JP2007131493A - METHOD FOR PRODUCING BULK BODY OF Al-ADDED TiN - Google Patents

METHOD FOR PRODUCING BULK BODY OF Al-ADDED TiN Download PDF

Info

Publication number
JP2007131493A
JP2007131493A JP2005326928A JP2005326928A JP2007131493A JP 2007131493 A JP2007131493 A JP 2007131493A JP 2005326928 A JP2005326928 A JP 2005326928A JP 2005326928 A JP2005326928 A JP 2005326928A JP 2007131493 A JP2007131493 A JP 2007131493A
Authority
JP
Japan
Prior art keywords
powder
metal
molding
molded body
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005326928A
Other languages
Japanese (ja)
Other versions
JP5093433B2 (en
Inventor
Takeshi Hirota
健 廣田
Sho Hikawa
翔 肥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2005326928A priority Critical patent/JP5093433B2/en
Publication of JP2007131493A publication Critical patent/JP2007131493A/en
Application granted granted Critical
Publication of JP5093433B2 publication Critical patent/JP5093433B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a bulk body of an Al-added TiN in a shorter time and at a lower cost than in a conventional method. <P>SOLUTION: A specified amount of a metal Ti powder and a specified amount of a metal Al powder are mixed together and are press-molded to form a first molding. The first molding is subjected to self-propagating high-temperature synthesis in a nitrogen atmosphere at a specified pressure, and the sample obtained thereby is ground to obtain a first powder. The first powder is press-molded to obtain a second molding. The second molding is subjected to self-propagating high-temperature synthesis in a nitrogen atmosphere at a specified pressure, and the sample obtained thereby is ground to obtain the second powder. The second powder is press-molded to obtain a third molding. The third molding is sintered under pressure to obtain a bulk body of an Al-added TiN. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、窒化チタン(TiN)系化合物、特にAl添加TiNのバルク体を製造する方法に関するものである。   The present invention relates to a method for producing a bulk body of titanium nitride (TiN) -based compounds, particularly Al-added TiN.

TiN系化合物は、軽量であるにもかかわらず、高融点、高硬度並びに高耐食性、および高い化学的安定性等の優れた特性を有しており、また美しい金属光沢を示すので、機械部品や切削工具等あるいは宝飾部品に用いられている。
その一方で、TiN系化合物は難焼結性の物質であるから、緻密なバルク体を製造することが難しく、これまで、主として薄膜材料として使用されてきている。
TiN-based compounds have excellent characteristics such as high melting point, high hardness and high corrosion resistance, and high chemical stability despite being lightweight, and exhibit a beautiful metallic luster, so that mechanical parts and Used for cutting tools and other jewelry parts.
On the other hand, TiN-based compounds are hardly sinterable substances, so that it is difficult to produce a dense bulk body, and until now, they have been mainly used as thin film materials.

従来技術として、TiN系化合物、特にAl添加TiNの粉末を焼結し、窒化チタンアルミ基焼結材を製造する方法が知られている(特許文献1参照)。
この従来の方法によれば、まず最初に、PVD法(スパッタリング法やイオンプレーティング法)や、プラズマCVD法を用いて、(Ti1−xAl)N(x=0.05〜0.70)の粉末が製造される。そして、(Ti1−xAl)Nの粉末が、HP(ホットプレス)の他、例えば、HIP(熱間等方加圧焼結)、超高圧HIP等によって焼結され、窒化チタンアルミ基焼結材が得られる。
As a conventional technique, a method of manufacturing a titanium nitride aluminum-based sintered material by sintering a powder of TiN-based compound, particularly Al-added TiN is known (see Patent Document 1).
According to this conventional method, first, using a PVD method (sputtering method or ion plating method) or a plasma CVD method, (Ti 1-x Al x ) N (x = 0.05 to 0.00). 70) powder is produced. Then, the powder of (Ti 1-x Al x ) N is sintered by, for example, HIP (hot isostatic pressing), ultrahigh pressure HIP, etc. in addition to HP (hot press), and titanium nitride aluminum base A sintered material is obtained.

こうして得られた窒化チタンアルミ基焼結材は、高硬度であり、耐摩耗性、耐欠損性に優れ、例えば切削工具、掘削用ビット等に有効利用することができる。
しかしながら、この従来の方法では、原料となる(Ti1−xAl)Nの粉末を製造するために、PVD法やプラズマCVD法を使用するので、所定の組成x=0.05〜0.70を得るために、複雑な処理プロセスを必要とする。したがって、この方法は、(Ti1−xAl)N(x=0.05〜0.70)の粉末の製造に、時間とコストを要し、量産性が低いという欠点を有している。
加えて、この方法によれば、(Ti1−xAl)Nの粉末をHP、HIPおよび超高圧HIP等によって焼結するので、焼結体は、高い硬度を有している割に、曲げ強度が弱いという欠点を有している。
The titanium nitride aluminum-based sintered material thus obtained has high hardness and excellent wear resistance and fracture resistance, and can be effectively used for cutting tools, excavation bits, and the like.
However, in this conventional method, since a PVD method or a plasma CVD method is used to produce a raw material (Ti 1-x Al x ) N powder, a predetermined composition x = 0.05 to 0.00. In order to obtain 70, a complicated processing process is required. Therefore, this method has the disadvantages that it takes time and cost to produce a powder of (Ti 1-x Al x ) N (x = 0.05 to 0.70), and mass productivity is low. .
In addition, according to this method, since the powder of (Ti 1-x Al x ) N is sintered by HP, HIP, ultra-high pressure HIP, or the like, the sintered body has high hardness, It has the disadvantage of low bending strength.

特開平10−182233号公報Japanese Patent Laid-Open No. 10-182233

したがって、本発明の課題は、従来よりも短時間にかつ低コストでAl添加TiNのバルク体を製造する方法を提供することにある。
また、本発明の課題は、従来のものより曲げ強度の優れたAl添加TiNのバルク体を製造する方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for producing a bulk body of Al-added TiN in a shorter time and at a lower cost than before.
Moreover, the subject of this invention is providing the method of manufacturing the bulk body of Al addition TiN which was excellent in bending strength than the conventional one.

上記課題を解決するため、本発明は、(1)所定量の金属Ti粉末および所定量の金属Al粉末と、所定量の窒素含有化合物の粉末または所定量の液体状窒素含有化合物とを混合した後、プレス成形して第1の成形体とするステップと、(2)前記第1の成形体を自己燃焼合成させ、それによって得られた試料を粉砕して粉体とするステップと、(3)前記粉体をプレス成形して第2の成形体とするステップと、(4)前記第2の成形体を加圧焼結させることにより、Al添加TiNのバルク体を得るステップとからなっていることを特徴とするAl添加TiNのバルク体を製造する方法を構成したものである。   In order to solve the above problems, the present invention (1) mixes a predetermined amount of metal Ti powder and a predetermined amount of metal Al powder with a predetermined amount of nitrogen-containing compound powder or a predetermined amount of liquid nitrogen-containing compound. And (2) a step of self-combusting and synthesizing the first molded body, and crushing the sample obtained thereby to form a powder; and (3) ) Press-molding the powder into a second compact, and (4) obtaining a bulk body of Al-added TiN by pressure-sintering the second compact. A method for producing a bulk body of Al-added TiN, characterized in that

上記課題を解決するため、また、本発明は、(1)所定量の金属Ti粉末および所定量の金属Al粉末を混合した後、プレス成形して第1の成形体とするステップと、(2)前記第1の成形体を所定圧のN雰囲気中で自己燃焼合成させ、それによって得られた試料を粉砕して第1の粉体とするステップと、(3)前記第1の粉体をプレス成形して第2の成形体とするステップと、(4)前記第2の成形体を所定圧のN雰囲気中で自己燃焼合成させ、それによって得られた試料を粉砕して第2の粉体とするステップと、(5)前記第2の粉体をプレス成形して第3の成形体とするステップと、(6)前記第3の成形体を加圧焼結させることにより、Al添加TiNのバルク体を得るステップとからなっていることを特徴とするAl添加TiNのバルク体を製造する方法を構成したものである。 In order to solve the above problems, the present invention also includes (1) a step of mixing a predetermined amount of metal Ti powder and a predetermined amount of metal Al powder and then press-molding to form a first molded body; ) Self-combustion synthesis of the first compact in an N 2 atmosphere at a predetermined pressure, and pulverizing a sample obtained thereby to form a first powder; and (3) the first powder. (4) self-combustion synthesis of the second compact in an N 2 atmosphere at a predetermined pressure, and a sample obtained thereby is pulverized to form a second compact. (5) a step of press-molding the second powder into a third molded body, and (6) pressure-sintering the third molded body, An Al-added TN comprising a step of obtaining a bulk body of Al-added TiN Method for producing a bulk of N is obtained by constituting the.

上記の構成において、前記金属Ti粉末および金属Al粉末の量を、形成されるAl添加TiNのバルク体の組成が(Ti1−xAl)N(0<x≦0.08)となるように選択することが好ましい。
また、前記加圧焼結は、通電加圧焼結であることが好ましく、さらには、前記通電加圧焼結を、真空中において圧力10〜50MPaを加えた状態で、50〜200℃/分で1300〜1900℃まで昇温し、その温度を3〜20分間保持した後、50〜100℃/分で降温するという条件下で実行することが好ましい。
In the above configuration, the amount of the metal Ti powder and the metal Al powder is set so that the composition of the bulk body of the Al-added TiN to be formed becomes (Ti 1-x Al x ) N (0 <x ≦ 0.08). It is preferable to select.
The pressure sintering is preferably electric current pressure sintering, and further, the electric current pressure sintering is performed at 50 to 200 ° C./min in a vacuum with a pressure of 10 to 50 MPa. It is preferable that the temperature is raised to 1300 to 1900 ° C., held for 3 to 20 minutes, and then lowered at 50 to 100 ° C./min.

本発明によれば、原料となる(Ti1−xAl)Nの粉末を、金属Ti粉末および金属Al粉末を混合して成形体とし、それを自己燃焼合成させて得られた試料を粉砕することによって製造するようにしたので、所定の組成、好ましくは0<x≦0.2の(Ti1−xAl)Nの粉末を短時間にかつ低コストで製造可能であり、従来法よりも量産性が格段に向上する。
さらに、本発明によれば、(Ti1−xAl)Nの粉末を成形体とした後、加圧焼結させるようにしたので、得られた(Ti1−xAl)Nのバルク体は、従来のものより緻密であり、曲げ強度等の物理的特性も向上している。
こうして、本発明によって製造される(Ti1−xAl)Nのバルク体は、高い硬度に加えて大きな曲げ強度も備えているので、切削工具等として利用できるだけでなく、例えば、タービンエンジンのプロペラ等の形成材料として使用することもできる。
According to the present invention, a raw material (Ti 1-x Al x ) N powder is mixed with a metal Ti powder and a metal Al powder to form a molded body, and a sample obtained by self-combustion synthesis is pulverized. Thus, it is possible to manufacture a powder of (Ti 1-x Al x ) N having a predetermined composition, preferably 0 <x ≦ 0.2, in a short time and at a low cost. The mass productivity is greatly improved.
Furthermore, according to the present invention, since the powder of (Ti 1-x Al x ) N is formed into a compact and then sintered under pressure, the resulting bulk of (Ti 1-x Al x ) N is obtained. The body is denser than conventional ones and has improved physical properties such as bending strength.
Thus, the bulk body of (Ti 1-x Al x ) N produced by the present invention has not only high hardness but also high bending strength, so it can be used not only as a cutting tool or the like, It can also be used as a forming material for propellers and the like.

次に、本発明の好ましい実施例について説明する。
本発明によれば、まず、所定量の金属Ti粉末(純度99.9%:平均粒径=25μm)および所定量の金属Al粉末(純度99.89%:平均粒径=1.15μm)が湿式混合される。この場合、湿式混合がより好ましいが、乾式混合することもできる。そして、その混合された粉体が、一軸加圧成形された後、100MPaで冷間静水圧プレス(CIP)されて第1の成形体とされる。
Next, preferred embodiments of the present invention will be described.
According to the present invention, first, a predetermined amount of metal Ti powder (purity 99.9%: average particle size = 25 μm) and a predetermined amount of metal Al powder (purity 99.89%: average particle size = 1.15 μm) are obtained. Wet mixed. In this case, wet mixing is more preferable, but dry mixing can also be performed. The mixed powder is uniaxially pressed and then cold isostatic pressed (CIP) at 100 MPa to form a first molded body.

次に、この第1の成形体が、10MPaのN(純度99.99%)雰囲気中で自己燃焼合成(Self-propagating High-temperature Synthesis:SHS) せしめられる。この自己燃焼合成によって得られた試料は、超硬乳鉢によって粉砕され、メッシュフィルター(開口径32μm)を用いて整粒され、第1の粉体とされる。
第1の粉体は、再び、一軸加圧成形された後、100MPaでCIPされて第2の成形体とされ、前と同様に自己燃焼合成せしめられる。この自己燃焼合成によって得られた試料は、前と同様、超硬乳鉢によって粉砕され、メッシュフィルターを用いて整粒され、第2の粉体とされる。
Next, this first molded body is subjected to self-propagating high-temperature synthesis (SHS) in a 10 MPa N 2 (purity 99.99%) atmosphere. A sample obtained by this self-combustion synthesis is pulverized by a cemented mortar and sized using a mesh filter (opening diameter: 32 μm) to form a first powder.
The first powder is again uniaxially pressed and then CIPed at 100 MPa to form a second molded body, which is self-combusted and synthesized as before. The sample obtained by this self-combustion synthesis is pulverized with a cemented mortar as before, and is sized using a mesh filter to form a second powder.

この実施例では、上述のように自己燃焼合成が2回繰り返されるが、自己燃焼合成を1回だけ行うようにしてもよい。この場合、金属チタンTiおよび金属アルミニウムAl粉末の混合物からなる成形体中の金属粒子間の隙間を充填する気体の窒素ガス、および成形体周辺に存在する窒素ガスからの窒素供給では、自己燃焼合成一回の当たりの窒素の供給量に限界がある。そこで、TiN化合物を生成するには略50モル%(窒素含有量として22.64質量%)の窒素を供給するために必要な窒素を、気体状態ではなく、液体や固体状態で供給する必要がある。例えば、ジアゾ化ナトリウムNaNのような固体の化合物を原料のTiやAl粉末と適当量混合し、この混合物の成形体を自己燃焼させればよい。燃焼反応後のNaは温水で洗浄して洗い流せば除去できる。 In this embodiment, the self-combustion synthesis is repeated twice as described above, but the self-combustion synthesis may be performed only once. In this case, self-combustion synthesis is performed by supplying nitrogen gas from a gas filling a gap between metal particles in a molded body made of a mixture of metal titanium Ti and metal aluminum Al powder, and nitrogen gas existing around the molded body. There is a limit to the amount of nitrogen supplied per time. Therefore, in order to produce a TiN compound, it is necessary to supply the nitrogen necessary for supplying approximately 50 mol% (nitrogen content 22.64% by mass) of nitrogen in a liquid or solid state, not in a gaseous state. is there. For example, an appropriate amount of a solid compound such as sodium diazotized NaN 3 may be mixed with the raw material Ti or Al powder, and the compact of this mixture may be self-combusted. Na after the combustion reaction can be removed by washing with warm water and washing away.

第2の粉体は、その後、遊星ボールミル(WC−Coボール使用、500rpm、60分)によって粉砕され、さらに乾燥された後、200MPaでCIP成形されて第3の成形体とされる。
その後、第3の成形体は、通電加圧焼結(Spark Plasma Sintering:SPS)せしめられ、それによってAl添加TiNのバルク体が得られる。通電加圧焼結は、真空中において圧力10〜50MPaを加えた状態で、50〜200℃/分で1300〜1900℃まで昇温し、その温度を3〜20分間保持した後、50〜100℃/分で降温するという条件下でなされる。この実施例では、(Ti1−xAl)Nの粉末を通電加圧焼結によって焼結させたが、HIP(熱間等方加圧焼結)等の加圧焼結によって焼結させてもよい。
Thereafter, the second powder is pulverized by a planetary ball mill (using WC-Co balls, 500 rpm, 60 minutes), further dried, and then CIP-molded at 200 MPa to form a third compact.
Thereafter, the third molded body is subjected to electric current pressure sintering (Spark Plasma Sintering: SPS), thereby obtaining a bulk body of Al-added TiN. In the electric current pressure sintering, the temperature is increased to 1300 to 1900 ° C. at 50 to 200 ° C./min with a pressure of 10 to 50 MPa in a vacuum, and the temperature is maintained for 3 to 20 minutes. It is made under the condition that the temperature is lowered at a rate of ° C / min. In this example, the powder of (Ti 1-x Al x ) N was sintered by electric current pressure sintering, but was sintered by pressure sintering such as HIP (hot isostatic pressing). May be.

本発明によれば、形成されるAl添加TiNのバルク体の組成(Ti1−xAl)Nは、主として、混合される金属Ti粉末および金属Al粉末の量によって決定される。
そして、それぞれ、x=0、x=0.01、x=0.02、x=0.04、x=0.08の組成を有する5種類の(Ti1−xAl)Nのバルク体(試料No.1〜No.5)を製造した。なお、これらのバルク体試料の製造に際しては、通電加圧焼結は、真空中において圧力約30MPaを加えた状態で、約100℃/分で1300〜1900℃まで昇温し、その温度を約5分間保持した後、約50℃/分で降温するという条件下でなされた。
According to the present invention, the composition (Ti 1-x Al x ) N of the bulk body of Al-added TiN to be formed is mainly determined by the amount of mixed metal Ti powder and metal Al powder.
Then, five kinds of (Ti 1-x Al x ) N bulk bodies having compositions of x = 0, x = 0.01, x = 0.02, x = 0.04, and x = 0.08, respectively. (Sample No. 1 to No. 5) were manufactured. In the production of these bulk body samples, energization and pressure sintering is carried out by raising the temperature to 1300-1900 ° C. at about 100 ° C./min with a pressure of about 30 MPa applied in a vacuum. After holding for 5 minutes, the temperature was lowered at about 50 ° C./minute.

製造した各バルク体試料の結晶構造、すなわち、その結晶相をX線回折装置によって分析した。図1には、X線回折パターン(CuKα線による)のグラフが示してある。グラフの縦軸はX線強度、横軸は回折角2θの値をそれぞれ表している。なお、図1では、試料No.2のデータは省略されている。
図1のグラフから、試料No.1(x=0)では、立方晶TiNが形成され、試料No.3(x=0.02)では、(Ti1−xAl)Nが形成されていることがわかる。また、試料No.4(x=0.04)および試料No.5(x=0.08)では、(Ti1−xAl)Nのほかに微細窒化物TiAlNが形成されている。
The crystal structure of each manufactured bulk body sample, that is, the crystal phase thereof was analyzed by an X-ray diffractometer. FIG. 1 shows a graph of an X-ray diffraction pattern (by CuK α- ray). The vertical axis of the graph represents the X-ray intensity, and the horizontal axis represents the value of the diffraction angle 2θ. In FIG. Data 2 is omitted.
From the graph of FIG. 1 (x = 0), cubic TiN is formed. 3 (x = 0.02), it can be seen that (Ti 1-x Al x ) N is formed. Sample No. 4 (x = 0.04) and sample no. In 5 (x = 0.08), fine nitride Ti 2 AlN is formed in addition to (Ti 1-x Al x ) N.

また、各バルク体試料の諸特性を調べ、結果を以下の表1にまとめた。

Figure 2007131493
表1中、Gは平均結晶粒径であり、Hは硬度であり、σは曲げ強度であり、KICは破壊靱性値である。 Further, various characteristics of each bulk body sample were examined, and the results are summarized in Table 1 below.
Figure 2007131493
In Table 1, G S is the average crystal grain size, H V is the hardness, sigma b is bending strength, K IC is the fracture toughness value.

表1を参照して、Alの添加量(xの値)が増大するにつれて、格子定数aが、立方晶TiNの格子定数4.2411Åから4.2325Åへと徐々に減少し、ここでも(Ti1−xAl)Nの形成が裏付けられた。また、Alの添加量(xの値)が増大するにつれて、バルク体の曲げ強度σが増大していることがわかる。そして、最も優れた機械的特性を示したものは、試料5(x=0.08)で、硬度H=14.1GPa、曲げ強度σ=796MPa、破壊靱性値KIC=4.5MPa・m1/2である。この結果から、Alを添加することによって、硬度および破壊靱性値はわずかに低下するものの、曲げ強度が著しく向上することがわかる。 Referring to Table 1, as the additive amount of Al (the value of x) increases, the lattice constant a gradually decreases from the cubic TiN lattice constant of 4.2411 Å to 4.2325 、. The formation of 1-x Al x ) N was confirmed. It can also be seen that the bending strength σ b of the bulk body increases as the additive amount of Al (value of x) increases. Sample 5 (x = 0.08) showed the most excellent mechanical properties, hardness H V = 14.1 GPa, bending strength σ b = 796 MPa, fracture toughness value K IC = 4.5 MPa · m 1/2 . From this result, it can be seen that, by adding Al, although the hardness and fracture toughness values are slightly decreased, the bending strength is remarkably improved.

本発明の方法によって製造したAl添加TiNのバルク体試料のX線回折パターンのグラフである。It is a graph of the X-ray-diffraction pattern of the bulk body sample of Al addition TiN manufactured by the method of this invention.

Claims (5)

(1)所定量の金属Ti粉末および所定量の金属Al粉末と、所定量の窒素含有化合物の粉末または所定量の液体状窒素含有化合物とを混合した後、プレス成形して第1の成形体とするステップと、
(2)前記第1の成形体を自己燃焼合成させ、それによって得られた試料を粉砕して粉体とするステップと、
(3)前記粉体をプレス成形して第2の成形体とするステップと、
(4)前記第2の成形体を加圧焼結させることにより、Al添加TiNのバルク体を得るステップとからなっていることを特徴とするAl添加TiNのバルク体を製造する方法。
(1) A predetermined amount of metal Ti powder and a predetermined amount of metal Al powder mixed with a predetermined amount of nitrogen-containing compound powder or a predetermined amount of liquid nitrogen-containing compound, and then press-molded to form a first molded body. And steps
(2) self-combusting and synthesizing the first molded body, and pulverizing a sample obtained thereby to form a powder;
(3) a step of press-molding the powder into a second molded body;
(4) A method for producing an Al-added TiN bulk body, comprising the step of obtaining a bulk body of Al-added TiN by pressure sintering the second compact.
(1)所定量の金属Ti粉末および所定量の金属Al粉末を混合した後、プレス成形して第1の成形体とするステップと、
(2)前記第1の成形体を所定圧のN雰囲気中で自己燃焼合成させ、それによって得られた試料を粉砕して第1の粉体とするステップと、
(3)前記第1の粉体をプレス成形して第2の成形体とするステップと、
(4)前記第2の成形体を所定圧のN雰囲気中で自己燃焼合成させ、それによって得られた試料を粉砕して第2の粉体とするステップと、
(5)前記第2の粉体をプレス成形して第3の成形体とするステップと、
(6)前記第3の成形体を加圧焼結させることにより、Al添加TiNのバルク体を得るステップとからなっていることを特徴とするAl添加TiNのバルク体を製造する方法。
(1) a step of mixing a predetermined amount of metal Ti powder and a predetermined amount of metal Al powder and then press-molding to form a first molded body;
(2) subjecting the first molded body to self-combustion synthesis in an N 2 atmosphere of a predetermined pressure, and pulverizing a sample obtained thereby to form a first powder;
(3) a step of press-molding the first powder into a second molded body;
(4) self-combusting and synthesizing the second molded body in an N 2 atmosphere at a predetermined pressure, and pulverizing a sample obtained thereby to form a second powder;
(5) a step of press-molding the second powder into a third molded body;
(6) A method for producing an Al-added TiN bulk body comprising the step of pressure sintering the third compact to obtain an Al-added TiN bulk body.
前記金属Ti粉末および金属Al粉末の量を、形成されるAl添加TiNのバルク体の組成が(Ti1−xAl)N(0<x≦0.08)となるように選択することを特徴とする請求項1または請求項2に記載の方法。 The amount of the metal Ti powder and the metal Al powder is selected so that the composition of the bulk body of the Al-added TiN to be formed is (Ti 1-x Al x ) N (0 <x ≦ 0.08). 3. A method according to claim 1 or claim 2 characterized in that 前記加圧焼結は、通電加圧焼結であることを特徴とする請求項1〜請求項3のいずれかに記載の方法。   The method according to claim 1, wherein the pressure sintering is an electric current pressure sintering. 前記通電加圧焼結を、真空中において圧力10〜50MPaを加えた状態で、50〜200℃/分で1300〜1900℃まで昇温し、その温度を3〜20分間保持した後、50〜100℃/分で降温するという条件下で実行することを特徴とする請求項4に記載の方法。   The electric pressure and pressure sintering is carried out in a state where a pressure of 10 to 50 MPa is applied in a vacuum, the temperature is raised to 1300 to 1900 ° C. at 50 to 200 ° C./min, and the temperature is maintained for 3 to 20 minutes. The method according to claim 4, wherein the method is performed under a condition that the temperature is lowered at 100 ° C./min.
JP2005326928A 2005-11-11 2005-11-11 Method for producing a bulk body of Al-added TiN Expired - Fee Related JP5093433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005326928A JP5093433B2 (en) 2005-11-11 2005-11-11 Method for producing a bulk body of Al-added TiN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326928A JP5093433B2 (en) 2005-11-11 2005-11-11 Method for producing a bulk body of Al-added TiN

Publications (2)

Publication Number Publication Date
JP2007131493A true JP2007131493A (en) 2007-05-31
JP5093433B2 JP5093433B2 (en) 2012-12-12

Family

ID=38153457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005326928A Expired - Fee Related JP5093433B2 (en) 2005-11-11 2005-11-11 Method for producing a bulk body of Al-added TiN

Country Status (1)

Country Link
JP (1) JP5093433B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104461A1 (en) * 2012-12-31 2014-07-03 부산대학교 산학협력단 Method for preparing ti2aln bulk material and micro electrical discharge machining method
KR101459196B1 (en) * 2012-12-31 2014-11-07 부산대학교 산학협력단 Manufacturing Methods of MAX Phases TiAlN Bulk Materials and Micro Electrical Discharge Drilling Method threeof
US10029948B2 (en) 2014-08-29 2018-07-24 Sumitomo Electric Industries, Ltd. Sintered material, tool including sintered material, and sintered material production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578107A (en) * 1991-09-19 1993-03-30 Yoshikiyo Ogino Nitride powder
JPH05254939A (en) * 1992-03-13 1993-10-05 Osamu Yamada Production of high density solid solution
JPH06271901A (en) * 1993-03-17 1994-09-27 Toyo Alum Kk Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578107A (en) * 1991-09-19 1993-03-30 Yoshikiyo Ogino Nitride powder
JPH05254939A (en) * 1992-03-13 1993-10-05 Osamu Yamada Production of high density solid solution
JPH06271901A (en) * 1993-03-17 1994-09-27 Toyo Alum Kk Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104461A1 (en) * 2012-12-31 2014-07-03 부산대학교 산학협력단 Method for preparing ti2aln bulk material and micro electrical discharge machining method
KR101459196B1 (en) * 2012-12-31 2014-11-07 부산대학교 산학협력단 Manufacturing Methods of MAX Phases TiAlN Bulk Materials and Micro Electrical Discharge Drilling Method threeof
US10029948B2 (en) 2014-08-29 2018-07-24 Sumitomo Electric Industries, Ltd. Sintered material, tool including sintered material, and sintered material production method
US10501377B2 (en) 2014-08-29 2019-12-10 Sumitomo Electric Industries, Ltd. Sintered material, tool including sintered material, and sintered material production method

Also Published As

Publication number Publication date
JP5093433B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
Sun et al. Ternary compound Ti3SiC2: part I. Pulse discharge sintering synthesis
JPH04243973A (en) Sintered ceramic product
WO2009128034A1 (en) Super-hand enhanced hard-metals
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JP6918697B2 (en) Cermet material and its manufacturing method
JP2016526101A (en) New manufacturing method of cemented carbide and product obtained thereby
JP6265103B2 (en) Sintered body
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
JP2015151323A (en) Boron carbide/titanium boride composite ceramic and method for producing the same
JP2013530914A (en) High-strength diamond-SiC compact and manufacturing method thereof
JP5093433B2 (en) Method for producing a bulk body of Al-added TiN
CN110629095A (en) Gradient hard alloy composite bar and preparation method thereof
JP2005281084A (en) Sintered compact and manufacturing method therefor
CN107285329B (en) Tungsten diboride hard material and preparation method and application thereof
JP4940239B2 (en) Boron oxide composite material
JP2002187775A (en) Method for manufacturing microparticle diamond sintered body
WO2020202878A1 (en) Zirconium boride/boron carbide composite and method for manufacturing same
JP2014141359A (en) Sialon-base sintered compact
JP4292255B2 (en) α-sialon sintered body and method for producing the same
JP3992474B2 (en) Method for producing boron carbide-aluminum nitride sintered body
JP6365228B2 (en) Sintered body
JP2019064885A (en) Hard material containing rhenium nitride, method for producing the same, and cutting tool using the same
JP3255750B2 (en) Method for producing diamond-like sintered body
JP2005082815A (en) Highly thermal conductive wear resistant material, and its production method
JP2001179508A (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120808

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees