JP2007136548A - Flux cored wire for gas shielded arc welding - Google Patents

Flux cored wire for gas shielded arc welding Download PDF

Info

Publication number
JP2007136548A
JP2007136548A JP2006280491A JP2006280491A JP2007136548A JP 2007136548 A JP2007136548 A JP 2007136548A JP 2006280491 A JP2006280491 A JP 2006280491A JP 2006280491 A JP2006280491 A JP 2006280491A JP 2007136548 A JP2007136548 A JP 2007136548A
Authority
JP
Japan
Prior art keywords
welding
weight
slag
bead
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006280491A
Other languages
Japanese (ja)
Other versions
JP4741445B2 (en
Inventor
Seong Il Lee
スン イル リー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiswel Ltd
Original Assignee
Kiswel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiswel Ltd filed Critical Kiswel Ltd
Publication of JP2007136548A publication Critical patent/JP2007136548A/en
Application granted granted Critical
Publication of JP4741445B2 publication Critical patent/JP4741445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Abstract

<P>PROBLEM TO BE SOLVED: To provide flux cored wire for gas shielded arc welding, a wire that makes welding highly efficiently executed in a flat position and a horizontal fillet position, through improvement of welding efficiency by solving the problems of excessive penetration of a lower bead and undercut of an upper bead, in the welding that requires a long leg ≥10.5 mm and a thick throat ≥7.5 mm. <P>SOLUTION: The flux cored wire for which flux is filled in a sheath made of soft steel or alloy steel for gas shielded arc welding is characterized in that it contains, based on the total weight of the wire, 2.00-6.00% TiO<SB>2</SB>(in terms of wt.% hereinafter), 0.20-1.50% Al<SB>2</SB>O<SB>3</SB>, 0.50-2.00% MgO, 1.50-3.50% SiO<SB>2</SB>, 0.30-2.00% ZrO<SB>2</SB>, 2.00-4.50% MnO, 0.03-0.25% K<SB>2</SB>O and 0.05-0.30% F, the balance being Fe and other components. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガスシールドアーク溶接用フラックス入りワイヤに関し、より詳しくは、軟鋼及び高張力鋼を主に使用する鉄骨、橋梁及び造船業界の溶接に適用することができ、特に、下向き溶接及び水平すみ肉専用の溶接で、脚長10.5mm以上とのど厚(理論のど厚)7.5mm以上が得られる溶接に適した、ガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for gas shielded arc welding, and more particularly, can be applied to welding in steel frames, bridges, and shipbuilding industries mainly using mild steel and high-strength steel, and particularly, downward welding and horizontal cornering. The present invention relates to a flux-cored wire for gas shielded arc welding, suitable for welding with a leg length of 10.5 mm or more and a throat thickness (theoretical throat thickness) of 7.5 mm or more by welding exclusively for meat.

現代の産業社会で溶接は、大型鉄構造物の製作増加に伴い、溶接の際に脚長及びのど厚の大きいものを要求する、溶接施工の高能率化に対する要求がだんだん高くなっている。このような要求条件を満たすために、特に下向き溶接及び水平すみ肉溶接などにおいて、溶接設備においてはロボット溶接及び半自動化などを導入する勢いであり、溶接材料においては大脚長及び大のど厚を要求するフラックス入りワイヤの開発が必要になった。下向き及び水平すみ肉溶接専用の溶接材料が開発され使用されているが、大型構造物の要求条件を満たすためには、大脚長はもちろんのこと大のど厚のビードが作れる溶接材料の技術開発が必須的な環境になった。   In the modern industrial society, with the increase in production of large iron structures, there is an increasing demand for higher efficiency in welding construction, which requires a longer leg length and throat thickness when welding. In order to meet these requirements, especially in downward welding and horizontal fillet welding, robotic welding and semi-automation will be introduced in welding equipment, and welding materials require large leg length and large throat thickness. It was necessary to develop a flux-cored wire. Welding materials dedicated to downward and horizontal fillet welding have been developed and used, but in order to satisfy the requirements of large structures, technological development of welding materials that can produce large throat beads as well as large leg lengths is required. It became an essential environment.

一方、従来の溶接材料では下向き溶接及び水平すみ肉溶接の際に、8mm以上の大脚長ビードを満たす溶接材料は開発されて現場で使用されているが、10.5mm以上の脚長と7.5mm以上ののど厚を要求する構造物においては、下部ビードの垂れ現象及び上部ビードのアンダーカット発生により疲労強度に脆弱であり、この疲労強度の脆弱点を補完するために2パス(Pass)乃至は3パス(Pass)溶接で、垂れ現象及びアンダーカットを解決したが、作業能率性が下がるという問題点があった。   On the other hand, in conventional welding materials, welding materials satisfying large leg length beads of 8 mm or more have been developed and used in the field during downward welding and horizontal fillet welding, but leg lengths of 10.5 mm or more and 7.5 mm or more are used. Structures that require throat thickness are vulnerable to fatigue strength due to the sag phenomenon of the lower bead and the undercut of the upper bead, and two or more passes (Pass) or three passes to compensate for this fatigue strength vulnerability. (Pass) Welding phenomenon and undercut were solved by welding, but there was a problem that work efficiency decreased.

上記のような問題点を解決するために本発明は、脚長10.5mm以上の大脚長及びのど厚7.5mm以上の大のど厚を要求する溶接において、下部ビードの垂れ及び上部ビードのアンダーカットを解決して溶接能率性を向上させることにより、下向き及び水平すみ肉姿勢において、溶接施工を高能率で行なえるようにするガスシールドアーク溶接用フラックス入りワイヤを提供することをその目的とする。
また、本発明は、高電流溶接でも溶融金属の垂れや上部母材のアンダーカット不良が発生しないガスシールドアーク溶接用フラックス入りワイヤを提供することをその目的とする。
In order to solve the above problems, the present invention solves the lower bead droop and the upper bead undercut in welding that requires a leg length of 10.5 mm or more and a throat thickness of 7.5 mm or more. Thus, it is an object of the present invention to provide a flux-cored wire for gas shielded arc welding that enables welding to be performed with high efficiency in the downward and horizontal fillet postures by improving the welding efficiency.
Another object of the present invention is to provide a flux-cored wire for gas shielded arc welding in which molten metal sag and undercut failure of the upper base metal do not occur even in high current welding.

本発明の目的は、軟鋼または合金鋼製の外皮にフラックスを充填するガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤの全体重量に対してTiO2(換算値):2.00〜6.00重量%、Al2O3(換算値):0.20〜1.50重量%、MgO (換算値):0.50〜2.00重量%、SiO2(換算値):1.50〜3.50重量%、ZrO2(換算値):0.30〜2.00重量%、MnO(換算値):2.00〜4.50重量%、K2O(換算値):0.03〜0.25重量%、F(換算値):0.05〜0.30重量%を含み、残部はFe及びその他の成分から構成されたことを特徴とするガスシールドアーク溶接用フラックス入りワイヤを提供することにより達成される。ここで、上記それぞれの酸化物成分は、ワイヤ中に含有された当該元素成分及びその当該元素の酸化物成分を、上記それぞれの酸化物に換算して合わせた値を表す。 An object of the present invention is to provide a flux-cored wire for gas shielded arc welding in which an outer skin made of mild steel or alloy steel is filled with flux. TiO 2 (converted value): 2.00 to 6.00% by weight, Al 2 with respect to the total weight of the wire O 3 (converted value): 0.20 to 1.50 wt%, MgO (converted value): 0.50 to 2.00 wt%, SiO 2 (converted value): 1.50 to 3.50 wt%, ZrO 2 (converted value): 0.30 to 2.00 wt% , MnO (converted value): 2.00 to 4.50% by weight, K 2 O (converted value): 0.03 to 0.25% by weight, F (converted value): 0.05 to 0.30% by weight, the balance being composed of Fe and other components This is accomplished by providing a flux-cored wire for gas shielded arc welding. Here, each said oxide component represents the value which put together the said element component contained in the wire, and the oxide component of the said element in conversion into said each oxide.

本発明によると下向き及び水平すみ肉姿勢により溶接施工を高能率で行なうことが可能で、高電流下に溶接を行なっても溶融金属のビードの垂れ及び上部ビードのアンダーカット等、ビード形状の不良問題を解決し、且つ大脚長及び大のど厚が得られる。   According to the present invention, it is possible to perform the welding work with high efficiency by the downward and horizontal fillet posture, and even if welding is performed under a high current, the bead shape is poor, such as drooping of the molten metal bead and undercut of the upper bead. The problem is solved and a large leg length and a large throat thickness are obtained.

以下で、本発明の好適な実施態様について詳細に説明する。
溶融金属の流動度とスラグの凝固点、凝固速度及び粘性を調節するために溶融金属の凝固時にスラグの形成、スラグの凝固点及びビード形状に関係する低融点酸化物とスラグの凝固速度、スラグ粘性及びビード形状を調節する高融点酸化物の2つの側面について検討した結果は、次の通りである。
第一、スラグの形成、スラグの凝固点及びビード形状に関係する成分としては、Ti及びTi酸化物、Al及びAl酸化物、Si及びSi酸化物などが挙げられる。
上記のTi、Al、Siなどは溶接の際に脱酸作用を示し、Ti酸化物、Al酸化物、Si酸化物などはスラグ形成剤として添加され、最終的にTiO2、Al2O3、SiO2などの酸化物を形成する。これらのTiO2、Al2O3、SiO2などの酸化物は低融点酸化物であって、溶融金属の凝固時にスラグの形成、スラグの凝固点及びビード形状に関与する。
第二、スラグの凝固速度、スラグ粘性及びビード形状を調節する成分としては、Mg及びMg酸化物、Zr及びZr酸化物などが挙げられる。
上記のMg、Zrなどは溶接の際に脱酸作用を示し、Mg酸化物、Zr酸化物などはスラグ形成剤として添加され、最終的にMgO、ZrO2などの酸化物を形成する。これらのMgO、ZrO2酸化物は高融点酸化物であって、スラグの凝固速度、スラグ粘性及びビード形状を調節する主要因子として作用する。
In the following, preferred embodiments of the present invention will be described in detail.
To adjust the flow rate of the molten metal and the freezing point, solidification rate and viscosity of the slag, the formation of slag during solidification of the molten metal, the solidification rate of the low melting point oxide and slag related to the solidification point and bead shape of the slag, the slag viscosity and The results of studying two aspects of the high melting point oxide that adjusts the bead shape are as follows.
First, components relating to slag formation, slag freezing point, and bead shape include Ti and Ti oxide, Al and Al oxide, Si and Si oxide, and the like.
The above Ti, Al, Si, etc. represents a deoxidizing effect during the welding, Ti oxide, Al oxide, such as Si oxide is added as slag forming agent, eventually TiO 2, Al 2 O 3, An oxide such as SiO 2 is formed. These oxides such as TiO 2 , Al 2 O 3 , and SiO 2 are low melting point oxides, and are involved in slag formation, slag solidification point, and bead shape during solidification of the molten metal.
Second, examples of components that adjust the solidification rate, slag viscosity, and bead shape of slag include Mg and Mg oxide, Zr and Zr oxide, and the like.
The above Mg, Zr, etc. show deoxidizing action during welding, and Mg oxide, Zr oxide, etc. are added as slag forming agents, and finally oxides such as MgO, ZrO 2 are formed. These MgO and ZrO 2 oxides are high melting point oxides and act as main factors for adjusting the solidification rate, slag viscosity and bead shape of slag.

従って、本発明では、MgO、ZrO2などの高融点酸化物を用いて、スラグの凝固速度、粘性及びビード形状を調節し、上部ビードのアンダーカットと下部ビードの垂れが発生しないようにし、またTiO2、Al2O3、SiO2などの低融点酸化物を用いて、主要スラグの形成、スラグの凝固点及びビード形状を調節することにより、上部ビードのアンダーカットと下部ビードの垂れが発生しないようにすることができる。
以上のように、スラグの形成、スラグの凝固点及びビード形状に関係する低融点酸化物またはスラグの凝固速度、スラグ粘性及びビード形状を調節する高融点酸化物のどちらか一方だけでは、本発明の課題である高電流で上部ビードのアンダーカットと下部ビードの垂れのない大脚長、大のど厚の溶接金属を得ることができず、これらの2つの因子を共に適宜に組み合わせた場合に限って、本発明の課題が達成できる。
Therefore, in the present invention, a high melting point oxide such as MgO or ZrO 2 is used to adjust the solidification rate, viscosity, and bead shape of the slag so that the undercut of the upper bead and the lower bead do not occur, By using low melting point oxides such as TiO 2 , Al 2 O 3 , SiO 2 and adjusting the formation of the main slag, the solidification point of the slag, and the bead shape, the undercut of the upper bead and the lower bead do not occur Can be.
As described above, the low melting point oxide related to the formation of slag, the freezing point of the slag and the bead shape or only the high melting point oxide for adjusting the solidification rate of the slag, the slag viscosity and the bead shape, Only when these two factors are combined together as appropriate, it is not possible to obtain a large leg length and large throat thickness weld metal without undercut of the upper bead and lower bead at the high current, which is a problem. The object of the present invention can be achieved.

また、K2O、Fなどのようなアーク安定剤及びアーク取付力を調整できる成分を調整することにより、上部ビードのアンダーカット発生を調整できる。特に、アーク安定性が確保でき、スパッタの発生量が少なく、溶接作業性も向上させることができる。
上述したように、本発明は高融点酸化物MgO、ZrO2と低融点酸化物TiO2、Al2O3、SiO2の組成比により、スラグが流れ落ちることが防止できる一方、ビードが垂れないようにすることが可能で、このために低融点酸化物と高融点酸化物の関係を表す下記式(1)の値が、1.80〜6.50の範囲内になるように調整することにより、本発明を完成する。
1.80≦(TiO2+Al2O3+SiO2)/(MgO+ZrO2)≦6.50 (1)
以下、本発明中の各成分の役割及び適正含量について説明する。
In addition, by adjusting the arc stabilizer such as K 2 O and F and the component capable of adjusting the arc mounting force, the occurrence of undercut in the upper bead can be adjusted. In particular, arc stability can be ensured, the amount of spatter generated is small, and welding workability can be improved.
As described above, according to the present invention, the composition ratio of the high melting point oxides MgO, ZrO 2 and the low melting point oxides TiO 2 , Al 2 O 3 , SiO 2 can prevent the slag from flowing down while preventing the beads from dripping. Therefore, by adjusting the value of the following formula (1) representing the relationship between the low melting point oxide and the high melting point oxide to be within the range of 1.80 to 6.50, the present invention can be achieved. Complete.
1.80 ≦ (TiO 2 + Al 2 O 3 + SiO 2 ) / (MgO + ZrO 2 ) ≦ 6.50 (1)
Hereinafter, the role and appropriate content of each component in the present invention will be described.

TiO2:2.00〜6.00重量%
TiO2は、一般的にスラグ形成剤及びアーク安定剤として作用する。TiO2が2.00重量%未満では、スラグ被包性が不足し、ビードの外観形状及びアーク安定性が不良になる。また、6.00重量%を超えると、スラグの含量が多くなり溶接欠陥発生の原因になり、低融点スラグの含量も多くなるため、ビードの垂れの原因にもなる。従って、TiO2の含量は2.00〜6.00重量%の範囲内であることが好ましい。
一方、TiO2を供給する原料としては、これに限定されるものではないが、ルチル(Rutile, TiO2)及びイルメナイト(Ilmenite, FeTiO3)などが挙げられる。
TiO 2 : 2.00 to 6.00% by weight
TiO 2 generally acts as a slag former and arc stabilizer. When TiO 2 is less than 2.00% by weight, the slag encapsulation is insufficient, and the appearance shape and arc stability of the bead are poor. On the other hand, if it exceeds 6.00% by weight, the content of slag increases and causes weld defects, and the content of low melting point slag also increases, which may cause drooping of beads. Accordingly, the content of TiO 2 is preferably in the range of 2.00 to 6.00% by weight.
On the other hand, raw materials for supplying TiO 2 include, but are not limited to, rutile (Rutile, TiO 2 ) and ilmenite (Ilmenite, FeTiO 3 ).

Al2O3:0.20〜1.50重量%
Al2O3は、スラグ被包性、剥離性及びスパッタの発生量を低減させる作用をする。0.20重量%未満では、スパッタの発生量が多くてその効果がなく、1.50重量%を超えると、ビード形状が不良でスラグ剥離性に劣る。従って、Al2O3の含量は、0.20〜1.50重量%の範囲内であることが好ましい。
一方、Al2O3を供給する原料としては、これに限定されるものではないが、酸化アルミニウム(Aluminum oxide, Al2O3)などが挙げられる。
Al 2 O 3 : 0.20 to 1.50% by weight
Al 2 O 3 acts to reduce slag encapsulation, peelability, and spatter generation. If the amount is less than 0.20% by weight, the amount of spatter generated is large and the effect is not obtained. Therefore, the content of Al 2 O 3 is preferably in the range of 0.20 to 1.50% by weight.
On the other hand, the raw material for supplying Al 2 O 3 is not limited to this, and examples thereof include aluminum oxide (Aluminum oxide, Al 2 O 3 ).

MgO:0.50〜2.00重量%
MgOは、高融点酸化物であって、スラグの凝固速度及び粘性に影響を及ぼし、アンダーカット及びビードの垂れに影響を与え、ビード形状を調整する。MgOが0.50重量%未満では、ビード形状が垂れてオーバーラップが発生し、2.00重量%を超えると、スラグ粘性が高くなりスラグ剥離性に劣り、上部脚長のアンダーカットが発生し、ビード形状が悪くなる。従って、MgOの含量は、0.50〜2.00重量%の範囲内であることが好ましい。
一方、MgOを供給する原料としては、これに限定されるものではないが、マグネシアクリンカー(Magnesia clinker, MgO)、マグネサイト(Magnesite, MgCO3)などが挙げられる。
MgO: 0.50 to 2.00% by weight
MgO is a high melting point oxide that affects the solidification rate and viscosity of the slag, affects the undercut and bead sag, and adjusts the bead shape. If MgO is less than 0.50% by weight, the bead shape hangs down and overlaps. If it exceeds 2.00% by weight, the slag viscosity increases and the slag peelability is inferior, the upper leg length is undercut, and the bead shape is poor. Become. Therefore, the MgO content is preferably in the range of 0.50 to 2.00% by weight.
On the other hand, the raw material for supplying MgO includes, but is not limited to, magnesia clinker (MgO), magnesite (Magnesite, MgCO 3 ) and the like.

SiO2:1.50〜3.50重量%
SiO2は、スラグ形成剤及びアーク安定剤であって、スラグの凝固点が低く粘性が小さくて、ビード形状の調整に効果を持つ成分である。SiO2が1.50重量%未満では、アークが不安定で、スパッタの発生量が増加し、スラグ被包性が不均一でビード形状が不良になる。3.50重量%を超えると、低融点スラグが多く、下部脚長でオーバーラップが発生する。従って、SiO2の含量は、1.50〜3.50重量%の範囲内であることが好ましい。
一方、SiO2を供給する供給源としては、これに限定されるものではないが、珪石(Quartz, SiO2)、珪藻土(Diatomaceous earth, SiO2-Al2O3-Fe2O3)、正長石(Orthoclase, K2O-Al2O3-6SiO2)などが挙げられる。
SiO 2 : 1.50 to 3.50% by weight
SiO 2 is a slag forming agent and an arc stabilizer, and is a component having a low freezing point and low viscosity, and having an effect for adjusting the bead shape. If SiO 2 is less than 1.50% by weight, the arc is unstable, the amount of spatter generated increases, the slag encapsulation is not uniform, and the bead shape is poor. When it exceeds 3.50% by weight, there are many low melting point slags, and overlap occurs in the lower leg length. Therefore, the content of SiO 2 is preferably in the range of 1.50 to 3.50% by weight.
On the other hand, the supply source of SiO 2 is not limited to this, but includes quartzite (Quartz, SiO 2 ), diatomaceous earth (SiO 2 -Al 2 O 3 -Fe 2 O 3 ), positive And feldspar (Orthoclase, K 2 O—Al 2 O 3 -6SiO 2 ).

ZrO2:0.30〜2.00重量%
ZrO2は、MgOのようにスラグの凝固速度とスラグ粘性に影響を及ぼし、アンダーカット及びビードの垂れに影響を与え、ビード形状を調整する成分である。ZrO2が0.30重量%未満では、ビード形状の改善効果がなく、2.00重量%を超えると、スラグ粘性が高くなりスラグ剥離性に劣り、上部脚長のアンダーカットが発生し、ビード形状が悪い。従って、ZrO2の含量は、0.30〜2.00重量%の範囲内であることが好ましい。
一方、ZrO2を供給する原料としては、これに限定されるものではないが、ジルコンサンド(Zircon-Sand, ZrSiO4)、ジルコニア(Zirconia, ZrO2)などが挙げられる。
ZrO 2 : 0.30 to 2.00% by weight
ZrO 2 is a component that affects the solidification rate and slag viscosity of slag, influences the undercut and bead sag, and adjusts the bead shape like MgO. If ZrO 2 is less than 0.30% by weight, there is no effect of improving the bead shape. If it exceeds 2.00% by weight, the slag viscosity becomes high and the slag peelability is poor, the undercut of the upper leg length occurs, and the bead shape is poor. Therefore, the content of ZrO 2 is preferably in the range of 0.30 to 2.00% by weight.
On the other hand, raw materials for supplying ZrO 2 include, but are not limited to, zircon sand (Zircon-Sand, ZrSiO 4 ) and zirconia (Zirconia, ZrO 2 ).

MnO:2.00〜4.50重量%
MnOは、脱酸剤として作用すると共に、溶接金属において引張強度及び靭性を向上させる作用がある。MnOが2.00重量%未満では、脱酸不足のため溶接部にブローホールなどの溶接欠陥が発生し易く、引張強度及び靭性に劣る。MnOが4.50重量%を超えると、溶接金属の引張強度が大きく増加するため、高温亀裂が発生し易くなる。従って、MnOの含量は、2.00〜4.50重量%の範囲内であることが好ましい。
一方、MnOを供給する原料としては、これに限定されるものではないが、金属マンガンパウダー(Metal Manganese Powder)、フェロマンガン(Ferro-Manganese)、またはFe-Si-Mnなどが挙げられる。
MnO: 2.00 to 4.50% by weight
MnO acts as a deoxidizer and improves the tensile strength and toughness of the weld metal. If MnO is less than 2.00% by weight, deoxidation is insufficient, so that weld defects such as blow holes are likely to occur in the welded part, and the tensile strength and toughness are poor. When MnO exceeds 4.50% by weight, the tensile strength of the weld metal is greatly increased, so that high temperature cracks are likely to occur. Accordingly, the MnO content is preferably in the range of 2.00 to 4.50% by weight.
On the other hand, the raw material for supplying MnO is not limited to this, but includes metal manganese powder (Metal Manganese Powder), ferromanganese (Ferro-Manganese), or Fe-Si-Mn.

K2O:0.03〜0.25重量%
K2Oは、アーク安定剤及びアーク取付力に影響を及ぼす成分である。K2Oが0.03重量%未満では、アークが不安定で、スパッタの発生量が多い。0.25重量%を超えると、アーク取付力が強くて上部ビードのアンダーカットが発生し、スパッタの発生量も多くなる。従って、K2Oの含量は、0.03〜0.25重量%の範囲内であることが好ましい。
一方、K2Oを供給する供給源としては、これに限定されるものではなく、正長石(Orthoclase, K2O-Al2O3-6SiO2)、チタン酸カリウム(Potassium titanate, K2TiO3)などが挙げられる。
K 2 O: 0.03 to 0.25% by weight
K 2 O is a component that affects the arc stabilizer and the arc mounting force. If K 2 O is less than 0.03% by weight, the arc is unstable and the amount of spatter generated is large. If it exceeds 0.25% by weight, the arc mounting force is strong, undercutting of the upper bead occurs, and the amount of spatter generated increases. Therefore, the content of K 2 O is preferably in the range of 0.03 to 0.25% by weight.
On the other hand, the supply source for supplying K 2 O is not limited to this, but anorthite (Orthoclase, K 2 O-Al 2 O 3 -6SiO 2 ), potassium titanate (Potassium titanate, K 2 TiO) 3 ).

F:0.05〜0.30重量%
Fは、アルカリ性フッ化物であって、アーク安定性及びスパッタの発生を低減させ、溶接作業性を向上させる作用をする。フッ化物の量が0.05重量%未満では、アークが不安定でスパッタの発生が多く、0.30重量%を超えると、アークの集中性が相対的に大きすぎて上部ビードのアンダーカットを誘発し、スパッタの過多発生をもたらす。従って、Fの含量は0.05〜0.30重量%の範囲内であることが好ましい。
一方、Fを供給する供給源としては、これに限定されるものではないが、NaF、CaF2、MgF2、BaF3、AlF3、KF、LiFなどが挙げられる。
F: 0.05 to 0.30% by weight
F is an alkaline fluoride that acts to reduce arc stability and spatter generation and improve welding workability. If the amount of fluoride is less than 0.05% by weight, the arc is unstable and spatter is often generated, and if it exceeds 0.30% by weight, the arc concentration is relatively large and induces undercut of the upper bead, resulting in spattering. Cause excessive occurrence. Therefore, the F content is preferably in the range of 0.05 to 0.30% by weight.
On the other hand, the supply source for supplying F includes, but is not limited to, NaF, CaF 2 , MgF 2 , BaF 3 , AlF 3 , KF, and LiF.

上記成分のうち、高融点酸化物が増加すると、スラグの凝固速度及び粘性が増加して溶融金属が流れ落ちない反面、上部ビードのアンダーカットが発生し、低融点酸化物が増加すると、スラグの凝固速度が相対的に遅くなり、ビードの垂れをもたらしてオーバーラップを誘発させる点を勘案し、スラグの凝固速度、スラグ粘性及びビード形状を制御できる上記成分のうち、高融点酸化物のMgO、ZrO2と、低融点酸化物のTiO2、Al2O3、SiO2間の関係を導出して下記式(1)で表し、その値を1.80〜6.50の範囲内に制御した。
1.80≦(TiO2+Al2O3+SiO2)/(MgO+ZrO2)≦6.50 (1)
式(1)の値が1.80未満では、上部ビードのアンダーカットが発生し、6.50を超えると、等脚長のビード形状にならなく、ビードの垂れ現象によりオーバーラップが発生する。従って、式(1)の値が1.80〜6.50の範囲内であることが最も適当である。
Among the above components, when the high melting point oxide increases, the solidification rate and viscosity of the slag increase and the molten metal does not flow down. On the other hand, undercut of the upper bead occurs, and when the low melting point oxide increases, the solidification of the slag Of the above components that can control the solidification rate, slag viscosity, and bead shape of slag, taking into account the fact that the speed becomes relatively slow and causes bead sagging to induce overlap, among the above components MgO, ZrO of high melting point oxide 2 and the low melting point oxides TiO 2 , Al 2 O 3 and SiO 2 were derived and represented by the following formula (1), and the value was controlled within the range of 1.80 to 6.50.
1.80 ≦ (TiO 2 + Al 2 O 3 + SiO 2 ) / (MgO + ZrO 2 ) ≦ 6.50 (1)
If the value of the formula (1) is less than 1.80, an undercut of the upper bead occurs, and if it exceeds 6.50, the bead shape does not become an equal leg length and an overlap occurs due to a bead drooping phenomenon. Therefore, it is most appropriate that the value of the formula (1) is in the range of 1.80 to 6.50.

一方、Si、Mnなどの合金元素は、外皮またはフラックスで添加することが可能である。また、溶接部の耐食性、高温強度、耐衝撃性及び耐高温腐食性などを向上させるために、上記以外の合金成分(Cr, Cu, Ni, Ti, Mo, V, Nb等)を添加することもできる。
また、ワイヤ表面の状態及び断面によるフラックスの充填形状には何ら制限はない。ワイヤ表面に通電性を良くし、発錆防止のためにCuでメッキしたり、酸化皮膜を形成させてもよく、表面処理に対する制約はない。また、ワイヤの断面を円形にする方が良いが、これに限定されるものではない。
以下、本発明を下記の実施例に基づいてより詳細に説明する。しかし、本発明はこれに限定されるものではない。
On the other hand, alloy elements such as Si and Mn can be added by a skin or a flux. Also, other alloy components (Cr, Cu, Ni, Ti, Mo, V, Nb, etc.) other than the above should be added to improve the corrosion resistance, high temperature strength, impact resistance, and high temperature corrosion resistance of welds. You can also.
Moreover, there is no restriction | limiting in the filling state of the flux by the state of a wire surface, and a cross section. There is no restriction on the surface treatment, because the surface of the wire may have good electrical conductivity and may be plated with Cu or an oxide film to prevent rusting. Moreover, although it is better to make the cross section of a wire circular, it is not limited to this.
Hereinafter, the present invention will be described in more detail based on the following examples. However, the present invention is not limited to this.

実施例1:ガスシールドアーク溶接用ワイヤの製造
冷間圧延鋼剤(KS D 3512)の外皮中にフラックスを充填し、ワイヤの全重量に対してフラックスの含量が12〜18重量%になるようにし、ワイヤの直径が1.6mmであるフラックス入りワイヤを製造した。上記ワイヤの構成成分を下記の表1に示した。
このように製造したフラックス入りワイヤを、下記の表2及び図1に示した溶接条件の範囲内で溶接し、脚長、のど厚、ビードオーバーラップ、アンダーカット、アーク安定性、スラグ剥離性、スラグ被包性、スパッタの発生量について評価した。その結果は、下記の表3にとりまとめた。
Example 1: Manufacture of wire for gas shielded arc welding Flux is filled in the outer shell of cold rolled steel (KS D 3512) so that the flux content is 12 to 18% by weight with respect to the total weight of the wire. Thus, a flux-cored wire having a wire diameter of 1.6 mm was manufactured. The components of the wire are shown in Table 1 below.
The flux-cored wire thus manufactured is welded within the range of welding conditions shown in Table 2 below and FIG. 1, and the leg length, throat thickness, bead overlap, undercut, arc stability, slag peelability, slag The encapsulating property and the amount of spatter generated were evaluated. The results are summarized in Table 3 below.

上記の表1及び3から分かるように、比較例17は、TiO2の上限値から外れてオーバーラップが発生しており、スパッタの発生量もまた多かった。比較例18は、SiO2の上限値から外れてスラグの流れ落ちによりビードのオーバーラップが発生し、スラグ剥離性が不良であった。
比較例19は比較例17と同様に、TiO2の上限値から外れてオーバーラップが発生し、スパッタの発生量が多かった。比較例20は、MgOの上限値から外れているだけでなくFの下限値から外れており、上部脚長のアンダーカットが発生し、溶接ビード形状が不良で、スラグ剥離性及び溶接作業性においてアーク安定性が不良であった。
比較例21は、式(1)の値が適正の上限値から外れていることにより、低融点酸化物が多くて高融点酸化物が少なく、ビード形状でオーバーラップが発生し、スラグ剥離性が不良であった。比較例22は、SiO2の下限値から外れてアーク安定性が不良で、スパッタの発生量が多かった。
比較例23は、Fの下限値から外れて式(1)もまた適正の下限値から外れており、アーク安定性が悪く、高融点酸化物が多くて低融点酸化物が少なく、上部脚長のアンダーカットが発生し、スラグ剥離性が不良であった。比較例24は、TiO2の下限値から外れると共にAl2O3の上限値から外れることにより、上部脚長のアンダーカットが発生し、スラグ剥離性も不良であった。また、全体的なスラグ形成剤が不足し、スラグ被包性も不良であった。
比較例25は、Al2O3の下限値から外れて溶接作業性においてスパッタの発生量が多かった。比較例26は、ZrO2の下限値から外れており、上部脚長にアンダーカットが発生し、溶接ビードが不良であった。比較例27は、MnO及びK2O共に下限値から外れており、溶接作業性においてアーク安定性が不良で、スパッタの発生量も多く、MnOの影響で引張強度が低下し、靭性が規格値を満たさなかった。
比較例28は、K2Oの上限値から外れて溶接作業性においてスパッタの発生量が多かった。比較例29は、MnO及びZrO2共に上限値から外れており、上部脚長にアンダーカットが発生することによりビード形状が不良であった。
比較例30は、MnOの上限値から外れると共にMgOの下限値から外れることにより、ビードのオーバーラップが発生し、ビード形状が不良であった。比較例31は、ZrO2及びF共に上限値から外れており、上部脚長にアンダーカットが発生し、スラグ剥離性も不良であり、溶接作業性においてスパッタの発生量も多かった。
これに反して、本発明の実施例1〜16は共に溶融金属及びスラグの垂れが発生しなかっただけでなく、スラグ剥離性にも優れており、ビード形状において脚長10.5mm以上、のど厚7.5mm以上を満たし、アーク安定性及びスパッタの発生量が少なく、溶接作業性も良好であることが確認できた。
As can be seen from Tables 1 and 3 above, in Comparative Example 17, an overlap occurred outside the upper limit of TiO 2 , and the amount of spatter generated was also large. In Comparative Example 18, the bead overlap occurred due to the slag flowing off from the upper limit of SiO 2 , and the slag peelability was poor.
As in Comparative Example 17, Comparative Example 19 deviated from the upper limit value of TiO 2 and generated an overlap, resulting in a large amount of spatter. Comparative Example 20 is not only deviated from the upper limit value of MgO but also deviated from the lower limit value of F, an undercut of the upper leg length occurred, the weld bead shape was poor, and arcing in slag peelability and welding workability Stability was poor.
In Comparative Example 21, the value of the formula (1) deviates from the appropriate upper limit value, so that there are many low melting point oxides and few high melting point oxides, overlap occurs in the bead shape, and the slag peelability is low. It was bad. Comparative Example 22 deviated from the lower limit of SiO 2 , resulting in poor arc stability, and a large amount of spatter was generated.
Comparative Example 23 deviates from the lower limit value of F, and equation (1) also deviates from the appropriate lower limit value. The arc stability is poor, the amount of high melting point oxide is low, the amount of low melting point oxide is small, and the upper leg length is low. Undercut occurred and slag peelability was poor. In Comparative Example 24, the upper leg length undercut occurred due to the deviation from the lower limit value of TiO 2 and the upper limit value of Al 2 O 3 , and the slag peelability was poor. Moreover, the overall slag forming agent was insufficient, and the slag encapsulation was also poor.
Comparative Example 25 deviated from the lower limit value of Al 2 O 3 and generated a large amount of spatter in welding workability. Comparative Example 26 deviated from the lower limit value of ZrO 2 , undercut occurred in the upper leg length, and the weld bead was poor. In Comparative Example 27, both MnO and K 2 O are out of the lower limit values, the arc stability in welding workability is poor, the amount of spatter is large, the tensile strength decreases due to the effect of MnO, and the toughness is the standard value Did not meet.
Comparative Example 28 deviated from the upper limit value of K 2 O and generated a large amount of spatter in welding workability. In Comparative Example 29, both MnO and ZrO 2 deviated from the upper limit values, and the bead shape was poor due to the occurrence of an undercut in the upper leg length.
In Comparative Example 30, the bead overlap occurred due to the deviation from the upper limit value of MnO and the lower limit value of MgO, and the bead shape was poor. In Comparative Example 31, both ZrO 2 and F deviated from the upper limit, undercut occurred in the upper leg length, slag peelability was poor, and the amount of spatter generated was large in welding workability.
On the other hand, both Examples 1 to 16 of the present invention were not only free from molten metal and slag dripping, but also excellent in slag peelability, with a bead shape with a leg length of 10.5 mm or more and a throat thickness of 7.5. It was confirmed that the arc stability and the amount of spatter were small and welding workability was good.

本発明の実施例及び比較例で使用された、主に鉄骨、橋梁及び造船業界などの構造物に対するすみ肉溶接条件を概略的に示した図。The figure which showed schematically the fillet-welding conditions with respect to structures mainly used in the Example and comparative example of this invention, such as a steel frame, a bridge, and the shipbuilding industry. 図1のすみ肉溶接の際、ビード名称を示すためのすみ肉溶接部の縦断面図。FIG. 2 is a longitudinal cross-sectional view of a fillet weld for indicating a bead name during fillet welding in FIG. 図1のすみ肉溶接の際、主な欠陥の一種であるアンダーカット欠陥の縦断面図。FIG. 2 is a longitudinal sectional view of an undercut defect that is a kind of main defect during fillet welding in FIG. 図1のすみ肉溶接の際、主な欠陥の一種であるオーバーラップ欠陥の縦断面図。FIG. 2 is a longitudinal sectional view of an overlap defect which is a kind of main defect during fillet welding in FIG.

Claims (2)

軟鋼または合金鋼製の外皮にフラックスを充填するガスシールドアーク溶接用フラックス入りワイヤにおいて、
ワイヤの全重量に対してTiO2(換算値):2.00〜6.00重量%、Al2O3(換算値):0.20〜1.50重量%、MgO(換算値):0.50〜2.00重量%、SiO2(換算値):1.50〜3.50重量%、ZrO2(換算値):0.30〜2.00重量%、MnO(換算値):2.00〜4.50重量%、K2O(換算値):0.03〜0.25重量%、F(換算値):0.05〜0.30重量%を含み、残部はFe及びその他の成分から構成されたことを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for gas shield arc welding that fills the outer shell made of mild steel or alloy steel with flux,
TiO 2 (converted value): 2.00 to 6.00 wt%, Al 2 O 3 (converted value): 0.20 to 1.50 wt%, MgO (converted value): 0.50 to 2.00 wt%, SiO 2 (based on the total weight of the wire (Converted value): 1.50 to 3.50% by weight, ZrO 2 (converted value): 0.30 to 2.00% by weight, MnO (converted value): 2.00 to 4.50% by weight, K 2 O (converted value): 0.03 to 0.25% by weight, F (Conversion value): A flux-cored wire for gas shielded arc welding characterized by including 0.05 to 0.30% by weight and the balance being composed of Fe and other components.
TiO2、Al2O3、SiO2、MgO、ZrO2の含量が、下記式(1)を満たすことを特徴とする請求項1記載のガスシールドアーク溶接用フラックス入りワイヤ。
1.80≦(TiO2+Al2O3+SiO2)/(MgO+ZrO2)≦6.50 (1)
2. The flux-cored wire for gas shielded arc welding according to claim 1, wherein the contents of TiO 2 , Al 2 O 3 , SiO 2 , MgO, and ZrO 2 satisfy the following formula (1).
1.80 ≦ (TiO 2 + Al 2 O 3 + SiO 2 ) / (MgO + ZrO 2 ) ≦ 6.50 (1)
JP2006280491A 2005-11-17 2006-10-13 Flux-cored wire for gas shielded arc welding Active JP4741445B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050109936A KR100706022B1 (en) 2005-11-17 2005-11-17 Flux cored wire for large square bar
KR10-2005-0109936 2005-11-17

Publications (2)

Publication Number Publication Date
JP2007136548A true JP2007136548A (en) 2007-06-07
JP4741445B2 JP4741445B2 (en) 2011-08-03

Family

ID=38075275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280491A Active JP4741445B2 (en) 2005-11-17 2006-10-13 Flux-cored wire for gas shielded arc welding

Country Status (3)

Country Link
JP (1) JP4741445B2 (en)
KR (1) KR100706022B1 (en)
CN (1) CN1966199B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110681956A (en) * 2019-10-28 2020-01-14 平顶山平煤机煤矿机械装备有限公司 Deep-fusion fillet welding process for welding medium plate of hydraulic support structural part
CN113210930A (en) * 2021-05-21 2021-08-06 泰安市瑞朗科技有限公司 Flux-cored wire for hot forging die repair and using method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101396775B (en) * 2007-09-30 2010-11-24 苏派特金属(昆山)有限公司 Flux-cored wire special for multi-electrode gas protection arc welding
CN101780603B (en) * 2009-01-15 2011-08-31 山东聚力焊接材料有限公司 High-speed flux-cored welding wire
CN102233497A (en) * 2010-04-21 2011-11-09 广东福维德焊接股份有限公司 CO2 gas shielded flux cored wire for supporting welding of low alloy steel with strength of 590 MPa
CN102233498A (en) * 2010-04-21 2011-11-09 广东福维德焊接股份有限公司 CO2 gas protection flux-cored wire for matching welding of low-alloy steel with strength of 490 MPa
CN102554497B (en) * 2010-12-21 2014-06-04 中冶建筑研究总院有限公司 Flux-cored wire for fine-grain high-strength steel bar CO2 arc welding
CN102152027B (en) * 2011-03-17 2013-01-23 北京工业大学 Recycled gas-shielded flux cored wire component and preparation method thereof
JP6029513B2 (en) * 2013-03-28 2016-11-24 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
CN110315240A (en) * 2018-03-29 2019-10-11 株式会社神户制钢所 Flux-cored wire
JP2022121317A (en) * 2021-02-08 2022-08-19 株式会社神戸製鋼所 Wire with flux for gas shield arc-welding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154487A (en) * 2001-09-06 2003-05-27 Kisswell:Kk Basic flux cored wire having excellent weldability

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915756B2 (en) * 1979-09-04 1984-04-11 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
US5219425A (en) * 1989-08-25 1993-06-15 Kabushiki Kaisha Kobe Seiko Sho Flux containing wire for use in stainless steel welding
CN1031694C (en) * 1994-08-27 1996-05-01 冶金工业部建设研究总院 Smelting special flux for reinforcing bar pressure slag welding
JP3017054B2 (en) * 1995-09-28 2000-03-06 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
JP3439019B2 (en) * 1996-03-07 2003-08-25 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP4040765B2 (en) 1998-08-28 2008-01-30 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
CN1085127C (en) * 1999-09-29 2002-05-22 冶金工业部钢铁研究总院 Welding wire with metallic flux core
KR100355581B1 (en) * 2000-09-23 2002-10-11 고려용접봉 주식회사 Flux cored wire for gas shield arc welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154487A (en) * 2001-09-06 2003-05-27 Kisswell:Kk Basic flux cored wire having excellent weldability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110681956A (en) * 2019-10-28 2020-01-14 平顶山平煤机煤矿机械装备有限公司 Deep-fusion fillet welding process for welding medium plate of hydraulic support structural part
CN113210930A (en) * 2021-05-21 2021-08-06 泰安市瑞朗科技有限公司 Flux-cored wire for hot forging die repair and using method thereof
CN113210930B (en) * 2021-05-21 2022-07-26 泰安市瑞朗科技有限公司 Flux-cored wire for hot forging die repair and using method thereof

Also Published As

Publication number Publication date
JP4741445B2 (en) 2011-08-03
CN1966199A (en) 2007-05-23
KR100706022B1 (en) 2007-04-12
CN1966199B (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP4741445B2 (en) Flux-cored wire for gas shielded arc welding
JP2013151001A (en) Flux-cored wire for gas-shielded arc welding for weather-resistant steel
JP5283993B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5400461B2 (en) Flux cored wire
JP6786427B2 (en) Flux-filled wire for gas shielded arc welding
JP5400472B2 (en) Flux cored wire
JP2012121051A (en) Flux-cored wire for gas shielded arc welding
JP5314339B2 (en) Flux cored wire
JP6566928B2 (en) Stainless steel flux cored wire
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
JP5314414B2 (en) Flux cored wire
JP2017094360A (en) Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP6502887B2 (en) Flux-cored wire for gas shielded arc welding
JP2015112625A (en) Stainless steel flux-cored wire for self-shielded arc welding
JP2016203179A (en) Flux-cored wire for gas-shielded arc welding
JP2005279768A (en) Flux cored wire for welding and weld joint for steel structure
JP5361797B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
WO2020217963A1 (en) Ni-BASED ALLOY FLUX-CORED WIRE
JP2014065066A (en) Flux cored wire for horizontal gas shielded arc welding
JP2010284682A (en) Flux cored wire for gas shielded arc welding
JP2010194571A (en) Flux-cored wire for two-electrode horizontal fillet gas shield arc welding
JPH11216593A (en) Low hydrogen system covered arc electrode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R150 Certificate of patent or registration of utility model

Ref document number: 4741445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350