JP2007131498A - Matrix material for refractory material, refractory material, and waste incinerating/melting furnace - Google Patents

Matrix material for refractory material, refractory material, and waste incinerating/melting furnace Download PDF

Info

Publication number
JP2007131498A
JP2007131498A JP2005327574A JP2005327574A JP2007131498A JP 2007131498 A JP2007131498 A JP 2007131498A JP 2005327574 A JP2005327574 A JP 2005327574A JP 2005327574 A JP2005327574 A JP 2005327574A JP 2007131498 A JP2007131498 A JP 2007131498A
Authority
JP
Japan
Prior art keywords
refractory material
refractory
mass
matrix material
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005327574A
Other languages
Japanese (ja)
Inventor
Masao Nanba
政雄 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005327574A priority Critical patent/JP2007131498A/en
Publication of JP2007131498A publication Critical patent/JP2007131498A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a matrix material for refractory improved in corrosion resistance of a refractory composing a furnace inner wall to the melted slag generated by incinerating and melting waste, and to provide the refractory and a waste incinerating/melting furnace. <P>SOLUTION: The matrix material for refractory comprises an oxide material composed of a (non)stoichiometric spinel single phase (magnesia-spinel single phase), and contains tetravalent oxides of ≥0.1 mass% and <1 mass% as a solid solution component. The magnesia-spinel single phase includes a spinel crystal only as the crystal phase identified by an X-ray analysis, and the MgO ingredient content in magnesia-alumina binary expression is within the range of ≥7 mass% and ≤39 mass%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、家庭やオフィスなどから出される都市ごみ等の一般廃棄物、廃プラスチック、カーシュレダー・ダスト、電子機器、化粧品などの産業廃棄物等、即ち、可燃物を含む廃棄物を焼却処理して生じる灰分を加熱して溶融スラグとする廃棄物燃焼溶融炉の内面を構成する耐火材に使用される耐火材用マトリックス材、この耐火材用マトリックス材を含む耐火材、及び、この耐火材を使用する廃棄物燃焼溶融炉に関するものである。   The present invention incinerates general waste such as municipal waste from homes and offices, industrial waste such as waste plastic, car shredder dust, electronic equipment and cosmetics, that is, waste containing combustibles. A refractory material matrix material used as a refractory material constituting the inner surface of a waste combustion melting furnace that heats the generated ash to form molten slag, a refractory material containing the refractory material matrix material, and this refractory material The present invention relates to a waste combustion melting furnace to be used.

都市ゴミ等の一般廃棄物や廃プラスチック等の可燃物を含む廃棄物の処理装置の一つとして、廃棄物を熱分解反応器に入れて低酸素雰囲気下で加熱して熱分解し、熱分解ガス(乾留ガス)と主として不揮発性成分からなる熱分解残留物とを生成し、この熱分解ガスと熱分解残留物とを排出装置において分離し、更に、熱分解残留物を不活性雰囲気下の冷却装置で冷却した後、分離装置に供給して熱分解カーボンを主体とする燃焼性成分と、例えば、金属や陶器、砂利などの不燃性成分とに分離し、燃焼性成分を粉砕して粉体とし、この粉砕された燃焼性成分と前記した熱分解ガスとを廃棄物燃焼溶融炉に導いて燃焼させ、生じた燃焼灰をその燃焼熱により加熱して溶融スラグとなし、この溶融スラグは耐火材で覆われた炉内面を伝って流下し、排出部から外部に排出して冷却固化させるようにした廃棄物処理装置が知られている(例えば、特許文献1参照。)。   As one of the processing equipment for waste including municipal solid waste and combustible waste such as plastic, waste is put in a pyrolysis reactor and heated in a low-oxygen atmosphere for thermal decomposition and thermal decomposition. Gas (dry distillation gas) and pyrolysis residue mainly composed of non-volatile components are produced, and the pyrolysis gas and pyrolysis residue are separated in a discharge device, and the pyrolysis residue is further removed under an inert atmosphere. After cooling with a cooling device, it is supplied to a separation device and separated into combustible components mainly composed of pyrolytic carbon, and non-combustible components such as metal, ceramics, and gravel, and the combustible components are pulverized and powdered. The pulverized combustible component and the above-mentioned pyrolysis gas are introduced into a waste combustion melting furnace and burned, and the resulting combustion ash is heated by the combustion heat to form molten slag. Flowing down the furnace inner surface covered with refractory material Is discharged from the discharge portion to the outside and so as to cool and solidify waste disposal apparatus has been known (e.g., see Patent Document 1.).

一方、耐火材が、鉄鋼、非鉄、セメント、ガラス、窯業など高温処理を必要とする工業の窯炉やボイラ、廃棄物焼却炉等に使用される。この耐火材の採用に際して、溶融スラグと接触する環境の下で使用する場合においては、酸素分圧、アルカリ分圧などの気相側の環境と共に、溶融スラグが関与する苛酷な高温腐食についても考慮する必要がある。   On the other hand, refractory materials are used in industrial kilns, boilers, waste incinerators and the like that require high-temperature treatment such as steel, non-ferrous metals, cement, glass, and ceramics. When using this refractory material, when using it in an environment where it comes into contact with molten slag, consider the severe high-temperature corrosion involving molten slag as well as the environment on the gas phase side such as oxygen partial pressure and alkali partial pressure. There is a need to.

一般に、酸素分圧の高い使用条件下においては、酸化物系耐火材が使用されるが、空気で燃焼溶融する廃棄物処理での酸化物系耐火材の場合には、マグネシアーアルミナ複合系でマグネシアスピネル(MgAl2 4 )−マグネシアの混合耐火材が提案されている(例えば、特許文献2参照。)。 In general, oxide-based refractory materials are used under conditions of high oxygen partial pressure, but in the case of oxide-based refractory materials for waste treatment that burns and melts with air, magnesia-alumina composite system is used. A mixed refractory material of magnesia spinel (MgAl 2 O 4 ) -magnesia has been proposed (see, for example, Patent Document 2).

しかしながら、上記の廃棄物処理装置の灰分を溶融させた溶融スラグは、塩基度が低く、また、塩素やイオウなどの酸化性ガスが共存するため、アルミナやマグネシア等の耐火材成分の溶解度が高い。これらの溶融スラグや酸化性ガスへの耐火材の耐食性を高めるためには、物理的、化学的に耐久性の高いマトリックス材料が必要である。即ち、アルミナやマグネシウムの単独酸化物成分は、熱膨張特性が両者の複合した酸化物(マグネシアスピネル)と異なり、体積安定性が低く、クラックなどを生じ易いという問題点や、灰中のシリカ成分・アルカリ成分や排ガス中のSOx分などと反応し易いという問題点がある。従って、耐火材の部分的剥離や、溶融スラグの浸入など、損傷や損耗の発生が起こり易く、結果として耐火材のスポーリングや溶解などの損耗が継続的に進行するという問題が生じる。
特公平6−56253号公報 特開2001−158661号公報
However, the molten slag obtained by melting the ash content of the waste treatment apparatus has a low basicity and a high solubility of refractory components such as alumina and magnesia because of the coexistence of oxidizing gases such as chlorine and sulfur. . In order to increase the corrosion resistance of the refractory material to these molten slag and oxidizing gas, a matrix material having high physical and chemical durability is required. That is, the single oxide component of alumina or magnesium is different from the oxide (magnesia spinel) in which the thermal expansion characteristics are combined, and has problems such as low volume stability and easy cracking, and silica component in ash. There is a problem that it easily reacts with alkali components and SOx content in exhaust gas. Therefore, damage and wear such as partial peeling of the refractory material and intrusion of molten slag are likely to occur, resulting in a problem that wear of the refractory material such as spalling and melting continuously proceeds.
Japanese Examined Patent Publication No. 6-56253 JP 2001-158661 A

本発明は、上記の問題を解決するためになされたものであり、その目的は、廃棄物を燃焼溶融しスラグ化する廃棄物燃焼溶融炉において、溶融スラグに接する炉内壁を構成する耐火材に好適な耐火材用マトリックス材、この耐火材用マトリックス材を含む耐火材、及び、この耐火材を使用した廃棄物燃焼溶融炉を提供することにある。   The present invention has been made in order to solve the above-described problems. The purpose of the present invention is to provide a refractory material that constitutes the inner wall of the furnace in contact with the molten slag in a waste combustion melting furnace that burns and melts waste to form slag. It is an object of the present invention to provide a suitable refractory matrix material, a refractory material including the refractory matrix material, and a waste combustion melting furnace using the refractory material.

上記の目的を達成するための本発明の耐火材用マトリックス材は、結晶相としてスピネル型結晶を含み、MgO成分含有量が7mass%以上39mass%以下の範囲にあるマグネシアスピネル単相から構成される耐火材用マトリックス材であって、4価金属酸化物を固溶成分として0.1mass%以上1mass%未満含有するように構成される。   The matrix material for a refractory material of the present invention for achieving the above object is composed of a magnesia spinel single phase containing a spinel crystal as a crystal phase and having an MgO component content in the range of 7 mass% to 39 mass%. A matrix material for a refractory material, which is configured to contain a tetravalent metal oxide as a solid solution component in an amount of 0.1 mass% to less than 1 mass%.

また、上記の耐火材用マトリックス材において、前記4価金属酸化物として、酸化チタン、酸化ジルコニウム、酸化スズ、酸化ハフニウムの中のいずれか一つ又は二つ以上を含んで構成される。   The matrix material for a refractory material includes one or more of titanium oxide, zirconium oxide, tin oxide, and hafnium oxide as the tetravalent metal oxide.

上記のように調製された耐火材用マトリックス材にあっては、立方晶という対称性の高い相で、しかも単一相であるため、昇降温や局部燃焼などの時間的及び空間的な温度場の変動に際して熱膨張特性のバラツキがなく、安定度が高い。   In the matrix material for refractory material prepared as described above, it is a highly symmetrical phase called cubic, and it is a single phase, so the temporal and spatial temperature fields such as temperature rise and fall, local combustion, etc. There is no variation in thermal expansion characteristics during fluctuations, and stability is high.

その上、4価金属酸化物を固溶成分として含むため、結晶中の陽イオン空孔濃度が高く、拡散係数が大きくなり、粉末の常温状態から高温状態に上げた際の焼結挙動において、焼結体の最終密度が高くなる。   In addition, since the tetravalent metal oxide is contained as a solid solution component, the cation vacancy concentration in the crystal is high, the diffusion coefficient is increased, and the sintering behavior when the powder is raised from a normal temperature state to a high temperature state, The final density of the sintered body increases.

従って、機械的な損傷や、溶融スラグの物理的浸入などの損傷要因が低減される。ここで、4価金属酸化物の添加率は0.1mass%以上1mass%未満とし、固溶体の形成範囲内とする。   Therefore, damage factors such as mechanical damage and physical penetration of molten slag are reduced. Here, the addition rate of the tetravalent metal oxide is 0.1 mass% or more and less than 1 mass%, and is within the formation range of the solid solution.

また、上記のように調製された耐火材用マトリックス材は、溶融スラグの化学的浸食に際して安定性の高い複合酸化物であるため、溶融スラグ中への物質移動が抑制される。従って、耐火材の耐食性が向上することになる。   Moreover, since the matrix material for refractory materials prepared as mentioned above is a complex oxide with high stability at the time of chemical erosion of molten slag, mass transfer into the molten slag is suppressed. Therefore, the corrosion resistance of the refractory material is improved.

そして、上記の目的を達成するための本発明の耐火材は、上記の耐火材用マトリックス材を含んで構成される。この構成の耐火材は、溶融スラグ中への物質移動が抑制された耐火材、即ち、耐食性に優れた耐火材となる
更に、上記の目的を達成するための本発明の廃棄物燃焼溶融炉は、上記の耐火材用マトリックス材を含む耐火材を、溶融物と接する炉壁の炉壁材として用いて形成すると、溶融スラグに対する耐食性を向上させることができる。
And the refractory material of this invention for achieving said objective is comprised including said matrix material for refractory materials. The refractory material having this configuration is a refractory material in which mass transfer into the molten slag is suppressed, that is, a refractory material excellent in corrosion resistance.Furthermore, the waste combustion melting furnace of the present invention for achieving the above object is When the refractory material including the matrix material for the refractory material is used as a furnace wall material for the furnace wall in contact with the melt, the corrosion resistance against the molten slag can be improved.

本発明の耐火材用マトリックス材、耐火材によれば、廃棄物を燃焼溶融しスラグ化する廃棄物燃焼溶融炉において、4価金属酸化物を固溶限以内の濃度に含むスピネル単相からなる試料を耐火材のマトリックス部に適用することにより、この耐火材用マトリックス材を含む耐火材の溶融スラグに対する耐食性を向上することができる。   According to the matrix material for a refractory material and the refractory material of the present invention, in a waste combustion melting furnace for combusting and melting waste to form slag, it consists of a spinel single phase containing tetravalent metal oxide in a concentration within the solid solution limit. By applying a sample to the matrix part of a refractory material, the corrosion resistance with respect to the molten slag of the refractory material containing this matrix material for refractory materials can be improved.

また、本発明の廃棄物燃焼溶融炉によれば、この耐火材用マトリックス材を含む耐火材を使用して廃棄物燃焼溶融炉の炉内壁を構成するので、この廃棄物燃焼溶融炉の溶融スラグに対する耐食性を向上することができる。   Further, according to the waste combustion melting furnace of the present invention, the refractory material including the matrix material for the refractory material is used to constitute the inner wall of the waste combustion melting furnace, so the molten slag of the waste combustion melting furnace Corrosion resistance to can be improved.

以下、本発明に係る耐火材用マトリックス材、耐火材及び廃棄物燃焼溶融炉の実施の形態について説明する。   Hereinafter, embodiments of the matrix material for refractory material, the refractory material, and the waste combustion melting furnace according to the present invention will be described.

先ず、最初に、本発明に係る耐火材用マトリックス材の実施の形態について説明する。この耐火材用マトリックス材は、結晶相としてスピネル型結晶を含み、MgO成分含有量が7mass%以上39mass%以下の範囲にあるマグネシアスピネル単相から構成される耐火材用マトリックス材であって、4価金属酸化物を固溶成分として0.1mass%(重量%)以上1mass%未満含有するように構成される。   First, an embodiment of a matrix material for a refractory material according to the present invention will be described. This matrix material for a refractory material is a matrix material for a refractory material that includes a spinel-type crystal as a crystal phase and is composed of a magnesia spinel single phase having a MgO component content in the range of 7 mass% to 39 mass%. It is comprised so that a valence metal oxide may be contained as a solid solution component in an amount of 0.1 mass% (wt%) or more and less than 1 mass%.

つまり、定比性または不定比性スピネル単相から構成される酸化物材料であって、4価酸化物を固溶成分として含有するものを耐火材用マトリックス材に適応する。この4価金属酸化物としては、酸化チタン、酸化ジルコニウム、酸化スズ、酸化ハフニウムの中のいずれか一つ又は二つ以上を使用することができる。この4価金属酸化物の添加率は0.1mass%以上1mass%未満とし、固溶体の形成範囲内とする。   That is, an oxide material composed of a stoichiometric or non-stoichiometric spinel single phase and containing a tetravalent oxide as a solid solution component is applied to a matrix material for a refractory material. As the tetravalent metal oxide, any one or two or more of titanium oxide, zirconium oxide, tin oxide, and hafnium oxide can be used. The addition rate of this tetravalent metal oxide is 0.1 mass% or more and less than 1 mass%, and is within the formation range of the solid solution.

ここで、マグネシアスピネル単相とは、X線解析で同定される結晶相としてスピネル結晶のみを含み、マグネシアーアルミナ2元系表示におけるMgO成分含有量が7mass%以上39mass%以下の範囲にあるものをいう。   Here, the magnesia spinel single phase includes only spinel crystals as crystal phases identified by X-ray analysis, and the content of MgO component in the magnesia-alumina binary display is in the range of 7 mass% to 39 mass%. Say.

この耐火材用マトリックス材は、立方晶という対称性の高い相で、しかも単一相であるため、昇降温や局部燃焼などの時間的及び空間的な温度場の変動に際して熱膨張特性のバラツキがなく、安定度が高い。   Since this matrix material for refractory materials is a highly symmetrical phase called cubic, and it is a single phase, there is a variation in thermal expansion characteristics when temporal and spatial temperature fields fluctuate, such as temperature rise and fall and local combustion. There is no stability.

しかも、4価金属酸化物を固溶成分として含むため、結晶中の陽イオン空孔濃度が高く、拡散係数が大きくなり、粉末の常温状態から高温状態に上げた際の焼結挙動において、焼結体の最終密度が高くなる。従って、機械的な損傷や、溶融スラグの物理的浸入などの損傷要因が低減される。   Moreover, since tetravalent metal oxide is contained as a solid solution component, the cation vacancy concentration in the crystal is high, the diffusion coefficient is increased, and the sintering behavior when the powder is raised from the normal temperature state to the high temperature state is reduced. The final density of the body is increased. Therefore, damage factors such as mechanical damage and physical penetration of molten slag are reduced.

また、このように調製された耐火材用マトリックス材は、溶融スラグの化学的浸食に際して安定性の高い複合酸化物であるため、溶融スラグ中への物質移動が抑制される。従って、この耐火材用マトリックス材を含む耐火材の耐食性が向上することになる。   Moreover, since the matrix material for refractory materials prepared in this way is a complex oxide with high stability at the time of chemical erosion of molten slag, mass transfer into the molten slag is suppressed. Therefore, the corrosion resistance of the refractory material including the matrix material for refractory material is improved.

上記の耐火材用マトリックス材が微粒(粒子サイズが0.1mm以下)ないし中粒(0.1mm〜1mm)の微細部を構成する成分であるのに対し、中粒の粗大部及び粗粒(1mm以上)を構成する粒子成分は骨材と呼ばれる。骨材には、電融アルミナ、電融スピネル、電融ジルコニア等が使用される。耐火材は、上記のマトリックス材と骨材とから成る耐火性主材を基本構成物とする。これに、結合・強度を与えるための結合材や、分散剤、硬化遅延剤等を配合し、耐火材が構成される。   The matrix material for the refractory material is a component constituting the fine part (particle size is 0.1 mm or less) to the fine part of medium grain (0.1 mm to 1 mm), whereas the coarse part and coarse grain ( The particle component constituting 1 mm or more) is called aggregate. For the aggregate, fused alumina, fused spinel, fused zirconia or the like is used. The refractory material has a refractory main material composed of the matrix material and the aggregate as a basic component. A refractory material is formed by blending a binder for imparting bonding and strength, a dispersant, a curing retarder, and the like.

上記の耐火材用マトリックス材、結合材、添加材等を所定の割合で混合した後、成形型に入れて所定の形状に成形する。この成形体を養生・乾燥させる。この後、成形体を加熱炉(焼成炉)に入れて、1400℃〜1700℃で加熱して焼結し、この焼結物を冷却して定形耐火材とする。   The above-mentioned matrix material for refractory material, binder, additive and the like are mixed at a predetermined ratio, and then put into a mold and molded into a predetermined shape. This molded body is cured and dried. Thereafter, the compact is put into a heating furnace (firing furnace), heated and sintered at 1400 ° C. to 1700 ° C., and the sintered product is cooled to obtain a fixed refractory material.

また、不定形耐火材として使用する場合には、上記の耐火材用マトリックス材、結合材、添加材等を所定の割合で混合した粉末を用いる。この不定形耐火材を用いて、炉内壁を形成する場合には、不定形耐火材の粉末に水分を加えて混練りしたものを炉壁に設けた型枠内に流し込んで炉内壁を形成し、養生・乾燥させる。この後、この炉内壁を燃焼バーナー等で1200℃〜1400℃で加熱し、炉内壁を焼成する。   Moreover, when using as an amorphous refractory material, the powder which mixed said refractory material matrix material, a binder, an additive, etc. in a predetermined ratio is used. When forming the furnace inner wall using this irregular refractory material, the powder of the irregular refractory material added with water and kneaded is poured into a mold provided on the furnace wall to form the furnace inner wall. Curing and drying. Then, this furnace inner wall is heated at 1200-1400 degreeC with a combustion burner etc., and a furnace inner wall is baked.

そして、上記の製造方法によって製造された耐火材は、溶融スラグの化学的浸食に際して安定性の高い複合酸化物である耐火材用マトリックス材を含んでいるため、耐火材から溶融スラグ中への物質移動が抑制される。従って、耐火材の耐食性が向上する。   And since the refractory material manufactured by the above manufacturing method contains a matrix material for refractory material, which is a complex oxide that is highly stable during chemical erosion of molten slag, the material from the refractory material into the molten slag Movement is suppressed. Therefore, the corrosion resistance of the refractory material is improved.

次に、この耐火材用マトリックス材を含む耐火材を用いた廃棄物燃焼溶融炉について説明する。この図1に示す廃棄物燃焼溶融炉は、次のような廃棄物燃焼溶融システムで用いられる溶融炉である。   Next, a waste combustion melting furnace using a refractory material including the matrix material for the refractory material will be described. The waste combustion melting furnace shown in FIG. 1 is a melting furnace used in the following waste combustion melting system.

この廃棄物燃焼溶融システムにおいては、都市ゴミ等の一般廃棄物や廃プラスチック等の可燃物を含む廃棄物を熱分解反応器に入れて低酸素雰囲気下で加熱して熱分解する。この熱分解により、熱分解ガス(乾留ガス)と主として不揮発性成分からなる熱分解残留物とを生成する。この熱分解ガスと熱分解残留物とを排出装置において分離する。   In this waste combustion melting system, waste including municipal solid waste and other combustible materials such as waste plastic is placed in a thermal decomposition reactor and heated in a low oxygen atmosphere for thermal decomposition. By this pyrolysis, pyrolysis gas (dry distillation gas) and pyrolysis residue mainly composed of nonvolatile components are generated. This pyrolysis gas and pyrolysis residue are separated in a discharge device.

この熱分解残留物を不活性雰囲気下の冷却装置で冷却した後、分離装置に供給して熱分解カーボンを主体とする燃焼性成分と、例えば、金属や陶器、砂利などの不燃性成分とに分離する。この燃焼性成分を粉砕して粉体とし、この粉砕された燃焼性成分と前記した熱分解ガスとを廃棄物燃焼溶融炉に導いて燃焼させる。この燃焼で生じた燃焼灰をその燃焼熱により加熱して溶融スラグとする。この溶融スラグは耐火材で覆われた炉内面を伝って流下し、排出部から外部に排出して冷却固化させる。   After this pyrolysis residue is cooled by a cooling device under an inert atmosphere, it is supplied to a separation device to produce a combustible component mainly composed of pyrolytic carbon and a non-combustible component such as metal, ceramics, and gravel. To separate. The combustible component is pulverized to form a powder, and the pulverized combustible component and the pyrolysis gas are guided to a waste combustion melting furnace and burned. The combustion ash generated by this combustion is heated by the combustion heat to form molten slag. The molten slag flows down the furnace inner surface covered with a refractory material, and is discharged from the discharge portion to the outside to be cooled and solidified.

この図1に示す廃棄物燃焼溶融炉1では、粉砕された燃焼性成分Fが投入口21から、熱分解ガスGがガス投入口22から廃棄物燃焼溶融炉1内に導かれる。また、燃焼用の空気Aが空気供給口23から導入される。そして、燃焼性成分Fと熱分解ガスGが空気Aと混合して燃焼し、この燃焼で生じた燃焼灰をその燃焼熱により加熱して溶融スラグCとする。この溶融スラグCは耐火材で覆われた炉内面を伝って流下し、排出部24から外部に排出され冷却固化する。   In the waste combustion melting furnace 1 shown in FIG. 1, the combusted combustible component F is introduced into the waste combustion melting furnace 1 from the inlet 21 and the pyrolysis gas G is introduced from the gas inlet 22. In addition, combustion air A is introduced from the air supply port 23. Then, the combustible component F and the pyrolysis gas G are mixed with the air A and combusted, and the combustion ash generated by this combustion is heated by the combustion heat to form molten slag C. The molten slag C flows down along the furnace inner surface covered with the refractory material, and is discharged from the discharge portion 24 to the outside and solidifies by cooling.

この図1に示すような廃棄物燃焼溶融炉1において、溶融スラグが接する炉内壁部分(クロスハッチング部)を、上記の耐火材を用いて形成する。この場合に、耐火材を予め決まった形状に焼結した定形耐火材を積み上げて炉内壁を形成してもよいし、この耐火材を、粉末状のキャスタブル耐火材や練り土状のプラスチック耐火材等の不定形耐火材として用いて、流し込み施工等により炉内壁を形成した後、加熱して炉内壁を焼成してもよい。   In the waste combustion melting furnace 1 as shown in FIG. 1, a furnace inner wall portion (cross hatched portion) with which the molten slag comes into contact is formed using the above refractory material. In this case, the furnace inner wall may be formed by stacking shaped refractory materials obtained by sintering the refractory materials into a predetermined shape, and this refractory material may be used as a powdered castable refractory material or a kneaded clay refractory material. The inner wall of the furnace may be formed by casting or the like, and then heated to fire the inner wall of the furnace.

この廃棄物燃焼溶融炉1の溶融スラグに接する炉内壁の部分を上記の構成の耐火材で形成することにより、廃棄物燃焼溶融炉1の炉内壁の溶融スラグに対する耐食性を向上することができる。   By forming the portion of the inner wall of the furnace in contact with the molten slag of the waste combustion melting furnace 1 with the refractory material having the above-described configuration, the corrosion resistance against the molten slag of the inner wall of the waste combustion melting furnace 1 can be improved.

試験片組成として、表1の実施例1〜6に示すものを調合し、加圧成形し、大気中で固相反応させるために1600℃に加熱し、定比性スピネル又は不定比性スピネルを作製した。マグネシア対アルミナの配合比は、マグネシア−アルミナ系状態図で、定比性又は不定比性スピネル単相が生成するように、組成領域を選定したものである。これを粉砕して微細粉末にした。この一部を粉末X線法で検査することによりスピネル単相になっていることを確認した。   As test specimen compositions, those shown in Examples 1 to 6 in Table 1 were prepared, pressure-molded, heated to 1600 ° C. in order to cause a solid-phase reaction in the atmosphere, and a stoichiometric spinel or non-stoichiometric spinel was used. Produced. The compounding ratio of magnesia to alumina is a magnesia-alumina phase diagram, and the composition region is selected so that a single phase with a specific ratio or non-stoichiometric spinel is generated. This was pulverized into a fine powder. A part of this was inspected by the powder X-ray method, and it was confirmed that it was a spinel single phase.

この粉砕した粉末を、粒径0.5mm以下に分級し、成形後、大気中1400℃〜1600℃で焼結した。なお、焼結後の相状態も確認した。   The pulverized powder was classified to a particle size of 0.5 mm or less, and after molding, sintered in the atmosphere at 1400 ° C. to 1600 ° C. The phase state after sintering was also confirmed.

これを切出し、相対密度計測試料(φ10mm×5mm)、及び、耐食性評価用の丸棒状試料(φ10mm×75mm)を作製した。この相対密度は、アルキメデス法により、計測を行った。また、耐食性評価では、表3に示す組成の実機採取スラグに浸漬し腐食させる試験を行った。   This was cut out to produce a relative density measurement sample (φ10 mm × 5 mm) and a round bar sample (φ10 mm × 75 mm) for corrosion resistance evaluation. This relative density was measured by the Archimedes method. Further, in the corrosion resistance evaluation, a test was performed in which corrosion was performed by immersing in actual machine-collected slag having the composition shown in Table 3.

この腐食試験では、1400℃、20時間の浸漬の後、丸棒状試料を切断し、実験前後の外径の変化から腐食損耗量を求めた。その結果、表1に示すような腐食損耗が得られた。   In this corrosion test, after immersing at 1400 ° C. for 20 hours, a round bar sample was cut, and the amount of corrosion wear was determined from the change in the outer diameter before and after the experiment. As a result, corrosion wear as shown in Table 1 was obtained.

一方、比較例として、組成制御により、次の3種のものを作製した。(1)定比性スピネル単相で4価金属酸化物を含まないもの、(2)不定比性スピネル単相で4価金属酸化物を含まないもの,(3)スピネル及び4価金属酸化物の2相共存系。
(1)は、定比性スピネルとなるよう原料を調整し合成した。
(2)は、不定比性スピネル単相領域となるように、マグネシア−アルミナ2元系表示におけるアルミナ含有量が75mass%〜80mass%となるように選定し、合成した。
(3)は、別途作製した定比性スピネルに、4価金属酸化物を過剰となるよう調整し、合成した。
On the other hand, as comparative examples, the following three types were produced by composition control. (1) Stoichiometric spinel single phase not containing tetravalent metal oxide, (2) Nonstoichiometric spinel single phase not containing tetravalent metal oxide, (3) Spinel and tetravalent metal oxide Two-phase coexistence system.
(1) was prepared by adjusting the raw materials so as to be a stoichiometric spinel.
(2) was selected and synthesized so that the alumina content in the magnesia-alumina binary display would be 75 mass% to 80 mass% so as to be in the non-stoichiometric spinel single phase region.
(3) was synthesized by adjusting the tetravalent metal oxide to an excessively high ratio to a specific ratio spinel produced separately.

これらをX線解析により予め相同定した。その後、実施例と同じ条件で成形し、焼結した。この焼結後の試料を切出し、相対密度計測試料(φ10mm×5mm)、及び、耐食性評価用の丸棒状試料(φ10mm×75mm)を作製した。また、この焼結後の試料から一部を切出し、相状態も確認した。この丸棒状試料について、上記と同様に実機採取スラグに浸漬する腐食試験を行った。その結果を、表2に示す。   These were previously identified by X-ray analysis. Then, it shape | molded on the same conditions as an Example, and sintered. The sintered sample was cut out to produce a relative density measurement sample (φ10 mm × 5 mm) and a round bar sample (φ10 mm × 75 mm) for corrosion resistance evaluation. Moreover, a part was cut out from the sintered sample, and the phase state was also confirmed. This round bar-like sample was subjected to a corrosion test immersed in an actual machine-collected slag in the same manner as described above. The results are shown in Table 2.

表1、表2の比較から、耐食性を比較した。その結果、4価金属酸化物を固溶限以内の濃度で含む試料において、4価金属酸化物を含まない試料や、4価金属酸化物を過剰に含む試料より優れた耐食性能が認められた。   From the comparison of Table 1 and Table 2, the corrosion resistance was compared. As a result, in the sample containing the tetravalent metal oxide at a concentration within the solid solution limit, the corrosion resistance superior to the sample not containing the tetravalent metal oxide and the sample containing excessive tetravalent metal oxide was recognized. .

Figure 2007131498
Figure 2007131498

Figure 2007131498
Figure 2007131498

Figure 2007131498
Figure 2007131498

本発明に係る実施の形態の廃棄物燃焼溶融炉を示す図である。It is a figure which shows the waste combustion melting furnace of embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 廃棄物燃焼溶融炉
21 投入口
22 ガス投入口
23 空気供給口
24 排出部
A 燃焼用の空気
C 溶融スラグ
F 燃焼性成分
G 熱分解ガス
1 Waste Combustion Melting Furnace 21 Input Port 22 Gas Input Port 23 Air Supply Port 24 Discharge Port A Combustion Air C Molten Slag F Combustible Component G Pyrolysis Gas

Claims (4)

結晶相としてスピネル型結晶を含み、MgO成分含有量が7mass%以上39mass%以下の範囲にあるマグネシアスピネル単相から構成される耐火材用マトリックス材であって、4価金属酸化物を固溶成分として0.1mass%以上1mass%未満含有する耐火材用マトリックス材。   A matrix material for a refractory material composed of a magnesia spinel single phase containing a spinel type crystal as a crystal phase and having an MgO component content in a range of 7 mass% to 39 mass%, and a tetravalent metal oxide as a solid solution component As a matrix material for a refractory material, containing 0.1 mass% or more and less than 1 mass%. 前記4価金属酸化物として、酸化チタン、酸化ジルコニウム、酸化スズ、酸化ハフニウムの中のいずれか一つ又は二つ以上を含む請求項1記載の耐火材用マトリックス材。   2. The matrix material for a refractory material according to claim 1, wherein the tetravalent metal oxide includes one or more of titanium oxide, zirconium oxide, tin oxide, and hafnium oxide. 請求項1又は2に記載の耐火材用マトリックス材を含む耐火材。   A refractory material comprising the matrix material for a refractory material according to claim 1 or 2. 請求項3に記載の耐火材を、溶融物と接する炉壁の炉壁材として用いた廃棄物燃焼溶融炉。
A waste combustion melting furnace using the refractory material according to claim 3 as a furnace wall material of a furnace wall in contact with the melt.
JP2005327574A 2005-11-11 2005-11-11 Matrix material for refractory material, refractory material, and waste incinerating/melting furnace Abandoned JP2007131498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005327574A JP2007131498A (en) 2005-11-11 2005-11-11 Matrix material for refractory material, refractory material, and waste incinerating/melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327574A JP2007131498A (en) 2005-11-11 2005-11-11 Matrix material for refractory material, refractory material, and waste incinerating/melting furnace

Publications (1)

Publication Number Publication Date
JP2007131498A true JP2007131498A (en) 2007-05-31

Family

ID=38153462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327574A Abandoned JP2007131498A (en) 2005-11-11 2005-11-11 Matrix material for refractory material, refractory material, and waste incinerating/melting furnace

Country Status (1)

Country Link
JP (1) JP2007131498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526201A (en) * 2009-05-05 2012-10-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Refractory lining for titanium ore beneficiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526201A (en) * 2009-05-05 2012-10-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Refractory lining for titanium ore beneficiation

Similar Documents

Publication Publication Date Title
WO2013005253A1 (en) Magnesia-based refractory material
Mandal et al. Chrome-free qandilite (Mg2TiO4) refractory aggregates: role of titania source and evaluation of thermal expansion coefficient
JP2002193681A (en) Castable refractory and waste melting furnace utilizing it
JP2009013036A (en) Monolithic refractory
JP2011148643A (en) Magnesia-based refractory
JP2007131498A (en) Matrix material for refractory material, refractory material, and waste incinerating/melting furnace
JP2007131495A (en) Refractory material, and waste incinerating/melting furnace
JP2002241173A (en) Shaped refractory
JP2013249241A (en) Unburned brick
JP4575761B2 (en) Refractory material for inner wall of furnace and waste combustion melting furnace
JP4843414B2 (en) Raw material composition for chrome-based amorphous refractory material and refractory material using the same
JP4474658B2 (en) Alumina-magnesia refractory brick
JP2000233968A (en) Melting section member containing ceramic fiber
JP2000281455A (en) Alumina-zirconia-based amorphous refractory
JP3088096B2 (en) High corrosion resistant alumina-chromium refractory
JP3088095B2 (en) Alumina-chromium refractory
KR100338494B1 (en) Materials for melting ash accompanying waste incineration
JPH07293851A (en) Melting furnace and zirconia refractory therefor
JP4838184B2 (en) Refractory for furnace inner wall, manufacturing method thereof, and waste treatment apparatus
JP2005077068A (en) Refractory for molten slag, melting furnace member, reforming method of refractory for molten slag, and waste treatment device
JP4677915B2 (en) Refractory and melting furnace made of this refractory
JP4404515B2 (en) Unshaped refractories for waste treatment furnaces
JP3875054B2 (en) Refractory composition for ash melting furnace
JPH0891915A (en) Sintered clinker for refractory and its production
JP2008056510A (en) Raw material composition for alumina-based monolithic refractories and refractories using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20100928