JP2007131495A - Refractory material, and waste incinerating/melting furnace - Google Patents

Refractory material, and waste incinerating/melting furnace Download PDF

Info

Publication number
JP2007131495A
JP2007131495A JP2005327059A JP2005327059A JP2007131495A JP 2007131495 A JP2007131495 A JP 2007131495A JP 2005327059 A JP2005327059 A JP 2005327059A JP 2005327059 A JP2005327059 A JP 2005327059A JP 2007131495 A JP2007131495 A JP 2007131495A
Authority
JP
Japan
Prior art keywords
mass
refractory material
refractory
waste
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005327059A
Other languages
Japanese (ja)
Inventor
Masao Nanba
政雄 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005327059A priority Critical patent/JP2007131495A/en
Publication of JP2007131495A publication Critical patent/JP2007131495A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refractory material improved in corrosion resistance to slag generated by incinerating and melting waste materials, and to provide a waste incinerating/melting furnace using the refractory material. <P>SOLUTION: The refractory material contacting the melted slag in a waste incinerating/melting furnace comprises 95-99 mass% of a refractory main material composed of aluminum oxide or zinc spinel and 5-1 mass% of a binder, and further includes potassium aluminate of 0.5-25 mass% in an external percentage as an additive. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、家庭やオフィスなどから出される都市ごみ等の一般廃棄物、廃プラスチック、カーシュレダー・ダスト、電子機器、化粧品等の産業廃棄物等、即ち、可燃物を含む廃棄物を焼却処理して生じる灰分を加熱して溶融スラグとする廃棄物燃焼溶融炉の内面を構成する耐火材、及び、その耐火材を炉内壁に使用する廃棄物燃焼溶融炉に関するものである。   The present invention incinerates general waste such as municipal waste from homes and offices, industrial waste such as waste plastic, car shredder dust, electronic equipment and cosmetics, that is, waste containing combustibles. In particular, the present invention relates to a refractory material that constitutes an inner surface of a waste combustion melting furnace that heats the generated ash to form molten slag, and a waste combustion melting furnace that uses the refractory material for the inner wall of the furnace.

都市ゴミ等の一般廃棄物や廃プラスチック等の可燃物を含む廃棄物の処理装置の一つとして、廃棄物を熱分解反応器に入れて低酸素雰囲気下で加熱して熱分解し、熱分解ガス(乾留ガス)と主として不揮発性成分からなる熱分解残留物とを生成し、この熱分解ガスと熱分解残留物とを排出装置において分離し、更に、熱分解残留物を不活性雰囲気下の冷却装置で冷却した後、分離装置に供給して熱分解カーボンを主体とする燃焼性成分と、例えば、金属や陶器、砂利などの不燃性成分とに分離し、燃焼性成分を粉砕して粉体とし、この粉砕された燃焼性成分と前記した熱分解ガスとを廃棄物燃焼溶融炉に導いて燃焼させ、生じた燃焼灰をその燃焼熱により加熱して溶融スラグとなし、この溶融スラグは耐火材で覆われた炉内面を伝って流下し、排出部から外部に排出して冷却固化させるようにした廃棄物処理装置が知られている(例えば、特許文献1参照。)。   As one of the processing equipment for waste including municipal solid waste and combustible waste such as plastic, waste is put in a pyrolysis reactor and heated in a low-oxygen atmosphere for thermal decomposition and thermal decomposition. Gas (dry distillation gas) and pyrolysis residue mainly composed of non-volatile components are produced, and the pyrolysis gas and pyrolysis residue are separated in a discharge device, and the pyrolysis residue is further removed under an inert atmosphere. After cooling with a cooling device, it is supplied to a separation device and separated into combustible components mainly composed of pyrolytic carbon, and non-combustible components such as metal, ceramics, and gravel, and the combustible components are pulverized and powdered. The pulverized combustible component and the above-mentioned pyrolysis gas are introduced into a waste combustion melting furnace and burned, and the resulting combustion ash is heated by the combustion heat to form molten slag. Flowing down the furnace inner surface covered with refractory material Is discharged from the discharge portion to the outside and so as to cool and solidify waste disposal apparatus has been known (e.g., see Patent Document 1.).

一方、耐火材は、鉄鋼、非鉄、セメント、ガラス、窯業など高温処理を必要とする工業の窯炉やボイラ、廃棄物焼却炉等に使用される。この耐火材の採用に際して、溶融スラグと接触する環境の下で使用する場合においては、酸素分圧、アルカリ分圧などの気相側の環境と共に、溶融スラグが関与する苛酷な高温腐蝕についても考慮する必要がある。   On the other hand, refractory materials are used in industrial kilns, boilers, waste incinerators and the like that require high-temperature treatment such as steel, non-ferrous metals, cement, glass, and ceramics. When using this refractory material, when using it in an environment where it comes into contact with molten slag, it is necessary to consider not only the gas phase environment such as oxygen partial pressure and alkali partial pressure, but also severe high-temperature corrosion involving molten slag. There is a need to.

一般に、酸素分圧が高い使用条件下においては、酸化物系耐火物が使用されるが、空気で燃焼溶融する廃棄物処理での酸化物系耐火物の場合には、酸化アルミウム(Al2 3 :アルミナ)を主体とする中性耐火物が選ばれている(例えば、特許文献2参照。)。 In general, oxide-based refractories are used under conditions where oxygen partial pressure is high, but in the case of oxide-based refractories in waste treatment that burns and melts with air, aluminum oxide (Al 2 O 3 : Neutral refractory mainly composed of alumina is selected (for example, see Patent Document 2).

しかしながら、上記の廃棄物処理装置の灰分を溶融させた溶融スラグは、塩基度が低く、また、塩素やイオウなどの酸化性ガスが共存するため、アルミナやマグネシア等の耐火材成分の溶解度が高い。また、これに加えて、これらの溶融成分がスラグに溶解してスラグ中の濃度が増加しても、スラグの粘性は特段増加しないため、これらの耐火材成分のスラグ中への溶解が継続的に進行するという問題がある。
特公平06−56253号公報 特開2004−217517号公報
However, the molten slag obtained by melting the ash content of the waste treatment apparatus has a low basicity and a high solubility of refractory components such as alumina and magnesia because of the coexistence of oxidizing gases such as chlorine and sulfur. . In addition, even if these molten components dissolve in the slag and the concentration in the slag increases, the viscosity of the slag does not increase particularly, so the dissolution of these refractory components into the slag continues. There is a problem of progressing to.
Japanese Patent Publication No. 06-56253 JP 2004-217517 A

本発明は、上記の問題を解決するためになされたものであり、その目的は、廃棄物等を燃焼して溶融してスラグ化する廃棄物燃焼溶融炉において、炉内壁を構成する耐火材が溶融スラグ中に溶解する際に、スラグの粘性が高くなるように調製することにより、耐火材の溶解の進行を抑制できる耐火材及び廃棄物燃焼溶融炉を提供することにある。   The present invention has been made in order to solve the above-described problems. The purpose of the present invention is to provide a refractory material that constitutes the inner wall of a waste combustion melting furnace that burns and melts waste and the like to form slag. An object of the present invention is to provide a refractory material and a waste combustion melting furnace capable of suppressing the progress of melting of the refractory material by preparing the slag to have a high viscosity when it is melted in the molten slag.

上記の目的を達成するための本発明の耐火材は、95mass%〜99mass%(95重量%以上99重量%以下)の、酸化アルミニウム、又は、亜鉛スピネルから構成される耐火性主材と、5mass%〜1mass%(5重量%以上1重量%以下)の結合材とを含む耐火材であって、外掛けで0.5mass%〜25mass%(0.5重量%以上25重量%以下)の添加材として、アルミン酸カリウムを含んで構成される。   In order to achieve the above object, the refractory material of the present invention includes 95 mass% to 99 mass% (95 wt% to 99 wt%) of a refractory main material composed of aluminum oxide or zinc spinel, and 5 mass. % To 1 mass% (5 wt% to 1 wt%) of a refractory material, and 0.5 mass% to 25 mass% (0.5 wt% to 25 wt%) added as an outer shell The material includes potassium aluminate.

この亜鉛スピネルとは、ZnAl2 4 結晶を含み、ZnO成分を39mass%〜49mass%(39重量%以上49重量%以下)含み、かつ、ZnO成分とAl2 3 成分の合計が95mass%以上あるものである。 This zinc spinel contains ZnAl 2 O 4 crystal, contains 39 mass% to 49 mass% (39 wt% or more and 49 wt% or less) of ZnO component, and the total of ZnO component and Al 2 O 3 component is 95 mass% or more. There is something.

つまり、廃棄物を燃焼して溶融してスラグ化する炉等の炉内壁を構成する耐火材において、耐火性主材を95mass%〜99mass%とし、結合材を5mass%〜1mass%とする。   That is, in a refractory material constituting a furnace inner wall such as a furnace that burns and melts waste to form slag, the refractory main material is 95 mass% to 99 mass%, and the binder is 5 mass% to 1 mass%.

このように調製された耐火材にあっては、カリウムイオン−酸素間引力が小さく、溶融スラグ中への溶解に際し系の塩基度を上昇させるため、アルミナが網目形成酸化物として挙動する割合が高くなり、アルミニウムイオンと酸素イオンが無機高分子鎖を形成する。そのため、溶融スラグの粘性が高まり、物質移動速度が低下する。従って、耐火材の耐食性が向上することになる。   In the refractory material thus prepared, the potassium ion-oxygen attractive force is small, and the basicity of the system is increased upon dissolution in the molten slag. Therefore, the proportion of alumina acting as a network-forming oxide is high. Thus, aluminum ions and oxygen ions form inorganic polymer chains. Therefore, the viscosity of the molten slag increases and the mass transfer rate decreases. Therefore, the corrosion resistance of the refractory material is improved.

そして、アルミン酸カリウムを添加材として使用するが、ここで、アルミン酸カリウムの含有量が、耐火性主材と結合材の合計量に対する外掛けで0.5mass%より少ないと、溶融スラグの粘性向上の効果が発現しない。また、その含有量が外掛けで25mass%よりも多いと、炭酸ガスや水分の吸収による不安定性が現れ、実用性が消失する。   And, potassium aluminate is used as an additive. Here, when the content of potassium aluminate is less than 0.5 mass% on the basis of the total amount of the refractory main material and the binder, the viscosity of the molten slag Improvement effect does not appear. On the other hand, if the content is more than 25 mass%, the instability due to absorption of carbon dioxide or moisture appears and the practicality is lost.

廃棄物燃焼溶融炉を、上記の耐火材を溶融物と接する炉壁の炉壁材として用いて形成すると、溶融スラグに対する耐食性を向上させることができる。   When the waste combustion melting furnace is formed using the above-mentioned refractory material as a furnace wall material for the furnace wall in contact with the melt, the corrosion resistance against the molten slag can be improved.

本発明の耐火材及び廃棄物燃焼溶融炉によれば、廃棄物を燃焼溶融しスラグ化する廃棄物燃焼炉において、炉内壁を構成する耐火材の溶融スラグに対する耐食性を向上することができる。 また、耐火性主材にアルミン酸カリウムを加えることにより、溶融スラグ中のカリウムイオン−酸素間引力が小さく、溶融スラグ中へのアルミン酸カリウムの溶解に際して系の塩基度を上昇させることができるため、アルミナが網目形成酸化物として挙動する割合が高くなり、溶融スラグの粘性を増加でき、耐火材の耐食性を上げる効果が生じることができる。   According to the refractory material and the waste combustion melting furnace of the present invention, in a waste combustion furnace that burns and melts waste to form slag, the corrosion resistance of the refractory material constituting the furnace inner wall to the molten slag can be improved. In addition, by adding potassium aluminate to the refractory main material, the potassium ion-oxygen attractive force in the molten slag is small, and the basicity of the system can be increased when the potassium aluminate is dissolved in the molten slag. The proportion of alumina acting as a network-forming oxide is increased, the viscosity of the molten slag can be increased, and the corrosion resistance of the refractory material can be increased.

以下、本発明に係る耐火材及び廃棄物燃焼溶融炉の実施の形態について説明する。
先ず、最初に、本発明に係る耐火材の実施の形態について説明する。この耐火材は、95mass%〜99mass%の、酸化アルミニウム、又は、亜鉛スピネルから構成される耐火性主材と、5mass%〜1mass%の結合材とを含む耐火材であって、外掛けで0.5mass%〜25mass%の添加材として、イオン半径の大なる元素カリウムを含むアルミン酸カリウム(KAlO2 )を含むものである。
Hereinafter, embodiments of the refractory material and the waste combustion melting furnace according to the present invention will be described.
First, an embodiment of the refractory material according to the present invention will be described. This refractory material is a refractory material containing 95 mass% to 99 mass% of a refractory main material composed of aluminum oxide or zinc spinel, and 5 mass% to 1 mass% of a binder. As an additive of 0.5 mass% to 25 mass%, potassium aluminate (KAlO 2 ) containing elemental potassium having a large ionic radius is included.

そして、この酸化アルミニウムは、電融品、焼結品等を必要に応じて粗粒、中粒、微粒等に調整するが、仮焼アルミナを用いてもよい。この酸化アルミニウムは耐火材主材として構成の中心をなし、結晶相としてαアルミナ(コランダム)を使用することで、機械的強度が大、熱伝導率が比較的大という特徴を示す。   And this aluminum oxide adjusts an electromelted product, a sintered product, etc. to a coarse grain, a medium grain, a fine grain, etc. as needed, but calcined alumina may be used. This aluminum oxide is the main component of the refractory material, and α-alumina (corundum) is used as the crystal phase, so that the mechanical strength is high and the thermal conductivity is relatively high.

一方、亜鉛スピネルは、ZnAl2 4 結晶を含み、ZnO成分を39mass%以上49mass%以下含み、かつ、ZnO成分とAl2 3 成分の合計が95mass%以上あるものであり、酸化亜鉛粉末と酸化アルミニウム粉末との固相反応などにより製造できる。この亜鉛スピネルも酸化アルミニウムと同様に、耐火材主材として構成の中心をなす。この材料は結晶構造が立方晶であり、耐熱スポーリング性が高いという特徴を示す。 On the other hand, the zinc spinel contains ZnAl 2 O 4 crystals, contains 39 mass% or more and 49 mass% or less of the ZnO component, and has a total of 95 mass% or more of the ZnO component and the Al 2 O 3 component. It can be produced by a solid phase reaction with aluminum oxide powder. This zinc spinel, like aluminum oxide, is the main component of the refractory material. This material is characterized by a cubic crystal structure and high heat-resistant spalling properties.

この上記の酸化アルミニウム、又は、亜鉛スピネルから構成される耐火性主材に、乳酸アルミニウム、アルミナセメント、リン酸塩等の耐火材の結合、強度を増すための結合材を加えて混合するが、耐火性主材を95mass%〜99mass%とし、結合材を残りの%、即ち、5mass%〜1mass%とする。   In addition to the above-mentioned aluminum oxide or refractory main material composed of zinc spinel, a refractory material such as aluminum lactate, alumina cement, phosphate, and the like are added and mixed to increase the strength, The fireproof main material is 95 mass% to 99 mass%, and the binder is the remaining%, that is, 5 mass% to 1 mass%.

そして、本発明では、添加材として、イオン半径の大なる元素カリウムを含むアルミン酸カリウム(KAlO2 )を用いる。この添加材の量は、外掛けで0.5mass%以上25mass%以下とする。 In the present invention, potassium aluminate (KAlO 2 ) containing elemental potassium having a large ionic radius is used as the additive. The amount of this additive is 0.5 mass% or more and 25 mass% or less as an outer shell.

ここで、アルミン酸カリウムの含有量が外掛けで0.5mass%より少ないと、溶融スラグの粘性向上の効果が発現せず、また、25mass%よりも多いと、炭酸ガスや水分の吸収による不安定性が現れ、実用性が消失する。   Here, if the content of potassium aluminate is less than 0.5 mass%, the effect of improving the viscosity of the molten slag is not expressed, and if it is more than 25 mass%, anxiety due to absorption of carbon dioxide or moisture Qualitative appears and practicality disappears.

なお、この他に、不定形耐火物の作業性や施工時の周囲温度による影響を減少するために、必要に応じて分散剤や硬化調整剤を加えてもよい。これらは、耐火性主材と結合材との混合物に予め混合しておくか、混練時に加える水に溶解又は懸濁させておくことで添加できる。   In addition, in order to reduce the influence of the workability of the irregular refractory and the ambient temperature at the time of construction, a dispersant and a curing regulator may be added as necessary. These can be added by mixing in advance in a mixture of a refractory main material and a binder, or by dissolving or suspending in a water added during kneading.

そして、この分散剤は、耐火性主材と結合材の合計量に対して外掛けで0.02mass%〜0.2mass%程度にするのが好ましく、また、硬化調整剤も、耐火性主材と結合材の合計量に対して外掛けで0.05mass%〜0.2mass%程度にするのが好ましい。   And this dispersing agent is preferably about 0.02 mass% to 0.2 mass% as an outer shell with respect to the total amount of the refractory main material and the binder, and the curing modifier is also a refractory main material. It is preferable that the outer shell is approximately 0.05 mass% to 0.2 mass% with respect to the total amount of the binder.

上記の耐火性主材、結合材、添加材等を所定の割合で混合した後、成形型に入れて所定の形状に成形する。この成形体を養生・乾燥させる。この後、成形体を加熱炉(焼成炉)に入れて、1400℃〜1700℃で加熱して焼結し、この焼結物を冷却して定形耐火物とする。   The above fireproof main material, binder, additive and the like are mixed in a predetermined ratio, and then put into a mold and molded into a predetermined shape. This molded body is cured and dried. Thereafter, the compact is put into a heating furnace (firing furnace), heated and sintered at 1400 ° C. to 1700 ° C., and the sintered product is cooled to obtain a shaped refractory.

また、不定形耐火物として使用する場合には、上記の耐火性主材、結合材、添加材等を所定の割合で混合した粉末を用いる。この不定形耐火物を用いて、炉内壁を形成する場合には、不定形耐火物の粉末に水分を加えて混練りしたものを炉壁に設けた型枠内に流し込んで炉内壁を形成し、養生・乾燥させる。この後、この炉内壁を燃焼バーナー等で1200℃〜1400℃で加熱し、炉内壁を焼成する。   Moreover, when using as an irregular refractory material, the powder which mixed said fireproof main material, binder, additive, etc. in a predetermined ratio is used. When forming the inner wall of the furnace using this amorphous refractory, the powder of the amorphous refractory added with water and kneaded is poured into a mold provided on the furnace wall to form the inner wall of the furnace. Curing and drying. Then, this furnace inner wall is heated at 1200-1400 degreeC with a combustion burner etc., and a furnace inner wall is baked.

そして、上記の製造方法によって製造された耐火材は、耐火性主材にイオン半径の大なる元素カリウムを含むアルミン酸カリウム(KAlO2 )を外掛けで0.5mass%〜25mass%加えているので、溶融スラグ中のカリウムイオン−酸素間引力が小さく、溶融スラグ中へのアルミン酸カリウムの溶解に際して系の塩基度が上昇し、アルミナが網目形成酸化物として挙動する割合が高くなるため、溶融スラグの粘性が増加する。これにより、耐火材の耐食性が上がる。 Then, the refractory material produced by the above manufacturing method, since in addition 0.5mass% ~25mass% potassium aluminate containing large becomes elemental potassium ion radius refractory main member of (Kalo 2) in outer percentage Since the attractive force between potassium ions and oxygen in the molten slag is small, the basicity of the system increases during dissolution of potassium aluminate in the molten slag, and the proportion of alumina acting as a network-forming oxide increases. Increased viscosity. This increases the corrosion resistance of the refractory material.

次に、この耐火材を用いた廃棄物燃焼溶融炉について説明する。この図1に示す廃棄物燃焼溶融炉は、次のような廃棄物燃焼溶融システムで用いられる溶融炉である。   Next, a waste combustion melting furnace using this refractory material will be described. The waste combustion melting furnace shown in FIG. 1 is a melting furnace used in the following waste combustion melting system.

この廃棄物燃焼溶融システムにおいては、都市ゴミ等の一般廃棄物や廃プラスチック等の可燃物を含む廃棄物を熱分解反応器に入れて低酸素雰囲気下で加熱して熱分解する。この熱分解により、熱分解ガス(乾留ガス)と主として不揮発性成分からなる熱分解残留物とを生成する。この熱分解ガスと熱分解残留物とを排出装置において分離する。   In this waste combustion melting system, waste including municipal solid waste and other combustible materials such as waste plastic is placed in a thermal decomposition reactor and heated in a low oxygen atmosphere for thermal decomposition. By this pyrolysis, pyrolysis gas (dry distillation gas) and pyrolysis residue mainly composed of nonvolatile components are generated. This pyrolysis gas and pyrolysis residue are separated in a discharge device.

この熱分解残留物を不活性雰囲気下の冷却装置で冷却した後、分離装置に供給して熱分解カーボンを主体とする燃焼性成分と、例えば、金属や陶器、砂利などの不燃性成分とに分離する。この燃焼性成分を粉砕して粉体とし、この粉砕された燃焼性成分と前記した熱分解ガスとを廃棄物燃焼溶融炉に導いて燃焼させる。この燃焼で生じた燃焼灰をその燃焼熱により加熱して溶融スラグとする。この溶融スラグは耐火材で覆われた炉内面を伝って流下し、排出部から外部に排出して冷却固化させる。   After this pyrolysis residue is cooled by a cooling device under an inert atmosphere, it is supplied to a separation device to produce a combustible component mainly composed of pyrolytic carbon and a non-combustible component such as metal, ceramics, and gravel. To separate. The combustible component is pulverized to form a powder, and the pulverized combustible component and the pyrolysis gas are guided to a waste combustion melting furnace and burned. The combustion ash generated by this combustion is heated by the combustion heat to form molten slag. The molten slag flows down the furnace inner surface covered with a refractory material, and is discharged from the discharge portion to the outside to be cooled and solidified.

この図1に示す廃棄物燃焼溶融炉1では、粉砕された燃焼性成分Fが投入口21から、熱分解ガスGがガス投入口22から廃棄物燃焼溶融炉1内に導かれる。また、燃焼用の空気Aが空気供給口23から導入される。そして、燃焼性成分Fと熱分解ガスGが空気Aと混合して燃焼し、この燃焼で生じた燃焼灰をその燃焼熱により加熱して溶融スラグCとする。この溶融スラグCは耐火材で覆われた炉内面を伝って流下し、排出部24から外部に排出され冷却固化する。   In the waste combustion melting furnace 1 shown in FIG. 1, the combusted combustible component F is introduced into the waste combustion melting furnace 1 from the inlet 21 and the pyrolysis gas G is introduced from the gas inlet 22. In addition, combustion air A is introduced from the air supply port 23. Then, the combustible component F and the pyrolysis gas G are mixed with the air A and combusted, and the combustion ash generated by this combustion is heated by the combustion heat to form molten slag C. The molten slag C flows down along the furnace inner surface covered with the refractory material, and is discharged from the discharge portion 24 to the outside and solidifies by cooling.

この図1に示すような廃棄物燃焼溶融炉において、溶融スラグが接する炉内壁部分(クロスハッチング部)を、上記の耐火材を用いて形成する。この場合に、耐火材を予め決まった形状に焼結した定形耐火物を積み上げて炉内壁を形成してもよいし、この耐火材を、粉末状のキャスタブル耐火物や練り土状のプラスチック耐火物等の不定形耐火物として用いて、流し込み施工等により炉内壁を形成した後、加熱して炉内壁を焼成してもよい。   In the waste combustion melting furnace as shown in FIG. 1, the furnace inner wall portion (cross hatched portion) with which the molten slag comes into contact is formed using the above refractory material. In this case, the furnace inner wall may be formed by stacking shaped refractories obtained by sintering refractory materials into a predetermined shape, and this refractory material may be used as a powdered castable refractory or kneaded clay refractory. It may be used as an indeterminate refractory, etc., and after the furnace inner wall is formed by casting or the like, the furnace inner wall may be fired by heating.

この廃棄物燃焼溶融炉1の溶融スラグに接する炉内壁の部分を上記の構成の耐火材で形成することにより、廃棄物燃焼溶融炉1の炉内壁の溶融スラグに対する耐食性を向上することができる。   By forming the portion of the inner wall of the furnace in contact with the molten slag of the waste combustion melting furnace 1 with the refractory material having the above-described configuration, the corrosion resistance against the molten slag of the inner wall of the waste combustion melting furnace 1 can be improved.

次に、上記の構成の耐火材の性能を評価するために行った腐食試験について説明する。 母材を亜鉛スピネル、及び、亜鉛スピネル+アルミナとし、添加材として、アルミン酸カリウムを、また、結合材として乳酸アルミニウムを用い、表1に示す配合で、混合、成形、焼結し、実施例1〜4の丸棒状試料(φ10mm×75mm)を作製した。   Next, the corrosion test performed for evaluating the performance of the refractory material having the above-described configuration will be described. The base material is zinc spinel and zinc spinel + alumina, potassium aluminate is used as an additive, and aluminum lactate is used as a binder, and the mixture shown in Table 1 is mixed, molded, and sintered. 1-4 round bar-shaped samples (φ10 mm × 75 mm) were prepared.

これを、表3に示す組成の実機採取スラグに浸漬し腐食させる試験を行った。所定の温度・時間で浸漬した後、丸棒状試料を切断し、実験前後の外径の変化から腐食量を求めた。その結果、表1に示すような減肉量が得られた。   This was immersed in an actual machine-collected slag having the composition shown in Table 3 and subjected to a corrosion test. After dipping at a predetermined temperature and time, the round bar-shaped sample was cut, and the amount of corrosion was determined from the change in the outer diameter before and after the experiment. As a result, a thinning amount as shown in Table 1 was obtained.

一方、表2に示す配合で単独酸化物アルミナを同様にして結合材と共に比較例の丸棒状試料(φ10mm×75mm)を作製し、表3に示す組成の同じ実機採取スラグに浸漬し腐食させる試験を行った。その結果、表2に示すような減肉量が得られた。   On the other hand, in the same manner as shown in Table 2, single oxide alumina was used to produce a round bar sample of a comparative example (φ10 mm × 75 mm) together with a binder, and immersed and corroded in the same actual machine collected slag having the composition shown in Table 3. Went. As a result, a thinning amount as shown in Table 2 was obtained.

この表1、表2の比較から、複合酸化物・亜鉛スピネルにアルミン酸カリウムを添加した試料において、単独酸化物アルミナより優れた耐食性が認められた。   From the comparison of Tables 1 and 2, corrosion resistance superior to that of single oxide alumina was recognized in the sample in which potassium aluminate was added to the composite oxide / zinc spinel.

Figure 2007131495
Figure 2007131495

Figure 2007131495
Figure 2007131495

Figure 2007131495
Figure 2007131495

本発明に係る実施の形態の廃棄物燃焼溶融炉を示す図である。It is a figure which shows the waste combustion melting furnace of embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 廃棄物燃焼溶融炉
21 投入口
22 ガス投入口
23 空気供給口
24 排出部
A 燃焼用の空気
C 溶融スラグ
F 燃焼性成分
G 熱分解ガス
1 Waste Combustion Melting Furnace 21 Input Port 22 Gas Input Port 23 Air Supply Port 24 Discharge Port A Combustion Air C Molten Slag F Combustible Component G Pyrolysis Gas

Claims (2)

95mass%〜99mass%の、酸化アルミニウム、又は、亜鉛スピネルから構成される耐火性主材と、5mass%〜1mass%の結合材とを含む耐火材であって、外掛けで0.5mass%〜25mass%の添加材として、アルミン酸カリウムを含む耐火材。   95 mass% to 99 mass% of a refractory main material composed of aluminum oxide or zinc spinel, and 5 mass% to 1 mass% of a binder, and 0.5 mass% to 25 mass on the outside % Refractory material containing potassium aluminate as additive. 請求項1に記載の耐火材を溶融物と接する炉壁の炉壁材として用いる廃棄物燃焼溶融炉。
A waste combustion melting furnace using the refractory material according to claim 1 as a furnace wall material for a furnace wall in contact with a melt.
JP2005327059A 2005-11-11 2005-11-11 Refractory material, and waste incinerating/melting furnace Abandoned JP2007131495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005327059A JP2007131495A (en) 2005-11-11 2005-11-11 Refractory material, and waste incinerating/melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327059A JP2007131495A (en) 2005-11-11 2005-11-11 Refractory material, and waste incinerating/melting furnace

Publications (1)

Publication Number Publication Date
JP2007131495A true JP2007131495A (en) 2007-05-31

Family

ID=38153459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327059A Abandoned JP2007131495A (en) 2005-11-11 2005-11-11 Refractory material, and waste incinerating/melting furnace

Country Status (1)

Country Link
JP (1) JP2007131495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139822A (en) * 2014-01-28 2015-08-03 游家龍 Manufacturing method for molten metal holding furnace
CN110342951A (en) * 2019-08-28 2019-10-18 云南濮耐昆钢高温材料有限公司 A kind of ladle refractory wass and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139822A (en) * 2014-01-28 2015-08-03 游家龍 Manufacturing method for molten metal holding furnace
CN110342951A (en) * 2019-08-28 2019-10-18 云南濮耐昆钢高温材料有限公司 A kind of ladle refractory wass and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI393696B (en) Refractory
RU2017126131A (en) FIRE RESISTANCE AND THEIR APPLICATION
WO2013005253A1 (en) Magnesia-based refractory material
JP6427456B2 (en) Unshaped refractory composition and unshaped refractory
JP2002193681A (en) Castable refractory and waste melting furnace utilizing it
JP2007131495A (en) Refractory material, and waste incinerating/melting furnace
JP2011148643A (en) Magnesia-based refractory
CN106927837A (en) A kind of cement rotary kiln clinkering zone periclase compound spinel brick and preparation method thereof
JP4575761B2 (en) Refractory material for inner wall of furnace and waste combustion melting furnace
JP2007131498A (en) Matrix material for refractory material, refractory material, and waste incinerating/melting furnace
JP2017206414A (en) Method for producing alumina-chromia fired brick
JP2006232653A (en) Refractory brick and waste material melting furnace
JP3496690B2 (en) Melting furnace and its zirconia refractories
JP4843414B2 (en) Raw material composition for chrome-based amorphous refractory material and refractory material using the same
JP2000281455A (en) Alumina-zirconia-based amorphous refractory
JP4677915B2 (en) Refractory and melting furnace made of this refractory
KR100338494B1 (en) Materials for melting ash accompanying waste incineration
JP2000233968A (en) Melting section member containing ceramic fiber
JP2000327436A (en) Monolithic refractory and waste melting furnace using the same
JP2005077068A (en) Refractory for molten slag, melting furnace member, reforming method of refractory for molten slag, and waste treatment device
JP3875054B2 (en) Refractory composition for ash melting furnace
JP2008056510A (en) Raw material composition for alumina-based monolithic refractories and refractories using it
JP4838184B2 (en) Refractory for furnace inner wall, manufacturing method thereof, and waste treatment apparatus
JPH0891915A (en) Sintered clinker for refractory and its production
KR100959158B1 (en) The method of liquid hehaviol in the process fo the production of sintered dust/clay body and the brick produced by using such method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20100928