KR100959158B1 - The method of liquid hehaviol in the process fo the production of sintered dust/clay body and the brick produced by using such method - Google Patents

The method of liquid hehaviol in the process fo the production of sintered dust/clay body and the brick produced by using such method Download PDF

Info

Publication number
KR100959158B1
KR100959158B1 KR20080029758A KR20080029758A KR100959158B1 KR 100959158 B1 KR100959158 B1 KR 100959158B1 KR 20080029758 A KR20080029758 A KR 20080029758A KR 20080029758 A KR20080029758 A KR 20080029758A KR 100959158 B1 KR100959158 B1 KR 100959158B1
Authority
KR
South Korea
Prior art keywords
dust
clay
alumina
behavior
liquid phase
Prior art date
Application number
KR20080029758A
Other languages
Korean (ko)
Other versions
KR20090104363A (en
Inventor
강승구
김유택
이기강
김정환
Original Assignee
경기대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기대학교 산학협력단 filed Critical 경기대학교 산학협력단
Priority to KR20080029758A priority Critical patent/KR100959158B1/en
Publication of KR20090104363A publication Critical patent/KR20090104363A/en
Application granted granted Critical
Publication of KR100959158B1 publication Critical patent/KR100959158B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/0007Pretreatment of the ingredients, e.g. by heating, sorting, grading, drying, disintegrating; Preventing generation of dust
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/30Drying methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은, 더스트와 점토를 혼합하여 제조되는 소결체의 소결시 액상의 거동을 제어하기 위한 제어물을 첨가하고, 더스트와 제어물의 함량을 조절하여 액상의 특성변화에 따른 소결체의 내화도 증진 및 소결체를 이용하여 제작된 벽돌의 불량률을 감소시키는 더스트 점토계 소결체 제조 중 액상의 거동 제어방법 및 이를 이용하여 제조된 벽돌에 관한 것이다.The present invention, by adding a control for controlling the behavior of the liquid phase during the sintering of the sintered body produced by mixing the dust and clay, and by adjusting the content of the dust and the control material to improve the fire resistance of the sintered body and the sintered body according to the characteristics of the liquid phase It relates to a method of controlling the behavior of the liquid phase during the manufacture of dust clay-based sintered body to reduce the defective rate of the brick produced by using the same and a brick manufactured using the same.

이를 위해 본 발명은, 더스트-점토 계 벽돌을 제조하기 위해 폐기물인 더스트와 점토를 혼합하여 소결체를 형성하는 과정에서 알루미나를 혼합조성하여, 소결체 제조시 발생되는 액상의 거동이 제어되도록 한 것을 특징으로 하는 더스트 점토계 소결체 제조 중 액상의 거동 제어방법과 이를 이용하여 제조된 벽돌을 제공한다.To this end, the present invention is characterized in that the alumina is mixed and mixed in the process of forming a sintered body by mixing dust and clay which is a waste to manufacture a dust-clay-based brick, characterized in that the behavior of the liquid phase generated during the production of the sintered body is controlled To provide a method of controlling the behavior of the liquid phase during the manufacture of dust clay-based sintered compact and a brick manufactured using the same.

더스트, 점토, 소결체, 액상거동 Dust, Clay, Sintered Body, Liquid Behavior

Description

더스트 점토계 소결체 제조 중 액상의 거동 제어방법 및 이를 이용하여 제조된 벽돌{THE METHOD OF LIQUID HEHAVIOL IN THE PROCESS FO THE PRODUCTION OF SINTERED DUST/CLAY BODY AND THE BRICK PRODUCED BY USING SUCH METHOD}FIELD OF THE LIQUID HEHAVIOL IN THE PROCESS FO THE PRODUCTION OF SINTERED DUST / CLAY BODY AND THE BRICK PRODUCED BY USING SUCH METHOD}

본 발명은 더스트 점토계 소결체 제조 중 발생되는 액상의 거동 제어방법 및 이를 이용하여 제조된 벽돌에 관한 것이다.The present invention relates to a method of controlling the behavior of a liquid phase generated during the manufacture of dust clay-based sintered compacts and bricks produced using the same.

상세하게 본 발명은, 더스트와 점토를 혼합하여 제조되는 소결체의 소결시 액상의 거동을 제어하기 위한 제어물을 첨가하고, 더스트와 제어물의 함량을 조절하여 액상의 특성변화에 따른 소결체의 내화도 증진 및 소결체를 이용하여 제작된 벽돌의 불량률을 감소시키는 더스트 점토계 소결체 제조 중 액상의 거동 제어방법 및 이를 이용하여 제조된 벽돌에 관한 것이다.In detail, the present invention, by adding a control for controlling the behavior of the liquid phase during the sintering of the sintered body produced by mixing the dust and clay, by adjusting the content of the dust and the control material to improve the fire resistance of the sintered body according to the change in the characteristics of the liquid phase and It relates to a method of controlling the behavior of the liquid phase during the manufacture of dust clay-based sintered body to reduce the defective rate of the brick manufactured by using the sintered body and a brick manufactured using the same.

대부분의 산업 폐기물은 매립으로 처리되는 것이 일반적이었다. 이와 같은 산업 폐기물의 매립은 매립지 확보의 한계성과 매립물에서 방출되는 침출수로 인한 토양 및 지하수의 오염 등의 환경오염이 심각한 문제점으로 노출되었다.Most industrial waste was generally disposed of in landfills. The landfill of such industrial wastes has been exposed to serious problems such as the limitation of landfill and environmental pollution such as soil and groundwater contamination due to leachate discharged from landfill.

이러한 문제점으로 해결하기 위해 산업 폐기물을 안정화시켜 순환자원화하는 기술에 많은 연구가 진행되고 있다. 이러한 순환자원화 기술 중 하나로 전기로 분진(electric arc furnace dust: EAF dust, 이하 더스트)을 점토와 혼합하여 벽돌로 제조하는 과정이 제안되고 있다.In order to solve this problem, many researches are being conducted on technologies for stabilizing industrial waste and recycling resources. As one of such recycling resources, a process of mixing bricks with electric arc furnace dust (EAF dust) is proposed.

이 때, 중금속을 다량 함유하는 더스트는 지정폐기물로 분류되고 있는데, 이와 같은 더스트는 산화아연(ZnO), 산화철(Fe203) 등 융제(flux) 성분이 다량 함유되어 있기 때문에 점토와 혼합하여 혼합하면 액상소결이 유도되어 소결온도를 낮춰주고 소결체(벽돌로 제조되기 위한 소결체)의 강도를 향상시키게 된다.At this time, dust containing a large amount of heavy metals is classified as designated waste, and such dust is mixed with clay because it contains a large amount of flux components such as zinc oxide (ZnO) and iron oxide (Fe 2 0 3 ). Mixing induces liquid phase sintering to lower the sintering temperature and to improve the strength of the sintered body (sintered body to be made of brick).

특히, 더스트와 점토를 매우 균일하게 혼합하면, 더스트의 중금속 성분등이 점토내 규산질 용액에 함께 용융되면서 궁극적으로 중금속 성분들이 망목구조의 규산염 유리 내부에 결합되어 안정화되는 장점이 있다.In particular, when the dust and clay are mixed very uniformly, the heavy metal components of the dust are melted together in the siliceous solution in the clay, and ultimately, the heavy metal components are bonded and stabilized inside the silicate glass of the network structure.

상기 장점에 대비되어 융제가 많은 소결물은 그만큼 소성온도가 좁아지므로, 비교적 큰 온도구배를 갖는 연속 로를 사용하여 대량생산을 할 경우, 제품의 불량률이 상승하는 문제점이 노출된다.In contrast to the above advantages, since the sintered product having a lot of fluxes has a narrower firing temperature, when the mass production is carried out using a continuous furnace having a relatively large temperature gradient, a problem of increasing the defective rate of the product is exposed.

따라서, 소결체 내의 더스트 첨가량을 증가시켜 더스트의 함량 증가에 따른 소결온도를 낮추고 소결체의 강도를 향상시키기 위해서는 융제, 즉 액상의 거동을 적절하게 제어해야 하는 필요성이 대두되었다.Therefore, in order to decrease the sintering temperature and increase the strength of the sintered compact by increasing the amount of dust added in the sintered compact, the necessity of appropriately controlling the behavior of the flux, ie, the liquid phase, has emerged.

이에, 본 발명은 상기 액상의 거동을 제어하기 위해 더스트-점토계 소결체를 제조할 때 액상 특성을 제어하기 위한 첨가물을 혼합하여, 소결체의 미세구조, 겉보기 밀도, 흡수율, 압축강도 등의 물리적 특성이 우수해지도록 한 액상의 거동 제어방법 및 이를 이용하여 제조된 벽돌을 제공함에 그 목적이 있다.Thus, the present invention is to mix the additives for controlling the liquid phase characteristics when manufacturing the dust-clay sintered body to control the behavior of the liquid phase, physical properties such as microstructure, apparent density, water absorption, compressive strength of the sintered body It is an object of the present invention to provide a method of controlling the behavior of a liquid to be excellent and a brick manufactured using the same.

상기 목적을 달성하기 위해 본 발명은 아래의 특징을 갖는다.In order to achieve the above object, the present invention has the following features.

이를 위해 본 발명은, 더스트-점토 계 벽돌을 제조하기 위해 폐기물인 더스트와 점토를 혼합하여 소결체를 형성하는 과정에서 알루미나(Al2O3)를 혼합조성하여, 소결체 제조시 발생되는 액상의 거동이 제어되도록 한 것을 특징으로 한다.To this end, the present invention, in order to form a sintered compact by mixing dust and clay, which is a waste in order to manufacture a dust-clay brick, by mixing and forming alumina (Al 2 O 3 ), the behavior of the liquid phase generated during the sintered compact manufacturing It is characterized in that it is controlled.

여기서, 상기 소결체는 전체 100중량%에 대해 65중량% - 90중량%의 점토와, 5중량% - 20중량%의 더스트와, 5중량% - 15중량%의 알루미나를 혼합하여 조성된다.Here, the sintered compact is formed by mixing 65% by weight to 90% by weight of clay, 5% by weight to 20% by weight of dust, and 5% by weight to 15% by weight of alumina based on 100% by weight of the total.

이 때, 상기 더스트가 5중량% 미만으로 조성될 경우, 더스트의 함량이 너무 적어 소결체의 강도가 낮아지게 되며, 20중량%를 초과하여 조성될 경우 더스트의 중금속 성분들이 점토내의 규산질 용액에 과도하게 용융되어 망목구조의 규산염 유리 내부에서 안정화되지 못한 구조가 된다.At this time, if the dust is less than 5% by weight, the amount of dust is too small to reduce the strength of the sintered body, when the composition is more than 20% by weight heavy metal components of the dust excessively in the siliceous solution in the clay Melting results in an unstable structure inside the mesh silicate glass.

또한, 상기 알루미나가 5중량% 미만으로 조성될 경우, 소결체에 형성되는 기공이 불균일하여 액상의 거동이 제어되지 못하게 되며, 15중량%를 초과하여 조성될 경우 액상의 거동이 과도하게 제어되어 소결체의 경도는 높아지는 반면 취성강도가 낮아지게 된다.In addition, when the alumina is less than 5% by weight, the pores formed in the sintered body is non-uniform, so that the behavior of the liquid phase is not controlled. The hardness increases while the brittle strength decreases.

따라서, 상기 점토는 더스트와 알루미나의 함량에 대응하여 그 함량이 결정된다.Therefore, the content of clay is determined in accordance with the content of dust and alumina.

상기와 같은 소결체는 상기 더스트와 점토를 채취기를 이용하여 4분법으로 채취하여 분쇄기를 통해 40 메쉬(mesh)이하의 미분으로 분쇄하고, 상기 미분과 시약급의 알루미나를 혼합기 내에서 혼합하여 조성하는 단계와; 상기 조성물을 성형기를 통해 150MPa의 압력으로 일축 성형하여 90℃/24h로 건조기에서 건조하고, 소결로 내에서 10℃/min의 승온 속도로 1100℃ - 1300℃에서 두시간 동안 유지한 후 로냉하여 소결체를 형성하는 단계;를 수행하여 제조된다.The sintered compact as described above is pulverized with dust and clay in a four-minute method using a harvester, pulverized into a fine powder of 40 mesh or less through a pulverizer, and mixed with the fine powder and reagent grade alumina in a mixer to form a composition. Wow; The composition was uniaxially formed at a pressure of 150 MPa through a molding machine, dried in a dryer at 90 ° C./24 h, maintained at 1100 ° C.-1300 ° C. for 2 hours at a temperature rising rate of 10 ° C./min in a sintering furnace, and then cooled by sintering. It is prepared by performing; forming.

이 때, 상기 소결과정에서 유지온도가 1100℃ 미만일 경우 소결력이 낮아져 취성강도가 낮으며, 1300℃를 초과할 경우 소결체의 내부기공이 포획되어 다공성의 미세구조가 형성됨에 따라 압축강도가 저하된다.At this time, if the holding temperature is less than 1100 ℃ in the sintering process, the sintering power is lowered and the brittle strength is low. If the holding temperature is higher than 1300 ℃, the internal pores of the sintered body are trapped and the compressive strength is lowered as the porous microstructure is formed. .

본 발명은 상기와 같은 과정에 의해 소결체를 제조하고 이 소결체를 가공하여 우수한 물리적 특성을 갖는 벽돌을 얻을 수 있다.In the present invention, a sintered body is manufactured by the above process and the sintered body can be processed to obtain a brick having excellent physical properties.

이상에서와 같이 본 발명은, 더스트-점토계 소결체를 제조할 때 액상 특성을 제어하는 알루미나를 첨가하고, 알루미나가 첨가되는 함량을 최적화하여 상기 소결체 및 이를 이용해 제조된 벽돌이 고온에서의 형상유지능력을 향상시키는 효과를 얻게 된다.As described above, the present invention, when manufacturing the dust-clay-based sintered body is added to the alumina to control the liquid-phase characteristics, by optimizing the content of the alumina is added to the sintered body and the brick manufactured using the shape retaining ability at high temperature The effect is to improve.

또한, 본 발명은 상기 알루미나의 첨가에 의해 소결체 및 이를 이용해 제조된 벽돌의 밀도를 증가시키고 흡수율을 낮추게 되며, 압축강도의 발현온도를 상승시킴과 동시에 기계적 강도를 증진시켜 우수한 물리적 특성을 얻을 수 있도록 한 효과가 있다.In addition, the present invention increases the density of the sintered body and the brick manufactured using the same by adding the alumina, lowers the absorption rate, increases the expression temperature of the compressive strength and at the same time improves the mechanical strength to obtain excellent physical properties. There is one effect.

상기와 같은 본 발명을 실시하여 시편을 제작하고, 이 시편에 대한 물리적 특성과 내화도를 측정한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.By carrying out the present invention as described above to produce a specimen, and to measure the physical properties and the degree of fire resistance of the specimen will be described in detail with reference to the accompanying drawings.

<시편의 제작><Production of Psalms>

시편으로 제작될 적점토와 더스트는 표 1에서와 같은 각각의 함량조성에 의해 준비되었다.Red clay and dust to be prepared from the specimens were prepared by their respective composition as shown in Table 1.

Figure 112008023277182-pat00001
Figure 112008023277182-pat00001

본 실시예에서 시편은 표 2에서와 같이 전체 100중량%에 대해 더스트를 5중량%, 10중량%, 15중량%로 하고, 이에 대해 알루미나를 0, 5중량%, 10중량%, 15중량%로 첨가하여 1200℃/2h로 소결시켜 제조하였다.In this example, the specimen is 5% by weight, 10% by weight, 15% by weight with respect to the total 100% by weight, as shown in Table 2, for which 0, 5%, 10%, 15% by weight of alumina It was prepared by sintering at 1200 ℃ / 2h.

Figure 112008023277182-pat00002
Figure 112008023277182-pat00002

<시편의 물성 측정><Measurement of physical properties of specimens>

1. 미세구조1. Microstructure

미세구조는 SEM(JSM-5600, JEOL Co.)으로 관찰하였으며, 이 때 관찰이 용이하도록 시편을 10% 불산(HF)용액에서 1sec 동안 에칭을 하였다.The microstructure was observed by SEM (JSM-5600, JEOL Co.), and the specimens were etched in 10% hydrofluoric acid (HF) solution for 1 sec for easy observation.

2. 밀도와 흡수율2. Density and Absorption Rate

상기 제작된 시편을 archimedes(아르키메데스) 방법에 의해 측정하였다.The prepared specimens were measured by the archimedes method.

3. 압축강도3. Compressive strength

압축강도는 직경 10mm, 높이 10mm의 원통형 시편을 제조하여 측정하였으며, 5개 시편에 대하여 평균값을 구하였다.The compressive strength was measured by preparing cylindrical specimens with a diameter of 10 mm and a height of 10 mm. The average values for five specimens were obtained.

4. 결정상 확인4. Crystallographic confirmation

X-선(D/MAX 2500/PC)회절 분석을 수행하여 측정하였다. 이 때, 측정조건은 Cu-kα선, 40kV/40mA, scan speed = 0.1°< 2θ < 80°이었다.X-ray (D / MAX 2500 / PC) diffraction analysis was performed and measured. In this case, the measurement conditions are Cu-k α line, 40 kV / 40 mA, scan speed = 0.1 ° <2θ <80 °.

5. 내화도5. Fire resistance

내화도 실험은 ASTM D-1857-87에 의거하여 콘(cone) 모양의 시편을 제작하여 실시하였다. 이 때, 콘 시편의 크기는 변의 길이가 6.4mm인 정삼각형을 밑변으로 하고, 높이를 19.0mm 각도로 세워 고정하였다. 또한, 콘 시편은 지지대 몰드 위에 80°또는 90°각도로 세워 고정하였다. 특히, 지지대의 재질은 알루미나와 적점토를 7 : 3 비율로 하여 콘과의 반응을 최소화 하였다.The fire resistance test was performed by preparing cone shaped specimens in accordance with ASTM D-1857-87. At this time, the size of the cone specimen was fixed with an equilateral triangle having a side length of 6.4 mm as the base and having a height of 19.0 mm. In addition, the cone specimen was fixed at an 80 ° or 90 ° angle on the support mold. In particular, the material of the support has alumina and red clay in a 7: 3 ratio to minimize the reaction with the cone.

또한, 내화도 관련 온도들은 4가지 종류로, 80°로 세워진 콘이 휘기 시작하는 온도를 TI, 80°콩이 휘어져 바닥에 닿는 온도를 TR(내화온도), 수직으로 세운 콘이 용융되어 높이가 밑변의 2배가 되는 형상의 반구가 되었을 때의 온도를 TS, 그리고, 수직 콘이 용융되어 높이가 변의 길이와 같은 형상의 반구가 되었을 때 온도를 TH라고 한다. 이러한 내화 관련 온도들은 로의 벽면에 설치된 석영창을 통하여 고온 관측용 보안경을 착용하여 측정하였으며, 이 때, 승온속도는 5℃/min로 하였다.In addition, there are four types of fire resistance-related temperatures: the temperature at which the cone set at 80 ° starts to bend T I , and the temperature at which the bean is bent at 80 ° to reach the bottom is T R (fire temperature) is referred to as the temperature at which the base 2 is of a hemispherical shape that is multiple of T S, and, the temperature T H when the vertical cone is melted when the height of the semi-spherical shape, such as a side length. These fire-related temperatures were measured by wearing a high-temperature observation goggles through a quartz window installed on the wall of the furnace, the temperature rising rate was 5 ℃ / min.

<측정결과><Measurement result>

1. 미세구조1. Microstructure

점토 100중량%인 소결체(도 1a)의 미세구조에 비해 10D - 0A의 시편(도 1b)에는 크기가 150㎛정도의 거대기공을 비롯하여 다양한 크기의 거대기공이 존재하며 불균일한 미세구조를 갖고 있다. 더스트가 첨가된 시편이 불균일한 미세구조의 다공성인 이유는 더스트에 융제 성분이 많아 소성과정에서 액상을 발생시키고, 이 액상이 시편을 감싸면서 시편 내부를 환원분위기로 만들기 때문이다. 이 후, 상기 시편 내부가 환원되면, 산화철이 산소가스를 방출하게 되며, 동시에 이를 상기 액상이 포획하여 미세구조를 다공성으로 만들게 된다.Compared to the microstructure of the 100 wt% clay sintered body (FIG. 1A), the specimen of 10D-0A (FIG. 1B) contains macropores of various sizes, including macropores of about 150 μm in size, and has a nonuniform microstructure. . The reason that the dust-added specimen is porous with a non-uniform microstructure is because a lot of flux component in the dust generates a liquid phase during the firing process, and the liquid phase surrounds the specimen and makes the inside of the specimen into a reducing atmosphere. Thereafter, when the inside of the specimen is reduced, the iron oxide releases oxygen gas, and at the same time, the liquid phase is captured to make the microstructure porous.

그러나, 10D 계열 시편에 알루미나가 첨가된 시편(도 1c는 10D - 5A, 도 1d는 10D - 10A, 도 1e는 10D - 15A)은 거대기공이 소멸하고 미세구조도 균일하게 유지됨을 알 수 있었다. 특히, 알루미나가 15중량% 첨가된 10D - 15A 시편의 미세구조가 매우 균일함을 알 수 있었다.However, it could be seen that the specimens in which alumina was added to the 10D-based specimens (FIG. 1C, 10D-5A, FIG. 1D, 10D-10A, and FIG. 1E, 10D-15A) dissipated the macropores and maintained a uniform microstructure. In particular, it can be seen that the microstructure of the 10D-15A specimen in which 15% by weight of alumina is added is very uniform.

2. 밀도와 흡수율2. Density and Absorption Rate

5D 계열 시편에서 알루미나를 0 ~ 15중량% 범위로 첨가시켜 1250℃/2h와 1300℃/2h로 소결시킨 시편들의 겉보기 밀도와 흡수율은 도 2a, 도 2b의 그래프에서와 같은 결과를 나타낸다.The apparent density and water absorption rate of the specimens sintered at 1250 ° C./2h and 1300 ° C./2h by adding alumina in the range of 0 to 15 wt% in the 5D series specimens show the same results as in the graphs of FIGS. 2A and 2B.

상기 겉보기 밀도는 도 2a에서와 같이 알루미나의 첨가량이 증가할 수록 증가된다. 또한, 상기 흡수율은 시편내에 알루미나의 첨가량이 증가하면 감소하게 된다. 특히, 상기와 같은 겉보기 밀도와 흡수율은 1300℃에서 명확하게 확인될 수 있었다.The apparent density increases as the amount of alumina added increases, as shown in FIG. 2A. In addition, the absorption rate decreases as the amount of alumina added in the specimen increases. In particular, the apparent density and water absorption as described above could be clearly seen at 1300 ℃.

이와 같은 결과는 도 1의 미세구조에서도 확인되었듯이 알루미나가 첨가되면 거대기공이 감소됨과 동시에 치밀한 미세구조로 변화되기 때문에 발생됨을 알 수 있었다.As shown in the microstructure of FIG. 1, this result was found to occur because when the alumina is added, the macropores are reduced and the microstructure is changed to a dense microstructure.

3. 압축강도3. Compressive strength

도 3은 10D 계열 시편의 온도 및 조성에 따른 압축강도를 측정한 결과를 나타낸 그래프이다.Figure 3 is a graph showing the results of measuring the compressive strength according to the temperature and composition of the 10D series specimens.

도면을 참조하면, 알루미나가 첨가되지 않은 10D - 0A 시편은 초결온도와 함께 압축강도가 증가되며, 1150℃에서 최고 강도값을 갖는다. 예로 1050℃에 비하여 1150℃로 소결된 시편의 강도가 200% 증가되었다. 그러나, 그 이상의 소결온도에서는 오히려 압축강도가 저하되었는데, 이는 1150℃가 적절한 액상의 발생으로 소결의 치밀화가 일어나는 온도이며, 그 이상의 높은 온도는 내부기공이 포획되어 외부로 빠져나가지 못하기 때문에 다공성의 미세구조를 갖게 되고, 이에 따라 압축강도가 압축강도가 저하되는 것임을 알 수 있었다.Referring to the drawings, the 10D-0A specimen without alumina increases the compressive strength with the initial temperature and has the highest strength value at 1150 ° C. For example, the strength of specimens sintered at 1150 ° C was increased by 200% compared to 1050 ° C. However, at higher sintering temperatures, the compressive strength was lowered. This is the temperature at which sintering densification occurs due to the generation of an appropriate liquid phase, and the higher temperature is higher than the porosity because internal pores are trapped and cannot escape to the outside. It has a microstructure, and it can be seen that the compressive strength is lowered accordingly.

이에 반하여, 알루미나가 첨가된 시편은 최고의 압축강도를 얻을 수 있는 온도가 알루미나가 첨가되지 않은 시편에 비해 50℃ 증가된 1200℃임을 확인할 수 있었다. 또한, 알루미나의 첨가량이 증가할수록 최고압축강도는 증가하게 되는데, 예로써, 1200℃로 소결된 시편 중에서 10D - 0A 시편에 비하여 10D - 15A 시편의 압축강도가 330% 증가되었다.On the contrary, the alumina-added specimens were found to have a temperature at which the maximum compressive strength was obtained was 1200 ° C. increased by 50 ° C. compared to the specimens without the alumina added. In addition, as the amount of alumina added increases, the maximum compressive strength increases. For example, the compressive strength of the 10D-15A specimen increased by 330% compared to the 10D-0A specimen among the specimens sintered at 1200 ° C.

상기와 같은 결과로, 적절한 온도 범위 내에서 소결온도 증가에 의해 시편의 강도가 증가되는 것은 일반적이지만, 1150℃에서 최고 강도가 나왔다는 것은 그 이상의 온도에서 내부 기공들이 발포(bloating)되어 시편이 경량화되면서 강도가 낮아진 것임을 알 수 있었다.As a result, it is common that the strength of the specimen is increased by increasing the sintering temperature within an appropriate temperature range, but the highest strength at 1150 ° C indicates that the internal pores are bloated at a temperature higher than that, resulting in a lighter weight of the specimen. As you can see the strength was lowered.

4. 결정상 확인4. Crystallographic confirmation

도 4a, 도 4b는 10D 계열 시편을 각각 1100℃와 1275℃에서 소결한 뒤, X-선(D/MAX 2500/PC)회절 분석기를 통해 분석을 수행한 각각의 결과 그래프이다. 도면 중 ○는 뮬라이트, ●는 석영, □는 적철석, ■는 허시나이트, ▼는 강옥을 나타낸다.4A and 4B are graphs of the results of sintering 10D series specimens at 1100 ° C. and 1275 ° C., respectively, and performing an analysis through an X-ray (D / MAX 2500 / PC) diffraction analyzer. In the figures, o indicates mullite, o indicates quartz, o indicates hematite, o indicates hercinite, o and corundum.

도 4a에서와 같이 1100℃의 낮은 소결온도에서는 시편에 알루미나를 첨가하여도 석영(quartz)과 알루미나가 상호 반응하지 않고 각각의 상으로 존재한다. 그러나, 도 4b에서와 같이 1275℃의 소결온도에서는 알루미나가 첨가된 시편의 석영 상은 사라지고, 허시나이트(hercynite)(FeO·Al2O3)와 뮬라이트(mullite)(3Al2O3·2SiO2)가 합성되는 현상을 확인할 수 있었다.At a low sintering temperature of 1100 ° C. as shown in FIG. 4A, even though alumina is added to the specimen, quartz and alumina do not react with each other and exist as respective phases. However, the sintering temperature of 1275 ℃, as shown in Figure 4b disappears quartz phase of the sample of the alumina were added, Hershey nitro (hercynite) (FeO · Al 2 O 3) , and mullite (mullite) (3Al 2 O 3 · 2SiO 2) The phenomenon of synthesizing was confirmed.

이러한 결과로, 상기 1275℃의 소결온도에서는 알루미나가 석영과 산화철을 소모시켰음을 알 수 있었으며, 알루미나가 첨가되지 않은 시편은 1275℃에서 석영이 동질이상을 일으켜 크리스토발라이트 운모류로 전이된 것임을 알 수 있었다.As a result, it was found that the alumina consumed quartz and iron oxide at the sintering temperature of 1275 ° C., and the specimen without alumina was transferred to cristobalite mica at 1275 ° C. due to homogeneous abnormalities.

이 때, 상기 알루미나가 첨가된 시편의 뮬라이트 상 합성은 주사전자 현미경(SEM)으로 확인할 수 있었다. 도 5는 상기 뮬라이트 상 합성이 이루어진 시편의 미세구조 상세도이다.At this time, the mullite phase synthesis of the specimen to which the alumina was added was confirmed by scanning electron microscopy (SEM). Figure 5 is a detailed view of the microstructure of the specimen made of the mullite phase synthesis.

도면을 참조하면, 상기 시편은 10D 계열 시편에 알루미나를 15중량% 첨가하고 1200℃에서 소결한 것이며, 시편내 침상의 결정은 전형적인 뮬라이트 입자 모양으로 상당량 생성되었음을 알 수 있었다.Referring to the drawings, it was found that the specimen was sintered at 1200 ° C. by adding 15% by weight of alumina to the 10D-based specimens, and it was found that the needle-like crystals in the specimens were formed in the form of typical mullite particles.

5. 내화도5. Fire resistance

전술한 바 있듯이, 시편의 액상이 과다 생성되면 시편 형상이 변형되는 등의 결합이 발생한다. 특히 규산염 용융액을 이루는 산화물은 염기(base)성 산화물과 산성(acid) 산화물로 구분된다. 염기성 산화물은 금속원소 산화물로 유리 형성시 조직 변경물질(network modifiers)의 역활을 하고, 산성 산화물은 조직 형성물질(network formers)의 역할을 한다. 따라서 용융액내에 염기성 산화물이 많으면 용융액의 점도는 감소된다.As described above, when the liquid phase of the specimen is excessively generated, bonding such as deformation of the specimen shape occurs. In particular, the oxide forming the silicate melt is classified into a base oxide and an acid oxide. Basic oxides are metal element oxides that act as network modifiers when forming glass, and acidic oxides serve as network formers. Therefore, when there are many basic oxides in a melt, the viscosity of a melt will reduce.

융체의 염기도(basicity)는 다음의 수학식과 같이 정의된다.The basicity of the melt is defined by the following equation.

Basicity = base/acid ratio = (R2O + RO)/(SiO2 + Al2O3 + TiO2)Basicity = base / acid ratio = (R 2 O + RO) / (SiO 2 + Al 2 O 3 + TiO 2 )

여기서, R = 1족 또는 2족 원소로서 예로 산화나트륨(Na2O), 산화칼륨(K2O), 산화칼슘(CaO), 산화마그네슘(MgO)이 된다.Here, R = Group 1 or Group 2 elements, for example, sodium oxide (Na 2 O), potassium oxide (K 2 O), calcium oxide (CaO), magnesium oxide (MgO).

도 6은 상기 수학식 1에 의하여 시편들의 염기도를 나타낸 그래프이다.6 is a graph showing the basicity of the specimen by the equation (1).

도면을 참조하면, 더스트의 첨가량이 큰 시편이 염기도가 크며, 각 시편계열에서 알루미나가 첨가되면 염기도가 낮아진다. 즉, 더스트는 소지의 염기도를 증가시키며, 따라서 발생되는 액상의 점도를 감소시킨다. 한편 알루미나는 소지의 염기도를 감소시키므로 용융액의 점도를 증가시킬 수 있는 것임을 알 수 있다.Referring to the drawings, a specimen having a large amount of dust added has a high basicity, and when alumina is added in each specimen series, the basicity is lowered. That is, dust increases the basicity of the body, and thus reduces the viscosity of the liquid phase generated. On the other hand, it can be seen that alumina can increase the viscosity of the melt because it reduces the basicity of the body.

도 7은 20D 계열의 시편에 대하여 수행된 내화도 및 용융 실험결과를 나타낸 그래프이다.7 is a graph showing the results of the fire resistance and melting experiments performed on the 20D series of specimens.

특히, 도 7a는 알루미나 첨가량에 따른 각 내화도 또는 용융온도를 나타내는 것으로, 알루미나가 첨가되면 일부 TI의 온도를 제외하고는 모든 내화 및 용융온도는 증가됨을 보여준다. 또한, 도 7b는 10D와 20D 계열시편에 대하여 TR 온도를 알루미나 첨가량에 대하여 나타낸 것으로, 더스트 첨가량이 큰 시편계열이 더 낮은 내화온도를 갖는다.In particular, FIG. 7A shows each refractory degree or melting temperature according to the amount of alumina added, and shows that all of the refractory and melting temperatures are increased except for the temperature of some T I when alumina is added. In addition, Figure 7b shows the T R temperature for the amount of alumina added to the 10D and 20D series specimens, the specimen series having a large amount of dust has a lower refractory temperature.

상기 도면에서 알 수 있듯이 내화온도, TR은 10D 계열이 20D 계열 시편보다 높다는 것을 알 수 있었다. 또한, 같은 계열 내 시편에는 알루미나의 첨가량이 증가할 수록 TR 값이 높았다. 즉, 알루미나의 첨가는 단지 고 내화도 물질의 첨가에 의해 시편 내화도가 높아진 것이 아니며, 더스트에 의해 생성된 용융액의 양을 줄이고, 점도를 높였기 때문에 시편 형상이 고온까지 형태유지되는 것임을 알 수 있다.As can be seen from the figure, the fire resistance temperature, T R was found to be higher than the 10D series of the 20D series specimens. In addition, the specimens in the same series had a higher T R value as the amount of alumina added increased. That is, the addition of alumina does not increase the specimen fire resistance only by the addition of a high refractory material, it can be seen that the specimen shape is maintained to a high temperature because the amount of melt produced by dust is reduced and the viscosity is increased.

이 때, 상기 용융체의 점도는 온도에 대하여 반비례 관계를 갖는 것으로 도 8은 이를 나타낸 그래프이다.At this time, the viscosity of the melt has an inverse relationship with the temperature, Figure 8 is a graph showing this.

이와 같이 본 실시예에 사용된 모든 시편에 대하여 여러 내화 및 용융온도 간의 관계는 TI < TR < TS < TH임을 도 7을 통해 확인 할 수 있었으며, 용융체의 온도 대 점도 그래프에서 임계점도 온도 TCV는 도 8에 정의된 바와 같이 대략 TS와 유사한 값을 갖는다. 특히, 이 온도에서 융체는 빙햄 플라스틱()에서 뉴턴유동()으로 특성이 전이된다.As such, the relationship between the various refractory and melting temperatures of all the specimens used in this example was T I <T R <T S <T H. The temperature T CV has a value similar to approximately T S as defined in FIG. 8. In particular, at this temperature the melt transitions from Bingham Plastics to Newtonian flows.

또한, 시편내 형성된 액상의 점도가 시편형상에 불량을 주지 않을 정도의 높은 점도 즉 빙햄 플라스틱 특성을 갖는 최고온도인 TCV는 알루미나 첨가량과 함께 증가한다. 이 때, 알루미나가 첨가되면 시편 형상변화가 발생하는 온도가 높아진다는 의미이다. 또는, 그 이하 온도에서는 점도가 충분히 높아서 시편의 형상불량이 발생하지 않는다는 의미이기도 하다.In addition, the high viscosity such that the viscosity of the liquid phase formed in the specimen does not impair the specimen shape, that is, the highest temperature T CV having Bingham plastic properties increases with the amount of alumina added. At this time, the addition of alumina means that the temperature at which the specimen shape change occurs is increased. Alternatively, the viscosity is sufficiently high at a temperature below that, which means that the shape defect of the specimen does not occur.

더불어, 내화온도를 보면 알루미나 증가에 의해 10D 계열 시편은 1290℃에서 1600℃까지 높아진다. 또한, 20D 계열 시편은 알루미나가 첨가되지 않은 시편의 내화도가 1230℃에서 알루미나 첨가(15중량%)에 의해 1450℃까지 높아지게 된다.In addition, the refractory temperature increases 10D series specimens from 1290 ℃ to 1600 ℃ by alumina increases. In addition, in the 20D series specimens, the fire resistance of the specimen without alumina is increased from 1230 ° C. to 1450 ° C. by adding alumina (15 wt%).

도 1a 내지 도 1e는 본 발명에 의해 제조된 시편의 미세조직 확대도.1a to 1e is an enlarged view of the microstructure of the specimen prepared by the present invention.

도 2a, 도 2b는 본 발명에 의해 제조된 시편의 밀도, 흡수율 그래프.Figure 2a, Figure 2b is a graph of the density, absorption rate of the specimen prepared by the present invention.

도 3은 본 발명에 의해 제조된 시편의 압축강도 그래프.Figure 3 is a graph of compressive strength of the specimen prepared by the present invention.

도 4a, 도 4b는 본 발명에 의해 제조된 시편의 X-선 회절 분석 그래프.4A and 4B are X-ray diffraction graphs of the specimens prepared according to the present invention.

도 5는 본 발명에 의해 제조된 시편의 뮬라이트 상 합성 미세구조 확대도.5 is an enlarged view of the mullite phase synthetic microstructure of the specimen prepared by the present invention.

도 6은 본 발명에 의해 제조된 시편의 염기도 그래프.6 is a basicity graph of the specimen prepared by the present invention.

도 7a, 도 7b는 본 발명에 의해 제조된 시편의 내화온도 그래프.Figure 7a, Figure 7b is a fire resistance temperature graph of the specimen prepared by the present invention.

도 8은 본 발명에 의해 제조된 시편의 용융체 점도와 온도 대비 그래프.Figure 8 is a graph of the melt viscosity and temperature of the specimen prepared by the present invention.

Claims (4)

더스트-점토 계 벽돌을 제조하기 위해 폐기물인 더스트와 점토를 혼합하여 소결체를 형성하는 과정에서 알루미나를 혼합조성하여, 소결체 제조시 발생되는 액상의 거동이 제어되도록 한 것을 특징으로 하는 더스트 점토계 소결체 제조 중 액상의 거동 제어방법.In the process of forming a sintered compact by mixing dust and clay, which are wastes, in order to manufacture a dust-clay brick, alumina is mixed and manufactured so that dust clay sintered compact is manufactured so as to control the behavior of a liquid generated during sintered compact manufacturing. Method of controlling the behavior of medium liquid phase. 제 1 항에 있어서,The method of claim 1, 상기 소결체는 전체 100중량%에 대해 65중량% - 90중량%의 점토와, 5중량% - 20중량%의 더스트와, 5중량% - 15중량%의 알루미나를 혼합조성하는 것을 특징으로 하는 더스트 점토계 소결체 제조 중 액상의 거동 제어방법.The sintered compact is dust clay, characterized in that the mixture of 65% to 90% by weight of clay, 5% to 20% by weight of dust, and 5% to 15% by weight of alumina Method for controlling behavior of liquid phase during the manufacture of sintered compacts. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 더스트와 점토를 채취기를 이용하여 4분법으로 채취하여 분쇄기를 통해 40 메쉬(mesh)이하의 미분으로 분쇄하고, 상기 미분과 시약급의 알루미나를 혼합기 내에서 혼합하여 조성하는 단계와;Collecting dust and clay by a four-minute method using a harvester, pulverizing it into fine powder of 40 mesh or less through a pulverizer, and mixing the fine powder and reagent grade alumina in a mixer; 상기 조성물을 성형기를 통해 150MPa의 압력으로 일축 성형하여 90℃/24h로 건조기에서 건조하고, 소결로 내에서 10℃/min의 승온 속도로 1100℃ - 1300℃에서 두시간 동안 유지한 후 로냉하여 소결체를 형성하는 단계;를 포함하는 것을 특징으로 하는 더스트 점토계 소결체 제조 중 액상의 거동 제어방법.The composition was uniaxially formed at a pressure of 150 MPa through a molding machine, dried in a dryer at 90 ° C./24 h, maintained at 1100 ° C.-1300 ° C. for 2 hours at a temperature rising rate of 10 ° C./min in a sintering furnace, and then cooled by sintering. Method of controlling the behavior of the liquid phase during the manufacture of dust clay-based sintered body comprising the step of forming. 삭제delete
KR20080029758A 2008-03-31 2008-03-31 The method of liquid hehaviol in the process fo the production of sintered dust/clay body and the brick produced by using such method KR100959158B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20080029758A KR100959158B1 (en) 2008-03-31 2008-03-31 The method of liquid hehaviol in the process fo the production of sintered dust/clay body and the brick produced by using such method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20080029758A KR100959158B1 (en) 2008-03-31 2008-03-31 The method of liquid hehaviol in the process fo the production of sintered dust/clay body and the brick produced by using such method

Publications (2)

Publication Number Publication Date
KR20090104363A KR20090104363A (en) 2009-10-06
KR100959158B1 true KR100959158B1 (en) 2010-05-24

Family

ID=41534170

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080029758A KR100959158B1 (en) 2008-03-31 2008-03-31 The method of liquid hehaviol in the process fo the production of sintered dust/clay body and the brick produced by using such method

Country Status (1)

Country Link
KR (1) KR100959158B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000072111A (en) 2000-07-31 2000-12-05 이기강 Composition for lightweight aggregate and method for manufacturing the same
KR100496664B1 (en) * 1998-10-15 2005-06-22 이기강 Ceramic composition made from waste materials and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496664B1 (en) * 1998-10-15 2005-06-22 이기강 Ceramic composition made from waste materials and method for manufacturing the same
KR20000072111A (en) 2000-07-31 2000-12-05 이기강 Composition for lightweight aggregate and method for manufacturing the same

Also Published As

Publication number Publication date
KR20090104363A (en) 2009-10-06

Similar Documents

Publication Publication Date Title
CN108367993B (en) Sintered refractory zircon composite material, method for the production thereof and use thereof
Liu et al. Fabrication and characterization of porous cordierite ceramics prepared from ferrochromium slag
JP5255574B2 (en) Zirconium lite refractory raw material and plate brick
KR101843215B1 (en) Chromium oxide refractory material
CN103601507B (en) A kind of complex sintered refractory material of low porosity magnesium aluminate spinel-zirconia corundum zirconia and production technology thereof
WO2009077589A1 (en) Lightweight ceramic material
JP2021502941A (en) A method for producing a porous sintered magnesia, a batch for producing a crude ceramic (grobkeramisch) refractory product having a granulated product (Koernung) made of sintered magnesia, such a product, and a product. Method of manufacture, lining of industrial furnace (Zustellung), and industrial furnace
Dehsheikh et al. The influence of silica nanoparticles addition on the physical, mechanical, thermo-mechanical as well as microstructure of Mag-Dol refractory composites
Kusiorowski MgO-ZrO2 refractory ceramics based on recycled magnesia-carbon bricks
Fu et al. Fabrication and characterization of lightweight microporous alumina with guaranteed slag resistance
Zawrah et al. Recycling and utilization of some waste clays for production of sintered ceramic bodies
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
He et al. Effect of nickel slag wastes on the properties of cordierite ceramics
JP2018165224A (en) Porous ceramic
Muliawan et al. Preparation and characterization of phosphate-sludge kaolin mixture for ceramics bricks
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
KR100959158B1 (en) The method of liquid hehaviol in the process fo the production of sintered dust/clay body and the brick produced by using such method
Ewais et al. Effect of hercynite spinel on the technological properties of MCZ products used for lining cement rotary kilns
Abdelfattah et al. Effect of firing on mineral phases and properties of lightweight expanded clay aggregates
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
Elakhame et al. Characterization of Ujogba Clay Deposits in Edo State, Nigeria for Refractory Applications
JP2012192430A (en) Alumina carbon-based slide gate plate
Ndaliman Refractory properties of termite hills under varied proportions of additives
Utegenovaa et al. Physico-mechanical properties of ceramics based on aluminosilicates modified by metallurgical waste
JP6535528B2 (en) Alumina-silicon carbide-carbon based monolithic refractories

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130509

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140513

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee