JP2008056510A - Raw material composition for alumina-based monolithic refractories and refractories using it - Google Patents

Raw material composition for alumina-based monolithic refractories and refractories using it Download PDF

Info

Publication number
JP2008056510A
JP2008056510A JP2006232938A JP2006232938A JP2008056510A JP 2008056510 A JP2008056510 A JP 2008056510A JP 2006232938 A JP2006232938 A JP 2006232938A JP 2006232938 A JP2006232938 A JP 2006232938A JP 2008056510 A JP2008056510 A JP 2008056510A
Authority
JP
Japan
Prior art keywords
raw material
particles
alumina
refractory material
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006232938A
Other languages
Japanese (ja)
Inventor
Tetsuo Kato
哲郎 加藤
Yutaka Ando
裕 安藤
Eisei Kozuka
永生 小塚
Yutaka Ishikawa
豊 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Mino Ceramic Co Ltd
Original Assignee
JGC Corp
Mino Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Mino Ceramic Co Ltd filed Critical JGC Corp
Priority to JP2006232938A priority Critical patent/JP2008056510A/en
Publication of JP2008056510A publication Critical patent/JP2008056510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize high corrosion resistance in alumina-based monolithic refractories by overcoming the problems of occurrence of cracks and development of the cracks which are considered to be caused by a ZrO<SB>2</SB>material and arise in the refractories of a furnace body or the like that is formed by using a raw material composition for the alumina-based monolithic refractories. <P>SOLUTION: The raw material composition for alumina-based monolithic refractories is obtained by mixing aggregate particles of 20-80%, a particle group composed of intermediate particles having a content of 18-80% and of fine particles, and a mineralizer of 1-5%, wherein the aggregate particles have a particle size in the range of 1-10 mm and a chemical composition substantially composed of Al<SB>2</SB>O<SB>3</SB>, and the particle group has a particle size in the range of 1 mm or smaller, is obtained by mixing at least a particle having a chemical composition of Cr<SB>2</SB>O<SB>3</SB>and a particle substantially having a chemical composition of ZrO<SB>2</SB>-SiO<SB>2</SB>, includes ZrO<SB>2</SB>-SiO<SB>2</SB>particle at a rate of 10% or more, and further has a ratio of ZrO<SB>2</SB>-SiO<SB>2</SB>/Cr<SB>2</SB>O<SB>3</SB>of 0.11-1.5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アルミナ系不定形耐火材用原料組成物、これを用いた成形体及び焼成体に関し、更に詳しくは、各種金属精錬、ガラス溶融、或いは産業廃棄物や生活汚泥の焼却灰の溶融等を行う設備の構造材料として使用されるアルミナ系の不定形耐火材用原料組成物及びこれを用いた耐火材に関する。本発明において、アルミナ系不定形耐火材用原料組成物とは、実質的にアルミナからなる、即ち、その骨材粒子がアルミナ(Al23)を主成分とするものである不定形耐火材用原料組成物のことを意味する。 The present invention relates to a raw material composition for an alumina-based irregular refractory material, a molded body and a fired body using the same, and more specifically, various metal refining, glass melting, melting of incinerated ash of industrial waste and domestic sludge, etc. The present invention relates to an alumina-based raw material composition for an amorphous refractory material used as a structural material of equipment for carrying out and a refractory material using this. In the present invention, the raw material composition for an alumina-based amorphous refractory material is substantially an amorphous refractory material consisting essentially of alumina, that is, whose aggregate particles are mainly composed of alumina (Al 2 O 3 ). It means a raw material composition.

不定形耐火材は、必要な形状に現場で施工してから焼成されるため、自由な形状の炉壁や、目地のない1枚壁の構築が可能である等、定形耐火物と比較して施工性や物性面で、種々の利点がある。このため、不定形耐火材用原料組成物は、各種金属精錬、ガラス溶融、或いは産業廃棄物や生活汚泥の焼却灰の溶融等を行う設備の構造材料として、広く使用されている。これらの中でも、各種金属精錬やガラス溶融を行う設備には、高温領域で安定して使用可能な高い耐食性を有する工業炉の構築が求められる。   Because non-standard refractory materials are fired after being constructed in the required shape on-site, it is possible to construct a furnace wall with a free shape or a single wall with no joints. There are various advantages in terms of workability and physical properties. For this reason, the raw material composition for amorphous refractory materials is widely used as a structural material for facilities for performing various metal refining, glass melting, or melting of incinerated ash from industrial waste or domestic sludge. Among these, facilities for performing various metal refining and glass melting require construction of an industrial furnace having high corrosion resistance that can be used stably in a high temperature region.

近年、産業廃棄物や下水汚泥等の生活汚泥等の処理において大量に発生する焼却灰を溶融して、球状粉末スラグとして工業材料として利用することが提案されている(例えば、特許文献1及び特許文献2参照)。上記した不定形耐火材用原料組成物は、このような、焼却灰の溶融した溶融スラグと接する炉壁及び炉床を有する流動層焼却炉等の炉体(廃棄物溶融炉)の構造材料としても利用されている。汚泥等の焼却灰の溶融スラグは、その原料が多様でありスラグ成分が変化し易いため、特に、成分変化によっても高い耐食性を保持できる工業炉の構築が求められる。   In recent years, it has been proposed to melt incinerated ash generated in large quantities in the treatment of domestic sludge such as industrial waste and sewage sludge and use it as an industrial material as spherical powder slag (for example, Patent Document 1 and Patent) Reference 2). The above-mentioned raw material composition for an irregular refractory material is used as a structural material for a furnace body (waste melting furnace) such as a fluidized bed incinerator having a furnace wall and a hearth in contact with molten slag in which incinerated ash is melted. Is also used. Since molten slag of incinerated ash such as sludge has various raw materials and slag components are likely to change, construction of an industrial furnace that can maintain high corrosion resistance even when the components change is particularly required.

不定形耐火材用原料組成物は、一般に、20〜80質量%の骨材粒子と、これよりも小さい粒子径の中間粒子や微粒子からなる20〜80質量%の粒子群とからなるが、その用途に応じて種々の元素を含むものが知られている。例えば、骨材に実質的にアルミナからなる粒子を用いてなるアルミナ系の不定形耐火材用原料組成物の構成元素にジルコニアを含むものが知られている。そして、この場合のジルコニア源としては、主成分がZrO2である材料が用いられている。尚、本発明において、中間粒子とは、その粒子径が、0.1〜1mmの範囲内にあるもののことであり、微粒子とは、これらの粒子よりも更に小さいもののことであるが、詳細については後述する。そして、ジルコニア源となる材料は、通常、中間粒子及び微粒子として混合されている。 The raw material composition for an amorphous refractory material is generally composed of 20 to 80% by mass of aggregate particles and 20 to 80% by mass of particles composed of intermediate particles and fine particles having a smaller particle diameter than that. The thing containing various elements according to a use is known. For example, a material containing zirconia as a constituent element of an alumina-based raw material material for an indeterminate refractory material using particles substantially composed of alumina as an aggregate is known. In this case, as the zirconia source, a material whose main component is ZrO 2 is used. In the present invention, the intermediate particles are those whose particle diameter is in the range of 0.1 to 1 mm, and the fine particles are those smaller than these particles. Will be described later. And the material used as a zirconia source is usually mixed as intermediate particles and fine particles.

特開2000−2413公報JP 2000-2413 A 特開2003−254520公報JP 2003-254520 A

しかしながら、本発明者らの検討によれば、前記したような炉体の構築に用いられるアルミナ系不定形耐火材用原料組成物を構成する材料に、ジルコニア源として主成分がZrO2である材料が混合されている場合には、下記のような問題があることがわかった。即ち、このような原料組成物を用いて現場で耐火材を製造する焼成時、並びに、該耐火材からなる上記したような炉体の運転時における加熱によって、炉体に亀裂が発生し易いという問題がある。炉体に亀裂が発生すると、耐火材の寿命は著しく短くなり、経済性に劣る。そこで、本発明者らは、亀裂が発生する原因について鋭意検討を行った。その結果、ジルコニア源としてZrO2を含有してなるアルミナ系不定形耐火材用原料組成物が先述したような場合に熱を受けると、ZrO2が相転移によって異常膨張を起こし、これに起因して炉体に亀裂が発生することを見いだした。 However, according to the study by the present inventors, the material constituting the raw material composition for an alumina-based refractory material used for construction of the furnace body as described above is a material whose main component is ZrO 2 as a zirconia source. It has been found that there are the following problems when is mixed. That is, cracks are likely to occur in the furnace body due to heating during firing for producing a refractory material on site using such a raw material composition and during operation of the furnace body made of the refractory material as described above. There's a problem. When cracks occur in the furnace body, the life of the refractory material is remarkably shortened, resulting in poor economic efficiency. Therefore, the present inventors diligently investigated the cause of the occurrence of cracks. As a result, when the raw material composition for an alumina-based amorphous refractory material containing ZrO 2 as a zirconia source is subjected to heat as described above, ZrO 2 undergoes abnormal expansion due to a phase transition, resulting in this. And found that cracks occurred in the furnace body.

特に、先に述べた焼却灰を溶融して球状粉末スラグとする際に用いられる炉体等の場合には、耐火材の寿命が著しく短い場合があるという問題があった。本発明者らがこの原因について検討した結果、溶融物の成分の変動が著しく、高い耐食性を維持させることが難しいことに加えて、上記のようなジルコニア源として含有させたZrO2に起因した亀裂が、溶融スラグの通り道となり、これによって更に浸食が進むためであることを見いだした。更に、炉体に発生する亀裂は、アルミナ系不定形耐火材用原料組成物で耐火材を製造する際にも発生するが、特に、炉体の運転時に受ける耐火材の加熱/冷却等の熱履歴によって亀裂が進展し、この結果、耐火材の寿命をより短くしている場合がある。 In particular, in the case of a furnace body or the like used when melting the incinerated ash described above to form a spherical powder slag, there is a problem that the life of the refractory material may be remarkably short. As a result of the examination of the cause by the present inventors, it is difficult to maintain the high corrosion resistance because the fluctuation of the components of the melt is remarkable, and in addition, cracks caused by ZrO 2 contained as a zirconia source as described above. However, it was found that it became a passage for molten slag, and this caused further erosion. Furthermore, cracks that occur in the furnace body also occur when producing a refractory material with an alumina-based amorphous refractory material composition. In particular, heat generated by heating / cooling of the refractory material that is received during operation of the furnace body. Cracks develop due to the history, and as a result, the life of the refractory material may be shortened.

従って、本発明の目的は、アルミナ系不定形耐火材用原料組成物の構成材料に使用するジルコニア源として加えるZrO2材料に起因して発生すると考えられる、該原料組成物を使用して形成した炉体等の耐火材に生じる亀裂の発生の問題、該亀裂の進展の問題を克服し、該耐火材において高い耐久性を実現できるアルミナ系不定形耐火材用原料組成物を提供することである。 Therefore, the object of the present invention was formed using the raw material composition which is considered to be generated due to the ZrO 2 material added as a zirconia source used as a constituent material of the raw material composition for alumina-based amorphous refractory material. It is to provide a raw material composition for an alumina-based amorphous refractory material that overcomes the problem of crack generation occurring in a refractory material such as a furnace body and the problem of the progress of the crack and realizes high durability in the refractory material. .

上記した目的は、下記の本発明によって達成される。即ち、本発明は、少なくとも、20〜80質量%の骨材粒子と、合量が18〜80質量%の中間粒子及び微粒子からなる粒子群と、1〜5質量%の鉱化剤とを混合してなる不定形耐火材の原料組成物において、上記骨材粒子は、その粒子径が1mmを超えて10mm以下の範囲内にあって、その化学組成が実質的にAl23であり、且つ、上記粒子群は、粒子径が1mm以下の範囲内にあって、その化学組成がCr23である粒子と、その化学組成が実質的にZrO2・SiO2である粒子とが少なくとも混合され、該ZrO2・SiO2である粒子を粒子群中に10質量%以上の割合で含み、更に、ZrO2・SiO2/Cr23の質量比が、0.11〜1.5であることを特徴とするアルミナ系不定形耐火材用原料組成物である。 The above object is achieved by the present invention described below. That is, the present invention mixes at least 20 to 80% by mass of aggregate particles, a group of particles composed of intermediate particles and fine particles having a total amount of 18 to 80% by mass, and 1 to 5% by mass of a mineralizer. In the raw material composition of the amorphous refractory material, the aggregate particle has a particle diameter in the range of more than 1 mm and 10 mm or less, and its chemical composition is substantially Al 2 O 3 , The particle group includes at least particles having a particle diameter of 1 mm or less and a chemical composition of Cr 2 O 3 and particles having a chemical composition of substantially ZrO 2 · SiO 2. The mixed particles contain the particles of ZrO 2 · SiO 2 at a ratio of 10% by mass or more in the particle group, and the mass ratio of ZrO 2 · SiO 2 / Cr 2 O 3 is 0.11 to 1.5. A raw material composition for an alumina-based amorphous refractory material, characterized in that

上記本発明のアルミナ系不定形耐火材用原料組成物の好ましい形態としては、上記において、骨材粒子は、その70〜90質量%を純度90%以上のAl23が占め、その30〜10質量%をクロムクリンカーが占めてなり、該クロムクリンカーが、Al23、Cr23、ZrO2及びSiO2を含む化学組成のものであるアルミナ系不定形耐火材用原料組成物が挙げられる。 As a preferable form of the raw material composition for an alumina-based irregular refractory material of the present invention, in the above, the aggregate particles account for 70 to 90% by mass of Al 2 O 3 having a purity of 90% or more, and 30 to 30% thereof. A raw material composition for an alumina-based amorphous refractory material comprising 10% by mass of a chromium clinker, the chromium clinker having a chemical composition containing Al 2 O 3 , Cr 2 O 3 , ZrO 2 and SiO 2. Can be mentioned.

本発明の別の実施形態は、上記いずれかに記載のアルミナ系不定形耐火材用原料組成物を、成形し、乾燥してなることを特徴とする耐火材である。本発明の別の実施形態は、上記いずれかに記載のアルミナ系不定形耐火材用原料組成物を、成形し、乾燥し、その後、焼成してなることを特徴とする耐火材である。   Another embodiment of the present invention is a refractory material obtained by molding and drying the alumina-based amorphous refractory material composition described above. Another embodiment of the present invention is a refractory material obtained by molding, drying, and then firing the raw material composition for an alumina-based amorphous refractory material as described above.

本発明によれば、アルミナ系不定形耐火材用原料組成物で形成した炉体等の耐火材に生じる亀裂の問題を克服でき、該耐火材において高い耐久性を実現できるアルミナ系不定形耐火材用原料組成物が提供される。特に、本発明によれば、高温領域で安定して使用する場合に高い耐食性が要求される工業炉や、炉体に接触する溶融物の成分の変動が著しい工業炉等の構築に最適なアルミナ系不定形耐火材用原料組成物が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the problem of the crack which arises in refractory materials, such as a furnace body formed with the raw material composition for alumina type irregular refractory materials, can be overcome, and the alumina type irregular refractory material which can realize high durability in the refractory material A raw material composition is provided. In particular, according to the present invention, alumina is most suitable for construction of industrial furnaces that require high corrosion resistance when used stably in a high temperature region, industrial furnaces that have significant fluctuations in the composition of the melt that contacts the furnace body, and the like. A raw material composition for a system-shaped refractory material is provided.

以下、好ましい実施の形態を挙げて本発明を詳細に説明する。本発明者らは、従来技術の課題を解決するために鋭意検討した結果、アルミナ系不定形耐火材用原料組成物のジルコニア源を、従来技術のZrO2を主成分とする材料に代えてZrO2・SiO2(ジルコン)とすることが有効であることを見いだして本発明に至った。即ち、本発明者らの検討によれば、アルミナ系不定形耐火材用原料組成物を構成する中間粒子として加えていたジルコニア源となる材料を、実質的にジルコンよりなる材料に変更することで、アルミナ系不定形耐火材用原料組成物を用いて形成した耐火材の製造時等に発生していた亀裂の数を有効に減少させることが可能となる。その結果、特に炉体の運転時において熱履歴を経る際に進展する亀裂の数も少なくなり、結果的に炉体の寿命を長くすることができ、高い耐食性の実現を達成できる。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments. As a result of intensive studies to solve the problems of the prior art, the present inventors have replaced the zirconia source of the raw material composition for an alumina-based amorphous refractory material with ZrO 2 instead of the prior art ZrO 2 material. It has been found that it is effective to use 2 · SiO 2 (zircon), and the present invention has been achieved. That is, according to the study by the present inventors, the material that becomes the zirconia source added as the intermediate particles constituting the raw material composition for the alumina-based amorphous refractory material is changed to a material substantially made of zircon. In addition, it is possible to effectively reduce the number of cracks generated during the production of the refractory material formed using the alumina-based amorphous refractory material composition. As a result, the number of cracks that develop during the thermal history during operation of the furnace body is reduced, and as a result, the life of the furnace body can be extended and high corrosion resistance can be achieved.

本発明の不定形耐火材用原料組成物はアルミナ系であるので、特に、溶融スラグ用の不定形耐火材に好適に利用できる。その基本構成は、少なくとも、実質的にAl23からなる骨材粒子を20〜80質量%と、合量が18〜80質量%の中間粒子及び微粒子からなる粒子群と、1〜5質量%の鉱化剤とを混合してなる。先ず、本発明で言う骨材粒子、中間粒子及び微粒子について説明する。これらの語は、粒子の形状を区別するために使用している。即ち、骨材粒子とは、その粒子径が1mmを超えて10mm以下の範囲内にあるもののことである。そして、中間粒子及び微粒子とは、その粒子径が1mm以下のものであって、中でも、0.1〜1.0mm程度の範囲内にある比較的大きいものを中間粒子と呼び、それよりも小さいものを微粒子と呼んでいる。上記のような粒度分布を有する原料は、通常行われている篩分けによる方法で容易に得ることができる。以下、本発明で使用する各原料について説明する。 Since the raw material composition for amorphous refractory material of the present invention is based on alumina, it can be suitably used particularly for an amorphous refractory material for molten slag. The basic composition is at least 20 to 80% by mass of aggregate particles substantially consisting of Al 2 O 3 , 1 to 5 masses of particles consisting of intermediate particles and fine particles with a total amount of 18 to 80% by mass. % Mineralizer. First, aggregate particles, intermediate particles, and fine particles referred to in the present invention will be described. These terms are used to distinguish the shape of the particles. That is, the aggregate particle is a particle having a particle diameter in the range of more than 1 mm and 10 mm or less. The intermediate particles and fine particles have a particle diameter of 1 mm or less, and among them, relatively large particles in the range of about 0.1 to 1.0 mm are referred to as intermediate particles, which are smaller than that. Things are called fine particles. The raw material having the particle size distribution as described above can be easily obtained by a conventional sieving method. Hereinafter, each raw material used by this invention is demonstrated.

本発明の不定形耐火材用原料組成物は、アルミナ系の骨材粒子を含んでなるものであり、実質的にAl23から構成されてなる骨材粒子(即ち、その化学組成がAl23を主成分とするもの)を使用する。より好ましくは、その70〜90質量%を、純度90%以上のAl23が占めるような骨材粒子を使用する。純度90%以上のAl23としては、例えば、市販されているRW−92(昭和電工(株)製)等を使用することができる。 The raw material composition for amorphous refractory material of the present invention comprises alumina-based aggregate particles, and is substantially composed of Al 2 O 3 aggregate particles (that is, the chemical composition is Al. 2 O 3 ). More preferably, aggregate particles such that 70 to 90% by mass of Al 2 O 3 having a purity of 90% or more are used. As Al 2 O 3 having a purity of 90% or more, for example, commercially available RW-92 (manufactured by Showa Denko KK) or the like can be used.

本発明で使用する上記のアルミナ系の骨材粒子は、粒子径が1mmを超えて10mm以下の範囲内のものであることを要する。骨材粒子に、粒子径が1mm以下のものを使用した場合は、このような骨材粒子を使用したアルミナ系不定形耐火材用原料組成物を用いて形成した炉体等の耐火材は耐食性に劣ったものとなる。他方、粒子径が10mmを超える場合は、アルミナ系不定形耐火材用原料組成物を用いて形成した炉体等の耐火材において、強度上の問題が生じる。   The alumina-based aggregate particles used in the present invention are required to have a particle diameter in the range of more than 1 mm and not more than 10 mm. When aggregate particles with a particle diameter of 1 mm or less are used, refractory materials such as furnace bodies formed using the raw material composition for alumina-based irregular refractory materials using such aggregate particles are corrosion resistant. Inferior to that. On the other hand, when the particle diameter exceeds 10 mm, there is a problem in strength in a refractory material such as a furnace body formed using the raw material composition for an alumina-based amorphous refractory material.

又、本発明の不定形耐火材用原料組成物は、上記したアルミナ系の骨材粒子を20〜80質量%含有してなるが、その含有量が20質量%未満では耐食性が低下し、80質量%を超えると緻密な焼結体が得られなくなる。   The raw material composition for an irregular refractory material according to the present invention contains 20 to 80% by mass of the above-mentioned alumina-based aggregate particles. However, when the content is less than 20% by mass, the corrosion resistance decreases, and 80 When it exceeds mass%, a dense sintered body cannot be obtained.

本発明で使用する上記のアルミナ系の骨材粒子は、電融アルミナを粉砕したものでも焼結アルミナを粉砕したものでも差し支えなく使用でき、アルミナを主成分とするものであればよい。他のアルミナ系の骨材粒子としては、例えば、下記のものが挙げられる。Al23、Cr23、ZrO2及びSiO2からなるクロムクリンカー、或いは中間粒子と同じ成分である、Cr23、ZrO2及びSiO2の3成分を焼成した場合に生成する、Cr23、ZrO2及びSiO2等の成分を含むアルミナ固溶体、或いは高アルミナ物質でもよい。このように、実質的にアルミナ、即ち、その主成分がアルミナである骨材であれば差し支えなく、いずれも本発明に使用できる。本発明の不定形耐火材用原料組成物におけるアルミナの含有量は、原料組成物全量中の30質量%以上を占めることが望ましく、40質量%以上を占めることがより望ましい。本発明において特に好ましい骨材粒子は、その70〜90質量%を純度90%以上のAl23が占め、且つ、その30〜10質量%をクロムクリンカーが占めてなり、該クロムクリンカーが、Al23、Cr23、ZrO2及びSiO2を含む化学組成のものである。 The alumina-based aggregate particles used in the present invention may be any of those obtained by pulverizing electrofused alumina or those obtained by pulverizing sintered alumina, and any alumina-based aggregate particles may be used. Examples of other alumina-based aggregate particles include the following. Chromium clinker composed of Al 2 O 3 , Cr 2 O 3 , ZrO 2 and SiO 2 , or produced when the three components of Cr 2 O 3 , ZrO 2 and SiO 2 , which are the same components as the intermediate particles, are fired. An alumina solid solution containing components such as Cr 2 O 3 , ZrO 2 and SiO 2 , or a high alumina material may be used. As described above, any material can be used in the present invention as long as it is substantially alumina, that is, an aggregate whose main component is alumina. The content of alumina in the raw material composition for an irregular refractory material of the present invention preferably occupies 30% by mass or more, more preferably 40% by mass or more, based on the total amount of the raw material composition. Particularly preferred aggregate particles in the present invention comprise 70 to 90% by mass of Al 2 O 3 having a purity of 90% or more, and 30 to 10% by mass of chrome clinker. It has a chemical composition containing Al 2 O 3 , Cr 2 O 3 , ZrO 2 and SiO 2 .

次に、その合量が18〜80質量%である中間粒子及び微粒子からなる粒子群(単に粒子群ともいう)について説明する。本発明の原料組成物を構成する粒子群は、いずれも粒子径が1mm以下の範囲内にあり、且つ、Cr23を主成分とする化学組成の粒子と、ZrO2・SiO2を主成分とする化学組成の粒子とを少なくとも混合してなるものであることを要する。このように構成されているため、本発明のアルミナ系不定形耐火材用原料組成物を用いて耐火材を作成した場合には、先に説明したような組成のアルミナ系骨材粒子の間隙が、このCr23及びZrO2・SiO2を主成分とする粒子群で充填されるようになる。このようにすれば、形成した耐火材を緻密な構造にすることができ、結果として耐火材の耐食性が向上する。 Next, a particle group (simply referred to as a particle group) composed of intermediate particles and fine particles whose total amount is 18 to 80% by mass will be described. The particle group constituting the raw material composition of the present invention has a particle diameter within a range of 1 mm or less, and has a chemical composition mainly composed of Cr 2 O 3 and ZrO 2 · SiO 2 . It is necessary to mix at least particles of chemical composition as a component. Since it is configured in this manner, when a refractory material is prepared using the raw material composition for an alumina-based amorphous refractory material of the present invention, the gap between the alumina-based aggregate particles having the composition described above is not present. Then, it is filled with a particle group mainly composed of Cr 2 O 3 and ZrO 2 · SiO 2 . If it does in this way, the formed refractory material can be made into a precise | minute structure, and the corrosion resistance of a refractory material will improve as a result.

本発明者らの検討によれば、不定形耐火材用原料組成物に使用する粒子群を、上記のような構成を全て満足するものとすることで、本発明のアルミナ系の不定形耐火材用原料組成物は、多様な使用形態において、常に良好な状態で利用することが可能なものとなる。先ず、不定形耐火材用原料組成物中における該粒子群の含有量が18質量%未満では、特に耐火材として利用した場合に成形することができなかったり、成形できたとしても耐食性に劣るものとなるので好ましくない。一方、該粒子群の含有量が80質量%を超えると、焼結体とした場合に緻密な焼結体が得られず、割れが多発するため好ましくない。   According to the study by the present inventors, the alumina-based amorphous refractory material of the present invention is obtained by satisfying all of the above-described constitution of the particle group used in the raw material composition for the irregular refractory material. The raw material composition can always be used in a good state in various usage forms. First, when the content of the particle group in the raw material composition for an irregular refractory material is less than 18% by mass, it cannot be molded especially when used as a refractory material, or even if it can be molded, it has poor corrosion resistance. Therefore, it is not preferable. On the other hand, when the content of the particle group exceeds 80% by mass, a dense sintered body cannot be obtained when the sintered body is formed, and cracks frequently occur, which is not preferable.

又、本発明では、中間粒子及び微粒子からなる粒子群に、耐火材とした場合に、その強度及び耐食性の向上に特に寄与する粒子径1mm以下のものを使用する。この粒子径の下限値は特に制限されない。例えば、粒子群を構成するCr23の粒子径は0.1mm以下でも差し支えない。一方、粒子群を構成するジルコン(ZrO2・SiO2)の粒子径は、このCr23の粒子径よりも大きい方がより望ましい。 Further, in the present invention, particles having a particle diameter of 1 mm or less that particularly contributes to the improvement of strength and corrosion resistance when used as a refractory material are used for the particle group consisting of intermediate particles and fine particles. The lower limit of the particle diameter is not particularly limited. For example, the particle diameter of Cr 2 O 3 constituting the particle group may be 0.1 mm or less. On the other hand, the particle diameter of zircon (ZrO 2 · SiO 2 ) constituting the particle group is preferably larger than the particle diameter of this Cr 2 O 3 .

本発明のアルミナ系の不定形耐火材用原料組成物は、その化学組成がCr23である粒子と、その化学組成が実質的にZrO2・SiO2である粒子とが少なくとも混合されてなるが、その粒子群中に実質的にZrO2・SiO2の化学組成を有するジルコン粒子を10質量%以上の割合で含むものであることを特徴とする。更に、本発明の原料組成物の化学組成においてCr23とZrO2・SiO2との質量比が40〜90:10〜60の範囲(即ち、ZrO2・SiO2/Cr23の値が0.11〜1.5)となるようにする。この範囲を超えて、Cr23に対するZrO2・SiO2の量が、少な過ぎたり、多くなり過ぎると、耐火材として使用した場合に、耐火材の減肉量が多くなり、耐久に劣るものとなるので好ましくない。 The raw material composition for an alumina-based amorphous refractory material of the present invention comprises at least a mixture of particles having a chemical composition of Cr 2 O 3 and particles having a chemical composition of substantially ZrO 2 · SiO 2. However, it is characterized in that the particle group contains zircon particles having a chemical composition of ZrO 2 · SiO 2 at a ratio of 10% by mass or more. Furthermore, in the chemical composition of the raw material composition of the present invention, the mass ratio of Cr 2 O 3 and ZrO 2 · SiO 2 is in the range of 40 to 90:10 to 60 (that is, ZrO 2 · SiO 2 / Cr 2 O 3 The value is 0.11 to 1.5). Exceeding this range, if the amount of ZrO 2 · SiO 2 with respect to Cr 2 O 3 is too small or too large, when used as a refractory material, the thickness of the refractory material increases and the durability is poor. Since it becomes a thing, it is not preferable.

本発明において使用するジルコンとしては、例えば、市販されているジルコンフラワー(オーストラリア産)等を使用することができる。尚、ジルコンフラワーは、天然物として得られたものであり、その組成を厳格には定められない。本発明において使用するジルコン源としては、ジルコン単体の他に、ジルコンとジルコニア(ZrO2)の混合物、或いはジルコンとSiO2の混合物、或いはジルコンとジルコニアとSiO2の混合物でも差し支えない。上記したように、ジルコンの混合物の場合、実質的にジルコンが含まれていれば差し支えない。 As a zircon used in the present invention, for example, a commercially available zircon flower (produced in Australia) can be used. In addition, zircon flower is obtained as a natural product and its composition cannot be strictly determined. The zircon source used in the present invention may be a mixture of zircon and zirconia (ZrO 2 ), a mixture of zircon and SiO 2 , or a mixture of zircon, zirconia and SiO 2 in addition to zircon alone. As described above, in the case of a mixture of zircon, it does not matter if zircon is substantially contained.

本発明のアルミナ系不定形耐火材用原料組成物を構成する中間粒子及び微粒子からなる粒子群に、その化学組成がZrO2である粒子と、その化学組成がSiO2である粒子とが混合されている場合には、混合比率及び加熱処理等の条件によっては、ZrO2とSiO2とが反応してジルコンに変化することがある。本発明でいう実質的にジルコンである粒子には、このような形態のものも含まれる。本発明者らの検討によれば、ZrO2とSiO2との反応によって形成されるジルコンは、その粒子径や成分比率等にもよるが、ジルコニア粒子の表面部分がSiO2と反応してジルコンに変化した状態のものになる。そして、このような表面部分がジルコンとなった形態のものであっても本発明の効果は発現される。しかし、不定形耐火材用原料組成物を加熱処理することでZrO2をジルコンに変化させ、しかも該ジルコンを良好な状態に制御して耐火材中に存在させるように構成することは非常に難しい。更に、先に述べたように、ZrO2がそのまま耐火材中に存在することとなった場合には、亀裂等の原因になる。従って、本発明の不定形耐火材用原料組成物を構成する粒子群中におけるジルコニア(ZrO2)の含有量は、48質量%未満とすることが好ましい。このようにすれば、いずれの場合においても本発明の効果が得られ、常に良好な状態で安定して使用することができる。 The particles having the chemical composition ZrO 2 and the particles having the chemical composition SiO 2 are mixed into the particle group consisting of the intermediate particles and fine particles constituting the raw material composition for the alumina-based amorphous refractory material of the present invention. In this case, ZrO 2 and SiO 2 may react with each other and change into zircon depending on conditions such as the mixing ratio and heat treatment. The particles that are substantially zircon in the present invention include those having such a form. According to the study by the present inventors, the zircon formed by the reaction between ZrO 2 and SiO 2 depends on the particle diameter, component ratio, etc., but the surface portion of the zirconia particles reacts with SiO 2 to cause zircon. It becomes the thing of the changed state. And even if it is a thing of the form which such a surface part became the zircon, the effect of this invention is expressed. However, it is very difficult to change the ZrO 2 to zircon by heat-treating the raw material composition for the irregular refractory material, and to control the zircon to be in a good state and exist in the refractory material. . Furthermore, as described above, when ZrO 2 is present in the refractory material as it is, it causes cracks and the like. Therefore, the content of zirconia (ZrO 2 ) in the particle group constituting the raw material composition for the amorphous refractory material of the present invention is preferably less than 48% by mass. In this way, the effects of the present invention can be obtained in any case, and it can always be used stably in a good state.

本発明の不定形耐火材用原料組成物は、先に説明した平均粒子径及び化学組成を有するアルミナ系骨材粒子と、上記で説明した平均粒子径及び化学組成を有する粒子群が特定の割合で含有されてなるが、更に、原料組成物中に、鉱化剤が1〜5質量%含有されたものである。本発明で使用する鉱化剤としては、耐火材の製造において成形助剤或いは焼結助剤として用いられている一般的なものを用いることができる。本発明に用いる鉱化剤は、特に粒子径0.1mm以下のものが望ましく、0.1〜0.01mm程度、或いはそれ以下のものでも使用できる。本発明の原料組成物において、鉱化剤の含有量が1質量%未満では、焼結体とした場合に緻密な焼結体が得られず、5質量%を超えると形成した耐火材の耐食性が低下し、減肉量が増大して耐久性に劣るものとなる。   The raw material composition for the irregular refractory material according to the present invention has a specific ratio of the alumina-based aggregate particles having the average particle diameter and the chemical composition described above and the particle group having the average particle diameter and the chemical composition described above. The mineral composition is further contained in an amount of 1 to 5% by mass in the raw material composition. As the mineralizer used in the present invention, a general agent used as a molding aid or a sintering aid in the production of a refractory material can be used. The mineralizer used in the present invention preferably has a particle size of 0.1 mm or less, and can be about 0.1 to 0.01 mm or less. In the raw material composition of the present invention, if the content of the mineralizer is less than 1% by mass, a dense sintered body cannot be obtained when the sintered body is used, and if it exceeds 5% by mass, the corrosion resistance of the formed refractory material Decreases, and the amount of thinning increases, resulting in poor durability.

次に、本発明の不定形耐火材用原料組成物を使用して得られる耐火材について説明する。本発明の耐火材としては、本発明の不定形耐火材用原料組成物を、成形し、乾燥してなるもの、或いは、本発明の不定形耐火材用原料組成物を、成形し、乾燥し、その後、焼成してなるものがある。本発明でいう耐火材には、本発明の不定形耐火材用原料組成物に水を加えただけの未焼成物を炉の製作時に炉体構築物として使用したり、或いは炉の補修材として使用するものも含まれる。   Next, the refractory material obtained by using the raw material composition for the irregular refractory material of the present invention will be described. As the refractory material of the present invention, the raw material composition for amorphous refractory material of the present invention is molded and dried, or the raw material composition for amorphous refractory material of the present invention is molded and dried. Then, there is a product obtained by firing. For the refractory material referred to in the present invention, an unfired product obtained by adding water to the raw material composition for the amorphous refractory material of the present invention is used as a furnace body structure at the time of manufacturing the furnace, or used as a repair material for the furnace. Something to do is also included.

本発明の耐火材を製造する方法としては、例えば、下記に挙げる方法を用いることができる。先ず、本発明の原料組成物に水を加えて混練し、型枠内で加圧成形したものを乾燥/焼成する方法、或いは本発明の原料組成物に水を加えて混練し、型に流し込み固化させた後、乾燥/焼成する方法等である。この際の焼成温度は通常1,200℃〜1,800℃の範囲、好ましくは1,400℃〜1,600℃の範囲である。上記のようにして得られる本発明の焼結体は、特に、先に説明したような、成分変化の著しい汚泥等の焼却灰を溶融する溶融炉に使用した場合に有効である。しかし、これに限定されず、溶融炉以外の一般の高温炉の炉材として適用しても何ら差し支えない。   As a method for producing the refractory material of the present invention, for example, the following methods can be used. First, water is added to the raw material composition of the present invention and kneaded, and then pressure / molded in a mold is dried / fired, or water is added to the raw material composition of the present invention and then poured into a mold. For example, a method of drying / baking after solidifying. The firing temperature at this time is usually in the range of 1,200 ° C to 1,800 ° C, preferably in the range of 1,400 ° C to 1,600 ° C. The sintered body of the present invention obtained as described above is particularly effective when used in a melting furnace for melting incinerated ash such as sludge having a significant component change as described above. However, the present invention is not limited to this, and may be applied as a furnace material for a general high-temperature furnace other than a melting furnace.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
[実施例1〜13及び比較例1〜9]
(原料組成物の作製)
アルミナ系の骨材としては、粒子径が1mmを超えて10mm以下の範囲にある純度90%のAl23[RW−92、昭和電工(株)製]を用いた。粒子群としては、粒子径が1mm以下の純度99%のCr23(日本電工(株)製)と、ZrO2・SiO2[ジルコンフラワー、美濃顔料化学(株)製]とを用いた。そして、これらの材料に鉱化剤を加えて表1−1及び表1−2に示した粒配で、合計が20kgとなるように配合してよく混合し、実施例及び比較例の各原料組成物を得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
[Examples 1 to 13 and Comparative Examples 1 to 9]
(Preparation of raw material composition)
As alumina-based aggregate, 90% pure Al 2 O 3 [RW-92, Showa Denko Co., Ltd.] having a particle diameter exceeding 1 mm and not exceeding 10 mm was used. As the particle group, Cr 2 O 3 having a particle diameter of 1 mm or less and having a purity of 99% (manufactured by Nippon Electric Works Co., Ltd.) and ZrO 2 · SiO 2 [Zircon Flower, manufactured by Mino Pigment Chemical Co., Ltd.] were used. . And by adding a mineralizer to these materials and mixing the particles shown in Table 1-1 and Table 1-2 so that the total amount becomes 20 kg, the raw materials of Examples and Comparative Examples are mixed. A composition was obtained.

Figure 2008056510
Figure 2008056510

Figure 2008056510
Figure 2008056510

(焼結体の作製)
上記で得た実施例及び比較例の各原料組成物を用いて、下記の方法で焼結体を得た。原料組成物20kgに、水1.5kgと減水剤として非イオン系界面活性剤を0.02kg同時に添加して、これらをオムニミキサーで十分に混合した。次に、上記混練物を並型の型枠(65×114×230mm)に流し込み、1昼夜養生した後、脱枠し、110℃で約24時間乾燥して耐火材を得た。乾燥後、得られた耐火材をガス炉にて1,500℃の温度で焼成して、実施例及び比較例の各焼結体を得た。
(Production of sintered body)
Using the raw material compositions of Examples and Comparative Examples obtained above, sintered bodies were obtained by the following method. To 20 kg of the raw material composition, 1.5 kg of water and 0.02 kg of a nonionic surfactant as a water reducing agent were simultaneously added, and these were sufficiently mixed with an omni mixer. Next, the kneaded product was poured into a normal mold (65 × 114 × 230 mm), cured for one day and night, then deframed, and dried at 110 ° C. for about 24 hours to obtain a refractory material. After drying, the obtained refractory material was fired at a temperature of 1,500 ° C. in a gas furnace to obtain sintered bodies of Examples and Comparative Examples.

(評価)
上記で得た各焼結体を用いて、下記の方法で浸食試験を行い耐食性の評価を行った。各焼結体で形成したテストプラント規模の産業廃棄物焼却炉をそれぞれ用いて、下水汚泥を1,500℃で500時間の溶融処理を行って、実施例及び比較例の焼結体を評価した。試験に用いた下水汚泥の灰分の組成を表2に示した。
(Evaluation)
Using each sintered body obtained above, an erosion test was performed by the following method to evaluate the corrosion resistance. Using each of the industrial waste incinerators of the test plant scale formed with each sintered body, the sewage sludge was melted at 1,500 ° C. for 500 hours to evaluate the sintered bodies of Examples and Comparative Examples. . Table 2 shows the ash composition of the sewage sludge used in the test.

Figure 2008056510
Figure 2008056510

上記した試験前後において、処理前の炉のサンプル厚みと処理後のサンプル厚みを測定した。そして、処理前の炉のサンプル厚みから処理後のサンプル厚みを引いた値を減肉量(mm)として求めた。得られた減肉量を表3にまとめて示した。表中の減肉量は、1,500℃で500時間の溶融処理をした前後における炉体を形成している焼結体の減肉幅をmm単位で計測した結果である。評価としては、この減肉量の値が小さいほど溶融試験において炉体に変化がなく、良好な焼結材であると言える。尚、表3中には、実施例及び比較例の各原料組成物の主たる構成である、骨材粒子の量、粒子群の量、鉱化剤の量、原料組成物中に含有させたジルコンの量と、Cr23に対するジルコンの質量比率[ZrO2・SiO2/Cr23]とを合わせて示した。 Before and after the above test, the sample thickness of the furnace before treatment and the sample thickness after treatment were measured. And the value which pulled the sample thickness after a process from the sample thickness of the furnace before a process was calculated | required as a thinning amount (mm). The obtained thinning amounts are summarized in Table 3. The thinning amount in the table is the result of measuring the thinning width of the sintered body forming the furnace body before and after the melting treatment at 1,500 ° C. for 500 hours in mm units. As an evaluation, it can be said that the smaller the thickness reduction value, the more the furnace body does not change in the melting test, and the better the sintered material. In Table 3, the amount of aggregate particles, the amount of particle groups, the amount of mineralizer, the zircon contained in the raw material composition, which are the main components of the raw material compositions of Examples and Comparative Examples, are shown. And the mass ratio of zircon to Cr 2 O 3 [ZrO 2 · SiO 2 / Cr 2 O 3 ] are shown together.

減肉量が6mm以下である場合を◎とし、7mm以上15mm未満である場合を○、15mm以上であるものを△とした。減肉量を測定したサンプルは、割れや孔食はみられず、実用可能ではあった。焼結体の成形において割れや孔食が発生したものは、×として評価した。更に、比較例1の焼結体のように、割れが多発して全く使用できない状態のものや、比較例9の焼結体のように、乾燥品を作ることはできるものの、成形体を作ることができない状態のものは××として評価した。   The case where the amount of thickness reduction was 6 mm or less was rated as ◎, the case where it was 7 mm or more and less than 15 mm, and the case where it was 15 mm or more as △. The sample for which the amount of thinning was measured was free from cracks and pitting corrosion and was practical. The case where cracks and pitting corrosion occurred in the molding of the sintered body was evaluated as x. Furthermore, although it is possible to make a dry product like a sintered body of Comparative Example 1 in a state where cracks frequently occur and cannot be used at all, or a sintered body of Comparative Example 9, a molded body is made. Those incapable of being evaluated as XX.

Figure 2008056510
Figure 2008056510

Figure 2008056510
Figure 2008056510

表1及び3に示したように、実施例1〜13の焼結体は、いずれも比較例の場合よりも減肉量は少なく、良好な耐食性を有することが確認できた。比較例と比べた場合に、特に、Cr23とZrO2・SiO2との比が40〜90:10〜60の範囲(即ち、ZrO2・SiO2/Cr23の値が0.11〜1.5)の範囲内であること、及びジルコン量が10質量%以上であること、によって優れた耐食性が達成されることがわかった。先ず、原料組成物中の骨材量が本発明で規定する範囲外の比較例1の不定形耐火材用原料組成物は、焼結体として耐食性試験を行った場合に、骨材量が規定する範囲よりも少な過ぎる場合には割れが多発し、骨材量が規定する範囲よりも多過ぎる場合には成形不能であり、実用に耐えないことが確認された。又、原料組成物中の鉱化剤の含有量が12質量%と、本発明で規定する範囲よりも多い不定形耐火材用原料組成物の場合は、焼結体として耐食性試験を行った場合に、減肉量が大きく、耐食性に劣ったものとなることが確認された。更に、比較例3、4及び8の不定形耐火材用原料組成物は、ジルコニア原料にジルコンを使用しない従来のものであるが、焼結体として耐食性試験を行った場合に、孔食や割れが発生し、耐食性が不十分であることが確認された。更に、原料組成中にジルコンを加えたものの、その量が本発明で規定する範囲から外れる不定形耐火材用原料組成物は、焼結体として耐食性試験を行った場合に、実施例の焼結体と比べた場合に減肉量が大きくなり、耐食性に劣ることが確認された。 As shown in Tables 1 and 3, it was confirmed that the sintered bodies of Examples 1 to 13 each had a good corrosion resistance because the amount of thinning was less than that of the comparative example. When compared with the comparative example, the ratio of Cr 2 O 3 and ZrO 2 · SiO 2 is particularly in the range of 40 to 90:10 to 60 (that is, the value of ZrO 2 · SiO 2 / Cr 2 O 3 is 0). .11 to 1.5) and that the amount of zircon is 10% by mass or more has been found to achieve excellent corrosion resistance. First, the raw material composition for the amorphous refractory material of Comparative Example 1 whose aggregate amount in the raw material composition is outside the range specified in the present invention has an aggregate amount specified when a corrosion resistance test is performed as a sintered body. It was confirmed that cracking occurred frequently when the amount was too much less than the range to be formed, and molding was impossible when the amount of aggregate was more than the range specified, and that it was not practical. In the case of a raw material composition for an irregular refractory material having a mineralizer content in the raw material composition of 12% by mass, which is greater than the range specified in the present invention, a corrosion resistance test is conducted as a sintered body. Furthermore, it was confirmed that the amount of thinning was large and the corrosion resistance was poor. Furthermore, the raw material compositions for amorphous refractory materials of Comparative Examples 3, 4, and 8 are conventional ones that do not use zircon as a zirconia raw material. However, when a corrosion resistance test is performed as a sintered body, pitting corrosion and cracking occur. It was confirmed that the corrosion resistance was insufficient. Furthermore, the raw material composition for an amorphous refractory material, in which zircon was added to the raw material composition but the amount deviated from the range specified in the present invention, was subjected to the sintering of the example when the corrosion resistance test was conducted as a sintered body. When compared with the body, the amount of thinning increased and it was confirmed that the corrosion resistance was poor.

本発明により、耐食性に優れた、各種金属精錬、ガラス溶融、或いは産業廃棄物や生活汚泥の焼却溶融等、設備を構成する炉壁及び炉床を有する炉体の構築に使用する不定形耐火材を得ることができる。   In accordance with the present invention, an amorphous refractory material having excellent corrosion resistance and used for construction of furnace bodies having furnace walls and hearths that constitute facilities, such as various metal refining, glass melting, or incineration melting of industrial waste and domestic sludge Can be obtained.

Claims (4)

少なくとも、20〜80質量%の骨材粒子と、合量が18〜80質量%の中間粒子及び微粒子からなる粒子群と、1〜5質量%の鉱化剤とを混合してなる不定形耐火材の原料組成物において、上記骨材粒子は、その粒子径が1mmを超えて10mm以下の範囲内にあって、その化学組成が実質的にAl23であり、且つ、上記粒子群は、粒子径が1mm以下の範囲内にあって、その化学組成がCr23である粒子と、その化学組成が実質的にZrO2・SiO2である粒子とが少なくとも混合され、該ZrO2・SiO2である粒子を粒子群中に10質量%以上の割合で含み、更に、ZrO2・SiO2/Cr23の質量比が、0.11〜1.5であることを特徴とするアルミナ系不定形耐火材用原料組成物。 At least 20 to 80% by mass of aggregate particles, a total amount of particles consisting of 18 to 80% by mass of intermediate particles and fine particles, and 1 to 5% by mass of a mineralizer, an amorphous fireproof In the raw material composition of the material, the aggregate particles have a particle diameter in the range of more than 1 mm and not more than 10 mm, the chemical composition is substantially Al 2 O 3 , and the particle group is , Particles having a particle diameter of 1 mm or less and having a chemical composition of Cr 2 O 3 and particles having a chemical composition of substantially ZrO 2 · SiO 2 are mixed at least, and the ZrO 2 - the particles are SiO 2 in particles include a proportion of more than 10 wt%, further, the weight ratio of ZrO 2 · SiO 2 / Cr 2 O 3 has a feature that it is from 0.11 to 1.5 A raw material composition for an alumina-based amorphous refractory material. 前記骨材粒子は、その70〜90質量%を純度90%以上のAl23が占め、その30〜10質量%をクロムクリンカーが占めてなり、該クロムクリンカーが、Al23、Cr23、ZrO2及びSiO2を含む化学組成のものである請求項1に記載のアルミナ系不定形耐火材用原料組成物。 The aggregate particles comprise 70 to 90% by mass of Al 2 O 3 having a purity of 90% or more, and 30 to 10% by mass of chromium clinker. The chromium clinker is composed of Al 2 O 3 and Cr. The raw material composition for an alumina-based amorphous refractory material according to claim 1, which has a chemical composition containing 2 O 3 , ZrO 2 and SiO 2 . 請求項1又は2に記載のアルミナ系不定形耐火材用原料組成物を、成形し、乾燥してなることを特徴とする耐火材。   A refractory material obtained by molding and drying the raw material composition for an alumina-based amorphous refractory material according to claim 1 or 2. 請求項1又は2に記載のアルミナ系不定形耐火材用原料組成物を、成形し、乾燥し、その後、焼成してなることを特徴とする耐火材。
A refractory material obtained by molding, drying, and then firing the raw material composition for an alumina-based amorphous refractory material according to claim 1 or 2.
JP2006232938A 2006-08-30 2006-08-30 Raw material composition for alumina-based monolithic refractories and refractories using it Pending JP2008056510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006232938A JP2008056510A (en) 2006-08-30 2006-08-30 Raw material composition for alumina-based monolithic refractories and refractories using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006232938A JP2008056510A (en) 2006-08-30 2006-08-30 Raw material composition for alumina-based monolithic refractories and refractories using it

Publications (1)

Publication Number Publication Date
JP2008056510A true JP2008056510A (en) 2008-03-13

Family

ID=39239696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006232938A Pending JP2008056510A (en) 2006-08-30 2006-08-30 Raw material composition for alumina-based monolithic refractories and refractories using it

Country Status (1)

Country Link
JP (1) JP2008056510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199449A (en) * 2015-04-14 2016-12-01 Dowaエコシステム株式会社 Monolithic refractory composition and monolithic refractory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293570A (en) * 1993-04-08 1994-10-21 Ngk Insulators Ltd Alumina chromia castable refractory and precast block using
JPH06321628A (en) * 1993-05-18 1994-11-22 Ngk Insulators Ltd Alumina-chromia-zircon-based sintered refractory brick
JPH0891915A (en) * 1994-09-19 1996-04-09 Mino Yogyo Kk Sintered clinker for refractory and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293570A (en) * 1993-04-08 1994-10-21 Ngk Insulators Ltd Alumina chromia castable refractory and precast block using
JPH06321628A (en) * 1993-05-18 1994-11-22 Ngk Insulators Ltd Alumina-chromia-zircon-based sintered refractory brick
JPH0891915A (en) * 1994-09-19 1996-04-09 Mino Yogyo Kk Sintered clinker for refractory and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199449A (en) * 2015-04-14 2016-12-01 Dowaエコシステム株式会社 Monolithic refractory composition and monolithic refractory

Similar Documents

Publication Publication Date Title
CN106966740B (en) Waste incinerator calcium hexaluminate/silicon carbide castable and preparation method thereof
CN100564309C (en) The tundish magnesia gas permeable brick of diffuse type
CN114230352A (en) High-wear-resistance and high-corrosion-resistance molybdenum brick and preparation process thereof
JP5583429B2 (en) Hydraulic composition
JP6427456B2 (en) Unshaped refractory composition and unshaped refractory
JP2006282486A (en) Alumina cement, alumina cement composition, and monolithic refractory
JP2002193681A (en) Castable refractory and waste melting furnace utilizing it
JPH08198649A (en) Calcium aluminate, cement composition and prepared unshaped refractory containing the same
KR20050113633A (en) Chromium-free monothilic refractory for melting furnace for waste and melting furnace for waste lined with the same
JP3610523B2 (en) Fused slag refractory material composition and molten slag refractory material
JP4843414B2 (en) Raw material composition for chrome-based amorphous refractory material and refractory material using the same
JP5995315B2 (en) Irregular refractory
JP2008056510A (en) Raw material composition for alumina-based monolithic refractories and refractories using it
JP2002241173A (en) Shaped refractory
US20040204305A1 (en) Refractory shaped body with increased alkali resistance
JP2000111024A (en) Alkaline waste liquid incinerating furnace
JP4377256B2 (en) Manufacturing method of artificial lightweight aggregate
JP7513380B2 (en) Runner bricks for steel ingot casting
JP3327536B2 (en) Irregular refractories for waste melting furnace pouring and waste melting furnace using the same
JP2007145622A (en) Spinel-magnesia brick
JP5474604B2 (en) Hydraulic composition
CN100410208C (en) High-alumina brick resisting cement clinker erosion and its production method
JPH06321608A (en) Cement composition and monolithic refractories incorporating the same
JPH05170523A (en) Sintered refractory
JP3875054B2 (en) Refractory composition for ash melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712