係る蒸発器の一部側面図である。It is a partial side view of the evaporator which concerns on another embodiment. 別の実施の形態に係る蒸発器の一部側面図である。It is a partial side view of the evaporator which concerns on another embodiment. 別の実施の形態に係る蒸発器の一部側面図である。It is a partial side view of the evaporator which concerns on another embodiment. 別の実施の形態に係る蒸発器の一部側面図である。It is a partial side view of the evaporator which concerns on another embodiment. 従来の水素生成装置の縦断面図である。It is a longitudinal cross-sectional view of the conventional hydrogen generator. 本発明方法によって製造した蒸発器の断面を示す写真である。It is a photograph which shows the cross section of the evaporator manufactured by this invention method. 本発明方法によって製造した蒸発器の断面を示す写真である。It is a photograph which shows the cross section of the evaporator manufactured by this invention method. 本発明方法によって製造した蒸発器の断面を示す写真である。It is a photograph which shows the cross section of the evaporator manufactured by this invention method.

図1を参照して実施の形態に係る蒸発器及びその製造方法を説明する。   With reference to FIG. 1, the evaporator which concerns on embodiment, and its manufacturing method are demonstrated.

図1(a)の通り、内筒20と外筒21とを同軸的に配置し、内筒20と外筒21との間に金属粉末22を充填する(図1(b))。   As shown in FIG. 1A, the inner cylinder 20 and the outer cylinder 21 are coaxially arranged, and the metal powder 22 is filled between the inner cylinder 20 and the outer cylinder 21 (FIG. 1B).

なお、この実施の形態では、内筒20と外筒21との間のスペースの底部を底蓋23で閉鎖した後、金属粉末22を充填する。次いで、レーザービーム、電子ビーム、プラズマなどの高エネルギー線bを照射装置24から外筒21の外周面に照射する。そして、外筒21の高エネルギー線bの照射部位と、それに対峙する内筒20の少なくとも外周面と、それらの間の金属粉末22とを溶融させる。   In this embodiment, the bottom of the space between the inner cylinder 20 and the outer cylinder 21 is closed with the bottom lid 23, and then the metal powder 22 is filled. Next, the outer peripheral surface of the outer cylinder 21 is irradiated from the irradiation device 24 with a high energy beam b such as a laser beam, an electron beam or plasma. And the irradiation part of the high energy ray b of the outer cylinder 21, the at least outer peripheral surface of the inner cylinder 20 facing it, and the metal powder 22 between them are melted.

また、この高エネルギー線bの照射を開始するのとほぼ同時に、内筒20及び外筒21並びに両者間の金属粉末22をその軸心回りに回転させると共に、軸心方向に移動させ、高エネルギー線bの照射部位をらせん方向に一定速度で連続的に移動させる。   Further, almost simultaneously with the start of the irradiation of the high energy beam b, the inner cylinder 20 and the outer cylinder 21 and the metal powder 22 between them are rotated around the axis and moved in the axial direction, thereby increasing the energy. The irradiation site of the line b is continuously moved at a constant speed in the spiral direction.

これにより、高エネルギー線bが照射されて溶融する内筒20及び外筒21並びに両者間の金属粉末22の溶融部分が徐々にらせん方向に移動する。高エネルギー線が通り過ぎた部位では、溶融物が固化して溶接金属となる。そのため、この高エネルギー線bの照射部位をらせん状に移動させることにより、らせん体25(図1(c)〜(e))が形成される。   As a result, the inner cylinder 20 and the outer cylinder 21 that are melted by irradiation with the high energy beam b and the molten portion of the metal powder 22 between them gradually move in the spiral direction. In the part where the high energy ray passes, the melt is solidified to become a weld metal. Therefore, the spiral body 25 (FIGS. 1C to 1E) is formed by moving the irradiation site of the high energy beam b in a spiral shape.

その後、底蓋23を撤去し、内筒20と外筒21との間に残留した未溶融の金属粉末を両者間から取り出すことにより、らせん流路27を有した、図1(c)〜(e)に示す蒸発器26が得られる。図1(c)は蒸発器26の縦断面図、図1(d)は蒸発器26の側面図、図1(e)は蒸発器26の断面斜視図である。なお、未溶融の金属粉末を取り出すには、エアガン等によりエアを吹き付けたりすればよい。   Thereafter, the bottom lid 23 is removed, and the unmelted metal powder remaining between the inner cylinder 20 and the outer cylinder 21 is taken out from both sides, whereby the spiral channel 27 is provided. The evaporator 26 shown in e) is obtained. FIG. 1C is a longitudinal sectional view of the evaporator 26, FIG. 1D is a side view of the evaporator 26, and FIG. 1E is a sectional perspective view of the evaporator 26. In order to take out the unmelted metal powder, air may be blown with an air gun or the like.

上記の内筒20、外筒21及び金属粉末22の材料としては、ステンレス、チタン、チタン合金等の耐食性金属が好適であるが、これに限定されない。金属粉末22の粒度は70〜250メッシュ(約50〜200μm)程度が好ましい。   The material of the inner cylinder 20, the outer cylinder 21, and the metal powder 22 is preferably a corrosion-resistant metal such as stainless steel, titanium, or a titanium alloy, but is not limited thereto. The particle size of the metal powder 22 is preferably about 70 to 250 mesh (about 50 to 200 μm).

このようにして製造された蒸発器26は、内筒20及び外筒の軸心線方向が上下方向、好ましくは鉛直方向となるように設置され、らせん流路に水が供給される。この蒸発器26にあっては、らせん体25は溶接金属よりなり、内筒20及び外筒21に対して溶け込んで一体化しており、らせん流路27を流れる水が短絡的に流れず、すべてらせん流路27に沿ってらせん方向に流れる。   The evaporator 26 manufactured in this way is installed so that the axial direction of the inner cylinder 20 and the outer cylinder is the vertical direction, preferably the vertical direction, and water is supplied to the spiral flow path. In this evaporator 26, the helical body 25 is made of weld metal, is melted and integrated with the inner cylinder 20 and the outer cylinder 21, and the water flowing through the helical flow path 27 does not flow in a short circuit. It flows in the spiral direction along the spiral flow path 27.

このらせん体25は、金属粉末を溶融固化させた溶接金属よりなるものであるから、その表面は粗面状となっている。そのため、らせん体25は、親水性に優れ、保水能力が高い。このようなことから、この蒸発器26は蒸発効率に優れる。   Since the spiral body 25 is made of weld metal obtained by melting and solidifying metal powder, the surface thereof is rough. Therefore, the helical body 25 is excellent in hydrophilicity and has a high water retention capacity. For this reason, the evaporator 26 is excellent in evaporation efficiency.

本発明の蒸発器は、溶接ロボット等を用いて自動的に容易に製造することも可能である。   The evaporator of the present invention can be automatically and easily manufactured using a welding robot or the like.

上記実施の形態では、照射装置24を固定し、内筒20、外筒21及び金属粉末22を回転させながら軸心方向に移動させているが、内筒20、外筒21及び金属粉末22と照射装置24とは相対的にらせん方向に移動すればよく、これに限定されない。例えば、照射装置24をらせん方向に移動させてもよい。また、内筒20、外筒21及び金属粉末22を回転させながら、照射装置24を軸心線と平行方向に移動させてもよい。   In the above embodiment, the irradiation device 24 is fixed, and the inner cylinder 20, the outer cylinder 21, and the metal powder 22 are moved in the axial direction while rotating. However, the inner cylinder 20, the outer cylinder 21, and the metal powder 22 What is necessary is just to move to a spiral direction relatively with the irradiation apparatus 24, and is not limited to this. For example, the irradiation device 24 may be moved in the spiral direction. Moreover, you may move the irradiation apparatus 24 in a direction parallel to an axial center line, rotating the inner cylinder 20, the outer cylinder 21, and the metal powder 22. FIG.

本発明の蒸発器のらせん体は、高エネルギー線bの照射部位を移動させることによって形成されるものであるから、図1に示す単純ならせん形状に限らず、図2〜5のようにらせん形状部分と他の形状部分とを組み合わせたらせん体であっても容易に形成することができる。   Since the spiral body of the evaporator of the present invention is formed by moving the irradiation site of the high energy ray b, the spiral body is not limited to the simple spiral shape shown in FIG. Even a helical body combining a shape portion and another shape portion can be easily formed.

図2の蒸発器26Aのらせん体25Aは、らせん流路方向において所定間隔をおいて上向き波頭形の凸部25aを形成するように曲成されている。図3の蒸発器26Bのらせん体25Bは、らせん流路方向において所定間隔をおいて小堰状の上向き凸部25bが形成されている。これらの蒸発器26A,26Bによれば、らせん体25A,25Bに沿って流れる水が凸部25a,25bにより抵抗を受け、流速が低下するので、水が効率よく蒸発する。   The spiral body 25A of the evaporator 26A of FIG. 2 is bent so as to form upward wave-front-shaped convex portions 25a at a predetermined interval in the spiral flow path direction. The spiral body 25B of the evaporator 26B in FIG. 3 has small dam-like upward convex portions 25b formed at predetermined intervals in the spiral flow path direction. According to these evaporators 26A and 26B, water flowing along the spirals 25A and 25B receives resistance by the convex portions 25a and 25b, and the flow velocity is reduced, so that water is efficiently evaporated.

図4の蒸発器26Cにあっては、らせん流路27の末端部に、周方向に延在した溶接金属よりなる複数の周方向体29が周方向に間隔をあけて途切れ途切れに配列設置されており、周方向体29間にオリフィス28を形成している。周方向体29は、らせん体25と同様にして形成されたものであり、延在方向が周方向となっていること以外はらせん体25と同一構造のものである。   In the evaporator 26C of FIG. 4, a plurality of circumferential bodies 29 made of weld metal extending in the circumferential direction are arranged and arranged at intervals in the circumferential direction at the end of the spiral flow path 27. The orifice 28 is formed between the circumferential bodies 29. The circumferential body 29 is formed in the same manner as the spiral body 25 and has the same structure as the spiral body 25 except that the extending direction is the circumferential direction.

らせん流路27の途中に設けられたガス導入口30かららせん流路27内に導入されたガスは、らせん流路27内の水蒸気と混ざり合いながららせん流路27を流れる。その後、オリフィス28を通過することにより、ガスと水蒸気とが十分に混合されるとともに、周方向に均一な流速に分散され触媒層での反応を安定化させることができる。   The gas introduced into the spiral channel 27 from the gas inlet 30 provided in the middle of the spiral channel 27 flows through the spiral channel 27 while being mixed with the water vapor in the spiral channel 27. Thereafter, by passing through the orifice 28, the gas and the water vapor are sufficiently mixed, and the reaction in the catalyst layer can be stabilized by being dispersed at a uniform flow rate in the circumferential direction.

図5の蒸発器26Dでは、らせん体25のらせん流路方向の途中に、下向きに第1の舌片部31が設けられ、この第1の舌片部31のらせん流路方向の一方の側に第1の開口33が設けられ、他方の側に第2の開口34が設けられている。第1の開口33は、舌片部31よりもらせん流路方向の上位側に位置する。第1の開口33の縁部のうち、第1の舌片部31と反対側の縁部には下向きの第2の舌片部32が設けられている。舌片部31,32は、らせん体25と同様にして形成されたものであり、延在方向が下方となっていること以外はらせん体25と同一構造のものである。   In the evaporator 26 </ b> D of FIG. 5, a first tongue piece portion 31 is provided downward in the middle of the spiral flow path direction of the spiral body 25, and one side of the first tongue piece portion 31 in the spiral flow path direction is provided. The first opening 33 is provided on the other side, and the second opening 34 is provided on the other side. The first opening 33 is located on the upper side in the spiral flow path direction from the tongue piece portion 31. A downward second tongue piece portion 32 is provided on the edge portion of the first opening 33 opposite to the first tongue piece portion 31. The tongue pieces 31 and 32 are formed in the same manner as the spiral body 25 and have the same structure as the spiral body 25 except that the extending direction is downward.

水の蒸発により生じた水蒸気と、外筒に設けられた導入口30から導入されたガスとが、第1の舌片部31に当って開口33,34を通過し、乱流化が促進されることにより、充分に混合される。第2の舌片部32を設けたことによって、乱流化がさらに促進され、水蒸気とガスとが十分に混合される。   The water vapor generated by the evaporation of water and the gas introduced from the inlet 30 provided in the outer cylinder hit the first tongue piece portion 31 and pass through the openings 33 and 34 to promote turbulence. To mix thoroughly. By providing the second tongue piece 32, turbulence is further promoted, and water vapor and gas are sufficiently mixed.

本発明の水素生成装置は、図6の水素生成装置において、蒸発器として上記本発明の蒸発器を用いることにより構成することができる。   The hydrogen generator of the present invention can be configured by using the evaporator of the present invention as an evaporator in the hydrogen generator of FIG.

本発明の燃料電池システムは、かかる水素生成装置と、燃料電池とで構成されている。この燃料電池は、水素生成装置から供給される水素含有の燃料ガスと、空気との化学反応により発電する。   The fuel cell system of the present invention includes such a hydrogen generator and a fuel cell. This fuel cell generates power by a chemical reaction between hydrogen-containing fuel gas supplied from a hydrogen generator and air.

[実施例1]
外径60.5mm、肉厚1.5mm、長さ300mmのステンレス製の内筒20と、外径65.5mm、肉厚1.5mm、長さ280mmのステンレス製の外筒21とを1.0mmの隙間をあけて同軸状に配置し、底蓋23を配置した後、両者間に平均粒径125μmのステンレス(SUS316L)粉末(70メッシュと250メッシュで篩い分けされた市販の粉末)を充填した。その後、レーザー照射装置(出力2kW)からレーザービームを外筒21に照射し、軸方向送り速度75mm/min、回転数7.5rpmにて内筒20、外筒21及び金属粉末22を移動及び回転させ、レーザー照射部位をらせん方向に移動させた。その後、未溶融のステンレス粉末をエアガンにより取り出した。これにより、図1(c)〜(e)に示すらせん体25を有した蒸発器26が得られた。
[Example 1]
1. A stainless steel inner cylinder 20 having an outer diameter of 60.5 mm, a wall thickness of 1.5 mm, and a length of 300 mm; and a stainless steel outer cylinder 21 having an outer diameter of 65.5 mm, a wall thickness of 1.5 mm, and a length of 280 mm. A coaxial arrangement with a gap of 0 mm and a bottom lid 23 are placed, and then filled with stainless steel (SUS316L) powder (commercially available powder sieved with 70 mesh and 250 mesh) having an average particle size of 125 μm. did. Thereafter, the outer cylinder 21 is irradiated with a laser beam from a laser irradiation device (output 2 kW), and the inner cylinder 20, the outer cylinder 21 and the metal powder 22 are moved and rotated at an axial feed rate of 75 mm / min and a rotation speed of 7.5 rpm. The laser irradiation site was moved in the spiral direction. Thereafter, unmelted stainless steel powder was taken out with an air gun. Thereby, the evaporator 26 having the helical body 25 shown in FIGS. 1C to 1E was obtained.

図7はこのらせん体25を蒸発器軸心線方向に切断した断面の写真であり、図8はその拡大写真であり、図9はらせん体25の側面を撮影した写真である。図7,8の通り、らせん体25は内筒20及び外筒21に完全に溶け込んで一体化しており、水密性に優れることが認められる。また、図9の通り、らせん体25の側面(らせん流路に臨む面)は粗面状となっている。   FIG. 7 is a cross-sectional photograph of the spiral body 25 cut in the axial direction of the evaporator, FIG. 8 is an enlarged photograph thereof, and FIG. 9 is a photograph of the side surface of the spiral body 25 taken. As shown in FIGS. 7 and 8, the spiral body 25 is completely melted and integrated with the inner cylinder 20 and the outer cylinder 21, and it is recognized that it has excellent water tightness. Further, as shown in FIG. 9, the side surface of the spiral body 25 (surface facing the spiral flow path) is rough.

9,20 内筒
10,21 外筒
11,25,25A,25B らせん体
22 金属粉末
23 底蓋
24 高エネルギー線照射装置
8,26,26A〜26D 蒸発器
8B,27 らせん流路
28 オリフィス
29 周方向体
30 ガス導入口
31,32 下向き舌片部
33,34 開口
9,20 Inner cylinder 10,21 Outer cylinder 11,25,25A, 25B Spiral body 22 Metal powder 23 Bottom cover 24 High energy ray irradiation device 8, 26, 26A-26D Evaporator 8B, 27 Spiral flow path 28 Orifice 29 Circumference Directional body 30 Gas inlet 31, 32 Opening tongue 33, 34 Opening

Claims (9)

水素生成装置の改質部に供給する水を蒸発させるための蒸発器であって、
内筒及び外筒と、該内筒と外筒との間にらせん状に設けられたらせん体とを備え、
該内筒及び外筒の軸心線方向が上下方向となるように設置され、該らせん体に沿うらせん流路に水が供給され、該内筒内側または該外筒外側からの熱により水を蒸発させる蒸発器において、
該らせん体は、前記内筒と外筒とに連なる、金属粉末の溶融、固化物である溶接金属よりなることを特徴とする蒸発器。
An evaporator for evaporating water supplied to a reforming section of a hydrogen generator,
An inner cylinder and an outer cylinder, and a helical body provided in a spiral shape between the inner cylinder and the outer cylinder,
The inner cylinder and the outer cylinder are installed so that the axial center direction is the vertical direction, water is supplied to the spiral flow path along the spiral body, and water is removed by heat from the inner cylinder inner side or the outer cylinder outer side. In the evaporator to evaporate,
The evaporator is characterized in that the spiral body is made of a weld metal which is a melted and solidified metal powder and is connected to the inner cylinder and the outer cylinder.
請求項1において、前記らせん体に、らせん流路方向において所定間隔をおいて上向きの凸部が設けられていることを特徴とする蒸発器。   The evaporator according to claim 1, wherein the spiral body is provided with upward convex portions at a predetermined interval in the spiral flow path direction. 請求項2において、前記凸部は波頭形又は小堰状であることを特徴とする蒸発器。   3. The evaporator according to claim 2, wherein the convex portion has a wave front shape or a small weir shape. 請求項1ないし3のいずれか1項において、前記らせん流路の末端部に、周方向に延在した溶接金属よりなる複数の周方向体が周方向に間隔をあけて配列設置されており、該周方向体同士の間がオリフィスとなっていることを特徴とする蒸発器。   In any one of Claims 1 thru | or 3, the several circumferential direction body which consists of the weld metal extended in the circumferential direction is arranged in the end part of the said spiral flow path at intervals in the circumferential direction, An evaporator characterized in that an orifice is provided between the circumferential bodies. 請求項1ないし4のいずれか1項において、前記らせん体のらせん流路方向の途中に下向きに第1の舌片部が設けられ、該第1の舌片部のらせん流路方向の上位側において、該らせん体に第1の開口が設けられていることを特徴とする蒸発器。   5. The upper side of the first tongue piece portion in the spiral flow path direction according to claim 1, wherein a first tongue piece portion is provided downward in the middle of the spiral flow path direction of the spiral body. The evaporator is characterized in that the spiral body is provided with a first opening. 請求項5において、該第1の開口の縁部のうち、該第1の舌片部と反対側の縁部に、下向きに第2の舌片部が設けられ、該第1の舌片部のらせん流路方向の下位側において、該らせん体に第2の開口が設けられていることを特徴とする蒸発器。   6. The second tongue piece portion according to claim 5, wherein a second tongue piece portion is provided downward on an edge portion of the edge portion of the first opening opposite to the first tongue piece portion, and the first tongue piece portion is provided. An evaporator, wherein a second opening is provided in the spiral body on a lower side in the spiral flow path direction. 請求項1ないし6のいずれか1項に記載の蒸発器を製造する方法であって、
前記内筒と外筒との間に金属粉末を充填する工程と、
該外筒の外周から高エネルギー線を照射することにより、この照射部位の外筒と、それに対峙する内筒の外面と、両者の間の前記金属粉末を溶融させ、次いで溶融物を固化させて前記溶接金属を形成する工程と、
を有し、前記照射部位をらせん状に移動させることにより、前記らせん体を形成することを特徴とする蒸発器の製造方法。
A method of manufacturing an evaporator according to any one of claims 1 to 6,
Filling the metal powder between the inner cylinder and the outer cylinder;
By irradiating a high energy ray from the outer periphery of the outer cylinder, the outer cylinder of the irradiated portion, the outer surface of the inner cylinder facing the outer cylinder, and the metal powder between them are melted, and then the melt is solidified. Forming the weld metal;
And forming the helical body by moving the irradiation site in a spiral shape.
請求項1ないし6のいずれか1項に記載の蒸発器と、
該蒸発器からの水蒸気と炭化水素ガスとを反応させて水素含有ガスを生成させる改質部と
を有する水素生成装置。
The evaporator according to any one of claims 1 to 6,
A hydrogen generator having a reforming unit that reacts water vapor from the evaporator with a hydrocarbon gas to generate a hydrogen-containing gas.
請求項8の水素生成装置と、
該水素生成装置から供給される水素含有ガスと空気とにより発電作動する燃料電池と
を有する燃料電池システム。
A hydrogen generator according to claim 8;
A fuel cell system having a fuel cell that generates electricity by using a hydrogen-containing gas and air supplied from the hydrogen generator.
JP2013059683A 2013-03-22 2013-03-22 Evaporator, manufacturing method thereof, hydrogen generator and fuel cell system Active JP5874667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013059683A JP5874667B2 (en) 2013-03-22 2013-03-22 Evaporator, manufacturing method thereof, hydrogen generator and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013059683A JP5874667B2 (en) 2013-03-22 2013-03-22 Evaporator, manufacturing method thereof, hydrogen generator and fuel cell system

Publications (2)

Publication Number Publication Date
JP2014185045A JP2014185045A (en) 2014-10-02
JP5874667B2 true JP5874667B2 (en) 2016-03-02

Family

ID=51832972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013059683A Active JP5874667B2 (en) 2013-03-22 2013-03-22 Evaporator, manufacturing method thereof, hydrogen generator and fuel cell system

Country Status (1)

Country Link
JP (1) JP5874667B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848357B (en) * 2017-01-20 2023-04-14 孟青林 Plasma vortex fuel cell and power generation method
JP7126469B2 (en) * 2019-03-26 2022-08-26 大阪瓦斯株式会社 reforming furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979935B2 (en) * 2005-06-10 2012-07-18 富士電機株式会社 Fuel reformer
JP4870491B2 (en) * 2005-07-27 2012-02-08 富士電機株式会社 Fuel reformer
EP2522624A4 (en) * 2010-01-05 2018-01-03 Panasonic Intellectual Property Management Co., Ltd. Fuel treatment device

Also Published As

Publication number Publication date
JP2014185045A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
EP3246976B1 (en) High-temperature fuel cell system
JP2007015911A (en) Fuel reforming apparatus
JP5874667B2 (en) Evaporator, manufacturing method thereof, hydrogen generator and fuel cell system
JP2004149402A (en) Hydrogen generator and fuel cell system having the same
JP5123442B2 (en) Hydrogen generator and fuel cell power generation system
JP2008063193A (en) Hydrogen generator and fuel cell system
JP2008007349A (en) Reforming apparatus and fuel cell equipped with it
JP4366136B2 (en) Hydrogen generator and fuel cell power generation system
JP4870499B2 (en) Hydrogen production apparatus and fuel cell power generation apparatus
JP5057938B2 (en) Hydrogen generator and fuel cell system provided with the same
EP2707326B1 (en) Fuel processor
JP5371013B2 (en) Multi-cylinder steam reformer
JP5165407B2 (en) Cylindrical steam reformer
JP2009062223A (en) Reforming apparatus
JP6383554B2 (en) Fuel reformer
JP6773522B2 (en) Fuel cell system
JP6646814B2 (en) Hydrogen generator
JP2004014141A (en) Evaporator for reforming device
JP4431455B2 (en) Reformer
JP5483788B1 (en) Fuel processor
JPH11199202A (en) Converting device and fuel cell power generation unit using the same
JP5196540B2 (en) Gas treatment device for fuel cell
JP2002274810A (en) Co denaturing section structure of fuel reforming apparatus
JP2014005171A (en) Fuel treatment device and manufacturing method therefor
JP4231172B2 (en) Fuel evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5874667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250