JP2007130767A - Manufacturing method of copper clad laminated sheet - Google Patents

Manufacturing method of copper clad laminated sheet Download PDF

Info

Publication number
JP2007130767A
JP2007130767A JP2005323121A JP2005323121A JP2007130767A JP 2007130767 A JP2007130767 A JP 2007130767A JP 2005323121 A JP2005323121 A JP 2005323121A JP 2005323121 A JP2005323121 A JP 2005323121A JP 2007130767 A JP2007130767 A JP 2007130767A
Authority
JP
Japan
Prior art keywords
polyimide resin
nanoparticles
copper foil
copper clad
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005323121A
Other languages
Japanese (ja)
Inventor
Keifu Chin
勁風 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2005323121A priority Critical patent/JP2007130767A/en
Publication of JP2007130767A publication Critical patent/JP2007130767A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a copper clad laminated sheet of which the polyimide resin layer is improved in its toughness and dimensional stability. <P>SOLUTION: In the manufacturing method of the copper clad laminated sheet wherein a polyimide resin layer is formed on a copper foil, a dispersion, which is prepared by adding nano-particles (B) with a mean particle size of 20-500 nm of a polyimide resin to an organic solvent solution of a polyimide resin precursor (A), is cast on the surface of the copper foil to coat the copper foil and the coated copper foil is dried and heat-treated at a temperature from the glass transition temperature of the nano-particles (B) to below 400°C to imidate the polyimide resin precursor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、銅箔にポリイミド樹脂層が形成されている銅張積層板の製造方法に関する。   The present invention relates to a method for producing a copper clad laminate in which a polyimide resin layer is formed on a copper foil.

ポリイミド樹脂は耐熱性に優れ、機械的性質や電気絶縁性においても優れた特性を有しており、その特性を生かして、航空宇宙産業分野、電気電子産業分野をはじめとして多くの産業分野で使用されている。特に、回路基板材料として部品、素子の高密度実装が可能な、銅箔にポリイミド樹脂層を積層した銅張積層板の利用が増大している。近年、電気配線板の用途の多様化と共に配線数の高密度化のニーズが高まり、銅張積層板の力学的性質及びその面内等方性や寸法安定性の改善がより求められるようになった。   Polyimide resin is excellent in heat resistance and has excellent mechanical properties and electrical insulation properties, and can be used in many industrial fields such as the aerospace industry and electrical / electronics industry. Has been. In particular, the use of a copper-clad laminate in which a polyimide resin layer is laminated on a copper foil capable of high-density mounting of components and elements as a circuit board material is increasing. In recent years, with the diversification of applications of electrical wiring boards, the need for higher density of wiring has increased, and the improvement of mechanical properties, in-plane isotropy and dimensional stability of copper-clad laminates has become more demanding. It was.

従来から銅張積層板の力学的性質及びその面内等方性や寸法安定性の改善のため、ポリイミド樹脂にシリカなどの無機微粒子を添加して樹脂の特性を改良する研究が古くから行なわれている。特許文献1あるいは特許文献2では、ポリイミド樹脂層に無機フィラーを添加する方法が開示されている。しかしながら、この方法によるポリイミド樹脂層は強靭性が充分とはいえない。また、非特許文献1では、ポリイミド樹脂に銅フィラーを充填し、ポリイミド樹脂の弾性率と破壊強度の相関性を検討した報告がなされている。しかしながら、この報告では耐マイグレーション性についての検討がなされておらず、銅フィラー充填によってポリイミド樹脂の耐マイグレーション性が低下する。   In order to improve the mechanical properties and in-plane isotropy and dimensional stability of copper-clad laminates, research has been conducted for a long time to improve the properties of resins by adding inorganic fine particles such as silica to polyimide resins. ing. Patent Document 1 or Patent Document 2 discloses a method of adding an inorganic filler to a polyimide resin layer. However, the polyimide resin layer by this method cannot be said to have sufficient toughness. In Non-Patent Document 1, there is a report in which a polyimide filler is filled with a copper filler and the correlation between the elastic modulus of the polyimide resin and the breaking strength is examined. However, in this report, the migration resistance is not studied, and the migration resistance of the polyimide resin is lowered by filling the copper filler.

米国特許公開2004−260053号公報US Patent Publication No. 2004-260053 特開2000−169581号公報JP 2000-169581 A 高分子論文集, Vol. 61,No. 9, pp. 489−496 (2004)Polymer Proceedings, Vol. 61, No. 9, pp. 489-496 (2004)

本発明は、ポリイミド樹脂層の強靭性及び寸法安定性を改善する銅張積層板を製造することを目的とする。   An object of this invention is to manufacture the copper clad laminated board which improves the toughness and dimensional stability of a polyimide resin layer.

本発明者は、ポリイミド樹脂前駆体のイミド化工程におけるポリイミドの力学的性質及び化学的性質の変化に着目し、本発明に至った。   The present inventor has focused on changes in the mechanical properties and chemical properties of polyimide in the imidization step of the polyimide resin precursor, and has reached the present invention.

すなわち、本発明は、銅箔にポリイミド樹脂層が形成されている銅張積層板の製造方法であって、ポリイミド樹脂前駆体(A)の有機溶媒溶液に、平均粒子径が20〜500nmのポリイミド樹脂のナノ粒子(B)を加えた分散液を、銅箔上に流延塗布、乾燥し、加熱処理によりイミド化させることを特徴とする銅張積層板の製造方法である。   That is, this invention is a manufacturing method of the copper clad laminated board in which the polyimide resin layer is formed in copper foil, Comprising: The polyimide with an average particle diameter of 20-500 nm is used for the organic solvent solution of a polyimide resin precursor (A). It is a method for producing a copper clad laminate, characterized in that a dispersion added with resin nanoparticles (B) is cast-coated on a copper foil, dried, and imidized by heat treatment.

また、本発明は、ポリイミド樹脂のナノ粒子(B)の添加量が、ポリイミド樹脂前駆体(A)とポリイミド樹脂のナノ粒子(B)の合計量に対して、10〜60wt%である上記の銅張積層板の製造方法である。更に、本発明は、加熱処理温度が、ポリイミド樹脂のナノ粒子(B)のガラス転移温度以上で、ポリイミド樹脂前駆体(A)がイミド化する温度以上であり、且つ400℃未満である上記の銅張積層板の製造方法である。   In the present invention, the addition amount of the polyimide resin nanoparticles (B) is 10 to 60 wt% with respect to the total amount of the polyimide resin precursor (A) and the polyimide resin nanoparticles (B). It is a manufacturing method of a copper clad laminated board. Further, in the present invention, the heat treatment temperature is not less than the glass transition temperature of the polyimide resin nanoparticles (B), not less than the temperature at which the polyimide resin precursor (A) is imidized, and less than 400 ° C. It is a manufacturing method of a copper clad laminated board.

以下、本発明を更に詳細に説明する。
本発明で使用するポリイミド樹脂前駆体(A)は、公知のポリイミド樹脂前駆体の製造方法で得ることができる。通常は、有機溶媒中で、芳香族ジアミンと芳香族テトラカルボン酸二無水物をほぼ等モル使用して0〜100℃で反応させることにより得られる。この場合、反応溶媒である有機溶媒中にポリイミド樹脂前駆体(A)が溶解した有機溶媒溶液が得られる。しかし、必要により反応溶媒の一部又は全部を他の有機溶媒に置き換えてもよいし、濃度を調整するため有機溶媒を追加又は濃縮してもよい。
Hereinafter, the present invention will be described in more detail.
The polyimide resin precursor (A) used by this invention can be obtained with the manufacturing method of a well-known polyimide resin precursor. Usually, it is obtained by reacting at 0 to 100 ° C. in an organic solvent using an approximately equimolar amount of aromatic diamine and aromatic tetracarboxylic dianhydride. In this case, an organic solvent solution in which the polyimide resin precursor (A) is dissolved in the organic solvent that is the reaction solvent is obtained. However, if necessary, part or all of the reaction solvent may be replaced with another organic solvent, or the organic solvent may be added or concentrated to adjust the concentration.

ポリイミド樹脂前駆体は、一般に、酸成分としてテトラカルボン酸又はその酸無水物を用い、アミン成分としてジアミン化合物を用いて、両者を無水の条件下、有機極性溶媒中、0〜100℃で縮重合することにより合成される。また、このポリイミド樹脂前駆体にアクリロイル基を導入した前駆体やo−ニトロベンジルエステル基を導入した感光性ポリイミド樹脂前駆体を用いることもできる。感光性ポリイミド樹脂前駆体には、必要に応じて光重合開始剤、光増感剤、架橋助剤等を含有してもよい。   Polyimide resin precursors are generally polycondensated at 0 to 100 ° C. in an organic polar solvent under anhydrous conditions using tetracarboxylic acid or its acid anhydride as an acid component and a diamine compound as an amine component. To be synthesized. Moreover, the precursor which introduce | transduced the acryloyl group into this polyimide resin precursor, and the photosensitive polyimide resin precursor which introduce | transduced o-nitrobenzyl ester group can also be used. In the photosensitive polyimide resin precursor, you may contain a photoinitiator, a photosensitizer, a crosslinking adjuvant, etc. as needed.

ポリイミド樹脂前駆体の原料として使用されるジアミン化合物としては、例えば、パラフェニレンジアミン、メタフェニレンジアミン、2,4−ジアミノトルエン、1,3−ビス−(3−アミノフェノキシ)ベンゼン、4,4'−ジアミノ−2'−メトキシベンズアニリド、3,4'−ジアミノジフェニルエーテル、4,4'−ジアミノ−2,2'−ジメチルビフェニル、4,4'−ジアミノジフェニルエーテル、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4'−ビス(3−アミノフェノキシ)ビフェニル、4,4'−ジアミノジフェニルプロパン、3,3'−ジアミノベンゾフェノン、4,4'−ジアミノジフェニルスルフィドなどが挙げられる。これらのジアミン化合物は、単独で、あるいは2種以上を組み合わせて使用することができる。   Examples of the diamine compound used as the raw material for the polyimide resin precursor include paraphenylene diamine, metaphenylene diamine, 2,4-diaminotoluene, 1,3-bis- (3-aminophenoxy) benzene, 4,4 ′. -Diamino-2'-methoxybenzanilide, 3,4'-diaminodiphenyl ether, 4,4'-diamino-2,2'-dimethylbiphenyl, 4,4'-diaminodiphenyl ether, 2,2'-bis [4- (4-Aminophenoxy) phenyl] propane, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-diaminodiphenylpropane, 3,3′-diaminobenzophenone, 4,4′-diaminodiphenyl sulfide, etc. Is mentioned. These diamine compounds can be used alone or in combination of two or more.

また、テトラカルボン酸又はその酸無水物としては、例えば、ピロメリット酸二無水物、3,4,3',4'−ベンゾフェノンテトラカルボン酸二無水物、3,4,3',4'−ジフェニルスルホンテトラカルボン酸二無水物、無水トリメリット酸テトラカルボン酸系二無水物、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、4,4'−オキシジフタル酸二無水物などが挙げられる。これらは、単独で、あるいは2種以上を組み合わせて使用することができる。   Examples of the tetracarboxylic acid or acid anhydride thereof include pyromellitic dianhydride, 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 3,4,3 ′, 4′- Diphenylsulfone tetracarboxylic dianhydride, trimellitic anhydride tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, etc. Is mentioned. These can be used alone or in combination of two or more.

ポリイミド樹脂前駆体溶液に使用する有機溶媒としては、例えば、N-メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルフォキサイド(DMSO)、硫酸ジメチル、スルフォラン、ブチロラクトン、クレゾール、フェノール、ハロゲン化フェノール、シクロヘキサン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライムなどを使用することができる。これらの溶剤は、単独で、あるいは2種以上を組み合わせて使用することができる。これらの中でも、DMAcやNMPなどが特に好ましい。溶剤の使用量は、各成分を均一に溶解するのに充分な量とする。   Examples of the organic solvent used in the polyimide resin precursor solution include N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), dimethyl sulfate, sulfolane, and butyrolactone. , Cresol, phenol, halogenated phenol, cyclohexane, dioxane, tetrahydrofuran, diglyme, triglyme and the like can be used. These solvents can be used alone or in combination of two or more. Among these, DMAc and NMP are particularly preferable. The amount of solvent used is sufficient to dissolve each component uniformly.

ポリイミド樹脂前駆体(A)の有機溶媒溶液に加えるポリイミド樹脂のナノ粒子(B)の平均粒子径は、20〜500nm、好ましくは50〜200nmである。平均粒子径が20nm未満であると、ポリイミド樹脂層の寸法安定性への効果が低下し、平均粒子径が500nmを超えると、ポリイミド樹脂層の強靭性が低下する。   The average particle diameter of the nanoparticles (B) of the polyimide resin added to the organic solvent solution of the polyimide resin precursor (A) is 20 to 500 nm, preferably 50 to 200 nm. When the average particle diameter is less than 20 nm, the effect on the dimensional stability of the polyimide resin layer is reduced, and when the average particle diameter exceeds 500 nm, the toughness of the polyimide resin layer is reduced.

このようなポリイミド樹脂のナノ粒子(B)は、上記ポリイミド樹脂前駆体(A)で説明したと同様な原料を使用して、ポリイミド樹脂前駆体を製造し、これをイミド化及び粒子化することにより得ることができる。例えば、ポリイミド樹脂前駆体を含む有機溶媒溶液に、シクロヘキサンのような貧溶媒を多量に加えて分散させて粒子状に沈殿させ、これをイミド化することにより得ることができる。この際、ポリイミド樹脂前駆体溶液の濃度を希釈したり、分散剤を存在させれば、分散性がより向上する。しかし、この方法には限定されない。そして、ナノ粒子(B)を構成するポリイミド樹脂は、ポリイミド樹脂前駆体(A)をイミド化して生じるポリイミド樹脂であってもよい。   The polyimide resin nanoparticles (B) are prepared by using the same raw materials as described in the polyimide resin precursor (A) to produce a polyimide resin precursor, which is then imidized and granulated. Can be obtained. For example, it can be obtained by adding a large amount of a poor solvent such as cyclohexane to an organic solvent solution containing a polyimide resin precursor to disperse it in a particulate form and imidizing it. At this time, if the concentration of the polyimide resin precursor solution is diluted or a dispersant is present, the dispersibility is further improved. However, it is not limited to this method. And the polyimide resin which comprises a nanoparticle (B) may be a polyimide resin produced by imidizing a polyimide resin precursor (A).

ポリイミド樹脂のナノ粒子(B)の添加量は、ポリイミド樹脂前駆体(A)とポリイミド樹脂のナノ粒子(B)の合計量に対して、10〜60wt%がよい。添加量が10wt%未満であると、ポリイミド樹脂層の寸法安定性への効果が低下する。また、添加量が60wt%を超えると、得られる分散液の粘度が高くなり、銅箔への流延塗布のハンドリング性が低下するばかりでなく、イミド化後にナノ粒子の周りに空隙が生じ、ポリイミド樹脂層の強靭性が低下する。   The addition amount of the polyimide resin nanoparticles (B) is preferably 10 to 60 wt% with respect to the total amount of the polyimide resin precursor (A) and the polyimide resin nanoparticles (B). When the addition amount is less than 10 wt%, the effect on the dimensional stability of the polyimide resin layer is lowered. Further, when the addition amount exceeds 60 wt%, the viscosity of the resulting dispersion is increased, not only the handling property of the casting application to the copper foil is lowered, but also voids are generated around the nanoparticles after imidization, The toughness of the polyimide resin layer decreases.

ポリイミド樹脂前駆体(A)の有機溶媒溶液にポリイミド樹脂のナノ粒子(B)を加えて得られる分散液を銅箔上に流延塗布する。本発明の銅張積層板の製造方法においては、銅箔上に分散液を塗布した後、乾燥して溶媒を除去し、ポリイミド樹脂前駆体層をイミド化のために加熱処理する。この場合の溶媒を除去する乾燥条件は、60〜200℃で1〜300分であるのが好ましく、特に好ましくは100〜180℃で2〜20分である。この乾燥工程において、ポリイミド樹脂のナノ粒子(B)は変形しないことが望ましい。また、イミド化を行う加熱処理条件は、ポリイミド樹脂のナノ粒子(B)のガラス転移温度以上400℃未満で、1〜120分であるのが好ましく、特に好ましくはポリイミド樹脂のナノ粒子(B)のガラス転移温度以上380℃以下で、3〜30分である。イミド化を行う加熱処理の温度が、ポリイミド樹脂のナノ粒子(B)のガラス転移温度を下回る場合には、イミド化後のポリイミド樹脂層が脆弱になる。また、イミド化を行う加熱処理によっては、ポリイミド樹脂のナノ粒子(B)のサイズ及び形状が変化するが、大きな問題とはならない。ポリイミド樹脂のナノ粒子(B)のガラス転移温度は300℃以上、好ましくは350℃以上であることがよい。溶媒の乾燥及び硬化においては、段階的に温度を上げて行うバッチ式でもよいし、連続的に温度を上げて行う連続硬化式でもよく、その方法は限定されない。   A dispersion obtained by adding polyimide resin nanoparticles (B) to an organic solvent solution of a polyimide resin precursor (A) is cast on a copper foil. In the method for producing a copper clad laminate of the present invention, after applying a dispersion on a copper foil, the solvent is removed by drying, and the polyimide resin precursor layer is heat-treated for imidization. The drying conditions for removing the solvent in this case are preferably 60 to 200 ° C. for 1 to 300 minutes, particularly preferably 100 to 180 ° C. for 2 to 20 minutes. In this drying step, it is desirable that the nanoparticles (B) of the polyimide resin are not deformed. In addition, the heat treatment conditions for imidization are preferably not less than the glass transition temperature of the polyimide resin nanoparticles (B) and less than 400 ° C., and preferably 1 to 120 minutes, particularly preferably polyimide resin nanoparticles (B). It is 3 to 30 minutes at a glass transition temperature of 380 ° C. or less. When the temperature of the heat treatment for imidization is lower than the glass transition temperature of the polyimide resin nanoparticles (B), the polyimide resin layer after imidation becomes brittle. Further, the size and shape of the polyimide resin nanoparticles (B) change depending on the heat treatment for imidization, but this is not a big problem. The glass transition temperature of the polyimide resin nanoparticles (B) is 300 ° C. or higher, preferably 350 ° C. or higher. In the drying and curing of the solvent, a batch method in which the temperature is raised stepwise or a continuous curing method in which the temperature is continuously raised may be used, and the method is not limited.

銅張積層板は、ポリイミド樹脂層の片面又は両面に銅箔を有し、ポリイミド樹脂層の好ましい厚み範囲は3〜100μm、より好ましくは10〜50μmの範囲である。   The copper clad laminate has a copper foil on one or both sides of the polyimide resin layer, and the preferred thickness range of the polyimide resin layer is 3 to 100 μm, more preferably 10 to 50 μm.

本発明によれば、ポリイミド樹脂の強靭性を低下させずに、寸法安定性や耐マイグレーション性に優れる銅張積層板を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper clad laminated board excellent in dimensional stability and migration resistance can be obtained, without reducing the toughness of a polyimide resin.

以下、本発明を実施例により更に具体的に説明する。なお、以下の実施例によってポリイミド樹脂の種類、ポリイミド樹脂のナノ粒子の合成法は特に限定されない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the kind of polyimide resin and the synthesis | combining method of the nanoparticle of a polyimide resin are not specifically limited by the following examples.

[ポリイミド樹脂の強靭性の評価]
ポリイミド樹脂の強靭性は、引張り強さ(kg/mm2)、伸び率(%)、引張り弾性率(kg/mm2)で評価する。それぞれの評価試験は、ASTM D882に準じて、25℃の条件下で実施する。
[Evaluation of toughness of polyimide resin]
The toughness of the polyimide resin is evaluated by tensile strength (kg / mm 2 ), elongation (%), and tensile modulus (kg / mm 2 ). Each evaluation test is performed under the condition of 25 ° C. according to ASTM D882.

[ポリイミド樹脂の寸法安定性の評価]
ポリイミド樹脂の寸法安定性は、加熱収縮率(%)で評価する。この評価試験は、JIS C2318に準じて、250℃、2時間の条件下で実施する。
[Evaluation of dimensional stability of polyimide resin]
The dimensional stability of the polyimide resin is evaluated by the heat shrinkage rate (%). This evaluation test is performed under conditions of 250 ° C. and 2 hours in accordance with JIS C2318.

合成例1
実施例で使用するポリイミド樹脂前駆体の有機溶媒溶液は、次のようにして調製する。3つ口フラスコにジメチルアセトアミド(DMAc)を425g、2,2'−ジメチル−4,4'−ジアミノビフェニルを31.8g及び1,3−ビス(4−アミノフェノキシ)ベンゼンを4.9g加え、室温で30分攪拌する。その後、ピロメリット酸二無水物28.6g及びビフェニル−3,4,3',4’−テトラカルボン酸二無水物を加え、窒素雰囲気下、室温で3時間攪拌することで、28000cps(30℃)の粘度の前駆体の有機溶媒溶液が得られる。
Synthesis example 1
The organic solvent solution of the polyimide resin precursor used in the examples is prepared as follows. To a three-necked flask was added 425 g of dimethylacetamide (DMAc), 31.8 g of 2,2′-dimethyl-4,4′-diaminobiphenyl and 4.9 g of 1,3-bis (4-aminophenoxy) benzene, Stir at room temperature for 30 minutes. Thereafter, 28.6 g of pyromellitic dianhydride and biphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride were added, and the mixture was stirred at room temperature for 3 hours in a nitrogen atmosphere to obtain 28000 cps (30 ° C. ) Of an organic solvent solution of a precursor having a viscosity of

合成例2
ポリイミド樹脂のナノ粒子は、次のようにして製造する。合成例1で得たポリイミド前駆体樹脂の有機溶媒溶液を1g取り、DMAcで希釈して100gの希釈溶液とする。0.1wt%の高分子分散剤(アデリディックA-1381:大日本インキ化学工業(株)製)を含有したシクロヘキサン溶液10Lを22℃、1500rpmで撹拌しながら、前記希釈溶液100mLを注入し、分散されたポリイミド樹脂前駆体の沈殿を形成させ、これを分取する。この沈殿をピリジン/無水酢酸混合溶液(体積比1:1)の100mLに加え、常温で2時間撹拌することにより、ポリイミド樹脂前駆体のイミド化を行う。このようにして得られるポリイミド樹脂粒子を洗浄、乾燥することで、ポリイミド樹脂のナノ粒子が約0.1g得られる。この操作を繰り返し行うことで、以下の実施例に必要な相当量のポリイミド樹脂のナノ粒子を得る。得られるポリイミド樹脂のナノ粒子の平均粒径はDLS-700(大塚電子(株)製)を用いて測定でき、平均粒子径は180nmである。また、このポリイミド樹脂のナノ粒子のガラス転移温度は280℃である。
Synthesis example 2
Polyimide resin nanoparticles are produced as follows. 1 g of the organic solvent solution of the polyimide precursor resin obtained in Synthesis Example 1 is taken and diluted with DMAc to obtain a diluted solution of 100 g. While stirring 10 L of cyclohexane solution containing 0.1 wt% polymer dispersant (Adelidic A-1381: manufactured by Dainippon Ink & Chemicals, Inc.) at 22 ° C. and 1500 rpm, 100 mL of the diluted solution was injected. A precipitate of the dispersed polyimide resin precursor is formed and separated. The precipitate is added to 100 mL of a pyridine / acetic anhydride mixed solution (volume ratio 1: 1) and stirred at room temperature for 2 hours to imidize the polyimide resin precursor. About 0.1 g of polyimide resin nanoparticles are obtained by washing and drying the polyimide resin particles thus obtained. By repeating this operation, a considerable amount of polyimide resin nanoparticles required for the following examples are obtained. The average particle diameter of the resulting polyimide resin nanoparticles can be measured using DLS-700 (manufactured by Otsuka Electronics Co., Ltd.), and the average particle diameter is 180 nm. The glass transition temperature of the polyimide resin nanoparticles is 280 ° C.

実施例1
合成例1で得たポリイミド樹脂前駆体の有機溶媒溶液の固形分及び合成例2で得たポリイミド樹脂のナノ粒子をそれぞれ質量比50:50で混合した分散液とし、これを銅箔上に乾燥後の厚みが40μmとなるように塗布する。これを、120℃で乾燥し、銅箔上にポリイミド前駆体樹脂層が形成された積層板を得る。この積層板を最高温度が360℃で、2時間かけて熱処理する。このようにして得られる銅張積層板は、ポリイミド樹脂のナノ粒子を配合しない通常の積層板と比較して、強靭性が約30%向上し、寸法安定性はほぼ同等のものとなる。
Example 1
The solid content of the organic solvent solution of the polyimide resin precursor obtained in Synthesis Example 1 and the polyimide resin nanoparticles obtained in Synthesis Example 2 were mixed in a mass ratio of 50:50, respectively, and this was dried on a copper foil. It is applied so that the subsequent thickness is 40 μm. This is dried at 120 ° C. to obtain a laminate having a polyimide precursor resin layer formed on a copper foil. This laminated board is heat-treated at a maximum temperature of 360 ° C. for 2 hours. The copper-clad laminate thus obtained has a toughness improved by about 30% and a dimensional stability substantially equivalent to that of a normal laminate not containing the polyimide resin nanoparticles.

Claims (3)

銅箔にポリイミド樹脂層が形成されている銅張積層板の製造方法であって、ポリイミド樹脂前駆体(A)の有機溶媒溶液に、平均粒子径が20〜500nmのポリイミド樹脂のナノ粒子(B)を加えた分散液を、銅箔上に流延塗布、乾燥し、加熱処理によりイミド化させることを特徴とする銅張積層板の製造方法。   A method for producing a copper clad laminate in which a polyimide resin layer is formed on a copper foil, and an polyimide resin precursor (A) organic solvent solution containing polyimide resin nanoparticles having an average particle diameter of 20 to 500 nm (B ) Is applied to the copper foil by casting, dried, and imidized by heat treatment. ポリイミド樹脂のナノ粒子(B)の添加量が、ポリイミド樹脂前駆体(A)とポリイミド樹脂のナノ粒子(B)の合計量に対して、10〜60wt%であることを特徴とする請求項1記載の銅張積層板の製造方法。   The addition amount of the polyimide resin nanoparticles (B) is 10 to 60 wt% with respect to the total amount of the polyimide resin precursor (A) and the polyimide resin nanoparticles (B). The manufacturing method of the copper clad laminated board of description. 加熱処理温度が、ポリイミド樹脂のナノ粒子(B)のガラス転移温度以上で、ポリイミド樹脂前駆体(A)がイミド化する温度以上であり、且つ400℃未満であることを特徴とする請求項1又は2記載の銅張積層板の製造方法。   The heat treatment temperature is not less than the glass transition temperature of the polyimide resin nanoparticles (B), not less than the temperature at which the polyimide resin precursor (A) is imidized, and less than 400 ° C. Or the manufacturing method of the copper clad laminated board of 2.
JP2005323121A 2005-11-08 2005-11-08 Manufacturing method of copper clad laminated sheet Withdrawn JP2007130767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323121A JP2007130767A (en) 2005-11-08 2005-11-08 Manufacturing method of copper clad laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323121A JP2007130767A (en) 2005-11-08 2005-11-08 Manufacturing method of copper clad laminated sheet

Publications (1)

Publication Number Publication Date
JP2007130767A true JP2007130767A (en) 2007-05-31

Family

ID=38152827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323121A Withdrawn JP2007130767A (en) 2005-11-08 2005-11-08 Manufacturing method of copper clad laminated sheet

Country Status (1)

Country Link
JP (1) JP2007130767A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114500B2 (en) * 2008-11-27 2012-02-14 E. I. Du Pont De Nemours And Company Polyimide film and method of manufacture thereof
JP2013095851A (en) * 2011-11-01 2013-05-20 Ube Industries Ltd Method for producing polyimide laminate, polyimide laminate, polyimide film, and polyimide precursor solution composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114500B2 (en) * 2008-11-27 2012-02-14 E. I. Du Pont De Nemours And Company Polyimide film and method of manufacture thereof
JP2013095851A (en) * 2011-11-01 2013-05-20 Ube Industries Ltd Method for producing polyimide laminate, polyimide laminate, polyimide film, and polyimide precursor solution composition

Similar Documents

Publication Publication Date Title
EP2501742B1 (en) Thermally and dimensionally stable polyimide films and methods relating thereto
CN101168598B (en) Method for preparing ultra-thick polyimide film with high heat conductivity and low thermal expansion coefficient
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
JPWO2007015545A1 (en) Metal-coated polyimide film
JP2005142572A (en) Polyimide-based composition derived partially from (micro powdered) fluoropolymer and useful as electronic substrate, and related method and composition
JP2006124701A (en) Light-activatable polyimide composition for receiving selective metalization, and method and composition related thereto
JP7518647B2 (en) Resin composition, its manufacturing method, resin film and metal-clad laminate
JP2012213900A (en) Heat conductive polyimide-metal substrate
JP2021070727A (en) Resin composition, resin film and metal-clad laminate
JP7039390B2 (en) Multilayer polyimide film
KR20090036074A (en) Composition for forming polyimide/clay nanocompoiste and printed circuit board using the same
JP2023006387A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit board
JP2007130767A (en) Manufacturing method of copper clad laminated sheet
JP2007119507A (en) Thermosetting polyimide resin composition and molded product and electronic part using the same
JP2021105149A (en) Method for manufacturing resin film, and method for manufacturing metal-clad laminated plate
JP2021070592A (en) Silica particle, resin composition, resin film, and metal-clad laminate
WO2007083527A1 (en) Polyimide film and method for production thereof
JP2022154637A (en) Polyimide, metal clad laminate sheet and circuit board
JP6767751B2 (en) Polyamic acid, polyimide, resin film and metal-clad laminate
JP2010533362A (en) Circuit board
KR102336859B1 (en) Polyimide film with improved chemical resistnace properties and manufacturing method thereof
JP2014141575A (en) Pigment-added polyimide film
JP5196344B2 (en) Method for improving adhesion of polyimide film
JP5329163B2 (en) Method for producing polyimide film and polyimide film
JP2002283369A (en) Method for manufacturing polyimide film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203