JP2007137960A - Bisimide or bisisoimide compound and resin composition comprising the same - Google Patents

Bisimide or bisisoimide compound and resin composition comprising the same Download PDF

Info

Publication number
JP2007137960A
JP2007137960A JP2005331163A JP2005331163A JP2007137960A JP 2007137960 A JP2007137960 A JP 2007137960A JP 2005331163 A JP2005331163 A JP 2005331163A JP 2005331163 A JP2005331163 A JP 2005331163A JP 2007137960 A JP2007137960 A JP 2007137960A
Authority
JP
Japan
Prior art keywords
compound
resin composition
group
carbon atoms
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005331163A
Other languages
Japanese (ja)
Other versions
JP4999318B2 (en
Inventor
Takashi Watanabe
尚 渡辺
Kenji Nakajima
賢二 中島
Keizo Tanaka
圭三 田中
Satoru Nanba
悟 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manac Inc
AMT Laboratory Co Ltd
Original Assignee
Manac Inc
AMT Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manac Inc, AMT Laboratory Co Ltd filed Critical Manac Inc
Priority to JP2005331163A priority Critical patent/JP4999318B2/en
Publication of JP2007137960A publication Critical patent/JP2007137960A/en
Application granted granted Critical
Publication of JP4999318B2 publication Critical patent/JP4999318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Indole Compounds (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition suitable for interlayer insulation of a multi-layered flexible printed circuit board exhibiting excellent workability and adhesion before curing and exhibiting excellent heat resistance, adhesion and electrical performance after curing. <P>SOLUTION: The resin composition comprises a polyimide or a polyamic acid and a bisimide or a bisisoimide compound represented by formula (1). (One of the A and B is = O and the other of the A and B is = NAr<SP>1</SP>R<SP>1</SP>; R<SP>1</SP>, R<SP>2</SP>, Ar<SP>1</SP>, X<SP>1</SP>and X<SP>2</SP>are each a specific organic group). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリイミドと、ビスイミド化合物又はビスイソイミド化合物とを含有するポリイミド樹脂組成物、並びに該樹脂組成物を用いて得られる耐熱性接着剤、ワニス、フィルム、フィルム積層体、金属積層体、電子回路及びそれらの硬化物に関する。また本発明は、新規なビスイミド化合物及びビスイソイミド化合物に関する。   The present invention relates to a polyimide resin composition containing polyimide and a bisimide compound or a bisisoimide compound, and a heat-resistant adhesive, varnish, film, film laminate, metal laminate, and electronic circuit obtained using the resin composition. And a cured product thereof. The present invention also relates to novel bisimide compounds and bisisoimide compounds.

近年、携帯電話、デジタルスチルカメラ、PDAなどの小型電子機器の高機能化、薄型化、軽量化が進み、それらに伴って電子機器に搭載される電子部品や基板においても、高機能化、高性能化、高密度化が求められるようになってきた。具体的には、プリント配線板を積層することによって3次元的な配線の引き回しが可能な多層プリント配線板の開発が盛んに行われており、例えばB2it法(Buried Bump Interconnection Technologyの略)として知られる層間接続技術で配線の高密度化に対応している(例えば、特許文献1参照)。すなわち、バンプ付き銅箔と未硬化の絶縁層とを交互に積層し、所定の温度、圧力条件でプレスを行い、絶縁層をバンプにより貫通させることによって、絶縁層を介した下層配線層と上層配線層との電気的な接続を適宜設けたものである。次いで、これらの接続を繰り返すことによって、多層化を可能にしている。   In recent years, small electronic devices such as mobile phones, digital still cameras, and PDAs have become more functional, thinner, and lighter. Accordingly, electronic components and boards mounted on electronic devices have also become highly functional and highly functional. There has been a demand for higher performance and higher density. Specifically, multi-layer printed wiring boards that can route three-dimensional wiring by laminating printed wiring boards are being actively developed. For example, the B2it method (abbreviation of Buried Bump Interconnection Technology) is known. The interlayer connection technology to be used corresponds to the high density of wiring (see, for example, Patent Document 1). That is, the copper foil with bumps and the uncured insulating layer are alternately laminated, pressed under a predetermined temperature and pressure condition, and the insulating layer is penetrated by the bump, whereby the lower wiring layer and the upper layer through the insulating layer Electrical connection with the wiring layer is provided as appropriate. Then, by repeating these connections, multilayering is possible.

これらの技術では、確実に絶縁層をバンプにより貫通させ、バンプ頭部を該絶縁層から突出させる必要がある。一般にこれらの層間絶縁材はポリイミドフィルム、液晶ポリマーフィルム、ポリフェニレンサルファイドフィルム、ポリエーテルエーテルケトンフィルムやエポキシ変性ポリイミドフィルムなどのフィルム又はシート状層間絶縁材が用いられているが、ポリイミドフィルム、液晶ポリマーフィルム、ポリフェニレンサルファイドフィルム、ポリエーテルエーテルケトンフィルムなどは、その高いガラス転移温度のため積層温度が高く、一般のプリント配線板には使用しにくい。また、樹脂の「流動(フロー)性」が悪く、バンプが絶縁層を貫通する際に、バンプの変形が起こり、バンプの高さやバンプ頭部の突出量のばらつきが起こりやすく、バンプの頭部を突出させることや、バンプ付け根への樹脂の充填も十分ではなく、さらには、下層の導通層、絶縁層の変形が起こり、接着性、電気的信頼性に不足するものであった。   In these techniques, it is necessary to reliably penetrate the insulating layer with the bump and to protrude the bump head from the insulating layer. In general, these interlayer insulating materials are polyimide films, liquid crystal polymer films, polyphenylene sulfide films, polyether ether ketone films, epoxy-modified polyimide films, etc., or sheet-like interlayer insulating materials. Polyphenylene sulfide films, polyether ether ketone films, and the like have high lamination temperatures due to their high glass transition temperatures, and are difficult to use for general printed wiring boards. In addition, the resin “flow” is poor, and when the bump penetrates the insulating layer, the bump is deformed, and the bump height and the protrusion amount of the bump head are likely to vary. In addition, the bumps are not sufficiently filled with resin, and further, the conductive layer and the insulating layer below are deformed, resulting in insufficient adhesion and electrical reliability.

従って、絶縁層は、バンプが絶縁層を貫通する時、すなわち所定の温度、圧力条件でプレスを行う時は、ガラス転移温度が低く、その後硬化することによってガラス転移温度が高温側にシフトし、さらなる上層導通層及び絶縁層を形成する際(バンプが絶縁層を貫通させるための所定の温度、圧力条件でプレスを行う時)には、変形しない絶縁層であることが望ましく、またプレス時には密閉状態になることから、残存溶媒が少なく、かつ接着強度も強いポリイミド樹脂組成物フィルムであることが望ましい。   Therefore, the insulating layer has a low glass transition temperature when the bump penetrates the insulating layer, that is, when pressing is performed at a predetermined temperature and pressure, and then the glass transition temperature is shifted to a high temperature side by curing, When forming a further upper conductive layer and an insulating layer (when pressing is performed at a predetermined temperature and pressure conditions for the bump to penetrate the insulating layer), it is desirable that the insulating layer does not deform and is sealed when pressed. Since it will be in a state, it is desirable that it is a polyimide resin composition film with little residual solvent and strong adhesive strength.

ポリイミドの成形性を改善する方法として、芳香族ポリイミド及びアセチレン末端ポリイミド/イソイミドオリゴマーからなる芳香族ポリイミド樹脂組成物が報告されている(例えば、特許文献2参照)。具体的には、ピロメリト酸無水物と4,4’−ジアミノジフェニルエーテルより得られるポリイミドとサーミド(カネボウ・エヌエスシー社製)を混合し、成形性が大きく改善されることが報告されている。しかしながら、これらの樹脂組成物は成形材であって、多層フレキシブル配線板の層間絶縁材には適しない。さらに、複合材料の熱硬化に要する時間を短縮し、そのマトリックス樹脂として好適に使用できるものとして(a)剛直な末端変性イミドマクロマーと(b)柔軟な末端変性イミドオリゴマーと(c)不飽和基を有する反応性モノマーとを含む末端変性イミドオリゴマー組成物が報告されている(例えば、特許文献3参照)。これらの樹脂も補強剤、複合材料のマトリックス樹脂であって電子材料用途には適しない。   As a method for improving the moldability of polyimide, an aromatic polyimide resin composition comprising an aromatic polyimide and an acetylene-terminated polyimide / isoimide oligomer has been reported (for example, see Patent Document 2). Specifically, it has been reported that the moldability is greatly improved by mixing polyimide obtained from pyromellitic anhydride, 4,4'-diaminodiphenyl ether, and ceramide (manufactured by Kanebo NSC). However, these resin compositions are molding materials and are not suitable as interlayer insulating materials for multilayer flexible wiring boards. Furthermore, the time required for thermosetting the composite material can be shortened, and (a) a rigid terminal-modified imide macromer, (b) a flexible terminal-modified imide oligomer, and (c) an unsaturated group can be suitably used as the matrix resin. A terminal-modified imide oligomer composition containing a reactive monomer having a hydrogen atom has been reported (for example, see Patent Document 3). These resins are also reinforcing agents and matrix resins for composite materials, and are not suitable for electronic materials.

特開2001−015920号公報JP 2001-015920 A 特開平2−222451号公報JP-A-2-222451 特開平4−363360号公報JP-A-4-363360

本発明の目的は、硬化前には優れた加工性と接着性を示し、硬化後には優れた耐熱性、接着性、電気特性を示す樹脂組成物、特に、多層フレキシブルプリント配線板用層間絶縁に適した樹脂組成物を提供することにある。   The object of the present invention is to provide a resin composition exhibiting excellent processability and adhesiveness before curing and exhibiting excellent heat resistance, adhesiveness, and electrical properties after curing, particularly for interlayer insulation for multilayer flexible printed wiring boards. The object is to provide a suitable resin composition.

本発明は、ポリイミド又はポリアミド酸と、下記一般式(1):   The present invention includes polyimide or polyamic acid and the following general formula (1):

Figure 2007137960
Figure 2007137960

(式中、A及びBは、一方が=Oであり、他方が=NAr11であり、Ar1は、炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、R1は、炭素数2〜36の、少なくとも1つ以上の炭素−炭素二重結合又は炭素−炭素三重結合を含有する1価の有機基であり、X1及びX2は、独立して、単結合、−O−、−CO−、−COO−、−OCO−、−SO2−、−C(CH32−又は−C(CF32−であり、R2は、炭素数2〜18のアルカンジイル基、あるいは炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、ここで架橋員とは、−O−、−CO−、−COO−、−OCO−、−SO2−、−CH2−、−C(CH32−又は−C(CF32−である)で表されるビスイミド化合物又はビスイソイミド化合物とを含む樹脂組成物、並びにこの樹脂組成物を含んでなる耐熱性接着剤、ワニス、フィルム、金属積層体、ポリマー積層体に関する。 (In the formula, one of A and B is ═O, the other is ═NAr 1 R 1 , and Ar 1 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or the same Or a divalent group of a polycyclic compound in which two or more different aromatic compounds are connected to each other directly or by a bridging member, and R 1 is at least one carbon having 2 to 36 carbon atoms A monovalent organic group containing a carbon double bond or a carbon-carbon triple bond, and X 1 and X 2 are independently a single bond, —O—, —CO—, —COO—, —OCO; —, —SO 2 —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 —, wherein R 2 is an alkanediyl group having 2 to 18 carbon atoms or a monocyclic having 6 to 36 carbon atoms. Formula or condensed polycyclic aromatic compounds, or two or more of the same or different aromatic compounds may be directly or A bivalent radical of a polycyclic compound linked to one another, and wherein a bridge member, -O by personnel -, - CO -, - COO -, - OCO -, - SO 2 -, - CH 2 -, -C (CH 3 ) 2 -or -C (CF 3 ) 2- ) and a heat resistant adhesive comprising the resin composition. The present invention relates to an agent, a varnish, a film, a metal laminate, and a polymer laminate.

本発明の樹脂組成物は、ポリイミド(又はポリアミド酸)と、前記一般式(1)で表される熱硬化性のビスイミド又はビスイソイミド化合物とを混合することにより得られ、未硬化のままフィルム状などにすることができる。この一般式(1)で表されるビスイミド又はビスイソイミド化合物を混合することによって、本発明のポリイミド樹脂組成物の硬化前のガラス転移温度は、かかる化合物を混合していないポリイミド(又はポリアミド酸)のガラス転移温度よりも、大きく低温側にシフトする。その結果、本発明の樹脂組成物は、高フロー状態となり加工、接着しやすい状態となる。つまり、本発明の樹脂組成物は、ガラス転移温度から硬化温度までの温度領域では、バンプ貫通、バンプ付け根への樹脂の充填、接着が容易である。その後、180〜450℃の熱処理(硬化処理)を行い、ビスイミド又はビスイソイミド化合物の不飽和基を直線的及び/又は3次元的に架橋させることによって、本発明のポリイミド樹脂組成物のガラス転移温度は、ビスイミド又はビスイソイミド化合物を混合していないポリイミドのガラス転移温度よりも大きく高温側にシフトする。その結果、本発明の樹脂組成物の硬化物は、耐熱性、接着性、電気特性などに優れ、特に多層プリント配線板の層間絶縁材に適したものになる。   The resin composition of the present invention is obtained by mixing polyimide (or polyamic acid) and the thermosetting bisimide or bisisoimide compound represented by the general formula (1), and is uncured and in the form of a film. Can be. By mixing the bisimide or bisisoimide compound represented by the general formula (1), the glass transition temperature before curing of the polyimide resin composition of the present invention is that of a polyimide (or polyamic acid) not mixed with such a compound. It shifts to a lower temperature side than the glass transition temperature. As a result, the resin composition of the present invention is in a high flow state and is in a state where it can be easily processed and bonded. That is, the resin composition of the present invention can be easily penetrated through the bump, filled with the resin at the base of the bump, and bonded in the temperature range from the glass transition temperature to the curing temperature. Thereafter, a glass transition temperature of the polyimide resin composition of the present invention is obtained by performing a heat treatment (curing treatment) at 180 to 450 ° C. and crosslinking the unsaturated groups of the bisimide or bisisoimide compound linearly and / or three-dimensionally. , The glass transition temperature of the polyimide not mixed with the bisimide or bisisoimide compound is shifted to a higher temperature side. As a result, the cured product of the resin composition of the present invention is excellent in heat resistance, adhesiveness, electrical characteristics and the like, and is particularly suitable for an interlayer insulating material for multilayer printed wiring boards.

まず、本発明の熱硬化性のビスイミド又はビスイソイミド化合物について説明する。熱硬化性のビスイミド又はビスイソイミド化合物とは、下記一般式(1):   First, the thermosetting bisimide or bisisoimide compound of the present invention will be described. The thermosetting bisimide or bisisoimide compound is the following general formula (1):

Figure 2007137960
Figure 2007137960

(式中、A及びBは、一方が=Oであり、他方が=NAr11であり、Ar1は、炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、R1は、炭素数2〜36の、少なくとも1つ以上の炭素−炭素二重結合又は炭素−炭素三重結合を含有する1価の有機基であり、X1及びX2は、独立して、単結合、−O−、−CO−、−COO−、−OCO−、−SO2−、−C(CH32−又は−C(CF32−であり、R2は、炭素数2〜18のアルカンジイル基、あるいは炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、ここで架橋員とは、−O−、−CO−、−COO−、−OCO−、−SO2−、−CH2−、−C(CH32−又は−C(CF32−である)で表されるビスイミド化合物又はその位置異性体であるビスイソイミド化合物である。これらの化合物の製造では、まずテトラカルボン酸二無水物とアミン成分とを反応させ、対応するビスアミド酸の製造を行う。ビスアミド酸の製造は、特に制限はなく、公知の方法で良く、通常は溶媒中で行われる。 (In the formula, one of A and B is ═O, the other is ═NAr 1 R 1 , and Ar 1 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or the same Or a divalent group of a polycyclic compound in which two or more different aromatic compounds are connected to each other directly or by a bridging member, and R 1 is at least one carbon having 2 to 36 carbon atoms A monovalent organic group containing a carbon double bond or a carbon-carbon triple bond, and X 1 and X 2 are independently a single bond, —O—, —CO—, —COO—, —OCO; —, —SO 2 —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 —, wherein R 2 is an alkanediyl group having 2 to 18 carbon atoms or a monocyclic having 6 to 36 carbon atoms. Formula or condensed polycyclic aromatic compounds, or two or more of the same or different aromatic compounds may be directly or A bivalent radical of a polycyclic compound linked to one another, and wherein a bridge member, -O by personnel -, - CO -, - COO -, - OCO -, - SO 2 -, - CH 2 A bisimide compound represented by —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 —, or a positional isomer thereof. In the production of these compounds, a tetracarboxylic dianhydride and an amine component are first reacted to produce the corresponding bisamic acid. The production of bisamidic acid is not particularly limited and may be a known method, and is usually performed in a solvent.

ビスイミド又はビスイソイミド化合物の製造で用いられるテトラカルボン酸二無水物は、下記一般式(9):   The tetracarboxylic dianhydride used in the production of the bisimide or bisisoimide compound is represented by the following general formula (9):

Figure 2007137960
Figure 2007137960

(式中、X1及びX2は、独立して、単結合、−O−、−CO−、−COO−、−OCO−、−SO2−、−C(CH32−又は−C(CF32−であり、R2は、炭素数2〜18のアルカンジイル基、あるいは炭素数6〜36の単環式若しくは縮合多環式芳香族化合物の2価の基、又は同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、ここで架橋員とは、−O−、−CO−、−COO−、−OCO−、−SO2−、−CH2−、−C(CH32−又は−C(CF32−である)で表されるものである。 Wherein X 1 and X 2 are each independently a single bond, —O—, —CO—, —COO—, —OCO—, —SO 2 —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 — and R 2 is an alkanediyl group having 2 to 18 carbon atoms, a divalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or the same or A divalent group of a polycyclic compound in which two or more different aromatic compounds are connected to each other directly or by a cross-linking member, where the cross-linking members are -O-, -CO-, -COO- , —OCO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 —).

2における「炭素数2〜18のアルカンジイル基」とは、直鎖状であっても、分岐鎖状であってもよい。好ましくは炭素数2〜12、より好ましくは炭素数2〜6のアルカンジイル基、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、ヘキサメチレンなどが挙げられる。最も好ましくはエチレンが挙げられる。 The “alkanediyl group having 2 to 18 carbon atoms” in R 2 may be linear or branched. Preferred are alkanediyl groups having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, such as methylene, ethylene, propylene, trimethylene, tetramethylene, hexamethylene and the like. Most preferably, ethylene is used.

2における「炭素数6〜36の単環式若しくは縮合多環式芳香族化合物の2価の基」は、非置換であっても、炭素数1〜6のアルキル基、アルコキシル基又はハロゲン原子から選択される置換基で芳香族上の水素原子が置換されていてもよい。好ましくは炭素数6〜18、より好ましくは炭素数6〜12の単環式又は縮合多環式芳香族化合物の2価の基であり、例えば、フェニレン、ナフタレンジイル、アントラセンジイル、フェナントレンジイルなどが挙げられる。最も好ましくはo−、m−若しくはp−フェニレンが挙げられる。 The “divalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms” in R 2 is an unsubstituted alkyl group, alkoxyl group or halogen atom even if it is unsubstituted. The hydrogen atom on the aromatic may be substituted with a substituent selected from Preferably, it is a bivalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, such as phenylene, naphthalenediyl, anthracenediyl, phenanthrene diyl, etc. Can be mentioned. Most preferred is o-, m- or p-phenylene.

2における「同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基」とは、前記段落に挙げられた、単環式若しくは縮合多環式芳香族化合物が、直接若しくは架橋員(ここで架橋員とは、−O−、−CO−、−COO−、−OCO−、−SO2−、−CH2−、−C(CH32−又は−C(CF32−である)により相互に連結された多環式化合物の2価の基である。好ましい多環式化合物の2価の基の例は、前記段落に挙げられた2つ以上の単環式芳香族化合物、特にはo−、m−若しくはp−フェニレンが、直接若しくは架橋員により相互に連結された多環式化合物の2価の基、例えば、ビフェニル−4,4’−ジイル、ビフェニル−2,2’−ジイルなどが挙げられる。 The “divalent group of a polycyclic compound in which two or more of the same or different aromatic compounds are connected to each other directly or by a bridging member” in R 2 refers to a monocyclic or condensed polycyclic aromatic compound, is directly or bridge member (here a bridge member, -O -, - CO -, - COO -, - OCO -, - SO 2 -, - CH 2 -, - C ( A divalent group of a polycyclic compound interconnected by CH 3 ) 2 — or —C (CF 3 ) 2 —. Examples of divalent groups of preferred polycyclic compounds are those wherein two or more monocyclic aromatic compounds mentioned in the preceding paragraph, in particular o-, m- or p-phenylene, can be linked directly or by a bridging member. And a divalent group of a polycyclic compound linked to, for example, biphenyl-4,4′-diyl, biphenyl-2,2′-diyl and the like.

一般式(9)で表されるテトラカルボン酸二無水物の具体例としては、下記式(10):   Specific examples of the tetracarboxylic dianhydride represented by the general formula (9) include the following formula (10):

Figure 2007137960
Figure 2007137960

(式中、mは0〜4の整数で表される)で表される化合物などが挙げられ、芳香族上の水素原子は、炭素数1〜6のアルキル基、アルコキシル基又はハロゲン原子から選択される置換基で置換されていてもよい。なおこれらの化合物は、それ自身が市販されているか、又は市販の試薬類、例えば、トリメリト酸無水物、ハロフタル酸無水物と市販の2価のアルコール類、フェノール類若しくはビスフェノール類とを常法に従って反応させることにより、容易に入手することができるが、入手しやすさの観点からは、下記式(11): (Wherein, m is represented by an integer of 0 to 4), and the hydrogen atom on the aromatic is selected from an alkyl group having 1 to 6 carbon atoms, an alkoxyl group, or a halogen atom It may be substituted with a substituent. These compounds are either commercially available or commercially available reagents such as trimellitic anhydride, halophthalic anhydride and commercially available dihydric alcohols, phenols or bisphenols according to conventional methods. Although it can obtain easily by making it react, from a viewpoint of availability, following formula (11):

Figure 2007137960

の使用が望ましい。また、上記二無水物を2種類以上混合して用いても良い。
Figure 2007137960

Is desirable. Two or more of the above dianhydrides may be mixed and used.

アミン成分は、下記一般式(12):   The amine component has the following general formula (12):

Figure 2007137960
Figure 2007137960

(式中、Ar1は、炭素数6〜36の単環式若しくは縮合多環式芳香族化合物の2価の基、又は同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、R1は、炭素数が2〜36の、少なくとも1つ以上の炭素−炭素二重結合又は炭素−炭素三重結合を含有する1価の有機基であり、ここで架橋員とは、−O−、−CO−、−COO−、−OCO−、−SO2−、−CH2−、−C(CH32−又は−C(CF32−である)で表されるものである。 (In the formula, Ar 1 represents a divalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or two or more of the same or different aromatic compounds directly or by a cross-linking member. A monovalent group containing at least one carbon-carbon double bond or carbon-carbon triple bond having 2 to 36 carbon atoms, wherein R 1 is a divalent group of a polycyclic compound linked to an organic group, and wherein a bridge member, -O -, - CO -, - COO -, - OCO -, - SO 2 -, - CH 2 -, - C (CH 3) 2 - or -C (CF 3 ) 2 —).

Ar1における「炭素数6〜36の単環式若しくは縮合多環式芳香族化合物の2価の基」及び「同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基」とは、上記段落に挙げられたR2における場合と同義であるが、好ましくはAr1が、下記式(13): In Ar 1 , “a divalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms” and “two or more of the same or different aromatic compounds are linked directly or by a cross-linking member. The “divalent group of the polycyclic compound” has the same meaning as in R 2 listed in the above paragraph, but preferably Ar 1 is represented by the following formula (13):

Figure 2007137960
Figure 2007137960

(式中、Yは、単結合、−O−、−CO−、−COO−、−OCO−、−SO2−、−CH2−、−C(CH32−又は−C(CF32−であり、同一であっても異なっていても良い)で表されるものである。 (In the formula, Y represents a single bond, —O—, —CO—, —COO—, —OCO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 — or —C (CF 3 2 ), which may be the same or different.

1における「炭素数が2〜36の、少なくとも1つ以上の炭素−炭素二重結合又は炭素−炭素三重結合を含有する1価の有機基」は、具体的には、C〜C36−アルケニル基、C〜C36−アルキニル基、C〜C34−アリール−C〜C30−アルケニル基、C〜C30−アルケニル−C〜C34−アリール基、C〜C34−アリール−C〜C30−アルキニル基又はC〜C30−アルキニル−C〜C34−アリール基であり、好ましくは、C〜C36−アルキニル基又はC〜C34−アリール−C〜C30−アルキニル基であり、さらに好ましくは、C〜C−アルキニル基又はC〜C18−アリール−C〜C−アルキニル基である。 The “monovalent organic group containing at least one carbon-carbon double bond or carbon-carbon triple bond having 2 to 36 carbon atoms” in R 1 is specifically C 2 to C 36. - alkenyl, C 2 -C 36 - alkynyl, C 6 -C 34 - aryl -C 2 -C 30 - alkenyl, C 2 -C 30 - alkenyl -C 6 -C 34 - aryl group, C 6 ~ A C 34 -aryl-C 2 -C 30 -alkynyl group or a C 2 -C 30 -alkynyl-C 6 -C 34 -aryl group, preferably a C 2 -C 36 -alkynyl group or C 6 -C 34. - alkynyl group, more preferably, C 2 -C 6 - - aryl -C 2 -C 30 alkynyl group - alkynyl or C 6 -C 18 - aryl -C 2 -C 6.

したがって、R1が、一般式(2)で表される場合のRにおける「炭素数1〜34の有機基」とは、例えばC〜C34−アルキル基、C〜C34−アリール基、C〜C28−アルキル−C〜C33−アリール基又はC〜C33−アリール−C〜C28−アルキル基であり、好ましくは、C〜C34−アルキル基又はC〜C34−アリール基であり、さらに好ましくは、C〜C−アルキニル基又はC〜C18−アリール基であり、特にはフェニルである。特にR1が、下記式(14): Therefore, the “organic group having 1 to 34 carbon atoms” in R when R 1 is represented by the general formula (2) is, for example, a C 1 to C 34 -alkyl group or a C 6 to C 34 -aryl group. C 1 -C 28 -alkyl-C 6 -C 33 -aryl group or C 6 -C 33 -aryl-C 1 -C 28 -alkyl group, preferably C 1 -C 34 -alkyl group or C 6 -C 34 - aryl group, more preferably, C 2 -C 6 - alkynyl or C 6 -C 18 - aryl radical, in particular phenyl. In particular, R 1 is represented by the following formula (14):

Figure 2007137960
Figure 2007137960

で表されるものが好ましい。よって一般式(12)で表されるアミン化合物の具体的な例としては、3−アミノフェニルアセチレン、4−アミノフェニルアセチレン、3−フェニルエチニルアニリン、4−フェニルエチニルアニリン、3−ナフチルエチニルアニリン、4−ナフチルエチニルアニリン、3−アントラセニルエチニルアニリン、4−アントラセニルエチニルアニリンなどが挙げられ、芳香族上の水素原子は、炭素数1〜6のアルキル基、アルコキシル基、ハロゲン原子で置換されていてもよい。入手のしやすさの観点からは、3−アミノフェニルアセチレン、4−アミノフェニルアセチレン、3−フェニルエチニルアニリン、4−フェニルエチニルアニリンの使用が望ましい。また、上記アミン化合物を2種類以上混合して用いても良い。 The thing represented by these is preferable. Therefore, specific examples of the amine compound represented by the general formula (12) include 3-aminophenylacetylene, 4-aminophenylacetylene, 3-phenylethynylaniline, 4-phenylethynylaniline, 3-naphthylethynylaniline, 4-naphthylethynylaniline, 3-anthracenylethynylaniline, 4-anthracenylethynylaniline, etc. are mentioned, and the hydrogen atom on the aromatic is substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxyl group, or a halogen atom. May be. From the viewpoint of easy availability, it is desirable to use 3-aminophenylacetylene, 4-aminophenylacetylene, 3-phenylethynylaniline, and 4-phenylethynylaniline. Two or more of the above amine compounds may be mixed and used.

ビスアミド酸の反応に用いられる溶媒は、反応に不活性な溶媒なら特に限定されず、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、テトラメチルウレア、テトラヒドロフフランなどを単独又は混合形態で使用することが出来る。特に好適なのはN,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、テトラヒドロフランである。またこれらの溶媒にベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジグライム、トリグライム等の溶媒を任意の割合で混合して用いても良い。反応は、通常、5〜80%の溶質濃度で行う。   The solvent used for the reaction of bisamidic acid is not particularly limited as long as it is an inert solvent for the reaction. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, tetra Methylurea, tetrahydrofuran and the like can be used alone or in a mixed form. Particularly preferred are N, N-dimethylacetamide, N-methyl-2-pyrrolidone and tetrahydrofuran. Further, these solvents may be used by mixing benzene, toluene, xylene, mesitylene, chlorobenzene, diglyme, triglyme and the like in an arbitrary ratio. The reaction is usually carried out at a solute concentration of 5 to 80%.

次いで、イミド化反応は、上記反応で得られたビスアミド酸を公知の方法で脱水することによって行う。例えば、化学的イミド化法は、上記反応で得られたビスアミド酸溶液に、特に限定されるわけではないが、無水酢酸、トリフルオロ酢酸無水物、ポリリン酸、五酸化リン、五塩化リン、塩化チオニルなどの脱水剤を単独または2種類以上を混合して脱水を行う。ピリジンなどの触媒を用いても良い。熱的イミド化法では、上記反応で得られたビスアミド酸溶液に、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジグライム、トリグライムなどの溶媒を任意の割合で混合して、加熱を行い、閉環によって生成した水を系外に流出させながら脱水を行う。またこれらの溶媒は単独又は2種類以上混合して用いても良い。一方イソイミド化反応は、上記反応で得られたビスアミド酸を公知の方法で脱水することによって行う。例えば、トリフルオロ無水酢酸、N,N−ジシクロヘキシルカルボジイミドなどの脱水剤を単独または2種類以上を混合して脱水を行う。ピリジンなどの触媒を用いても良い。   Next, the imidization reaction is performed by dehydrating the bisamic acid obtained by the above reaction by a known method. For example, the chemical imidization method is not particularly limited to the bisamic acid solution obtained by the above reaction, but is not limited to acetic anhydride, trifluoroacetic anhydride, polyphosphoric acid, phosphorus pentoxide, phosphorus pentachloride, chloride. Dehydration is performed by using a dehydrating agent such as thionyl alone or in combination of two or more. A catalyst such as pyridine may be used. In the thermal imidization method, a solvent such as benzene, toluene, xylene, mesitylene, chlorobenzene, diglyme, and triglyme is mixed with the bisamic acid solution obtained in the above reaction at an arbitrary ratio, heated, and generated by ring closure. The water is drained while draining the water out of the system. These solvents may be used alone or in combination of two or more. On the other hand, the isoimidization reaction is performed by dehydrating the bisamic acid obtained by the above reaction by a known method. For example, dehydrating agents such as trifluoroacetic anhydride and N, N-dicyclohexylcarbodiimide are used alone or in combination of two or more for dehydration. A catalyst such as pyridine may be used.

ここで「イソイミド」とは、イミドの位置異性体に当たるものであり、下記式(15):   Here, “isoimide” corresponds to a positional isomer of imide, and is represented by the following formula (15):

Figure 2007137960
Figure 2007137960

に示される構造を分子内に有するものであり、200〜300℃の温度で分子内で転移して、イミドになるものである。 In the molecule, it has a structure shown in (2), and it undergoes a transition in the molecule at a temperature of 200 to 300 ° C. to become an imide.

本発明に係るビスイミド化合物又はビスイソイミド化合物は、イミド化あるいはイソイミド化終了後、水、アルコールなどの溶媒に注ぎ、再沈させ、ろ過により結晶を取り出して乾燥して粉末として用いても良いが、ジシクロヘキシルウレアなどのイソイミド化剤をろ過により取り除き、溶液のまま用いても良い。   The bisimide compound or bisisoimide compound according to the present invention may be used as a powder by pouring into a solvent such as water or alcohol after completion of imidization or isoimidation, reprecipitation, taking out the crystals by filtration and drying. An isoimidating agent such as urea may be removed by filtration and used as a solution.

本発明のビスイミド化合物又はビスイソイミド化合物において、特に下記式(3)及び(4):   In the bisimide compound or bisisoimide compound of the present invention, in particular, the following formulas (3) and (4):

Figure 2007137960
Figure 2007137960

で表されるものが好ましい。これらの化合物は新規であり、本発明の目的の一部である。 The thing represented by these is preferable. These compounds are new and are part of the object of the present invention.

次に、本発明の樹脂組成物は、上記のようにして得られたビスイミド化合物又はビスイソイミド化合物と、ポリイミド又はポリアミド酸とを混合して製造することができる。   Next, the resin composition of the present invention can be produced by mixing the bisimide compound or bisisoimide compound obtained as described above with polyimide or polyamic acid.

次に、ポリイミド及びポリアミド酸いついて説明する。本発明で用いられるポリイミド及びポリアミド酸は、それぞれ下記一般式(16):   Next, polyimide and polyamic acid will be described. The polyimide and polyamic acid used in the present invention are represented by the following general formula (16):

Figure 2007137960
Figure 2007137960

及び下記一般式(17):   And the following general formula (17):

Figure 2007137960
Figure 2007137960

(式中、nは20以上の数、Arは、テトラカルボン酸残基であり、Arはジアミン残基である)で表される。 (In the formula, n is a number of 20 or more, Ar 6 is a tetracarboxylic acid residue, and Ar 7 is a diamine residue).

ポリイミド及び/又はポリアミド酸の製造は、特に制限はなく、公知の方法で良く、通常は溶媒中で行われる。芳香族テトラカルボン酸二無水物と芳香族ジアミンとを極性溶媒中で反応させて製造する。ここで用いるテトラカルボン酸二無水物(すなわち、Arのテトラカルボン酸残基を形成するもの)の具体例としては、ピロメリト酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3’,3,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、3,4’−オキシジフタル酸二無水物、3,3’−オキシジフタル酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,2,7,8−ナフタレンテトラカルボン酸二無水物などが挙げられる。本発明のポリイミドは溶媒可溶性であることが望ましく、分子量や選択されるジアミンの種類によっても異なるが、ピロメリト酸二無水物、4,4’−オキシジフタル酸二無水物、3,4’−オキシジフタル酸二無水物、3,3’−オキシジフタル酸二無水物、3,3,’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物の使用が望ましい。また、上記二無水物を2種類以上混合して用いても良い。 There is no restriction | limiting in particular in manufacture of a polyimide and / or a polyamic acid, A well-known method may be sufficient, and it is normally performed in a solvent. It is produced by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine in a polar solvent. Specific examples of the tetracarboxylic dianhydride used here (that is, those that form a tetracarboxylic acid residue of Ar 6 ) include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic Acid dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic acid dianhydride 3,4'-oxydiphthalic dianhydride, 3,3'-oxydiphthalic dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 3,3', 4,4 '-Diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride 1, 2, 7, - like naphthalene tetracarboxylic dianhydride. The polyimide of the present invention is preferably solvent-soluble and varies depending on the molecular weight and the type of diamine selected, but pyromellitic dianhydride, 4,4'-oxydiphthalic dianhydride, 3,4'-oxydiphthalic acid Dianhydride, 3,3′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4 The use of dicarboxyphenyl) hexafluoropropane dianhydride is desirable. Two or more of the above dianhydrides may be mixed and used.

芳香族ジアミン(すなわち、Arの、ジアミン残基を形成するもの)の例としては、芳香族基を1つ有するもの;p−フェニレンジアミン、m−フェニレンジアミン、p−アミノベンジルアミン、m−アミノベンジルジアミン、ジアミノトルエン類、ジアミノキシレン類、ジアミノナフタレン類、ジアミノアントラセン類など、芳香族基を2つ有するもの;4,4’−ジアミノビフェニル、3,4’−ジアミノビフェニル、3,3’−ジアミノビフェニル、o−トリジン、m−トリジン、o−ジアニシジン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、3,3’−ジアミノジフェニルケトン、2,2−ビス(4−アミノフェノキシ)プロパン、2,2−ビス(3−アミノフェノキシ)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパンなど、芳香族基を3つ有するもの;1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノベンゾイル)ベンゼン、1,4−ビス(3−アミノベンゾイル)ベンゼン、1,3−ビス(4−アミノベンゾイル)ベンゼン、1,3−ビス(3−アミノベンゾイル)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレンなど、芳香族基を4つ以上有するもの;2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、4,4’−ビス(4−アミノフェノキシ)ベンゾフェノン、4,4’−ビス(3−アミノフェノキシ)ベンゾフェノン、1,4−ビス[4−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[3−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[3−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[4−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[3−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ビフェニル、4,4’−ビス[3−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ビフェニル、4,4’−ビス[4−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ジフェニルスルホン、4,4’−ビス[3−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ジフェニルスルホンなどが挙げられる。本発明のポリイミドは溶媒可溶性であることが望ましく、分子量や選択されるテトラカルボン酸二無水物の種類によっても異なるが、入手のしやすさなどを考慮すれば、具体的にp−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、9,9−ビス(4−アミノフェニル)フルオレンの使用が好ましい。また、ジアミン化合物を2種類以上混合して用いても良い。 Examples of aromatic diamines (ie, those that form a diamine residue of Ar 7 ) have one aromatic group; p-phenylenediamine, m-phenylenediamine, p-aminobenzylamine, m- Aminobenzyldiamine, diaminotoluenes, diaminoxylenes, diaminonaphthalenes, diaminoanthracenes and the like having two aromatic groups; 4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3 ′ -Diaminobiphenyl, o-tolidine, m-tolidine, o-dianisidine, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether 4,4′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl ketone, 3,4′-diaminodiphenyl ketone, 3,3 ′ -Diaminodiphenyl ketone, 2,2-bis (4-aminophenoxy) propane, 2,2-bis (3-aminophenoxy) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, etc. Having three aromatic groups; 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, , 3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) It has 4 or more aromatic groups such as benzene, 1,3-bis (4-aminobenzoyl) benzene, 1,3-bis (3-aminobenzoyl) benzene, 9,9-bis (4-aminophenyl) fluorene. 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [ 4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) Phenyl] ether, 4,4′-bis (4-aminophenoxy) benzophenone, 4,4′-bis (3-aminophenoxy) benzophenone, 1 4-bis [4- (2-, 3- or 4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (2-, 3- or 4-aminophenoxy) benzoyl] benzene, 1,4- Bis [3- (2-, 3- or 4-aminophenoxy) benzoyl] benzene, 1,3-bis [3- (2-, 3- or 4-aminophenoxy) benzoyl] benzene, 4,4′-bis [4- (2-, 3- or 4-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [3- (2-, 3- or 4-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [4- (2-, 3- or 4-aminophenoxy) benzoyl] biphenyl, 4,4′-bis [3- (2-, 3- or 4-aminophenoxy) benzoyl Biphenyl, 4,4′-bis [4- (2-, 3- or 4-aminophenoxy) benzoyl] diphenylsulfone, 4,4′-bis [3- (2-, 3- or 4-aminophenoxy) benzoyl ] Diphenyl sulfone etc. are mentioned. The polyimide of the present invention is desirably solvent-soluble and varies depending on the molecular weight and the type of tetracarboxylic dianhydride selected. In consideration of availability, p-phenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis [4- (4-Aminophenoxy) phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] Use of sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 9,9-bis (4-aminophenyl) fluorene Is preferred. Two or more diamine compounds may be mixed and used.

さらに、下記一般式(18): Furthermore, the following general formula (18):

Figure 2007137960
Figure 2007137960

(式中、pは0〜20の整数の混合値であり、Rはメチル基、イソプロピル基、フェニル基、ビニル基を示し、Rは炭素数1〜7の炭化水素基、例えば、メチレン、エチレン、トリメチレン、テトラメチレン、フェニレンなどを示す)で表されるシリコンジアミンを1〜50モル%の範囲で共重合させても良い。 (In the formula, p is an integer mixed value of 0 to 20, R 5 represents a methyl group, an isopropyl group, a phenyl group or a vinyl group, and R 6 represents a hydrocarbon group having 1 to 7 carbon atoms such as methylene. , Ethylene, trimethylene, tetramethylene, phenylene, etc.) may be copolymerized in the range of 1 to 50 mol%.

ポリイミド及び/又はポリアミド酸の反応に用いられる溶媒は、反応に不活性な溶媒なら特に限定されず、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、テトラメチルウレア、テトラヒドロフフランなどを単独又は混合形態で使用することが出来る。特に好適なのはN,N−ジメチルアセトアミド、N−メチル−2−ピロリドンである。またこれらの溶媒にベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジグライム、トリグライム等の溶媒を任意の割合で混合して用いても良い。反応は、通常、5〜80%の溶質濃度で行う。   The solvent used for the reaction of the polyimide and / or polyamic acid is not particularly limited as long as it is an inert solvent for the reaction. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, Dimethyl sulfoxide, tetramethyl urea, tetrahydrofuran and the like can be used alone or in a mixed form. Particularly preferred are N, N-dimethylacetamide and N-methyl-2-pyrrolidone. Further, these solvents may be used by mixing benzene, toluene, xylene, mesitylene, chlorobenzene, diglyme, triglyme and the like in an arbitrary ratio. The reaction is usually carried out at a solute concentration of 5 to 80%.

次いで、イミド化反応は、上記反応で得られたポリアミド酸を公知の方法で脱水することによって行う。例えば、化学的イミド化法は、上記反応で得られたポリアミド酸溶液に、特に限定されるわけではないが、無水酢酸、トリフルオロ酢酸無水物、ポリリン酸、五酸化リン、五塩化リン、塩化チオニルなどの脱水剤を単独または2種類以上を混合して脱水を行う。ピリジンなどの触媒を用いても良い。熱的イミド化法では、上記反応で得られたポリアミド酸溶液に、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジグライム、トリグライムなどの溶媒を任意の割合で混合して、加熱を行い、閉環によって生成した水を系外に流出させながら脱水を行う。またこれらの溶媒は単独又は2種類以上混合して用いても良い。   Next, the imidization reaction is performed by dehydrating the polyamic acid obtained by the above reaction by a known method. For example, the chemical imidization method is not particularly limited to the polyamic acid solution obtained by the above reaction, but acetic anhydride, trifluoroacetic anhydride, polyphosphoric acid, phosphorus pentoxide, phosphorus pentachloride, chloride Dehydration is performed by using a dehydrating agent such as thionyl alone or in combination of two or more. A catalyst such as pyridine may be used. In the thermal imidization method, a solvent such as benzene, toluene, xylene, mesitylene, chlorobenzene, diglyme, and triglyme is mixed in an arbitrary ratio to the polyamic acid solution obtained by the above reaction, heated, and produced by ring closure. The water is drained while draining the water out of the system. These solvents may be used alone or in combination of two or more.

本発明の樹脂組成物は、上記のようにして得られたポリイミド又はポリアミド酸と、熱硬化性ビスイミド化合物又は熱硬化性ビスイソイミド化合物とを99/1〜20/80の重量比で含むものが望ましく、95/5〜40/60の重量比で含むものが特に好ましい。   The resin composition of the present invention preferably contains a polyimide or polyamic acid obtained as described above and a thermosetting bisimide compound or a thermosetting bisisoimide compound in a weight ratio of 99/1 to 20/80. In particular, those containing at a weight ratio of 95/5 to 40/60 are preferred.

さらに、接着性、耐熱性などの向上のために、上記のようにして得られたポリイミド樹脂組成物又はポリアミド酸樹脂組成物に、下記一般式(5)〜(8):   Furthermore, in order to improve adhesiveness, heat resistance, etc., the following general formulas (5) to (8) are added to the polyimide resin composition or the polyamic acid resin composition obtained as described above:

Figure 2007137960
Figure 2007137960

(式中、nは0〜20の数で、R3及びR4は、独立して、水素又はフェニル基であり、Ar2及びAr4は、独立して、炭素数6〜36のテトラカルボン酸残基、すなわち炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる2つ以上の前記芳香族基が直接若しくは架橋員により相互に連結された多環式化合物の4価の基であり、Ar3及びAr5は、独立して、炭素数6〜36のジアミン残基、すなわち炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、同一若しくは異なる2つ以上の前記芳香族基が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、ここで架橋員とは、−O−、−CO−、−COO−、−OCO−、−SO2−、−CH2−、−C(CH32−又は−C(CF32−である)で表される架橋性の基を有するイミドオリゴマー又はイソイミドオリゴマーを95/5〜5/95、望ましくは90/10〜20/80、さらに望ましくは80/20〜40/60の混合比で加えることができる。 (In the formula, n is a number of 0 to 20, R 3 and R 4 are independently hydrogen or a phenyl group, and Ar 2 and Ar 4 are independently a tetracarboxylic acid having 6 to 36 carbon atoms. An acid residue, that is, a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic groups are connected to each other directly or by a bridging member Ar 3 and Ar 5 are independently a diamine residue having 6 to 36 carbon atoms, that is, a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, the same or A divalent group of a polycyclic compound in which two or more different aromatic groups are connected to each other directly or by a cross-linking member, where the cross-linking members are -O-, -CO-, -COO- , -OCO -, - SO 2 - , - CH 2 -, - C (CH 3) 2 - or -C CF 3) 2 - imide oligomer or iso imide oligomer 95 / 5-5 / 95 having a crosslinkable group represented by a is), preferably 90 / 10-20 / 80, more preferably 80/20 It can be added at a mixing ratio of 40/60.

架橋性の基を有するイミドオリゴマー及びイソイミドオリゴマーの製造方法としては、まずは、対応するアミド酸オリゴマーの製造を行う。アミド酸オリゴマーの製造は、特に制限はなく、公知の方法で良く、通常は溶媒中で行われる。芳香族テトラカルボン酸二無水物と芳香族ジアミンと架橋性の基を有するアミン系あるいは酸系分子末端封止剤とを極性溶媒中で反応させて製造する。ここで用いるテトラカルボン酸二無水物の具体例としては、ピロメリト酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3’,3,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、3,4’−オキシジフタル酸二無水物、3,3’−オキシジフタル酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,2,7,8−ナフタレンテトラカルボン酸二無水物などが挙げられる。なお、イミドオリゴマー及び/又はイソイミドオリゴマーのガラス転位温度が、樹脂の流れ性の観点から250℃以下、望ましくは200℃以下であることや入手のしやすさなどを考慮すれば、使用するジアミン化合物の種類や目標とする分子量によっても異なるが、入手のしやすさなどを考慮すれば、4,4’−オキシジフタル酸二無水物、3,3,’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物の使用が望ましい。また、上記二無水物を2種類以上混合して用いても良い。   As a method for producing an imide oligomer and an isoimide oligomer having a crosslinkable group, first, a corresponding amic acid oligomer is produced. There is no restriction | limiting in particular in manufacture of an amic acid oligomer, A well-known method may be sufficient and it is normally performed in a solvent. An aromatic tetracarboxylic dianhydride, an aromatic diamine, and an amine-based or acid-based molecular end-capping agent having a crosslinkable group are reacted in a polar solvent. Specific examples of the tetracarboxylic dianhydride used here include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyl. Tetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3,4′-oxydiphthalic dianhydride, 3,3 '-Oxydiphthalic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 1,2,7,8-naphthalenetetracarboxylic dianhydride Na And the like. Note that the diamine oligomer and / or isoimide oligomer glass transition temperature is 250 ° C. or lower, preferably 200 ° C. or lower from the viewpoint of resin flowability, and considering the availability, the diamine to be used. Although it depends on the type of compound and the target molecular weight, 4,4'-oxydiphthalic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic acid, considering the availability, etc. Dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 2,2-bis (3,4 It is desirable to use -dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride. Two or more of the above dianhydrides may be mixed and used.

芳香族ジアミンの例としては、芳香族基を1つ有するもの;p−フェニレンジアミン、m−フェニレンジアミン、p−アミノベンジルアミン、m−アミノベンジルジアミン、ジアミノトルエン類、ジアミノキシレン類、ジアミノナフタレン類、ジアミノアントラセン類など、芳香族基を2つ有するもの;4,4’−ジアミノビフェニル、3,4’−ジアミノビフェニル、3,3’−ジアミノビフェニル、o−トリジン、m−トリジン、o−ジアニシジン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、3,3’−ジアミノジフェニルケトン、2,2−ビス(4−アミノフェノキシ)プロパン、2,2−ビス(3−アミノフェノキシ)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパンなど、芳香族基を3つ有するもの;1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノベンゾイル)ベンゼン、1,4−ビス(3−アミノベンゾイル)ベンゼン、1,3−ビス(4−アミノベンゾイル)ベンゼン、1,3−ビス(3−アミノベンゾイル)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレンなど、芳香族基を4つ以上有するもの;2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、4,4’−ビス(4−アミノフェノキシ)ベンゾフェノン、4,4’−ビス(3−アミノフェノキシ)ベンゾフェノン、1,4−ビス[4−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[3−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[3−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[4−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[3−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ビフェニル、4,4’−ビス[3−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ビフェニル、4,4’−ビス[4−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ジフェニルスルホン、4,4’−ビス[3−(2−,3−若しくは4−アミノフェノキシ)ベンゾイル]ジフェニルスルホンなどが挙げられる。なお、イミドオリゴマー又はイソイミドオリゴマーのガラス転位温度が、樹脂の流れ性の観点から250℃以下、望ましくは200℃以下であることや入手のしやすさなどを考慮すれば、使用するテトラカルボン酸二無水物の種類や目標とする分子量によっても異なるが、具体的にp−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、9,9−ビス(4−アミノフェニル)フルオレンの使用が好ましい。また、ジアミン化合物を2種類以上混合して用いても良い。   Examples of aromatic diamines include those having one aromatic group; p-phenylenediamine, m-phenylenediamine, p-aminobenzylamine, m-aminobenzyldiamine, diaminotoluenes, diaminoxylenes, diaminonaphthalenes , Diaminoanthracenes and the like having two aromatic groups; 4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, o-tolidine, m-tolidine, o-dianisidine 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4, , 4'-Diaminodiphenylsulfone 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 3,4'-diaminodiphenyl ketone, 3,3'-diaminodiphenyl ketone, 2,2-bis Those having three aromatic groups such as (4-aminophenoxy) propane, 2,2-bis (3-aminophenoxy) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane; 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) Benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) benzene, 1,3-bis (4- Those having four or more aromatic groups such as minobenzoyl) benzene, 1,3-bis (3-aminobenzoyl) benzene, 9,9-bis (4-aminophenyl) fluorene; 2,2-bis [4- (4-Aminophenoxy) phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] Sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, 4,4′-bis (4-Aminophenoxy) benzophenone, 4,4′-bis (3-aminophenoxy) benzophenone, 1,4-bis [4- (2-, 3 -Or 4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (2-, 3- or 4-aminophenoxy) benzoyl] benzene, 1,4-bis [3- (2-, 3- or 4-Aminophenoxy) benzoyl] benzene, 1,3-bis [3- (2-, 3- or 4-aminophenoxy) benzoyl] benzene, 4,4′-bis [4- (2-, 3- or 4 -Aminophenoxy) benzoyl] diphenyl ether, 4,4'-bis [3- (2-, 3- or 4-aminophenoxy) benzoyl] diphenyl ether, 4,4'-bis [4- (2-, 3- or 4 -Aminophenoxy) benzoyl] biphenyl, 4,4′-bis [3- (2-, 3- or 4-aminophenoxy) benzoyl] biphenyl, 4,4 -Bis [4- (2-, 3- or 4-aminophenoxy) benzoyl] diphenylsulfone, 4,4'-bis [3- (2-, 3- or 4-aminophenoxy) benzoyl] diphenylsulfone, etc. It is done. In view of resin flowability, the glass transition temperature of the imide oligomer or isoimide oligomer is 250 ° C. or lower, preferably 200 ° C. or lower, and the tetracarboxylic acid to be used in consideration of availability. Depending on the type of dianhydride and the target molecular weight, p-phenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) Benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4 '-Bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [ - (3-aminophenoxy) phenyl] sulfone, 9,9-bis (4-aminophenyl) use of fluorene are preferred. Two or more diamine compounds may be mixed and used.

架橋性の基を有する分子末端封止剤の例としては、酸系分子末端封止剤として、4−エチニル無水フタル酸、3−エチニル無水フタル酸、4−フェニルエチニル無水フタル酸、3−フェニルエチニル無水フタル酸、エチニルナフタレンジカルボン酸無水物、フェニルエチニルナフタレンジカルボン酸無水物、エチニルアントラセンジカルボン酸無水物、フェニルエチニルアントラセンジカルボン酸無水物、4−ナフチルエチニル無水フタル酸、3−ナフチルエチニル無水フタル酸、ナフチルエチニルナフタレンジカルボン酸無水物、ナフチルエチニルアントラセンジカルボン酸無水物、4−アントラセニルルエチニル無水フタル酸、3−アントラセニルエチニル無水フタル酸、アントラセニルエチニルナフタレンジカルボン酸無水物、アントラセニルエチニルアントラセンジカルボン酸無水物などが挙げられ、芳香族上の水素原子は、炭素数1〜6のアルキル基、アルケニル基、アルキニル基、アルコキシル基、ハロゲン原子で置換されていてもよい。なお、入手のしやすさを考慮に入れると、4−フェニルエチニル無水フタル酸、4−エチニル無水フタル酸の使用が望ましい。また、上記酸無水物を2種類以上混合して用いても良い。   Examples of molecular end-capping agents having a crosslinkable group include 4-ethynyl phthalic anhydride, 3-ethynyl phthalic anhydride, 4-phenylethynyl phthalic anhydride, 3-phenyl as acid-based molecular end capping agents. Ethynyl phthalic anhydride, ethynyl naphthalene dicarboxylic acid anhydride, phenyl ethynyl naphthalene dicarboxylic acid anhydride, ethynyl anthracene dicarboxylic acid anhydride, phenyl ethynyl anthracene dicarboxylic acid anhydride, 4-naphthylethynyl phthalic anhydride, 3-naphthylethynyl phthalic anhydride Naphthylethynylnaphthalenedicarboxylic anhydride, naphthylethynylanthracene dicarboxylic acid anhydride, 4-anthracenyl ethynyl phthalic anhydride, 3-anthracenylethynyl phthalic anhydride, anthracenylethynylnaphthalenedicarboxylic acid anhydride, ant It includes such cell nil ethynyl anthracene dicarboxylic acid anhydride, hydrogen atoms on aromatic, alkyl group having 1 to 6 carbon atoms, an alkenyl group, an alkynyl group, an alkoxyl group, may be substituted with a halogen atom. In consideration of availability, 4-phenylethynyl phthalic anhydride and 4-ethynyl phthalic anhydride are preferably used. Further, two or more of the above acid anhydrides may be mixed and used.

アミン系分子末端封止剤の具体例として、3−アミノフェニルアセチレン、4−アミノフェニルアセチレン、3−フェニルエチニルアニリン、4−フェニルエチニルアニリン、3−ナフチルエチニルアニリン、4−ナフチルエチニルアニリン、3−アントラセニルエチニルアニリン、4−アントラセニルエチニルアニリンなどが挙げられ、芳香族上の水素原子は、炭素数1〜6のアルキル基、アルケニル基、アルキニル基、アルコキシル基、ハロゲン原子で置換されていてもよい。なお、入手のしやすさを考慮に入れると、3−アミノフェニルアセチレン、4−アミノフェニルアセチレン、3−フェニルエチニルアニリン、4−フェニルエチニルアニリンの使用が望ましい。また、上記化合物を2種類以上混合して用いても良い。   Specific examples of the amine-based molecular end-capping agent include 3-aminophenylacetylene, 4-aminophenylacetylene, 3-phenylethynylaniline, 4-phenylethynylaniline, 3-naphthylethynylaniline, 4-naphthylethynylaniline, 3- Anthracenyl ethynyl aniline, 4-anthracenyl ethynyl aniline, etc. are mentioned, and the hydrogen atom on the aromatic is substituted with an alkyl group having 1 to 6 carbon atoms, an alkenyl group, an alkynyl group, an alkoxyl group, or a halogen atom. May be. In view of availability, it is desirable to use 3-aminophenylacetylene, 4-aminophenylacetylene, 3-phenylethynylaniline, and 4-phenylethynylaniline. Two or more of the above compounds may be mixed and used.

イミドオリゴマーあるいはイソイミドオリゴマーの目標とする分子量は、その前駆体であるアミド酸オリゴマーに対応する。   The target molecular weight of the imide oligomer or isoimide oligomer corresponds to the precursor amic acid oligomer.

架橋性の基を有する分子末端封止剤の仕込み量は、目標とするアミド酸オリゴマーの分子量によっても異なるが、通常はテトラカルボン酸二無水物とジアミン化合物とのモル数の差の1〜数倍のモル数であり、望ましくは1.5〜4倍である。テトラカルボン酸二無水物のモル数の方が多い場合はアミン系分子末端封止剤、ジアミン化合物のモル数の方が多い場合は酸系分子末端封止剤を用いる。   The amount of the molecular end-capping agent having a crosslinkable group varies depending on the molecular weight of the target amic acid oligomer, but usually 1 to the number of moles difference between tetracarboxylic dianhydride and diamine compound. The number of moles is double, desirably 1.5 to 4 times. When the number of moles of tetracarboxylic dianhydride is larger, an amine-based molecular terminal blocking agent is used, and when the number of moles of the diamine compound is larger, an acid-based molecular terminal blocking agent is used.

アミド酸オリゴマーの製造に用いられる溶媒は、反応に不活性な溶媒なら特に限定されず、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、テトラメチルウレア、テトラヒドロフフランなどを単独又は混合形態で使用することが出来る。特に好適なのはN,N−ジメチルアセトアミド、N−メチル−2−ピロリドンである。またこれらの溶媒にベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジグライム、トリグライム等の溶媒を任意の割合で混合して用いても良い。反応は、通常、5〜80%の溶質濃度で行う。   The solvent used for the production of the amic acid oligomer is not particularly limited as long as it is an inert solvent for the reaction. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, Tetramethylurea, tetrahydrofuran and the like can be used alone or in a mixed form. Particularly preferred are N, N-dimethylacetamide and N-methyl-2-pyrrolidone. Further, these solvents may be used by mixing benzene, toluene, xylene, mesitylene, chlorobenzene, diglyme, triglyme and the like in an arbitrary ratio. The reaction is usually carried out at a solute concentration of 5 to 80%.

ついで、アミド酸オリゴマーのイミド化及びイソイミド化について説明する。イミド化反応は、上記反応で得られたアミド酸オリゴマーを公知の方法で脱水することによって行う。例えば、化学的イミド化法は、上記反応で得られたアミド酸オリゴマー溶液に、特に限定されるわけではないが、無水酢酸、トリフルオロ酢酸無水物、ポリリン酸、五酸化リン、五塩化リン、塩化チオニルなどの脱水剤を単独または2種類以上を混合して脱水を行う。ピリジンなどの触媒を用いても良い。熱的イミド化法では、上記反応で得られたアミド酸オリゴマー溶液に、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジグライム、トリグライムなどの溶媒を任意の割合で混合して、加熱を行い、閉環によって生成した水を系外に流出させながら脱水を行う。またこれらの溶媒は単独又は2種類以上混合して用いても良い。イソイミド化反応は、上記反応で得られたアミド酸オリゴマーを公知の方法で脱水することによって行う。例えば、トリフルオロ酢酸無水物、N,N−ジシクロヘキシルカルボジイミドなどの脱水剤を単独または2種類以上を混合して脱水を行う。ピリジンなどの触媒を用いても良い。   Next, imidization and isoimidization of an amic acid oligomer will be described. The imidization reaction is performed by dehydrating the amic acid oligomer obtained by the above reaction by a known method. For example, the chemical imidization method is not particularly limited to the amic acid oligomer solution obtained by the above reaction, but acetic anhydride, trifluoroacetic anhydride, polyphosphoric acid, phosphorus pentoxide, phosphorus pentachloride, Dehydration is performed by using a dehydrating agent such as thionyl chloride alone or in combination of two or more. A catalyst such as pyridine may be used. In the thermal imidization method, a solvent such as benzene, toluene, xylene, mesitylene, chlorobenzene, diglyme, and triglyme is mixed in an arbitrary ratio to the amic acid oligomer solution obtained by the above reaction, heated, and then ring-closed. Dehydration is performed while the generated water is discharged out of the system. These solvents may be used alone or in combination of two or more. The isoimidization reaction is performed by dehydrating the amic acid oligomer obtained by the above reaction by a known method. For example, dehydration is performed by using a dehydrating agent such as trifluoroacetic anhydride or N, N-dicyclohexylcarbodiimide alone or in combination of two or more. A catalyst such as pyridine may be used.

本発明に係るイミドオリゴマーあるいはイソイミドオリゴマーは、イミド化あるいはイソイミド化終了後、水、アルコールなどの溶媒に注ぎ、再沈させ、ろ過により結晶を取り出して乾燥して粉末として用いても良いが、ジシクロヘキシルウレアなどのイソイミド化剤の副生物をろ過により取り除き、溶液のまま用いても良い。   The imide oligomer or isoimide oligomer according to the present invention may be used as a powder after pouring into a solvent such as water or alcohol after completion of imidation or isoimidization, reprecipitation, taking out the crystals by filtration and drying. A by-product of an isoimidating agent such as dicyclohexylurea may be removed by filtration and used as a solution.

本発明の樹脂組成物は、以上のようにして得られたポリイミド又はポリアミド酸と、所望により、架橋性の基を有するイミドオリゴマー及び/又はイソイミドオリゴマーを含有する樹脂組成物と、本発明の熱硬化性ビスイミド化合物及び/又はビスイソイミド化合物とを99/1〜20/80の重量比で含むものが望ましく、95/5〜40/60の重量比(固形分)で含むものが特に好ましく、ワニス状又は粉末状で得ることができる。   The resin composition of the present invention comprises a polyimide or polyamic acid obtained as described above, and, if desired, a resin composition containing an imide oligomer and / or an isoimide oligomer having a crosslinkable group, What contains a thermosetting bisimide compound and / or a bisisoimide compound at a weight ratio of 99/1 to 20/80 is desirable, and a thing containing a weight ratio (solid content) of 95/5 to 40/60 is particularly preferred, and varnish Or in powder form.

本発明の耐熱性接着剤は、ワニス状又は粉末状の、本発明の樹脂組成物から調製することができる。耐熱性接着剤の調製に使用される溶媒は、各成分に対して化学的反応性が無く、かつ可溶性であれば特に限定されない。例えば、低級アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノールなど)、低級アルカン類(例えば、ペンタン、ヘキサン、ヘプタン、シクロヘキサンなど)、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなど)、ハロゲン化炭化水素類(例えば、ジクロロメタン、四塩化炭素、フルオロベンゼンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレンなど)又はエステル類(酢酸メチル、酢酸エチル、酢酸ブチルなど)などから適宜選択される溶媒を単独で若しくは混合形態で用いても良い。耐熱性接着剤に含まれる本発明の樹脂組成物の濃度は、特に制限はなく、各成分の溶解度や、耐熱性接着剤の使用様態などに応じて適宜選択されるが、例えば5〜80%の溶質濃度であることが好ましい。また本発明の目的を損なわない範囲で、各種充填剤若しくは添加剤を混合しても良い。   The heat-resistant adhesive of the present invention can be prepared from the resin composition of the present invention in the form of varnish or powder. The solvent used for the preparation of the heat-resistant adhesive is not particularly limited as long as it has no chemical reactivity with each component and is soluble. For example, lower alcohols (eg methanol, ethanol, propanol, isopropanol, butanol etc.), lower alkanes (eg pentane, hexane, heptane, cyclohexane etc.), ketones (eg acetone, methyl ethyl ketone, methyl isobutyl ketone etc.) Halogenated hydrocarbons (eg, dichloromethane, carbon tetrachloride, fluorobenzene, etc.), aromatic hydrocarbons (eg, benzene, toluene, xylene, etc.) or esters (methyl acetate, ethyl acetate, butyl acetate, etc.), etc. May be used alone or in a mixed form. The concentration of the resin composition of the present invention contained in the heat-resistant adhesive is not particularly limited and is appropriately selected according to the solubility of each component, the usage state of the heat-resistant adhesive, and the like, for example, 5 to 80% Preferably, the solute concentration is Further, various fillers or additives may be mixed within a range not impairing the object of the present invention.

同様に、本発明のワニスは、ワニス状又は粉末状の本発明の樹脂組成物から調製することができる。ワニスの調製に使用される溶媒は、各成分に対して、可溶性であれば特に限定されず、好適には各成分の調整に用いられる反応溶媒であってよい。溶媒は、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、テトラメチルウレア、テトラヒドロフランなどを単独又は混合形態で使用することができる。特に好適なのは、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、テトラヒドロフランである。またこれらの溶媒にベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジグライム、トリグライムなどの溶媒を任意の割合で混合してもよい。また、各成分の反応終了後、適切な処理ことにより得られた溶液を混合し、ワニスを調製しても良い。ワニスに含まれる本発明の樹脂組成物の濃度は、特に制限はなく、各成分の溶解度や、ワニスの使用様態などに応じて適宜選択されるが、例えば5〜80%の溶質濃度であることが好ましい。   Similarly, the varnish of the present invention can be prepared from the resin composition of the present invention in the form of varnish or powder. The solvent used for the preparation of the varnish is not particularly limited as long as it is soluble in each component, and may preferably be a reaction solvent used for adjusting each component. As the solvent, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, tetramethylurea, tetrahydrofuran and the like can be used alone or in a mixed form. Particularly preferred are N, N-dimethylacetamide, N-methyl-2-pyrrolidone and tetrahydrofuran. Further, these solvents may be mixed with a solvent such as benzene, toluene, xylene, mesitylene, chlorobenzene, diglyme and triglyme in an arbitrary ratio. Moreover, after completion | finish of reaction of each component, the solution obtained by the appropriate process may be mixed and a varnish may be prepared. The concentration of the resin composition of the present invention contained in the varnish is not particularly limited and is appropriately selected according to the solubility of each component, the manner of use of the varnish, and the like, for example, a solute concentration of 5 to 80%. Is preferred.

本発明の樹脂組成物から、フィルムを製造することもできる。通常は、本発明の樹脂組成物を含むワニスを、ガラス、アルミ、銅、ステンレス、PETフィルム、ポリイミドフィルムなどの基材に塗布し、溶媒を乾燥させることにより、所望の厚さ、好ましくは1μm〜200μm、より好ましくは1μm〜100μm厚のフィルムとして得ることができる。得られたフィルムは、所望により、180〜450℃での硬化処理が適宜行われ、その硬化物を得ることができる。   A film can also be produced from the resin composition of the present invention. Usually, the varnish containing the resin composition of the present invention is applied to a substrate such as glass, aluminum, copper, stainless steel, PET film, polyimide film, etc., and the solvent is dried to obtain a desired thickness, preferably 1 μm. It can be obtained as a film having a thickness of ˜200 μm, more preferably 1 μm to 100 μm. The obtained film is appropriately subjected to a curing treatment at 180 to 450 ° C. to obtain a cured product.

本発明の樹脂組成物から得られたフィルムの少なくとも片面に、銅箔などの導電層となる金属箔とを積層し、所望の温度条件、例えば、180℃〜200℃、所望の圧力条件、例えば、5MPaでプレスを行うことによって、金属積層体を得ることができる。さらに、得られた金属積層体は、所望により、200〜450℃での硬化処理が適宜行われ、その硬化物を得ることができる。また、こうして得られた金属積層体硬化物と本発明の樹脂組成物から得られたフィルムとを積層し、繰り返しプレスを行うことによって、多層からなる金属積層体を製造することができる。   A metal foil to be a conductive layer such as a copper foil is laminated on at least one surface of a film obtained from the resin composition of the present invention, and a desired temperature condition, for example, 180 ° C. to 200 ° C., a desired pressure condition, for example, A metal laminate can be obtained by pressing at 5 MPa. Furthermore, the obtained metal laminate is appropriately subjected to a curing treatment at 200 to 450 ° C. to obtain a cured product as desired. Moreover, the metal laminated body which consists of a multilayer can be manufactured by laminating | stacking the metal laminated body hardened | cured material obtained in this way and the film obtained from the resin composition of this invention, and repeatedly pressing.

さらに、本発明に係る芳香族ポリマー金属積層体は芳香族ポリマーと銅箔とを、本発明の樹脂組成物からなる耐熱性接着剤を介して積層したものである。本発明の芳香族ポリマーは、主鎖の繰り返し単位に少なくとも1つのベンゼン環を有し、絶縁性を有するものであれば良く、例えば、ポリイミド、ポリスルホン、ポリフェニレンサルファイド、ポリアリールエーテルケトン、ポリカーボネート、液晶ポリマー又はポリベンゾオキサゾールなどが挙げられる。   Furthermore, the aromatic polymer metal laminated body which concerns on this invention laminates | stacks an aromatic polymer and copper foil via the heat resistant adhesive which consists of a resin composition of this invention. The aromatic polymer of the present invention only needs to have at least one benzene ring in the repeating unit of the main chain and have insulating properties. For example, polyimide, polysulfone, polyphenylene sulfide, polyaryl ether ketone, polycarbonate, liquid crystal Examples thereof include a polymer or polybenzoxazole.

本発明の芳香族ポリマー金属積層体の製造方法は、例えば、まず、芳香族ポリマー又は金属箔と、本発明の耐熱性接着剤との積層体を製造する。厚みが1〜200μm、望ましくは5〜100μm、さらに望ましくは10〜75μmの芳香族ポリマー上、あるいは銅箔などの導電層となる金属箔上に、上記の様にして得られた耐熱性接着剤を、溶媒乾燥後の厚みが0.1〜100μm、望ましくは1〜30μm、さらに望ましくは1〜10μmの厚みになるようにワニスをコーティングし、溶媒を乾燥する。芳香族ポリマー又は金属箔/耐熱性接着剤積層体を得た後、さらに金属箔又は芳香族ポリマーと、熱ラミネートを行うことによって、絶縁層/接着剤層/導電層からなる積層体を得ることができる。本発明に係る耐熱性接着剤は、従来から接着性改善のために行われている薬液処理、サンドブラスト処理、プラズマ処理等の表面処理を行わなくとも芳香族ポリマー及び金属箔と極めて良好な接着性を示す。しかし、芳香族ポリマー表面の濡れ性を改善し、耐熱性接着剤塗膜のハジキをなくし、均一な厚みを得ることなどを目的に、それらの表面処理を行うことも可能であり、特にプラズマ処理を行うことは均一な塗膜厚みが得る上で好ましい。   In the method for producing an aromatic polymer metal laminate of the present invention, for example, first, a laminate of an aromatic polymer or a metal foil and the heat-resistant adhesive of the present invention is produced. A heat-resistant adhesive obtained as described above on an aromatic polymer having a thickness of 1 to 200 μm, preferably 5 to 100 μm, more preferably 10 to 75 μm, or a metal foil serving as a conductive layer such as a copper foil. The varnish is coated so that the thickness after drying the solvent is 0.1 to 100 μm, preferably 1 to 30 μm, more preferably 1 to 10 μm, and the solvent is dried. After obtaining an aromatic polymer or metal foil / heat-resistant adhesive laminate, a laminate comprising an insulating layer / adhesive layer / conductive layer is obtained by further thermal lamination with the metal foil or aromatic polymer. Can do. The heat-resistant adhesive according to the present invention has extremely good adhesion to aromatic polymers and metal foils without the need for surface treatment such as chemical treatment, sandblast treatment, and plasma treatment, which have been conventionally performed to improve adhesion. Indicates. However, it is also possible to perform surface treatment for the purpose of improving the wettability of the aromatic polymer surface, eliminating the repellency of the heat-resistant adhesive coating film, and obtaining a uniform thickness, especially plasma treatment. It is preferable to obtain a uniform coating thickness.

金属箔、特に好ましくは銅箔の厚みは、0.1〜100μm、望ましくは0.5〜36μm、さらに望ましくは1〜18μmである。厚い場合、ライン/スペースが25μm/25μm以下であるような微細配線化が困難となり、薄過ぎる場合、ラミネートを行う時、ハンドリングが困難となる。   The thickness of the metal foil, particularly preferably the copper foil, is 0.1 to 100 μm, desirably 0.5 to 36 μm, and more desirably 1 to 18 μm. When it is thick, it becomes difficult to make fine wiring such that the line / space is 25 μm / 25 μm or less, and when it is too thin, handling becomes difficult when laminating.

熱ラミネートの温度は、100〜300℃、望ましくは120〜250℃、さらに望ましくは120〜200℃である。ラミネート温度が300℃を超えると、銅箔、耐熱性接着剤、芳香族ポリマーとの寸法変化率の違いから、製造したフレキシブル積層板にシワが発生し、外観不良、絶縁不良、導通不良などの不良品となることがある。さらに、銅箔の酸化が避けられない。   The temperature of the thermal laminate is 100 to 300 ° C, desirably 120 to 250 ° C, more desirably 120 to 200 ° C. When the laminating temperature exceeds 300 ° C., wrinkles occur in the manufactured flexible laminate due to the difference in dimensional change with copper foil, heat-resistant adhesive, and aromatic polymer, resulting in poor appearance, poor insulation, poor conduction, etc. May be defective. Furthermore, oxidation of the copper foil is inevitable.

また、例えば、極薄銅箔(0.1〜5μm)と芳香族ポリマーとをラミネートする場合、PETフィルムのサポート付きの極薄銅箔が用いられる。しかしながら、一般的にはPETフィルムの使用温度範囲が190℃以下であるため、通常の熱可塑性ポリイミド系接着剤を用いてラミネートを行う場合、250℃以上の温度が必要となり、PETの熱収縮が大きく、反りが発生する。また、PETフィルムが溶融し装置を汚染する問題がある。一方、本発明の耐熱性接着剤を使用した場合、190℃以下のラミネートが可能であり、PETフィルムサポート付き銅箔とのラミネートが可能となり、極薄銅箔積層板の製造が容易となった。   For example, when laminating an ultrathin copper foil (0.1 to 5 μm) and an aromatic polymer, an ultrathin copper foil with a PET film support is used. However, in general, since the use temperature range of the PET film is 190 ° C. or lower, when laminating using a normal thermoplastic polyimide adhesive, a temperature of 250 ° C. or higher is required, and the heat shrinkage of the PET is reduced. Large and warped. There is also a problem that the PET film melts and contaminates the device. On the other hand, when the heat-resistant adhesive of the present invention is used, it is possible to laminate at 190 ° C. or lower, and it is possible to laminate with a copper foil with a PET film support, which facilitates the production of an ultrathin copper foil laminate. .

また本発明の耐熱性接着剤を、芳香族ポリマーフィルムの少なくとも片面に、溶媒乾燥後の厚みが0.1〜100μm、望ましくは1〜30μm、さらに望ましくは1〜10μmの厚みになるようにワニスをコーティングし、溶媒を乾燥して得られた芳香族ポリマー/耐熱性接着剤積層体に、さらなる芳香族ポリマーフィルムを積層させ、接着を行うか、又はフィルム状の芳香族ポリマー/耐熱性接着剤積層体を筒状とし、接着を行うことによって、芳香族ポリマー積層体、筒状芳香族ポリマーを得ることができる。   Further, the heat-resistant adhesive of the present invention is applied to the varnish so that the thickness after drying the solvent is 0.1 to 100 μm, desirably 1 to 30 μm, more desirably 1 to 10 μm on at least one surface of the aromatic polymer film. A further aromatic polymer film is laminated on the aromatic polymer / heat-resistant adhesive laminate obtained by coating the substrate and drying the solvent, and adhesion is performed, or a film-like aromatic polymer / heat-resistant adhesive is used. An aromatic polymer laminated body and a cylindrical aromatic polymer can be obtained by making a laminated body into a cylindrical shape and performing adhesion.

以下に本発明の態様を明らかにするために、実施例と比較例とを示すが、本発明はここに示す実施例のみに限定される訳ではない。   In order to clarify aspects of the present invention, examples and comparative examples are shown below, but the present invention is not limited to only the examples shown here.

合成例1
ポリアミド酸、可溶性ポリイミドの合成;四つ口フラスコに4,4’−オキシジフタル酸二無水物31.0215g(0.1mol)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン41.0508g(0.1mol)、N−メチル−2−ピロリドン(NMP)408.4gを仕込み、室温で4時間攪拌を行い、溶質濃度15%、粘度80,000mPa・sのポリアミド酸溶液を得た。このようにして得られたポリアミド酸溶液にキシレン40.8gを加え、続いて、フラスコを200℃の加熱し、イミド化による水をキシレンと共に系外に留出させながら8時間還流を行った。室温まで冷却し、溶質濃度15%、粘度60,000mPa・sの可溶性ポリイミド溶液を得た。
Synthesis example 1
Synthesis of polyamic acid and soluble polyimide; 31.0215 g (0.1 mol) of 4,4′-oxydiphthalic dianhydride, 2,2-bis [4- (4-aminophenoxy) phenyl] propane 41 in a four-necked flask 0.0508 g (0.1 mol) and 408.4 g of N-methyl-2-pyrrolidone (NMP) were charged and stirred at room temperature for 4 hours to obtain a polyamic acid solution having a solute concentration of 15% and a viscosity of 80,000 mPa · s. . 40.8 g of xylene was added to the polyamic acid solution thus obtained, and then the flask was heated at 200 ° C. and refluxed for 8 hours while distilling out the water from the imidization together with xylene. The solution was cooled to room temperature to obtain a soluble polyimide solution having a solute concentration of 15% and a viscosity of 60,000 mPa · s.

合成例2
イソイミドオリゴマーの合成;四つ口フラスコに4,4’−オキシジフタル酸二無水物12.4086g(0.04mol)、1,3−ビス(3−アミノフェノキシ)ベンゼン23.3866g(0.08mol)、4−フェニルエチニル無水フタル酸19.8568g(0.08mol)、NMP254.0gを仕込み、窒素気流中、室温で3時間攪拌した。フラスコを5℃まで冷却しながら、滴下ロートよりジシクロヘキシルカルボジイミド(DCC)33.0g(0.16mol)をNMP61.3gに溶かした溶液を1時間かけて滴下した。その後、室温に戻し、3時間攪拌した後、反応で副生したジシクロヘキシルウレア(DCU)をろ別し、溶液濃度15%のイソイミドオリゴマーを得た。
Synthesis example 2
Synthesis of isoimide oligomer: 4,4′-oxydiphthalic dianhydride 12.4086 g (0.04 mol), 1,3-bis (3-aminophenoxy) benzene 23.3866 g (0.08 mol) in a four-necked flask 4-phenylethynyl phthalic anhydride (19.8568 g, 0.08 mol) and NMP254.0 g were charged and stirred in a nitrogen stream at room temperature for 3 hours. While cooling the flask to 5 ° C., a solution obtained by dissolving 33.0 g (0.16 mol) of dicyclohexylcarbodiimide (DCC) in 61.3 g of NMP was added dropwise from a dropping funnel over 1 hour. After returning to room temperature and stirring for 3 hours, dicyclohexylurea (DCU) by-produced in the reaction was filtered off to obtain an isoimide oligomer having a solution concentration of 15%.

実施例1
上記式(3)で表されるビスイミド化合物合成;四つ口フラスコにエチレングリコールビス(トリメリタート)二無水物41.0287g(0.1mol)、N−メチル−2−ピロリドン365.3g、キシレン36.5gを仕込み、窒素気流中、溶解させた。滴下ロートから3−アミノフェニルアセチレン23.4296g(0.2mol)を注入し、室温で4時間攪拌を行い、黄色のアミド酸溶液を合成した。続いて、フラスコを200℃の加熱し、イミド化による水をキシレンと共に系外に留出させながら8時間還流を行った。室温まで冷却を行い結晶を析出させ、ろ過を行い、結晶を乾燥し、式(3)で表されるビスイミド化合物を得た(収率70%、純度99%)。NMR及びIRのチャートを図1及び図2に示す。
Example 1
Synthesis of bisimide compound represented by the above formula (3); 41.0287 g (0.1 mol) of ethylene glycol bis (trimellitate) dianhydride, 365.3 g of N-methyl-2-pyrrolidone, xylene 36. 5 g was charged and dissolved in a nitrogen stream. 23.4296 g (0.2 mol) of 3-aminophenylacetylene was injected from the dropping funnel and stirred at room temperature for 4 hours to synthesize a yellow amic acid solution. Subsequently, the flask was heated to 200 ° C. and refluxed for 8 hours while distilling out the water by imidation out of the system together with xylene. The mixture was cooled to room temperature to precipitate crystals, filtered, and dried to obtain a bisimide compound represented by the formula (3) (yield 70%, purity 99%). NMR and IR charts are shown in FIGS.

実施例2
接着剤、接着フィルムの合成;合成例1、実施例1のようにして得られた可溶性ポリイミドと熱硬化性ビスイミドとを溶質の重量比で、80:20になるように混合し、溶質濃度が15%になるようにNMPで希釈し、粘度10,000mP・sのワニスを得た。得られたワニスを離型処理してあるアルミ上に乾燥後の厚みが25μmになるように塗布し、160℃で4分乾燥しフィルムを得た。
Example 2
Synthesis of adhesive and adhesive film; Soluble polyimide obtained as in Synthesis Example 1 and Example 1 and thermosetting bisimide were mixed at a solute weight ratio of 80:20, and the solute concentration was It was diluted with NMP so as to be 15% to obtain a varnish having a viscosity of 10,000 mP · s. The obtained varnish was applied onto aluminum which had been subjected to a release treatment so that the thickness after drying was 25 μm, and dried at 160 ° C. for 4 minutes to obtain a film.

実施例3
接着剤、接着フィルムの合成;合成例1、合成例2のようにして得られた可溶性ポリイミドと熱硬化性イソイミドオリゴマーとを溶質の重量比で、50:50になるように混合し、さらに上記実施例1で得られたビスイミド化合物を、上記ワニスの全固形分に対して20wt%になるように混合し、溶質濃度が15%になるようにNMPで希釈し、粘度6,500mP・sのワニスを得た。
Example 3
Synthesis of adhesive and adhesive film; Soluble polyimide obtained in Synthesis Example 1 and Synthesis Example 2 and thermosetting isoimide oligomer were mixed at a solute weight ratio of 50:50, and The bisimide compound obtained in Example 1 was mixed so as to be 20 wt% with respect to the total solid content of the varnish, diluted with NMP so that the solute concentration became 15%, and the viscosity was 6,500 mP · s. The varnish was obtained.

実施例4
ポリイミドフィルム金属積層体の作成;実施例2で得られたポリイミド樹脂組成物フィルムの両面に、厚み12μmの銅箔(三井金属社製3EC−VLP)を積層し、180℃、5MPaの圧力で30分間プレスを行った。この積層体の一部を切り取り、銅箔とのピール強度を測定すると、0.9kN/mであった。さらに、残りの積層体を250℃、5MPaの圧力で10分熱処理を行った。この熱処理後の積層体のピール強度は、1.0kN/mであった。熱処理後のポリイミド樹脂組成物のガラス転移温度をDSCにて測定すると、255℃であった。
Example 4
Preparation of polyimide film metal laminate: 12 μm thick copper foil (3EC-VLP manufactured by Mitsui Kinzoku Co., Ltd.) was laminated on both sides of the polyimide resin composition film obtained in Example 2, and 30 at a pressure of 180 ° C. and 5 MPa. Press for a minute. A part of this laminate was cut out and the peel strength with the copper foil was measured to be 0.9 kN / m. Further, the remaining laminate was heat-treated at 250 ° C. and a pressure of 5 MPa for 10 minutes. The peel strength of the laminate after the heat treatment was 1.0 kN / m. It was 255 degreeC when the glass transition temperature of the polyimide resin composition after heat processing was measured by DSC.

実施例5
ポリイミドフィルム金属積層体の作成;厚み50μmのカプトン200ENに、実施例3で得られたワニスを、乾燥後の接着剤層の厚みが2μmになるようにコーティングし、160℃で4分乾燥し、フィルムサンプルを得た。得られたフィルムサンプルと厚み9μmの銅箔(福田金属社製CF−T9FZ−SV)とを積層し、175℃の温度でラミネートを行ったところ、ラミネートは可能であった。こうして得られた金属積層物を真空下で380℃の温度で90秒硬化を行い、ピール測定を行ったところ、1.1kN/mの接着力であった。
Example 5
Preparation of polyimide film metal laminate: 50 μm thick Kapton 200EN was coated with the varnish obtained in Example 3 so that the thickness of the adhesive layer after drying was 2 μm, and dried at 160 ° C. for 4 minutes, A film sample was obtained. When the obtained film sample and a copper foil having a thickness of 9 μm (CF-T9FZ-SV manufactured by Fukuda Metal Co., Ltd.) were laminated and laminated at a temperature of 175 ° C., lamination was possible. The metal laminate thus obtained was cured for 90 seconds at a temperature of 380 ° C. under vacuum, and when peel measurement was performed, it was 1.1 kN / m adhesive strength.

実施例6
ポリイミド積層体の作成:厚み50μmのカプトン200ENに、実施例3で得られたワニスを、乾燥後の接着剤層の厚みが2μmになるようにコーティングし、160℃で4分乾燥し、フィルムサンプルを得た。得られたフィルムサンプルと厚み50μmのカプトン200ENとを積層し、175℃の温度でラミネートを行ったところ、ラミネートは可能であった。こうして得られた金属積層物を真空下で350℃の温度で90秒硬化を行い、ピール測定を行ったところ、2.0kN/mの接着力であった。
Example 6
Preparation of polyimide laminate: 50 μm thick Kapton 200EN was coated with the varnish obtained in Example 3 so that the thickness of the adhesive layer after drying was 2 μm, dried at 160 ° C. for 4 minutes, and film sample Got. When the obtained film sample and Kapton 200EN having a thickness of 50 μm were laminated and laminated at a temperature of 175 ° C., lamination was possible. The metal laminate thus obtained was cured for 90 seconds at a temperature of 350 ° C. under vacuum, and peel measurement was performed. As a result, the adhesive strength was 2.0 kN / m.

比較例1
合成例1で得られた可溶性ポリイミドワニスのみを用いて実施例2と同様の方法で、フィルムを作成した。実施例4と同様な方法で、銅箔とのプレスを行ったが、銅箔との接着は不可能であった。
Comparative Example 1
A film was prepared in the same manner as in Example 2 using only the soluble polyimide varnish obtained in Synthesis Example 1. Although it was pressed with a copper foil in the same manner as in Example 4, adhesion to the copper foil was impossible.

比較例2
3−アミノフェニルアセチレンの代わりにアニリンを用いる以外は、実施例1と同様な方法で、両端に三重結合を有しないビスイミド化合物を合成し、実施例2と同様な方法で、架橋性の基を有しないポリイミド樹脂組成物フィルムを得た。実施例4と同様な方法で銅箔との接着を試みたが、十分な接着力は得られなかった(ピール強度0.1kN/m以下)。
Comparative Example 2
A bisimide compound having no triple bond at both ends was synthesized in the same manner as in Example 1 except that aniline was used instead of 3-aminophenylacetylene, and a crosslinkable group was synthesized in the same manner as in Example 2. The polyimide resin composition film which does not have was obtained. Adhesion with the copper foil was attempted in the same manner as in Example 4, but sufficient adhesive strength was not obtained (peel strength 0.1 kN / m or less).

本発明のポリイミド樹脂組成物は、比較的低温での溶融性、流動性に優れており、低温での加工性が良い。またこれを熱処理することによって、架橋、硬化させて得られた硬化物は、接着性、ハンダ耐熱性、電気特性に優れるものであり、特に多層プリント配線板の層間絶縁材やフレキシブル金属積層板の耐熱性接着剤として好適である。   The polyimide resin composition of the present invention is excellent in meltability and fluidity at relatively low temperatures, and has good workability at low temperatures. Moreover, the cured product obtained by crosslinking and curing by heat treatment is excellent in adhesiveness, solder heat resistance, and electrical characteristics, and particularly in the interlayer insulating material of the multilayer printed wiring board and the flexible metal laminate. Suitable as heat resistant adhesive.

実施例1で得られた化合物(式(3)で表される化合物)のH−NMRチャートを示す。The 1 H-NMR chart of the compound (compound represented by Formula (3)) obtained in Example 1 is shown. 実施例1で得られた化合物(式(3)で表される化合物)のIRチャートを示す。The IR chart of the compound (compound represented by Formula (3)) obtained in Example 1 is shown.

Claims (20)

ポリイミドと、下記一般式(1):
Figure 2007137960

(式中、A及びBは、一方が=Oであり、他方が=NAr11であり、
Ar1は、炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、
1は、炭素数2〜36の、少なくとも1つ以上の炭素−炭素二重結合又は炭素−炭素三重結合を含有する1価の有機基であり、
1及びX2は、独立して、単結合、−O−、−CO−、−COO−、−OCO−、−SO2−、−C(CH32−又は−C(CF32−であり、
2は、炭素数2〜18のアルカンジイル基、あるいは炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、
ここで架橋員とは、−O−、−CO−、−COO−、−OCO−、−SO2−、−CH2−、−C(CH32−又は−C(CF32−である)
で表されるビスイミド化合物又はビスイソイミド化合物とを含むことを特徴とするポリイミド樹脂組成物。
Polyimide and the following general formula (1):
Figure 2007137960

(In the formula, one of A and B is = O and the other is = NAr 1 R 1 ;
Ar 1 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic compounds are connected to each other directly or by a bridging member. A divalent group,
R 1 is a monovalent organic group having 2 to 36 carbon atoms and containing at least one carbon-carbon double bond or carbon-carbon triple bond;
X 1 and X 2 are each independently a single bond, —O—, —CO—, —COO—, —OCO—, —SO 2 —, —C (CH 3 ) 2 — or —C (CF 3 ). 2
R 2 represents an alkanediyl group having 2 to 18 carbon atoms, a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or two or more of the same or different aromatic compounds directly or as a cross-linking member. A divalent group of polycyclic compounds linked together by
Here, the term “crosslinking member” means —O—, —CO—, —COO—, —OCO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 —. Is)
The polyimide resin composition characterized by including the bisimide compound or bisisoimide compound represented by these.
ポリイミドと、ビスイミド化合物又はビスイソイミド化合物とを95/5〜40/60の重量比で含むことを特徴とする、請求項1記載のポリイミド樹脂組成物。   The polyimide resin composition according to claim 1, comprising polyimide and a bisimide compound or bisisoimide compound in a weight ratio of 95/5 to 40/60. ポリアミド酸と、下記一般式(1):
Figure 2007137960

(式中、A及びBは、一方が=Oであり、他方が=NAr11であり、
Ar1は、炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、
1は、炭素数2〜36の、少なくとも1つ以上の炭素−炭素二重結合又は炭素−炭素三重結合を含有する1価の有機基であり、
1及びX2は、独立して、単結合、−O−、−CO−、−COO−、−OCO−、−SO2−、−C(CH32−又は−C(CF32−であり、
2は、炭素数2〜18のアルカンジイル基、あるいは炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる2つ以上の前記芳香族化合物が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、
ここで架橋員とは、−O−、−CO−、−COO−、−OCO−、−SO2−、−CH2−、−C(CH32−又は−C(CF32−である)
で表されるビスイミド化合物又はビスイソイミド化合物とを含むことを特徴とするポリアミド酸樹脂組成物。
Polyamic acid and the following general formula (1):
Figure 2007137960

(In the formula, one of A and B is = O and the other is = NAr 1 R 1 ;
Ar 1 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic compounds are connected to each other directly or by a bridging member. A divalent group,
R 1 is a monovalent organic group having 2 to 36 carbon atoms and containing at least one carbon-carbon double bond or carbon-carbon triple bond;
X 1 and X 2 are each independently a single bond, —O—, —CO—, —COO—, —OCO—, —SO 2 —, —C (CH 3 ) 2 — or —C (CF 3 ). 2
R 2 represents an alkanediyl group having 2 to 18 carbon atoms, a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or two or more of the same or different aromatic compounds directly or as a cross-linking member. A divalent group of polycyclic compounds linked together by
Here, the term “crosslinking member” means —O—, —CO—, —COO—, —OCO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 —. Is)
The polyamic acid resin composition characterized by including the bisimide compound or bisisoimide compound represented by these.
ポリアミド酸と、ビスイミド化合物又はビスイソイミド化合物とを95/5〜40/60の重量比で含むことを特徴とする、請求項3記載のポリアミド酸樹脂組成物。   The polyamic acid resin composition according to claim 3, comprising a polyamic acid and a bisimide compound or a bisisoimide compound in a weight ratio of 95/5 to 40/60. 1が、下記一般式(2):
Figure 2007137960

(式中、Rは、水素又は炭素数1〜34の有機基である)で表される基であることを特徴とする、請求項1〜4記載の樹脂組成物。
R 1 is represented by the following general formula (2):
Figure 2007137960

The resin composition according to claim 1, wherein R is a group represented by the formula: R is hydrogen or an organic group having 1 to 34 carbon atoms.
Rが、水素であることを特徴とする、請求項5記載の樹脂組成物。   6. The resin composition according to claim 5, wherein R is hydrogen. Rが、フェニル基であることを特徴とする、請求項5記載の樹脂組成物。   R is a phenyl group, The resin composition of Claim 5 characterized by the above-mentioned. 下記式(3)及び(4):
Figure 2007137960

で表されるビスイミド化合物及びビスイソイミド化合物。
The following formulas (3) and (4):
Figure 2007137960

The bisimide compound and bisisoimide compound which are represented by these.
さらに、架橋性の基を有するイミドオリゴマー又はイソイミドオリゴマーを含むことを特徴とする、請求項1〜7いずれか1項記載の樹脂組成物。   Furthermore, the imide oligomer or isoimide oligomer which has a crosslinkable group is included, The resin composition of any one of Claims 1-7 characterized by the above-mentioned. 架橋性の基を有するイミドオリゴマー又はイソイミドオリゴマーが、下記一般式(5)〜(8):
Figure 2007137960

(式中、nは1〜20の数であり、
3及びR4は、独立して、水素又はフェニル基であり、
Ar2及びAr4は、独立して、炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる2つ以上の前記芳香族基が直接若しくは架橋員により相互に連結された多環式化合物の4価の基であり、
Ar3及びAr5は、独立して、炭素数6〜36の単環式若しくは縮合多環式芳香族化合物、同一若しくは異なる2つ以上の前記芳香族基が直接若しくは架橋員により相互に連結された多環式化合物の2価の基であり、
ここで架橋員とは、−O−、−CO−、−COO−、−OCO−、−SO2−、−CH2−、−C(CH32−又は−C(CF32−である)
から選択される、請求項9記載の樹脂組成物。
An imide oligomer or an isoimide oligomer having a crosslinkable group is represented by the following general formulas (5) to (8):
Figure 2007137960

(Wherein n is a number from 1 to 20,
R 3 and R 4 are independently hydrogen or a phenyl group,
Ar 2 and Ar 4 are each independently a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or two or more of the same or different aromatic groups are connected to each other directly or by a bridging member A tetravalent group of the obtained polycyclic compound,
Ar 3 and Ar 5 are each independently a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, wherein two or more of the same or different aromatic groups are directly connected to each other by a cross-linking member. A divalent group of the polycyclic compound,
Here, the term “crosslinking member” means —O—, —CO—, —COO—, —OCO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 — or —C (CF 3 ) 2 —. Is)
The resin composition of Claim 9 selected from these.
請求項1〜7いずれか1項記載の樹脂組成物と、架橋性の基を有するイミドオリゴマー又はイソイミドオリゴマーとを95/5〜20/80の重量比で含むことを特徴とする請求項10記載の樹脂組成物。   The resin composition according to any one of claims 1 to 7, and an imide oligomer or an isoimide oligomer having a crosslinkable group in a weight ratio of 95/5 to 20/80. The resin composition as described. 請求項1〜7、9〜11のいずれか1項記載の樹脂組成物を含む耐熱性接着剤。   A heat resistant adhesive comprising the resin composition according to any one of claims 1 to 7 and 9 to 11. 請求項1〜7、9〜11のいずれか1項記載の樹脂組成物を含むワニス。   The varnish containing the resin composition of any one of Claims 1-7 and 9-11. 請求項13記載のワニスを基材に塗布し、乾燥することにより得られるフィルム。   The film obtained by apply | coating the varnish of Claim 13 to a base material, and drying. 請求項14記載のフィルムの少なくとも片面に、金属箔を積層させてなる金属積層体。   The metal laminated body formed by laminating | stacking metal foil on the at least single side | surface of the film of Claim 14. 芳香族ポリマーからなる絶縁層の少なくとも片面に、請求項12記載の耐熱性接着剤を介して金属箔を積層させてなる金属積層体。   The metal laminated body formed by laminating | stacking metal foil on the at least single side | surface of the insulating layer which consists of an aromatic polymer through the heat resistant adhesive of Claim 12. 芳香族ポリマーが、ポリイミド、ポリスルホン、ポリフェニレンサルファイド、ポリアリールエーテルケトン、ポリカーボネート、液晶ポリマー又はポリベンゾオキサゾールから選択される、請求項16記載の金属積層体。   The metal laminate according to claim 16, wherein the aromatic polymer is selected from polyimide, polysulfone, polyphenylene sulfide, polyaryl ether ketone, polycarbonate, liquid crystal polymer or polybenzoxazole. 芳香族ポリマーの表面が、プラズマ処理されていることを特徴とする、請求項17記載の金属積層体。   The metal laminate according to claim 17, wherein the surface of the aromatic polymer is plasma-treated. 請求項15〜18いずれか1項記載の金属積層体を用いた電子回路。   The electronic circuit using the metal laminated body of any one of Claims 15-18. 芳香族ポリマーフィルムの少なくとも片面に、請求項12記載の耐熱性接着剤を介して、更なる芳香族ポリマーフィルムを積層させてなる芳香族ポリマー積層体又は筒状芳香族ポリマー。
An aromatic polymer laminate or a cylindrical aromatic polymer obtained by laminating a further aromatic polymer film on at least one surface of the aromatic polymer film via the heat-resistant adhesive according to claim 12.
JP2005331163A 2005-11-16 2005-11-16 Bisimide or bisisoimide compound and resin composition containing the same Expired - Fee Related JP4999318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331163A JP4999318B2 (en) 2005-11-16 2005-11-16 Bisimide or bisisoimide compound and resin composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331163A JP4999318B2 (en) 2005-11-16 2005-11-16 Bisimide or bisisoimide compound and resin composition containing the same

Publications (2)

Publication Number Publication Date
JP2007137960A true JP2007137960A (en) 2007-06-07
JP4999318B2 JP4999318B2 (en) 2012-08-15

Family

ID=38201240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331163A Expired - Fee Related JP4999318B2 (en) 2005-11-16 2005-11-16 Bisimide or bisisoimide compound and resin composition containing the same

Country Status (1)

Country Link
JP (1) JP4999318B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041299A1 (en) * 2007-09-27 2009-04-02 Manac Inc. Ink composition
JP2020152857A (en) * 2019-03-22 2020-09-24 富士フイルム株式会社 Curable resin composition, cured film, layered body, method of producing cured film, and semiconductor device
EP3725772A1 (en) * 2019-04-16 2020-10-21 Shin-Etsu Chemical Co., Ltd. Compounds and materials for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process
EP3885830A1 (en) * 2020-03-23 2021-09-29 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
KR20210134002A (en) 2019-03-27 2021-11-08 후지필름 가부시키가이샤 Curable resin composition, cured film, laminated body, manufacturing method of a cured film, and semiconductor device
JP2022060680A (en) * 2020-10-05 2022-04-15 信越化学工業株式会社 Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
US11500292B2 (en) 2019-04-16 2022-11-15 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222451A (en) * 1989-02-23 1990-09-05 Toray Ind Inc Aromatic polyimide resin composition
JPH0693117A (en) * 1992-09-11 1994-04-05 Kanegafuchi Chem Ind Co Ltd Heat-resistant laminate material and production thereof
JPH07179840A (en) * 1993-12-24 1995-07-18 Nitto Denko Corp Bonding method with heat-resistant adhesive film
JP2006193576A (en) * 2005-01-12 2006-07-27 Amt Kenkyusho:Kk Polyimide resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222451A (en) * 1989-02-23 1990-09-05 Toray Ind Inc Aromatic polyimide resin composition
JPH0693117A (en) * 1992-09-11 1994-04-05 Kanegafuchi Chem Ind Co Ltd Heat-resistant laminate material and production thereof
JPH07179840A (en) * 1993-12-24 1995-07-18 Nitto Denko Corp Bonding method with heat-resistant adhesive film
JP2006193576A (en) * 2005-01-12 2006-07-27 Amt Kenkyusho:Kk Polyimide resin composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796147B (en) * 2007-09-27 2012-09-05 玛奈克股份有限公司 Ink composition
JP5331004B2 (en) * 2007-09-27 2013-10-30 マナック株式会社 Ink composition
WO2009041299A1 (en) * 2007-09-27 2009-04-02 Manac Inc. Ink composition
JP2020152857A (en) * 2019-03-22 2020-09-24 富士フイルム株式会社 Curable resin composition, cured film, layered body, method of producing cured film, and semiconductor device
JP7086882B2 (en) 2019-03-22 2022-06-20 富士フイルム株式会社 Curable resin composition, cured film, laminate, method for manufacturing cured film, and semiconductor device
KR20210134002A (en) 2019-03-27 2021-11-08 후지필름 가부시키가이샤 Curable resin composition, cured film, laminated body, manufacturing method of a cured film, and semiconductor device
TWI747233B (en) * 2019-04-16 2021-11-21 日商信越化學工業股份有限公司 Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
JP2020177225A (en) * 2019-04-16 2020-10-29 信越化学工業株式会社 Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning method, and compound for forming organic film
EP3725772A1 (en) * 2019-04-16 2020-10-21 Shin-Etsu Chemical Co., Ltd. Compounds and materials for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process
US11500292B2 (en) 2019-04-16 2022-11-15 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
US11692066B2 (en) 2019-04-16 2023-07-04 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
JP7308167B2 (en) 2019-04-16 2023-07-13 信越化学工業株式会社 Organic film forming material, semiconductor device manufacturing substrate, organic film forming method, pattern forming method, and organic film forming compound
EP3885830A1 (en) * 2020-03-23 2021-09-29 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
TWI773201B (en) * 2020-03-23 2022-08-01 日商信越化學工業股份有限公司 Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
US11886118B2 (en) 2020-03-23 2024-01-30 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
JP2022060680A (en) * 2020-10-05 2022-04-15 信越化学工業株式会社 Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film
JP7352530B2 (en) 2020-10-05 2023-09-28 信越化学工業株式会社 Organic film forming material, semiconductor device manufacturing substrate, organic film forming method, pattern forming method, and organic film forming compound

Also Published As

Publication number Publication date
JP4999318B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4691555B2 (en) Reactive monomer and resin composition containing the same
TWI716524B (en) Copper clad laminate and printed circuit board
TWI400268B (en) Thermosetting resin composition and use thereof
CN107325285B (en) Polyimide, polyimide-based adhesive, adhesive material, adhesive layer, adhesive sheet, laminate, wiring board, and method for producing same
JP5019874B2 (en) Thermosetting resin composition, laminated body using the same, and circuit board
CN108690193B (en) Polyimide, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same
KR100963376B1 (en) Method for preparing polyimide and polyimide prepared by the same method
TWI398548B (en) Solution, plating material, insulating sheet, laminate, and printed wiring board
CN108690552B (en) Adhesive, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same
JP4999318B2 (en) Bisimide or bisisoimide compound and resin composition containing the same
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
JP6743697B2 (en) Multilayer polyimide film, method for producing multilayer polyimide film, polyimide laminate using the same, and copolymerized polyimide used therein
TWI571492B (en) Resin composition for printed circuit boards
EP2295489A1 (en) Linear polyimide precursor, linear polyimide, thermally cured product of the linear polyimide, and method for producing the linear polyimide
WO2008032669A1 (en) Polyimide resin composition, process for production thereof, and metal laminate
JP5014587B2 (en) Active ester compounds and use thereof
JP4426774B2 (en) Thermosetting resin composition, laminated body using the same, and circuit board
JP3635384B2 (en) Heat resistant bonding sheet
JP4109500B2 (en) Thermosetting resin composition, thermosetting resin solution, and thermosetting resin sheet
JP2008303372A (en) Polyimide precursor having asymmetric structure, polyimide, and their production methods
JP2006348086A (en) Thermosetting resin composition and its utilization
JP2006193576A (en) Polyimide resin composition
JP4867073B2 (en) Insulating adhesive
JP2008279698A (en) Laminate and its manufacturing method
JP2001348556A (en) Bonding sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees