JP2007127897A - Method of manufacturing anisotropic optical film, anisotropic optical film, and optical element - Google Patents

Method of manufacturing anisotropic optical film, anisotropic optical film, and optical element Download PDF

Info

Publication number
JP2007127897A
JP2007127897A JP2005321432A JP2005321432A JP2007127897A JP 2007127897 A JP2007127897 A JP 2007127897A JP 2005321432 A JP2005321432 A JP 2005321432A JP 2005321432 A JP2005321432 A JP 2005321432A JP 2007127897 A JP2007127897 A JP 2007127897A
Authority
JP
Japan
Prior art keywords
optical film
anisotropic optical
substrate
film
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321432A
Other languages
Japanese (ja)
Other versions
JP4654882B2 (en
Inventor
Takeshi Fujiwara
毅 藤原
Yasutsugu Yamauchi
康嗣 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005321432A priority Critical patent/JP4654882B2/en
Publication of JP2007127897A publication Critical patent/JP2007127897A/en
Application granted granted Critical
Publication of JP4654882B2 publication Critical patent/JP4654882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an anisotropic optical film which has a high dichroic ratio without any optical defects, and also has an alignment direction different from a coating direction even while coating a base material almost in parallel to the subsreate (in a direction almost matched with a longitudinal direction or a lateral direction of the base material). <P>SOLUTION: When the film of an anisotropic optical material is formed by a wet film-forming method using the composition for forming the optical film, an alignment treatment direction of a substrate of the base material 10 is made to be an angle between 89° and 1° from the base material and the composition for forming the optical film is applied by moving a slot die 11 being an applicator almost in parallel to a base material direction of the base material 10. Thereby the anisotropic optical film which has alignment with an angle between 85° and 5° from the alignment treatment direction of the base material, is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、異方性光学膜および製造方法に係り、より詳しくは、塗布方向とは異なる配向方向をもつ異方性光学膜およびその製造方法に関する。   The present invention relates to an anisotropic optical film and a manufacturing method, and more particularly to an anisotropic optical film having an orientation direction different from a coating direction and a manufacturing method thereof.

LCD(液晶表示ディスプレイ)では、表示における旋光性や複屈折性を制御するために直線偏光板や円偏光板が用いられている。OLED(有機EL素子)においても、外光の反射防止のために円偏光板が使用されている。
従来、これらの偏光板(偏光素子)には、ヨウ素や二色性を有する有機色素を、ポリビニルアルコール等の高分子材料に溶解または吸着させ、その膜を一方向にフィルム状に延伸して、二色性色素を配向させることにより得られる偏光素子が広く使用されてきた。しかしながら、このようにして製造される従来の偏光素子では、用いる色素や高分子材料によっては耐熱性や耐光性が十分でないことが問題となっていた。また、液晶装置製造時における膜の貼り合わせの歩留りが悪いことも問題となっていた。
In an LCD (liquid crystal display), a linearly polarizing plate and a circularly polarizing plate are used to control optical rotation and birefringence in display. Also in OLED (organic EL element), a circularly polarizing plate is used to prevent reflection of external light.
Conventionally, in these polarizing plates (polarizing elements), iodine or an organic dye having dichroism is dissolved or adsorbed in a polymer material such as polyvinyl alcohol, and the film is stretched in a film shape in one direction. Polarizing elements obtained by orienting dichroic dyes have been widely used. However, the conventional polarizing element manufactured in this way has a problem that heat resistance and light resistance are not sufficient depending on the dye or polymer material used. Another problem is that the yield of the bonding of the films during the production of the liquid crystal device is poor.

そのため、公報記載の従来技術では、ガラスや透明フィルムなどの基材上に、二色性色素を含む溶液を塗布する際のせん断力等の機械的な力で、二色性色素を配向させることにより、偏光膜を製造する方法が検討されている(例えば、特許文献1参照。)。 しかしながら、この方法で得られた偏光膜は、塗布方向と同じ方向に配向したものであり、例えば、通常使用される45度の偏光軸方向の長方形チップを得るためには、45度の偏光軸方向となるよう加工しなければならず、歩留まりが非常に悪いという問題点があった。
そこで、他の公報記載の技術として、基材に対して斜めにバーコート法で溶液を塗布する方法が提案されている(例えば、特許文献2、3参照。)。
Therefore, in the prior art described in the publication, the dichroic dye is oriented by a mechanical force such as a shearing force when applying a solution containing the dichroic dye on a substrate such as glass or a transparent film. Thus, a method for producing a polarizing film has been studied (for example, see Patent Document 1). However, the polarizing film obtained by this method is oriented in the same direction as the coating direction. For example, in order to obtain a rectangular chip having a polarization axis direction of 45 degrees that is normally used, a polarization axis of 45 degrees is used. There was a problem that the yield was very bad because it had to be processed in the direction.
Therefore, as a technique described in other publications, a method of applying a solution obliquely to a substrate by a bar coating method has been proposed (for example, see Patent Documents 2 and 3).

特表平8−511109号公報JP-T 8-511109 特開2002−90526号公報JP 2002-90526 A 特開2002−180052号公報JP 2002-180052 A

このように、上記特許文献2および3に記載の塗布方法によれば、例えば、上記45度の偏光軸方向の長尺の偏光板をバーコート法により作ることが可能となる。しかしながら、このバーコート法では、縦スジ状の特有の欠陥が出たり、バーが回転することにより回転変動による段ムラが発生する問題があった。また、枚葉基板に対応するには装置構造が複雑で高価になることも問題となる。更に、塗布始めと塗布終わりとで塗工具がはみ出すことにより塗布が不安定になり配向ムラなどの欠陥が発生する問題がある。特に枚葉基板では、配向ムラなどの欠陥の問題が顕著に現れる。従って、このバーコート法を実際の製造に適用するのには問題があった。   As described above, according to the coating methods described in Patent Documents 2 and 3, for example, the 45-degree long polarizing plate in the polarization axis direction can be produced by the bar coating method. However, this bar coating method has a problem in that a vertical stripe-like defect appears or unevenness due to rotational fluctuation occurs due to rotation of the bar. In addition, the structure of the apparatus is complicated and expensive in order to cope with a single substrate. Furthermore, when the coating tool protrudes at the beginning and end of application, there is a problem that the application becomes unstable and defects such as uneven alignment occur. In particular, in the case of a single wafer substrate, a problem of defects such as uneven alignment appears remarkably. Therefore, there is a problem in applying this bar coating method to actual production.

本発明は、以上のような技術的課題を解決するためになされたものであって、その目的とするところは、塗布方向とは異なる方向に配向方向をもつ異方性光学膜を、高い生産性で製造することにある。   The present invention has been made to solve the technical problems as described above, and the object of the present invention is to produce an anisotropic optical film having an orientation direction different from the coating direction in a high production. There is to manufacture with sex.

本発明者らが鋭意検討した結果、光学膜形成用組成物を用いて湿式成膜法にて異方性光学膜を形成する際に、基材の下地の配向処理方向を基材から89度〜1度の角度にし、基材と略平行に光学膜形成用組成物を塗布することにより、高い二色比を持ち光学的欠陥のない、下地の配向処理方向から85度〜5度の角度で配向する異方性光学膜が得られることがわかり、本発明に到達した。
ここで、塗布方向や下地の配向方向とも異なる配向方向を持つ異方性光学膜を得られる理由は、以下の通りであると推測される。下地の配向方向とも異なる方向に異方性光学膜を形成後、膜の下層では下地の配向方向に異方性光学膜が配向し膜の上層では塗布方向に異方性光学膜が配向し、経時的に下地の配向方向と塗布方向の間に異方性光学膜の配向方向が変化したと考えられる。
As a result of intensive studies by the present inventors, when forming an anisotropic optical film by a wet film forming method using the composition for forming an optical film, the orientation treatment direction of the base of the substrate is 89 degrees from the substrate. By applying the optical film-forming composition at an angle of ˜1 ° and substantially parallel to the substrate, the angle is 85 ° to 5 ° from the orientation processing direction of the base, having a high dichroic ratio and no optical defects. As a result, it was found that an anisotropic optical film oriented with the above can be obtained, and the present invention has been achieved.
Here, it is estimated that the reason why an anisotropic optical film having an orientation direction different from the coating direction and the orientation direction of the base can be obtained is as follows. After forming the anisotropic optical film in a direction different from the orientation direction of the foundation, the anisotropic optical film is oriented in the orientation direction of the foundation in the lower layer of the film, and the anisotropic optical film is oriented in the coating direction in the upper layer of the film, It is considered that the orientation direction of the anisotropic optical film changed over time between the orientation direction of the base and the coating direction.

即ち、本発明は、一方向に配向処理された基材上に光学膜形成用組成物を塗布して形成される異方性光学膜の製造方法であって、基材上の配向処理方向に対して、塗布方向が平行ではない角度とすることを特徴としている。このように、基材にあらかじめ基材方向とは異なる配向処理を施しておき、例えば基材方向に平行に塗布することで、色素分子の並ぶ方向(偏光軸)を塗布方向(基材方向)とは異なる方向にすることができる。   That is, the present invention relates to a method for producing an anisotropic optical film formed by applying a composition for forming an optical film on a substrate that has been oriented in one direction, and is directed to the direction of orientation treatment on the substrate. On the other hand, the application direction is an angle that is not parallel. In this way, the base material is previously subjected to an orientation treatment different from the base material direction, and for example, by applying in parallel to the base material direction, the direction in which the dye molecules are arranged (polarization axis) is changed to the coating direction (base material direction). Can be in a different direction.

ここで、「平行ではない角度」は、この基材上の配向処理方向に対して、塗布方向を89度から1度の角度とすることを特徴とすることができる。また角度の取り方によっては、359度から271度、269度から181度、179度から91度とすることを特徴とすることができる。
また、この塗布方向が、基材方向と平行であることを特徴とすれば、例えば生産性を向上させることができる点で好ましい。
更に、光学膜形成用組成物として液晶相の状態の色素溶液等の異方性光学材料溶液を塗布して形成されることを特徴とすることができる。
また更に、この基材が枚葉基板であることを特徴とすることができる。
Here, the “non-parallel angle” can be characterized in that the coating direction is an angle of 89 degrees to 1 degree with respect to the orientation processing direction on the substrate. Further, depending on how the angle is set, the angle can be set to 359 degrees to 271 degrees, 269 degrees to 181 degrees, and 179 degrees to 91 degrees.
Moreover, if this application direction is characterized by being parallel to the substrate direction, it is preferable in that, for example, productivity can be improved.
Furthermore, the composition for forming an optical film may be formed by applying an anisotropic optical material solution such as a dye solution in a liquid crystal phase.
Still further, the substrate may be a single substrate.

尚、本発明は、これらの製造方法により製造された異方性光学膜についても適用することができる。   In addition, this invention is applicable also to the anisotropic optical film manufactured by these manufacturing methods.

一方、本発明は、一方向に配向処理された基材上に光学膜形成用組成物を塗布して形成される異方性光学膜であって、この異方性光学膜の配向方向が、基材の配向処理方向と塗布方向との中間の角度に位置し、かつ、異方性光学膜の配向方向が、塗布方向に対して85度から5度の角度であることを特徴とすることができる。   On the other hand, the present invention is an anisotropic optical film formed by applying a composition for forming an optical film on a substrate that has been oriented in one direction, and the orientation direction of the anisotropic optical film is: It is located at an intermediate angle between the orientation processing direction of the substrate and the coating direction, and the orientation direction of the anisotropic optical film is an angle of 85 to 5 degrees with respect to the coating direction. Can do.

また他の観点から捉えると、本発明は、一方向に配向処理された基材上に光学膜形成用組成物を塗布して形成される異方性光学膜であって、この異方性光学膜の配向方向が、基材の配向処理方向と基材方向との中間に位置し、かつ、この異方性光学膜の配向方向が、基材方向に対して85度から5度の角度であることを特徴とすることができる。   From another point of view, the present invention is an anisotropic optical film formed by applying a composition for forming an optical film on a substrate that has been oriented in one direction. The orientation direction of the film is located between the orientation direction of the base material and the base material direction, and the orientation direction of the anisotropic optical film is at an angle of 85 to 5 degrees with respect to the base material direction. It can be characterized by being.

更に別の観点から捉えると、本発明が適用される異方性光学膜は、入射時の偏光軸と出射時の偏光軸のなす角度が89度から1度であることを特徴とすることができる。   From another point of view, the anisotropic optical film to which the present invention is applied is characterized in that the angle between the polarization axis at the time of incidence and the polarization axis at the time of emission is 89 degrees to 1 degree. it can.

尚、これらの異方性光学膜は、位相差機能および偏光機能を有することを特徴とすることができる。   These anisotropic optical films can be characterized by having a phase difference function and a polarization function.

更に本発明は、これらの異方性光学膜を有する光学素子に対して適用することができる。   Further, the present invention can be applied to optical elements having these anisotropic optical films.

本発明によれば、基材に略平行(基材の縦または横方向と略一致する方向)に塗布しながら、光学的な欠陥がなく高い二色比を持ち、塗布方向と異なる配向方向を持つ異方性光学膜を得ることができる。
また、配向方向と塗布方向のなす角度、膜厚、乾燥条件等を変えることにより配向方向を膜厚方向により制御することができるので、例えば視野角特性の改善、旋光性、位相差性能、円偏光性または楕円偏光性を有することが期待できる。
更に、基材に略平行に塗布でき、塗布後、必要な偏光角度を持たせるために基材を切り出す必要がなく、生産性が高い。
According to the present invention, while applying substantially parallel to the base material (direction substantially coincident with the vertical or horizontal direction of the base material), there is no optical defect and the dichroic ratio is high, and the orientation direction is different from the application direction. An anisotropic optical film having the same can be obtained.
In addition, since the orientation direction can be controlled by the film thickness direction by changing the angle between the orientation direction and the coating direction, the film thickness, drying conditions, etc., for example, improved viewing angle characteristics, optical rotation, phase difference performance, It can be expected to have polarization or elliptic polarization.
Furthermore, it can be applied substantially parallel to the substrate, and after application, it is not necessary to cut out the substrate in order to have a necessary polarization angle, and the productivity is high.

以下、添付図面を参照して本発明の実施の形態について詳細に説明する。
尚、以下に記載する構成要件の説明は本発明の実施態様の一例(代表例)であり、本発明がこれらの内容に特定されることはない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The description of the constituent requirements described below is an example (representative example) of the embodiment of the present invention, and the present invention is not limited to these contents.

ここで、本発明でいう異方性光学膜とは、膜の厚み方向および任意の直交する面内2方向の立体座標系における合計3方向から選ばれる任意の2方向における電磁気学的性質に異方性を有する光学膜である。電磁気学的性質としては、吸収、屈折などの光学的性質、抵抗、容量などの電気的性質などが挙げられる。吸収、屈折などの光学的異方性を有する膜としては、例えば、直線偏光膜、円偏光膜、位相差膜、導電異方性膜などがある。すなわち、本発明の異方性光学膜は、偏光膜、位相差膜、導電異方性膜に用いられることが好ましく、偏光膜に用いられることがより好ましい。
ここで、本発明の異方性光学膜は、通常湿式成膜法により製造される。本発明でいう湿式成膜法とは、塗布液を基材上に塗布し、塗布液に含まれる化合物(色素)を配向および/または積層して得る方法をいう。
Here, the anisotropic optical film referred to in the present invention differs from the electromagnetic properties in any two directions selected from a total of three directions in the three-dimensional coordinate system of the film thickness direction and any two orthogonal in-plane directions. It is an optical film having a directivity. Examples of electromagnetic properties include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance. Examples of the film having optical anisotropy such as absorption and refraction include a linearly polarizing film, a circularly polarizing film, a retardation film, and a conductive anisotropic film. That is, the anisotropic optical film of the present invention is preferably used for a polarizing film, a retardation film, and a conductive anisotropic film, and more preferably used for a polarizing film.
Here, the anisotropic optical film of the present invention is usually produced by a wet film formation method. The wet film-forming method referred to in the present invention refers to a method obtained by applying a coating solution on a substrate and orienting and / or laminating a compound (pigment) contained in the coating solution.

(基材)
基材としては、ガラスやトリアセテート、アクリル、ポリエステル、トリアセチルセルロース、ノルボン系、環状ポレオレフィン系またはウレタン系のフィルム等が挙げられる。枚葉基板であってもよいし、フィルム状の基材であってもよい。また、通常、切断することにより45度の偏光軸を持つ長方形形状の偏光板を得ているので、塗布後、必要な偏光角度を持たせるために基材を切り出す必要がなく、切断による工程を省き生産性を向上できる点から枚葉基板が好ましい。また、基材の膜厚としては、通常0.01mm以上、好ましくは0.02mm以上、通常3mm以下、好ましくは1mm以下である。
尚、本発明において、基材方向とは、長尺基材の場合は巻き出しまたは巻き取り方向、枚葉基板の場合は、長方形の長手方向または短辺方向である。
(Base material)
Examples of the base material include glass, triacetate, acrylic, polyester, triacetyl cellulose, norbon-based, cyclic polyolefin-based, and urethane-based films. It may be a single substrate or a film-like substrate. Also, since a rectangular polarizing plate having a polarization axis of 45 degrees is usually obtained by cutting, there is no need to cut out the base material to give the necessary polarization angle after coating, and the cutting process is performed. A single-wafer substrate is preferable because it can save productivity and improve productivity. Moreover, as a film thickness of a base material, it is 0.01 mm or more normally, Preferably it is 0.02 mm or more, Usually 3 mm or less, Preferably it is 1 mm or less.
In the present invention, the base material direction is the unwinding or winding direction in the case of a long base material, and the longitudinal direction or short side direction of a rectangle in the case of a single substrate.

(配向処理)
この基材表面には、化合物(色素)の配向方向を制御するために、「液晶便覧」(丸善株式会社、平成12年10月30日発行)226頁〜239頁などに記載の公知の方法により、一方向に配向処理を施す。本発明においては、この配向処理された方向を、配向処理方向という。詳しくは、基材表面に均一性の薄膜を形成後、方向性を付与する方法がある。あるいは基材表面に方向性を付与しながら薄膜を形成する方法がある。
(Orientation treatment)
In order to control the orientation direction of the compound (pigment), a known method described in “Liquid Crystal Handbook” (Maruzen Co., Ltd., issued on October 30, 2000), pages 226 to 239, etc. Thus, an orientation process is performed in one direction. In the present invention, this orientation-treated direction is referred to as an orientation treatment direction. Specifically, there is a method of providing directionality after forming a uniform thin film on the surface of the substrate. Or there exists the method of forming a thin film, providing directionality to the base-material surface.

前者においては、ポリイミドの前駆体モノマーであるポリアミック酸モノマーや光硬化性樹脂モノマー、ポリエステルなどのポリマー等を溶液状にて塗布し、乾燥など後処理により均一性の薄膜を形成する。更にこの薄膜をレーヨン布などでラビングする、紫外線や電子線などの電磁線を照射するなどにより薄膜表面の全体もしくは一部に方向性を付与する方法、などが挙げられる。   In the former, a polyamic acid monomer, a photocurable resin monomer, a polymer such as polyester, which is a polyimide precursor monomer, is applied in a solution state, and a uniform thin film is formed by post-treatment such as drying. Further, there is a method of imparting directivity to the whole or a part of the thin film surface by rubbing the thin film with a rayon cloth or the like, or irradiating electromagnetic waves such as ultraviolet rays or electron beams.

また、後者においては、基材面に酸化ケイ素の斜方蒸着を施す、PTFEなどの樹脂片を基材表面に一方向へ擦って基材表面に樹脂薄膜を転写させる、ポリマー製基材を一軸方向に延伸する、などが挙げられる。
具体的には、ガラス製基材(例:旭ガラス製AN100、厚さ0.7〜1.1mm)上に、下地層として、ポリアミック酸(例:日産化学製サンエバー150等)をシルク印刷、スピンコート法またはスロットダイコート方により形成した膜(500nm〜2000nm)を100〜150℃で予備加熱し、200〜300℃で共重合反応をさせてポリイミド膜を得る。下地層としては他にポリエステル、PVA、ポリアセテート等でも可能である。この下地層がついた基板を固定して、この基板に一定の押し込み量(例えば、0.2〜1mm)でラビング布(例:ポリエチレン、レイヨン、コットン)を巻いたロール(例えば、直径30〜100mm)を押し付け、基板を移動させながら(例えば、3〜500mm/s)、ロールを回転させる(例えば、100〜5000rpm)ことにより、ポリイミド膜の配向処理膜を得ることができる。他に配向層の作成方法としては二酸化珪素の斜方蒸着膜またはダイヤモンドライクカーボンを真空蒸着したものにイオンビームを照射したものがある。
特に好ましいのは、日立化成製LX-1400を120℃で0.5時間予備加熱し、260℃で1時間焼成してできたポリイミドにレーヨンのラビング布(YA-20R)を直径46mmロールに巻いたものを使って、押し込み量0.4mm、基材送り速度7.5mm/s、ロール回転数1000rpmの条件でラビングしたものである。
In the latter case, the polymer substrate is uniaxially formed by obliquely depositing silicon oxide on the substrate surface, rubbing a resin piece such as PTFE on the substrate surface in one direction, and transferring the resin thin film to the substrate surface. Stretching in the direction.
Specifically, on a glass substrate (eg, Asahi Glass AN100, thickness 0.7 to 1.1 mm), a polyamic acid (eg, Nissan Chemical's Sunever 150, etc.) is silk-printed as a base layer, A film (500 nm to 2000 nm) formed by a spin coating method or a slot die coating method is preheated at 100 to 150 ° C., and a copolymerization reaction is performed at 200 to 300 ° C. to obtain a polyimide film. As the underlayer, polyester, PVA, polyacetate, or the like can be used. A roll (for example, a diameter of 30 to 30 mm) in which a substrate with the base layer is fixed and a rubbing cloth (eg, polyethylene, rayon, cotton) is wound on the substrate with a certain amount of pushing (for example, 0.2 to 1 mm). 100 mm) is pressed and the roll is rotated (for example, 100 to 5000 rpm) while moving the substrate (for example, 3 to 500 mm / s), whereby an alignment-treated film of a polyimide film can be obtained. As another method for forming the alignment layer, there is an oblique deposition film of silicon dioxide or a vacuum deposited film of diamond-like carbon, which is irradiated with an ion beam.
Particularly preferred is a rayon rubbing cloth (YA-20R) wound on a 46 mm diameter roll on polyimide made by preheating Hitachi Chemical LX-1400 at 120 ° C. for 0.5 hour and firing at 260 ° C. for 1 hour. What was rubbed was used under the conditions of a push-in amount of 0.4 mm, a substrate feed speed of 7.5 mm / s, and a roll rotation speed of 1000 rpm.

(光学膜形成用組成物)
本発明は、一方向に配向処理された基材上に光学膜形成用組成物を塗布して異方性光学膜を製造する。塗布する材料(光学膜形成用組成物)としては、光学膜を構成できる有機化合物を含む材料であればよく、溶液であっても、ゲル状の材料であってもよい。
具体的には、色素を含有する色素組成物であることが好ましく、特に色素溶液を用いることが好ましい。二色性色素を使用することにより、異方性光学膜を偏光膜として使用することが可能となる。以下、本発明の好ましい態様として、色素溶液を用いて異方性光学膜を製造する例をとって説明する。色素溶液には、通常色素と溶剤が含有される。色素溶液は、液晶相の状態であることが、溶媒が蒸発した色素膜の高配向度のために好ましい。ここで、本発明において、液晶相の状態であるとは、『液晶の基礎と応用』(松本正一・角田市良著、1991)の1〜16ページに記載されている状態のことをいう。特に3ページに記載されているネマティック相が好ましい。
(Composition for optical film formation)
In the present invention, an anisotropic optical film is produced by applying an optical film-forming composition onto a substrate that has been oriented in one direction. The material to be applied (optical film forming composition) may be a material containing an organic compound that can constitute the optical film, and may be a solution or a gel material.
Specifically, a dye composition containing a dye is preferable, and a dye solution is particularly preferable. By using a dichroic dye, an anisotropic optical film can be used as a polarizing film. Hereinafter, as a preferred embodiment of the present invention, an example in which an anisotropic optical film is produced using a dye solution will be described. The dye solution usually contains a dye and a solvent. The dye solution is preferably in a liquid crystal phase because of the high degree of orientation of the dye film from which the solvent has evaporated. Here, in the present invention, the state of the liquid crystal phase refers to the state described on pages 1 to 16 of “Basics and Applications of Liquid Crystals” (Shinichi Matsumoto, Ryo Tsunoda, 1991). . In particular, the nematic phase described on page 3 is preferred.

(色素)
色素については、通常二色性色素が用いられる。また、色素は、配向制御のため液晶相を有する色素であることが好ましい。ここで、液晶相を有する色素とは、溶剤中でリオトロピック液晶性を示す色素を意味する。
色素として、具体的には、アゾ系色素、スチルベン系色素、シアニン系色素、フタロシアニン系色素、縮合多環系色素(ペリレン系、オキサジン系)等が挙げられる。これら色素の中でも、異方性光学膜中で高い分子配列を取り得るアゾ系色素が好ましい。
アゾ系色素とは、アゾ基を少なくとも1個以上持つ色素をいう。その一分子中のアゾ基の数は、色調および製造面の観点から、2以上が好ましく、6以下が好ましく、更に好ましくは4以下である。
(Dye)
As the dye, a dichroic dye is usually used. The dye is preferably a dye having a liquid crystal phase for alignment control. Here, the dye having a liquid crystal phase means a dye exhibiting lyotropic liquid crystallinity in a solvent.
Specific examples of the dye include azo dyes, stilbene dyes, cyanine dyes, phthalocyanine dyes, and condensed polycyclic dyes (perylene and oxazine dyes). Among these dyes, azo dyes that can take a high molecular arrangement in the anisotropic optical film are preferable.
An azo dye means a dye having at least one azo group. The number of azo groups in one molecule is preferably 2 or more, preferably 6 or less, more preferably 4 or less, from the viewpoint of color tone and production.

色素としては、下記式(1)で表される色素が好ましい。

Figure 2007127897
As the dye, a dye represented by the following formula (1) is preferable.
Figure 2007127897

上記式(1)おいて、
Aは、置換基を有していてもよいフェニレン基または置換基を有していてもよいナフチレン基を表す。
1は、水素原子、水酸基または置換基を有していてもよいアルコキシ基を表す。
およびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基または置換基を有していてもよいフェニル基を表す。
nは、0または1を表す。
Xは、1または2を表す。
なお、Xが2の場合、1分子中に含まれる複数のAは、同一であっても異なっていてもよい。
In the above equation (1),
A represents a phenylene group which may have a substituent or a naphthylene group which may have a substituent.
R 1 represents a hydrogen atom, a hydroxyl group or an alkoxy group which may have a substituent.
R 2 and R 3 each independently represent a hydrogen atom, an alkyl group that may have a substituent, or a phenyl group that may have a substituent.
n represents 0 or 1.
X represents 1 or 2.
When X is 2, a plurality of A contained in one molecule may be the same or different.

また、下記式(2)で表される色素も好ましい。

Figure 2007127897
Moreover, the pigment | dye represented by following formula (2) is also preferable.
Figure 2007127897

上記式(2)において、
Bは、置換基を有していてもよいフェニレン基または置換基を有していてもよいナフチレン基を表す。
4は、水素原子、水酸基または置換基を有していてもよいアルコキシ基を表す。
およびRは、水素原子、置換基を有していてもよいアルキル基または置換基を有していてもよいフェニル基を表す。
mは、0または1を表す。
Yは、1または2を表す。
なお、Yが2の場合、1分子中に含まれる複数のBは、同一であっても異なっていてもよい。
In the above formula (2),
B represents a phenylene group which may have a substituent or a naphthylene group which may have a substituent.
R 4 represents a hydrogen atom, a hydroxyl group or an alkoxy group which may have a substituent.
R 5 and R 6 represent a hydrogen atom, an alkyl group which may have a substituent, or a phenyl group which may have a substituent.
m represents 0 or 1.
Y represents 1 or 2.
When Y is 2, the plurality of B contained in one molecule may be the same or different.

更に、下記式(3)で表される色素も好ましい。

Figure 2007127897
Furthermore, the pigment | dye represented by following formula (3) is also preferable.
Figure 2007127897

上記式(3)において、
は、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基または置換基を有していてもよい芳香族複素環基を表す。
は、置換基を有していてもよい芳香族炭化水素基を表す。
およびRは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基または置換基を有していてもよいフェニル基を表す。
pは、0または1を表す。
In the above formula (3),
D 1 represents a phenyl group which may have a substituent, a naphthyl group which may have a substituent, or an aromatic heterocyclic group which may have a substituent.
A 1 represents an aromatic hydrocarbon group which may have a substituent.
R 7 and R 8 each independently represent a hydrogen atom, an optionally substituted alkyl group or an optionally substituted phenyl group.
p represents 0 or 1.

本発明で言う置換基を有していてもよいとは、置換基を1以上有していてもよいことを意味する。
本発明の上記式(1)〜(3)で表される色素は、分子中の親水性基の数にもよるが、通常水溶性の色素であり、また、通常、二色性色素である。
The term “may have a substituent” as used in the present invention means that it may have one or more substituents.
The dyes represented by the above formulas (1) to (3) of the present invention are usually water-soluble dyes and are usually dichroic dyes, depending on the number of hydrophilic groups in the molecule. .

前記式(3)において、Dが、置換基を有していてもよい芳香族複素環基である場合、芳香族複素環基のヘテロ原子としては、窒素原子、硫黄原子等が挙げられるが、窒素原子を有する芳香族複素環基が液晶性発現濃度低下のため好ましい。芳香族複素環基として具体的には、ピリジル基、キノリル基、チアゾリル基、ベンゾチアゾリル基などが挙げられ、好ましくは、ピリジル基である。 In the formula (3), when D 1 is an aromatic heterocyclic group which may have a substituent, examples of the hetero atom of the aromatic heterocyclic group include a nitrogen atom and a sulfur atom. In addition, an aromatic heterocyclic group having a nitrogen atom is preferable because the concentration of liquid crystallinity is lowered. Specific examples of the aromatic heterocyclic group include a pyridyl group, a quinolyl group, a thiazolyl group, and a benzothiazolyl group, and a pyridyl group is preferable.

前記式(3)において、Aは、置換基を有していてもよい芳香族炭化水素基を表す。芳香族炭化水素基としては、具体的にはフェニレン基或いはナフチレン基が挙げられる。 フェニレン基としては1,4−フェニレン基であることが好ましく、ナフチレン基としては1,4−ナフチレン基であることが、色素どうしが相互作用を示すために好ましい。 In the formula (3), A 1 represents an aromatic hydrocarbon group which may have a substituent. Specific examples of the aromatic hydrocarbon group include a phenylene group and a naphthylene group. The phenylene group is preferably a 1,4-phenylene group, and the naphthylene group is preferably a 1,4-naphthylene group because the dyes exhibit an interaction.

また、前記式(1)〜(3)における、A,B,DおよびAのフェニレン基、ナフチレン基、芳香族炭化水素基或いは芳香族複素環基が有していてもよい置換基としては、アルキル基、アルコキシ基、アミノ基、アシル基、カルバモイル基、カルボキシ基、スルホ基、水酸基およびシアノ基が挙げられる。特に、色素の溶解性を高めるために導入される親水性基や色調を調節するために導入される電子供与性基や電子吸引性を有する基が好ましい。これら置換基は更に置換基を有していてもよく、その例としては同様にアルキル基、アルコキシ基、アミノ基、アシル基、カルバモイル基、カルボキシ基、スルホ基、水酸基およびシアノ基が挙げられる。 In the above formulas (1) to (3), the substituents which the phenylene group, naphthylene group, aromatic hydrocarbon group or aromatic heterocyclic group of A, B, D 1 and A 1 may have. Includes an alkyl group, an alkoxy group, an amino group, an acyl group, a carbamoyl group, a carboxy group, a sulfo group, a hydroxyl group and a cyano group. In particular, a hydrophilic group introduced to enhance the solubility of the dye, an electron donating group introduced to adjust the color tone, or a group having an electron withdrawing property are preferable. These substituents may further have a substituent, and examples thereof include an alkyl group, an alkoxy group, an amino group, an acyl group, a carbamoyl group, a carboxy group, a sulfo group, a hydroxyl group and a cyano group.

具体的には、メチル基、エチル基、n−プロピル基、ヒドロキシエチル基、1,2−ジヒドロキシプロピル基等の置換基を有していてもよいアルキル基(好ましくは、炭素数1〜4のアルキル基);
メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、ヒドロキシエトキシ基、1,2−ジヒドロキシプロポキシ基等の置換基を有していてもよいアルコキシ基(好ましくは、炭素数1〜4のアルコキシ基);
また、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ジメチルアミノ基等のアルキルアミノ基(好ましくは炭素数1〜4のアルキル基で置換されたアミノ基);フェニルアミノ基;アセチル基、ベンゾイル基等のアシルアミノ基(好ましくは炭素数2〜7のアシル基で置換されたアミノ基)等の置換基を有していてもよいアミノ基;
フェニルアミノカルボニル基、ナフチルアミノカルボニル基等の置換カルバモイル基;
カルボキシ基;
スルホ基;
水酸基;
およびシアノ基等が挙げられる。
Specifically, an alkyl group (preferably having 1 to 4 carbon atoms) which may have a substituent such as a methyl group, an ethyl group, an n-propyl group, a hydroxyethyl group, or a 1,2-dihydroxypropyl group. Alkyl group);
An alkoxy group (preferably having 1 to 4 carbon atoms) which may have a substituent such as a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, a hydroxyethoxy group, or a 1,2-dihydroxypropoxy group An alkoxy group);
In addition, alkylamino groups such as methylamino group, ethylamino group, propylamino group, and dimethylamino group (preferably an amino group substituted with an alkyl group having 1 to 4 carbon atoms); phenylamino group; acetyl group, benzoyl group An amino group optionally having a substituent such as an acylamino group (preferably an amino group substituted with an acyl group having 2 to 7 carbon atoms);
Substituted carbamoyl groups such as a phenylaminocarbonyl group and a naphthylaminocarbonyl group;
A carboxy group;
A sulfo group;
Hydroxyl group;
And a cyano group.

これらの置換基のうち、好ましくはスルホ基、水酸基、カルボキシ基である。
前記式(1)〜(3)における、R、R、R〜Rがアルキル基である場合、該アルキル基としては、炭素数1〜4のアルキル基が好ましい。該アルキル基は置換基を有していてもよい。
前記式(1)〜(2)における、RおよびRがアルコキシ基である場合、該アルコキシ基としては、炭素数1〜4のアルコキシ基が好ましい。該アルコキシ基は置換基を有していてもよい。
また、前記式(1)〜(3)における、R〜Rのアルキル基、アルコキシ基或いはフェニル基が有していてもよい置換基としては、水酸基、カルボキシ基およびスルホ基が挙げられる。
前記式(1)〜(3)で表される色素の分子量としては、遊離酸の形で、好ましくは450以上、好ましくは1500以下、更に好ましくは1100以下である。
前記式(1)〜(3)で表される色素は、湿式成膜法により形成される異方性色素膜用の色素として適しており、また波長分散性が低く、その二色比も高いので、該色素を用いて高い分子配向度を示す異方性色素膜を得ることができる。
従って、該色素を用いた色素組成物を異方性色素膜に使用すれば、偏光特性の高い異方性色素膜を得ることが出来る。
Of these substituents, preferred are a sulfo group, a hydroxyl group and a carboxy group.
In the above formulas (1) to (3), when R 2 , R 3 , R 5 to R 8 are alkyl groups, the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms. The alkyl group may have a substituent.
When R 1 and R 4 in the formulas (1) to (2) are alkoxy groups, the alkoxy group is preferably an alkoxy group having 1 to 4 carbon atoms. The alkoxy group may have a substituent.
In the formulas (1) to (3), examples of the substituent that the alkyl group, alkoxy group, or phenyl group of R 1 to R 8 may have include a hydroxyl group, a carboxy group, and a sulfo group.
The molecular weight of the dyes represented by the formulas (1) to (3) is preferably 450 or more, preferably 1500 or less, more preferably 1100 or less in the form of a free acid.
The dyes represented by the formulas (1) to (3) are suitable as dyes for anisotropic dye films formed by a wet film forming method, have low wavelength dispersion, and have a high dichroic ratio. Therefore, an anisotropic dye film showing a high degree of molecular orientation can be obtained using the dye.
Therefore, if a dye composition using the dye is used for the anisotropic dye film, an anisotropic dye film having high polarization characteristics can be obtained.

本発明で使用される色素は、前記式(1)〜(3)で示されるような遊離酸の形のまま使用してもよく、酸基の一部が塩型を取っているものであってもよい。また、塩型の色素と遊離酸型の色素が混在していてもよい。また、製造時に塩型で得られた場合はそのまま使用してもよいし、所望の塩型に変換してもよい。塩型の交換方法としては、公知の方法を任意に用いることができ、例えば以下の方法が挙げられる。   The dye used in the present invention may be used in the form of a free acid as represented by the above formulas (1) to (3), and a part of the acid group has a salt form. May be. Further, a salt-type dye and a free acid-type dye may be mixed. Moreover, when it is obtained in a salt form at the time of production, it may be used as it is or may be converted into a desired salt form. As a salt type exchange method, a known method can be arbitrarily used, and examples thereof include the following methods.

1) 塩型で得られた色素の水溶液に塩酸等の強酸を添加し、色素を遊離酸の形で酸析せしめた後、所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で色素酸性基を中和し塩交換する方法。
2) 塩型で得られた色素の水溶液に、所望の対イオンを有する大過剰の中性塩(例えば、塩化リチウム)を添加し、塩析ケーキの形で塩交換を行う方法。
3) 塩型で得られた色素の水溶液を、強酸性陽イオン交換樹脂で処理し、色素を遊離酸の形で酸析せしめた後、所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で色素酸性基を中和し塩交換する方法。
4) 予め所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で処理した強酸性陽イオン交換樹脂に、塩型で得られた色素の水溶液を作用させ、塩交換を行う方法。
1) A strong acid such as hydrochloric acid is added to an aqueous solution of a dye obtained in a salt form, the dye is acidified in the form of a free acid, and the dye is then added with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution). A method of neutralizing acidic groups and salt exchange.
2) A method of performing salt exchange in the form of a salting-out cake by adding a large excess of a neutral salt (for example, lithium chloride) having a desired counter ion to an aqueous solution of a dye obtained in a salt form.
3) An aqueous solution of a dye obtained in a salt form is treated with a strongly acidic cation exchange resin, and the dye is acidified in the form of a free acid, and then an alkali solution having a desired counter ion (for example, an aqueous lithium hydroxide solution) ) To neutralize the acidic group of the dye and perform salt exchange.
4) A method of performing salt exchange by causing an aqueous solution of a dye obtained in a salt form to act on a strongly acidic cation exchange resin previously treated with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution).

また、本発明で使用される色素は、ここで、酸性基が遊離酸型を取るか、塩型を取るかは、色素のpKaと色素水溶液のpHに依存する。
上記の塩型の例としては、Na、Li、K等のアルカリ金属の塩、アルキル基もしくはヒドロキシアルキル基で置換されていてもよいアンモニウムの塩、または有機アミンの塩が挙げられる。有機アミンの例として、炭素数1〜6の低級アルキルアミン、ヒドロキシ置換された炭素数1〜6の低級アルキルアミン、カルボキシ置換された炭素数1〜6の低級アルキルアミン等が挙げられる。これらの塩型の場合、その種類は1種類に限られず複数種混在していてもよい。
In the dye used in the present invention, whether the acidic group takes a free acid form or a salt form depends on the pKa of the dye and the pH of the dye aqueous solution.
Examples of the salt type include salts of alkali metals such as Na, Li and K, ammonium salts which may be substituted with alkyl groups or hydroxyalkyl groups, and organic amine salts. Examples of the organic amine include a lower alkyl amine having 1 to 6 carbon atoms, a hydroxy substituted lower alkyl amine having 1 to 6 carbon atoms, a carboxy substituted lower alkyl amine having 1 to 6 carbon atoms, and the like. In the case of these salt types, the type is not limited to one type, and a plurality of types may be mixed.

本発明の式(1)〜(3)で表される色素の遊離酸の形での好ましい例としては、例えば以下に示す構造の色素が挙げられるが、これに限定されるものではない。   Preferred examples of the dyes represented by formulas (1) to (3) of the present invention in the form of a free acid include, but are not limited to, dyes having the structure shown below.

Figure 2007127897
Figure 2007127897

Figure 2007127897
Figure 2007127897

本発明において、上述したような色素は単独で使用することができるが、これらの2種以上を併用してもよく、また、配向を低下させない程度に上記例示色素以外の色素を配合して用いることもでき、これにより各種の色相を有する異方性色素膜を製造することができる。   In the present invention, the above-described dyes can be used alone, but two or more of these may be used in combination, and dyes other than the above exemplified dyes are blended and used to such an extent that the orientation is not lowered. Thus, anisotropic dye films having various hues can be produced.

他の色素を配合する場合の配合用色素の例としては、C.I.Direct Yellow 12、C.I.Direct Yellow 34、C.I.Direct Yellow 86、C.I.Direct Yellow 142、C.I.Direct
Yellow 132、C.I.Acid Yellow 25、C.I.Direct Orange 39、C.I.Direct Orange 72、C.I.Direct Orange 79、C.I.Acid Orange 28、C.I.Direct Red 39、C.I.Direct Red 79、C.I.Direct
Red 81、C.I.Direct Red 83、C.I.Direct Red 89、C.I.Acid Red 37、C.I.Direct Violet 9、C.I.Direct Violet 35、C.I.Direct Violet 48、C.I.Direct Violet 57、C.I.Direct Blue 1、C.I.Direct Blue 67、C.I.Direct Blue 83、C.I.Direct Blue 90、C.I.Direct Green 42、C.I.Direct Green 51、C.I.Direct Green 59等が挙げられる。
Examples of blending dyes when blending other dyes include C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 34, C.I. I. Direct Yellow 86, C.I. I. Direct Yellow 142, C.I. I. Direct
Yellow 132, C.I. I. Acid Yellow 25, C.I. I. Direct Orange 39, C.I. I. Direct Orange 72, C.I. I. Direct Orange 79, C.I. I. Acid Orange 28, C.I. I. Direct Red 39, C.I. I. Direct Red 79, C.I. I. Direct
Red 81, C.I. I. Direct Red 83, C.I. I. Direct Red 89, C.I. I. Acid Red 37, C.I. I. Direct Violet 9, C.I. I. Direct Violet 35, C.I. I. Direct Violet 48, C.I. I. Direct Violet 57, C.I. I. Direct Blue 1, C.I. I. Direct Blue 67, C.I. I. Direct Blue 83, C.I. I. Direct Blue 90, C.I. I. Direct Green 42, C.I. I. Direct Green 51, C.I. I. Direct Green 59 etc. are mentioned.

(溶剤)
溶剤としては、水、水混和性のある有機溶剤、或いはこれらの混合物が適している。有機溶剤の具体例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、グリセリン等のアルコール類、エチレングリコール、ジエチレングリコール等のグリコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類などの単独または2種以上の混合溶剤が挙げられる。
(solvent)
As the solvent, water, a water-miscible organic solvent, or a mixture thereof is suitable. Specific examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol and glycerin, glycols such as ethylene glycol and diethylene glycol, cellosolves such as methyl cellosolve and ethyl cellosolve, or a mixture of two or more. A solvent is mentioned.

(濃度)
色素溶液中の色素の濃度としては、通常0.01重量%以上、特に0.1重量%以上であることが好ましく、通常50重量%以下、特に30重量%以下であることが好ましい。色素濃度が低すぎると得られる異方性色素膜において十分な光透過性や二色性を得ることができず、高すぎると色素溶液中で色素が析出する恐れがある。
(concentration)
The concentration of the dye in the dye solution is usually 0.01% by weight or more, particularly preferably 0.1% by weight or more, and usually 50% by weight or less, particularly preferably 30% by weight or less. If the dye concentration is too low, sufficient optical transparency and dichroism cannot be obtained in the obtained anisotropic dye film, and if it is too high, the dye may precipitate in the dye solution.

(添加剤)
色素溶液には、更に必要に応じて、界面活性剤、pH調整剤等の添加剤が配合されていてもよい。添加剤により、濡れ性、塗布性を向上させることができる。
界面活性剤としては、アニオン性、カチオン性およびノニオン性の何れも使用可能である。その添加濃度は、目的の効果を得るために十分であって、かつ色素分子の配向を阻害しない量として、色素溶液中の濃度として通常0.05重量%以上、0.5重量%以下が好ましい。
また、色素溶液中での色素の造塩や凝集などの不安定性を抑制する等の目的のために、通常公知の酸、アルカリ等のpH調整剤などを、色素溶液の構成成分の混合の前後或いは混合中の何れかで添加してpH調整を行ってもよい。
更に、上記以外の添加剤として、“Additive for Coating”,Edited by J.Bieleman,Willey-VCH(2000)記載の公知の添加剤を用いることもできる。
(Additive)
The dye solution may further contain additives such as a surfactant and a pH adjuster as necessary. Additives can improve wettability and coatability.
As the surfactant, any of anionic, cationic and nonionic properties can be used. The concentration of the additive is sufficient to obtain the desired effect, and the concentration in the dye solution is usually 0.05% by weight or more and 0.5% by weight or less as an amount that does not inhibit the orientation of the dye molecules. .
In addition, for the purpose of suppressing instability such as salt formation and aggregation of the dye in the dye solution, generally known pH adjusters such as acids and alkalis are mixed before and after mixing the components of the dye solution. Alternatively, the pH may be adjusted by adding either during mixing.
Furthermore, as additives other than those described above, known additives described in “Additive for Coating”, Edited by J. Bieleman, Willey-VCH (2000) can also be used.

(塗布)
図1は、本実施の形態が適用される光学膜の製造方法を説明するための図であり、スロットダイコート法を用いて異方性光学膜を製造する場合の、配向処理方向と塗布方向の関係を示している。
この図1に示す製造方法では、一方向に配向処理が施された基材10上にて、塗布具であるスロットダイ(ダイ)11と基材10とを図の塗布方向に相対的に移動することによって上記色素溶液を塗布し、異方性光学膜を生成している。本実施の形態では、基材10にラビング処理で先に溝を作っておき、配向処理を施す。この配向処理の方向は、基材10の方向(基材10の縦または横方向と略一致する方向)と平行ではない角度となっている。そして、その基材10の方向に略平行にスロットダイ11と基材10とを相対的に移動させて光学膜形成用組成物を塗布することで、配向処理方向と塗布方向との間の角度(θ)が、0度または90度ではない、平行ではない角度となる。これによって、色素分子の並ぶ方向(偏光軸)を塗布方向とは異なる方向とすることができる。
(Application)
FIG. 1 is a diagram for explaining a method of manufacturing an optical film to which the present embodiment is applied. In the case of manufacturing an anisotropic optical film using a slot die coating method, the orientation processing direction and the coating direction are illustrated. Showing the relationship.
In the manufacturing method shown in FIG. 1, a slot die (die) 11 that is an applicator and a base material 10 are relatively moved in the coating direction in the figure on a base material 10 that has been subjected to an orientation treatment in one direction. As a result, the dye solution is applied to produce an anisotropic optical film. In the present embodiment, grooves are first formed in the base material 10 by rubbing treatment, and orientation treatment is performed. The direction of this orientation treatment is an angle that is not parallel to the direction of the base material 10 (the direction that substantially matches the vertical or horizontal direction of the base material 10). Then, by applying the optical film forming composition by relatively moving the slot die 11 and the base material 10 substantially parallel to the direction of the base material 10, the angle between the orientation processing direction and the coating direction is applied. (Θ) is a non-parallel angle that is neither 0 degrees nor 90 degrees. Thereby, the direction (polarization axis) in which the dye molecules are arranged can be set to a direction different from the coating direction.

この図1を用いた塗布方法について、更に詳細に説明する。
図1に示す角度(θ)、即ち、基材10の配向処理方向と塗布方向とが、角度(θ)が1度〜89度、91度〜179度、181度〜269度、271度〜359度の、平行と垂直を除く角度となるように、基材10の配向処理方向に対して上記色素溶液を塗布する。
ここで塗布方向とは、塗工具がスロットダイ11やブレード等のように周速を持たない場合は、塗工具に対して相対的に基材10が動く方向のことを言う。
The coating method using FIG. 1 will be described in more detail.
The angle (θ) shown in FIG. 1, that is, the orientation processing direction and the application direction of the base material 10, is an angle (θ) of 1 degree to 89 degrees, 91 degrees to 179 degrees, 181 degrees to 269 degrees, 271 degrees to 271 degrees. The said dye solution is apply | coated with respect to the orientation processing direction of the base material 10 so that it may become an angle except a parallel and perpendicular | vertical of 359 degree | times.
Here, the application direction refers to a direction in which the base material 10 moves relative to the application tool when the application tool does not have a peripheral speed like the slot die 11 or the blade.

尚、上述の角度は、更に好ましくは5度〜85度、95度〜175度、185度〜265度、275度〜355度である。より好ましくは10度〜80度、100度〜170度、190度〜260度、280度〜350度である。特に好ましくは10度〜80度、100度〜170度である。最も好ましくは10度〜80度である。上限を超えると配向方向が不均一になり易いため好ましくなく、下限を下回ると配向角度が不足し易くなるので好ましくない。   The above-mentioned angles are more preferably 5 to 85 degrees, 95 to 175 degrees, 185 to 265 degrees, and 275 to 355 degrees. More preferably, they are 10 to 80 degrees, 100 to 170 degrees, 190 to 260 degrees, and 280 to 350 degrees. Particularly preferred are 10 to 80 degrees and 100 to 170 degrees. Most preferably, it is 10 to 80 degrees. Exceeding the upper limit is not preferable because the orientation direction tends to be non-uniform, and if it is less than the lower limit, the orientation angle tends to be insufficient.

基材10の配向処理方向と、塗布方向の関係を上記の通り設定することにより、所望の角度の偏光軸を得ることができる。例えば、化合物(1)(後述する実施例1の色素I)を用いた場合、塗布方向に対して、角度が45度の偏光軸を作りたい場合には、基材10の配向方向から80度を塗布方向の条件とするとよい。
塗布方向は、基材方向と平行であれば、切断する必要がなく高生産性のため、好ましい。基材方向と平行とは、図2に示すように、長辺または短辺方向に平行の状態をいう。
By setting the relationship between the orientation treatment direction of the substrate 10 and the application direction as described above, a polarization axis having a desired angle can be obtained. For example, in the case of using Compound (1) (Dye I of Example 1 described later), when it is desired to form a polarization axis having an angle of 45 degrees with respect to the coating direction, it is 80 degrees from the orientation direction of the substrate 10. Is preferably set as a condition in the coating direction.
If the application direction is parallel to the base material direction, it is not necessary to cut and it is preferable because of high productivity. Parallel to the base material direction means a state parallel to the long side or short side direction, as shown in FIG.

基材に塗布する方法としては、原崎勇次著「コーティング工学」(株式会社朝倉書店、1971年3月20日発行)253頁〜277頁や、市村國宏監修「分子協調材料の創製と応用」(株式会社シーエムシー出版、1998年3月3日発行)118頁〜149頁などに記載の公知の方法がある。また、例えば、予め配向処理を施した基材上に、スピンコート法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法、カーテンコート法、ファウンテン法、ディップ法などで塗布する方法が挙げられる。中でも、図1に示すようなスロットダイコート法が好ましい。
尚、色素溶液の基材上への塗布時の温度は、通常0℃以上、80℃以下、好ましくは40℃以下である。また、湿度は、通常10%RH以上、好ましくは30%RH以上で、通常80RH%以下である。
As a method of applying to the substrate, Yuji Harasaki “Coating Engineering” (Asakura Shoten Co., Ltd., issued on March 20, 1971) pp. 253 to 277 and Kunihiro Ichimura “Creation and Application of Molecular Cooperative Materials” (CMC Publishing Co., Ltd., issued March 3, 1998) There are known methods described on pages 118 to 149. In addition, for example, a method of applying a spin coating method, a spray coating method, a bar coating method, a roll coating method, a blade coating method, a curtain coating method, a fountain method, a dip method or the like on a substrate that has been previously subjected to an alignment treatment. Can be mentioned. Of these, the slot die coating method as shown in FIG. 1 is preferable.
In addition, the temperature at the time of application | coating on the base material of a pigment | dye solution is 0 degreeC or more and 80 degrees C or less normally, Preferably it is 40 degrees C or less. The humidity is usually 10% RH or more, preferably 30% RH or more, and usually 80 RH% or less.

(膜厚)
本発明の製造方法で得られた異方性光学膜の膜厚は、通常乾燥後の膜厚で、好ましくは10nm以上、更に好ましくは50nm以上で、好ましくは30μm以下、更に好ましくは10μm以下である。異方性光学膜の膜厚が30μmを超えると、膜内で色素分子の配向を制御することが難しくなるおそれがあり、10nmを下回ると均一な膜厚とすることが難しくなるおそれがあるため好ましくない。
(Film thickness)
The film thickness of the anisotropic optical film obtained by the production method of the present invention is usually the film thickness after drying, preferably 10 nm or more, more preferably 50 nm or more, preferably 30 μm or less, more preferably 10 μm or less. is there. If the film thickness of the anisotropic optical film exceeds 30 μm, it may be difficult to control the orientation of the dye molecules in the film, and if it is less than 10 nm, it may be difficult to obtain a uniform film thickness. It is not preferable.

(異方性光学膜)
また、本発明は、一方向に配向処理された基材上に光学膜形成用組成物を塗布して形成される異方性光学膜であって、異方性光学膜の配向方向が、基材の配向処理方向と塗布方向の中間(中間の角度方向)に位置し、かつ、異方性光学膜の配向方向が、塗布方向に対して85度から5度の角度であることを特徴とする、異方性光学膜に関する。このような異方性光学膜を用いることにより、光学欠陥がなく生産性に優れ光学性能の高い、配向軸がある角度を持った光学素子を得ることができる。この異方性光学膜は、上記本発明の製造方法により得ることができるが、この限りではない。
(Anisotropic optical film)
The present invention also provides an anisotropic optical film formed by applying an optical film-forming composition on a substrate that has been oriented in one direction, and the orientation direction of the anisotropic optical film is based on the orientation direction. It is located between the material orientation treatment direction and the coating direction (intermediate angle direction), and the orientation direction of the anisotropic optical film is an angle of 85 to 5 degrees with respect to the coating direction. The present invention relates to an anisotropic optical film. By using such an anisotropic optical film, it is possible to obtain an optical element having an angle with an orientation axis, having no optical defects, excellent productivity and high optical performance. This anisotropic optical film can be obtained by the production method of the present invention, but is not limited thereto.

ここで、異方性光学膜の配向方向とは、偏光の透過軸または吸収軸のことを意味し、具体的には、クロスニコル下で異方性光学膜を観察して二つの消光位になる軸を見つけておき、基材方向または塗布方向の何れかと基材の配向処理方向(下地層の配向方向)の間に先ほどの二つの軸の一つの軸が存在する時、その軸の方向を配向方向とする。また、異方性光学膜の配向方向は、上記のように85度から5度の角度であるが、好ましくは80度から5度、更に好ましくは75度から5度である。上限を超えると配向方向が不均一になり易いため好ましくなく、下限を下回ると配向角度が不足するため好ましくない。
また、異方性光学膜の配向方向が、基材の配向処理方向と基材方向の中間に位置し、かつ、異方性光学膜の配向方向が、基材方向に対して85度から5度の角度であることも上記と同様の理由で好ましい。また、好ましい角度も同様であり、この異方性光学膜も本発明の製造方法により得られる。
尚、この代表的な角度である85度から5度は、175度から95度、265度から185度、355度から275度とすることができる。同様に、好ましい角度(5度〜80度、5度〜75度)もその角度の取り方によって表現が変わってくる。
Here, the orientation direction of the anisotropic optical film means a transmission axis or an absorption axis of polarized light, and specifically, the anisotropic optical film is observed under crossed Nicols to be in two extinction positions. If there is one of the two axes between either the substrate direction or the coating direction and the substrate orientation processing direction (underlying layer orientation direction), the direction of that axis Is the orientation direction. The orientation direction of the anisotropic optical film is an angle of 85 to 5 degrees as described above, preferably 80 to 5 degrees, and more preferably 75 to 5 degrees. If the upper limit is exceeded, the orientation direction tends to be non-uniform, which is not preferable.
Further, the orientation direction of the anisotropic optical film is located between the orientation processing direction of the base material and the base material direction, and the orientation direction of the anisotropic optical film is from 85 degrees to 5 degrees with respect to the base material direction. An angle of degrees is also preferable for the same reason as described above. The preferable angle is also the same, and this anisotropic optical film can also be obtained by the production method of the present invention.
The typical angle of 85 to 5 degrees can be 175 to 95 degrees, 265 to 185 degrees, and 355 to 275 degrees. Similarly, the expression of a preferable angle (5 to 80 degrees, 5 to 75 degrees) varies depending on how to take the angle.

(入射角)
また、本発明の異方性光学膜は、入射時の偏光軸と出射時の偏光軸のなす角度とが89度から1度であることを特徴とする。このような異方性光学膜を用いることにより、偏光軸をある角度で回転することができる光学素子を得ることができる。この異方性光学膜は、上記本発明の製造方法により得ることができるが、この限りではない。
ここで、入射時の偏光軸と出射時の偏光軸のなす角度とは、偏光軸のわかっている直線偏光板と異方性光学膜を用意し、面光源に対して最初に直線偏光板を置き次にこの異方性光学膜を置いたときに最も暗くなる角度を入射時の偏光軸の角度とし、面光源に対して最初に異方性光学膜を置き次に直線偏光板を置いたときに最も暗くなる角度を出射時の偏光軸の角度とする。このとき、例えば化合物(1)の消光位は基材の配向処理方向に対して垂直にできるので、偏光軸の角度は基材の配向処理方向から直線偏光板の透過軸のなす角度とする。
(Angle of incidence)
In addition, the anisotropic optical film of the present invention is characterized in that the angle formed between the polarization axis at the time of incidence and the polarization axis at the time of emission is from 89 degrees to 1 degree. By using such an anisotropic optical film, an optical element capable of rotating the polarization axis at a certain angle can be obtained. This anisotropic optical film can be obtained by the production method of the present invention, but is not limited thereto.
Here, the angle between the polarization axis at the time of incidence and the polarization axis at the time of emission is determined by preparing a linearly polarizing plate and an anisotropic optical film with known polarization axes, Next, the darkest angle when this anisotropic optical film is placed is the angle of the polarization axis at the time of incidence, the anisotropic optical film is first placed on the surface light source, and then the linear polarizing plate is placed. The angle that is sometimes darkest is the angle of the polarization axis at the time of emission. At this time, for example, the extinction position of the compound (1) can be perpendicular to the alignment treatment direction of the substrate, and therefore the angle of the polarization axis is the angle formed by the transmission axis of the linearly polarizing plate from the alignment treatment direction of the substrate.

また、入射時の偏光軸と出射時の偏光軸のなす角度とが89度から1度の角度であるが、好ましくは5度〜85度、更に好ましくは10度〜80度である。上限を超えると不均一になり易いので好ましくなく、下限を下回ると偏光軸を回転させる角度が小さくなるため好ましくない。
尚、この89度〜1度は、179度〜91度、269度〜181度、359度〜271度とすることができる。同様に、好ましい角度(5度〜85度、10度〜80度)もその角度の取り方によって表現が変わってくる。
The angle between the polarization axis at the time of incidence and the polarization axis at the time of emission is an angle of 89 degrees to 1 degree, preferably 5 degrees to 85 degrees, more preferably 10 degrees to 80 degrees. Exceeding the upper limit is not preferable because it tends to be non-uniform, and if it is less than the lower limit, the angle for rotating the polarization axis is decreased.
The 89 ° to 1 ° can be set to 179 ° to 91 °, 269 ° to 181 °, and 359 ° to 271 °. Similarly, the expression of a preferable angle (5 ° to 85 °, 10 ° to 80 °) also varies depending on how to take the angle.

(位相差機能および偏光機能)
上記本発明の異方性光学膜は、位相差機能および偏光機能の両方を有するものであることが特に好ましい。ここで言う位相差機能とは、常光と異常光との屈折率差を利用して特定の波長をカットする機能や光学軸を回転させる機能のことを言う。また、ここで言う偏光機能とは、直線偏光性を持つことを言う。
上記入射時の偏光軸と出射時の偏光軸のなす角度とが89度から1度であることを特徴とする本発明の異方性光学膜は、偏光機能を有するだけでなく、入射時と出射時の偏光軸が異なっており、位相差機能も有すると言える。
(Phase difference function and polarization function)
The anisotropic optical film of the present invention preferably has both a retardation function and a polarization function. The phase difference function here refers to a function of cutting a specific wavelength by utilizing a refractive index difference between ordinary light and extraordinary light and a function of rotating an optical axis. Moreover, the polarization function said here has having linear polarization property.
The anisotropic optical film of the present invention is characterized in that an angle formed between the polarization axis at the time of incidence and the polarization axis at the time of emission is from 89 degrees to 1 degree. It can be said that the polarization axis at the time of emission is different and also has a phase difference function.

(保護層)
本発明の異方性光学膜は、必要に応じ、保護層を設けて使用する。この保護層は、例えば、トリアセテート、アクリル、ポリエステル、ポリイミド、トリアセチルセルロース、ノルボン系、環状ポレオレフィン系またはウレタン系のフィルム等の透明な高分子膜によりラミネーションして形成され、実用に供される。
(Protective layer)
The anisotropic optical film of the present invention is used with a protective layer provided if necessary. This protective layer is formed by lamination with a transparent polymer film such as triacetate, acrylic, polyester, polyimide, triacetyl cellulose, norbon-based, cyclic polyolefin-based or urethane-based film, and is provided for practical use. .

(素子)
本発明の異方性光学膜をLCDやOLEDなどの各種の光学素子(表示素子)に偏光膜等として用いる場合には、これらの光学素子を構成する電極基板などの表面に配向処理を施した上で直接本発明の異方性光学膜を形成したり、本発明の異方性光学膜を形成した基材をこれら光学素子の構成部材として用いれば良い。
(element)
When the anisotropic optical film of the present invention is used as a polarizing film or the like for various optical elements (display elements) such as LCDs and OLEDs, the surface of the electrode substrate or the like constituting these optical elements is subjected to an alignment treatment. The base material on which the anisotropic optical film of the present invention is directly formed or the anisotropic optical film of the present invention is formed may be used as a constituent member of these optical elements.

本発明の異方性光学膜は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏光等を得る偏光膜として機能する他、膜形成プロセスと基材や有機化合物(色素)を含有する組成物の選択により、屈折異方性や伝導異方性などの各種異方性膜として機能化が可能となり、様々な種類の、多様な用途に使用可能な光学素子とすることができる。
そして、本発明の光学素子は、このような本発明の異方性光学膜を用いたものであるが、本発明の異方性光学膜を基材上に形成して本発明の光学素子とする場合、形成された異方性光学膜そのものを使用しても良く、また上記の様な保護層のほか、粘着層、反射防止層など、様々な機能をもつ層を積層形成し、積層体として使用しても良い。
The anisotropic optical film of the present invention functions as a polarizing film that uses light absorption anisotropy to obtain linearly polarized light, circularly polarized light, elliptically polarized light, etc. By selecting the composition to be contained, it can be functionalized as various anisotropic films such as refractive anisotropy and conduction anisotropy, and various types of optical elements can be used for various purposes. .
The optical element of the present invention uses such an anisotropic optical film of the present invention. The optical element of the present invention is formed by forming the anisotropic optical film of the present invention on a substrate. In this case, the formed anisotropic optical film itself may be used. In addition to the protective layer as described above, layers having various functions such as an adhesive layer and an antireflection layer are laminated to form a laminate. May be used as

これら光学機能を有する層は、例えば以下の様な方法により形成することが出来る。
まず、位相差フィルムとしての機能を有する層は、例えば特許第2841377号公報、特許第3094113号公報などに記載の延伸処理を施したり、特許第3168850号公報などに記載された処理を施したりすることにより形成することができる。
また、輝度向上フィルムとしての機能を有する層は、例えば特開2002−169025号公報や特開2003−29030号公報に記載されるような方法で微細孔を形成すること、或いは、選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより形成することができる。
反射フィルムまたは半透過反射フィルムとしての機能を有する層は、蒸着やスパッタリングなどで得られた金属薄膜を用いて形成することができる。
拡散フィルムとしての機能を有する層は、上記の保護層に微粒子を含む樹脂溶液をコーティングすることにより、形成することができる。
また、位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコティック液晶性化合物、ネマティック液晶性化合物などの液晶性化合物を塗布して配向させることにより形成することができる。
These layers having optical functions can be formed, for example, by the following method.
First, a layer having a function as a retardation film is subjected to a stretching process described in, for example, Japanese Patent No. 2841377, Japanese Patent No. 3094113, or a process described in Japanese Patent No. 3168850. Can be formed.
The layer having a function as a brightness enhancement film may be formed by forming a fine hole by a method as described in, for example, Japanese Patent Application Laid-Open Nos. 2002-169025 and 2003-29030, or the center of selective reflection. It can be formed by overlapping two or more cholesteric liquid crystal layers having different wavelengths.
The layer having a function as a reflective film or a transflective film can be formed using a metal thin film obtained by vapor deposition or sputtering.
The layer having a function as a diffusion film can be formed by coating the protective layer with a resin solution containing fine particles.
The layer having a function as a retardation film or an optical compensation film can be formed by applying and aligning a liquid crystal compound such as a discotic liquid crystal compound or a nematic liquid crystal compound.

本発明の異方性光学膜は、ガラスなどの高耐熱性基板上に直接形成することが可能であり、高耐熱性の偏光素子を得ることができるという点から、液晶ディスプレイや有機ELディスプレイだけでなく液晶プロジェクタや車載用表示パネル等、高耐熱性が求められる用途に好適に使用することができる。   The anisotropic optical film of the present invention can be directly formed on a high heat-resistant substrate such as glass, and only a liquid crystal display or an organic EL display can be obtained because a high heat-resistant polarizing element can be obtained. In addition, it can be suitably used for applications requiring high heat resistance, such as liquid crystal projectors and in-vehicle display panels.

次に、実施例により本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
また、二色比(D)はヨウ素系偏光素子を入射光学系に配した分光光度計(島津製作所社製SolidSpec3700)で異方性光学膜の透過率を測定した後、次式により計算した。
二色比(D)=Az/Ay
Az=−log(Tz)
Ay=−log(Ty)
Tz:色素膜の吸収軸方向の偏光に対する透過率
Ty:色素膜の偏光軸方向の偏光に対する透過率
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example, unless the summary is exceeded.
The dichroic ratio (D) was calculated by the following equation after measuring the transmittance of the anisotropic optical film with a spectrophotometer (SolidSpec 3700 manufactured by Shimadzu Corporation) in which an iodine polarizing element was arranged in the incident optical system.
Dichroic ratio (D) = Az / Ay
Az = -log (Tz)
Ay = -log (Ty)
Tz: transmittance for polarized light in the absorption axis direction of the dye film
Ty: transmittance for polarized light in the direction of the polarization axis of the dye film

以下において「部」は「重量部」を示す。
(実施例1)
水78部に下記例示色素( I )のLi塩21部と下記例示色素( II )1部を撹拌溶解させて色素溶液(光学膜形成用組成物)を得た。
In the following, “part” means “part by weight”.
Example 1
In 78 parts of water, 21 parts of the Li salt of the following exemplified dye (I) and 1 part of the exemplified dye (II) below were stirred and dissolved to obtain a dye solution (composition for forming an optical film).

Figure 2007127897
Figure 2007127897

Figure 2007127897
Figure 2007127897

ガラス製基材(75mm×150mm、厚さ1mm)上にシルク印刷法によりポリイミドの配向膜が形成された基材(ポリイミド膜厚 約800Å)を、予め布で基材の長辺方向から30度の角度を持たせてラビング処理を施したものを用意した。これに前述した色素溶液をアプリケータ(井元製作所社製)5μmで基材の長辺方向に基材方向と塗布方向とを平行にして235mm/sで塗布した後、膜厚約0.4μmの異方性光学膜を得た。   A substrate (polyimide film thickness of about 800 mm), on which a polyimide alignment film is formed by a silk printing method on a glass substrate (75 mm × 150 mm, thickness 1 mm), is previously 30 degrees from the long side direction of the substrate with a cloth. The thing which gave the angle of this and gave the rubbing process was prepared. The above-described dye solution was applied at 235 mm / s with an applicator (manufactured by Imoto Seisakusho Co., Ltd.) having a thickness of about 0.4 μm after being applied at 235 mm / s with the substrate direction and the coating direction parallel to the long side direction of the substrate. An anisotropic optical film was obtained.

尚、塗布条件は24〜26℃、40%RH〜60%RHで作製した。得られた異方性光学膜を測定したところ、図3のような結果を得、二色比を持つことがわかった。この図3の結果から、光学膜の配向方向が基材の配向処理方向から16度の方向に配向して二色比は43であった。この図3は、配向処理方向と塗布方向との関係を示す図である。横軸は基材を配置する角度を示し、縦軸は塗布後の結晶度合いを示している。この図3には塗布方向と、基材上にある基材の配向処理方向と、結果として得られた異方性光学膜の配向方向とが示されている。図3の例では、基材の配向処理方向から見て、異方性光学膜の配向方向は16度、塗布方向は30度となっており、異方性光学膜の配向方向は下地の配向方向(基材の配向処理方向)と塗布方向との中間に位置していることがわかる。また、異方性光学膜の配向方向に対して結晶が最も多く存在していることが理解できる。   The coating conditions were 24 to 26 ° C. and 40% RH to 60% RH. When the obtained anisotropic optical film was measured, the result as shown in FIG. From the result of FIG. 3, the orientation direction of the optical film was oriented in the direction of 16 degrees from the orientation treatment direction of the substrate, and the dichroic ratio was 43. FIG. 3 is a diagram showing the relationship between the orientation processing direction and the coating direction. The horizontal axis indicates the angle at which the substrate is disposed, and the vertical axis indicates the degree of crystal after application. FIG. 3 shows the application direction, the orientation treatment direction of the base material on the base material, and the orientation direction of the resulting anisotropic optical film. In the example of FIG. 3, the orientation direction of the anisotropic optical film is 16 degrees and the coating direction is 30 degrees when viewed from the orientation processing direction of the substrate, and the orientation direction of the anisotropic optical film is the orientation of the base. It turns out that it is located in the middle of the direction (the orientation treatment direction of the substrate) and the coating direction. Further, it can be understood that there are most crystals in the orientation direction of the anisotropic optical film.

(実施例2)
実施例1と同様にして色素溶液を得た。 実施例1と同様の基材を用意し、スロットダイで色素溶液を基材の長辺方向に基材方向と塗布方向とを平行にして6mm/sで塗布した後、膜厚約0.6μmの異方性光学膜を得た。基材の配向処理方向から20度の方向に配向した。
偏光軸のわかっている直線偏光板((株)テックジャム社製 偏光フィルム 商品No.3115820)を用意し、面光源(キング製ブライトボックス5000)に対して、直線偏光板を置き、次に得られた異方性光学膜を置いたときに最も暗くなる角度を測定したところ、約10度であった(入射時の偏光軸の角度)。また、面光源に対して、まず該異方性光学膜を置き、次に該直線偏光板を置いたときに、最も暗くなる角度を測定したところ、約2度であった(出射時の偏光軸の角度)。即ち、入射時の偏光軸と出射時の偏光軸とのなす角度は約2度であった。
(Example 2)
A dye solution was obtained in the same manner as in Example 1. A base material similar to that in Example 1 was prepared, and the dye solution was applied with a slot die at a rate of 6 mm / s with the base material direction and the coating direction being parallel to the long side direction of the base material. An anisotropic optical film was obtained. The substrate was oriented in a direction of 20 degrees from the orientation treatment direction of the substrate.
A linear polarizing plate with a known polarization axis (polarizing film product No. 3115820 manufactured by Tech Jam Co., Ltd.) is prepared, and the linear polarizing plate is placed on a surface light source (Bright box 5000 manufactured by King), and then obtained. The darkest angle when the obtained anisotropic optical film was placed was measured and found to be about 10 degrees (the angle of the polarization axis at the time of incidence). Further, when the anisotropic optical film was first placed on the surface light source, and then the linearly polarizing plate was placed, the darkest angle was measured and found to be about 2 degrees (polarization at the time of emission). Axis angle). That is, the angle formed between the polarization axis at the time of incidence and the polarization axis at the time of emission was about 2 degrees.

(比較例1)
実施例1と同様にして色素溶液を得た。75×75×0.7tサイズのガラス基材(コーニング製1757)にアプリケータ(井元製作所製)で基材に斜め方向に塗布したところ、塗布始めと塗布終わりの塗布幅の狭いところではアプリケータが基材からはみ出し塗布が不安定になり膜厚ムラや配向ムラなどの欠陥が発生し塗布膜の均一性が極めて悪かった。
(Comparative Example 1)
A dye solution was obtained in the same manner as in Example 1. When a 75 × 75 × 0.7t size glass substrate (Corning 1757) was applied to the substrate in an oblique direction with an applicator (Imoto Seisakusho), the applicator was applied at a narrow application width at the beginning and end of application. However, the coating out of the substrate became unstable, resulting in defects such as film thickness unevenness and alignment unevenness, and the uniformity of the coating film was extremely poor.

(比較例2)
実施例1と同様にして色素溶液を得た。75×75×0.7tサイズのガラス基材(コーニング製1757)に基材方向に対して角度を持たせて#2のワイヤーバー(松尾産業社製)を回転させながら塗布したところ、ワイヤーバーの回転ムラ起因の塗布方向とは垂直方向の周期的なムラと塗布方向に沿ったスジ状の欠陥が多く見られ、均一性が極めて悪かった。
(Comparative Example 2)
A dye solution was obtained in the same manner as in Example 1. When a 75 × 75 × 0.7t size glass substrate (Corning 1757) was applied while rotating the wire bar # 2 (Matsuo Sangyo Co., Ltd.) with an angle to the substrate direction, the wire bar There were many periodic irregularities in the vertical direction and streak-like defects along the coating direction due to the rotation unevenness of the film, and the uniformity was extremely poor.

本実施の形態が適用される光学膜の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the optical film with which this Embodiment is applied. 長方形をした基材の基材方向を示す図である。It is a figure which shows the base-material direction of the base material made into the rectangle. 配向処理方向と塗布方向との関係を示した図である。It is the figure which showed the relationship between the orientation process direction and the application | coating direction.

符号の説明Explanation of symbols

10…基材、11…スロットダイ 10 ... Base material, 11 ... Slot die

Claims (11)

一方向に配向処理された基材上に光学膜形成用組成物を塗布して形成される異方性光学膜の製造方法であって、
前記基材上の配向処理方向に対して、塗布方向が平行ではない角度とすることを特徴とする、異方性光学膜の製造方法。
A method for producing an anisotropic optical film formed by applying a composition for forming an optical film on a substrate subjected to orientation treatment in one direction,
A method for producing an anisotropic optical film, wherein the coating direction is not parallel to the orientation treatment direction on the substrate.
前記基材上の配向処理方向に対して、塗布方向を89度から1度の角度とすることを特徴とする、請求項1に記載の異方性光学膜の製造方法。   2. The method for producing an anisotropic optical film according to claim 1, wherein the coating direction is an angle of 89 degrees to 1 degree with respect to the alignment treatment direction on the substrate. 前記塗布方向が、基材方向と平行であることを特徴とする、請求項1または2に記載の異方性光学膜の製造方法。   The method for producing an anisotropic optical film according to claim 1, wherein the coating direction is parallel to the substrate direction. 前記光学膜形成用組成物が液晶相の状態の色素溶液であることを特徴とする、請求項1乃至3何れか1項記載の異方性光学膜の製造方法。   The method for producing an anisotropic optical film according to any one of claims 1 to 3, wherein the optical film-forming composition is a dye solution in a liquid crystal phase. 前記基材が枚葉基板であることを特徴とする、請求項1乃至4何れか1項記載の異方性光学膜の製造方法。   The method for producing an anisotropic optical film according to claim 1, wherein the base material is a single-wafer substrate. 請求項1乃至5何れか1項記載の異方性光学膜の製造方法により製造された異方性光学膜。   An anisotropic optical film manufactured by the method for manufacturing an anisotropic optical film according to claim 1. 一方向に配向処理された基材上に光学膜形成用組成物を塗布して形成される異方性光学膜であって、
前記異方性光学膜の配向方向が、前記基材の配向処理方向と塗布方向との中間に位置し、
かつ、
前記異方性光学膜の配向方向が、前記塗布方向に対して85度から5度の角度であることを特徴とする、異方性光学膜。
An anisotropic optical film formed by applying a composition for forming an optical film on a substrate that has been oriented in one direction,
The orientation direction of the anisotropic optical film is located between the orientation treatment direction of the substrate and the coating direction,
And,
An anisotropic optical film, wherein an orientation direction of the anisotropic optical film is an angle of 85 degrees to 5 degrees with respect to the coating direction.
一方向に配向処理された基材上に光学膜形成用組成物を塗布して形成される異方性光学膜であって、
前記異方性光学膜の配向方向が、前記基材の配向処理方向と基材方向との中間に位置し、
かつ、
前記異方性光学膜の配向方向が、前記基材方向に対して85度から5度の角度であることを特徴とする、異方性光学膜。
An anisotropic optical film formed by applying a composition for forming an optical film on a substrate that has been oriented in one direction,
The orientation direction of the anisotropic optical film is located between the orientation treatment direction of the substrate and the substrate direction,
And,
An anisotropic optical film, wherein an orientation direction of the anisotropic optical film is an angle of 85 degrees to 5 degrees with respect to the substrate direction.
入射時の偏光軸と出射時の偏光軸のなす角度が89度から1度であることを特徴とする、異方性光学膜。   An anisotropic optical film characterized in that an angle formed by a polarization axis at the time of incidence and a polarization axis at the time of emission is 89 degrees to 1 degree. 位相差機能および偏光機能を有する、請求項6乃至9何れか1項記載の異方性光学膜。   The anisotropic optical film according to claim 6, which has a phase difference function and a polarization function. 請求項6乃至10何れか1項記載の異方性光学膜を有する光学素子。   An optical element having the anisotropic optical film according to claim 6.
JP2005321432A 2005-11-04 2005-11-04 Anisotropic optical film manufacturing method, anisotropic optical film, and optical element Active JP4654882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321432A JP4654882B2 (en) 2005-11-04 2005-11-04 Anisotropic optical film manufacturing method, anisotropic optical film, and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321432A JP4654882B2 (en) 2005-11-04 2005-11-04 Anisotropic optical film manufacturing method, anisotropic optical film, and optical element

Publications (2)

Publication Number Publication Date
JP2007127897A true JP2007127897A (en) 2007-05-24
JP4654882B2 JP4654882B2 (en) 2011-03-23

Family

ID=38150595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321432A Active JP4654882B2 (en) 2005-11-04 2005-11-04 Anisotropic optical film manufacturing method, anisotropic optical film, and optical element

Country Status (1)

Country Link
JP (1) JP4654882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115866A (en) * 2007-11-02 2009-05-28 Nitto Denko Corp Coating liquid, polarizing film and method of manufacturing polarizing film
JP2013065023A (en) * 2012-10-17 2013-04-11 Nitto Denko Corp Support film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358004A (en) * 1989-07-27 1991-03-13 Nippon Kayaku Co Ltd Polarizing film
JPH09138308A (en) * 1995-10-13 1997-05-27 Sharp Corp Patterned and polarized light rotating optical element and production of patterned and polarized light rotating optical element and 3d display
JPH1090675A (en) * 1996-07-04 1998-04-10 Sharp Corp Optical rotatory element, its production and image display device using that
JP2000098392A (en) * 1998-07-31 2000-04-07 Merck Patent Gmbh Method for rubbing substrate
JP2000298210A (en) * 1999-04-15 2000-10-24 Fuji Photo Film Co Ltd Manufacture of long size optical compensation sheet
JP2001013323A (en) * 1999-06-29 2001-01-19 Fuji Photo Film Co Ltd Elliptical polarizing plate and liquid crystal display device
JP2002311246A (en) * 2001-02-07 2002-10-23 Sumitomo Chem Co Ltd Polarizing plate, method for manufacturing the same and liquid crystal display device
JP2003255328A (en) * 2002-03-05 2003-09-10 Sumitomo Bakelite Co Ltd Method for manufacturing substrate for liquid crystal element and substrate for liquid crystal element obtained by using the method
JP2004333720A (en) * 2003-05-06 2004-11-25 Fuji Photo Film Co Ltd Method for manufacturing rolled optical compensation film, rolled optical compensation film, polarizing plate, and liquid crystal display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358004A (en) * 1989-07-27 1991-03-13 Nippon Kayaku Co Ltd Polarizing film
JPH09138308A (en) * 1995-10-13 1997-05-27 Sharp Corp Patterned and polarized light rotating optical element and production of patterned and polarized light rotating optical element and 3d display
JPH1090675A (en) * 1996-07-04 1998-04-10 Sharp Corp Optical rotatory element, its production and image display device using that
JP2000098392A (en) * 1998-07-31 2000-04-07 Merck Patent Gmbh Method for rubbing substrate
JP2000298210A (en) * 1999-04-15 2000-10-24 Fuji Photo Film Co Ltd Manufacture of long size optical compensation sheet
JP2001013323A (en) * 1999-06-29 2001-01-19 Fuji Photo Film Co Ltd Elliptical polarizing plate and liquid crystal display device
JP2002311246A (en) * 2001-02-07 2002-10-23 Sumitomo Chem Co Ltd Polarizing plate, method for manufacturing the same and liquid crystal display device
JP2003255328A (en) * 2002-03-05 2003-09-10 Sumitomo Bakelite Co Ltd Method for manufacturing substrate for liquid crystal element and substrate for liquid crystal element obtained by using the method
JP2004333720A (en) * 2003-05-06 2004-11-25 Fuji Photo Film Co Ltd Method for manufacturing rolled optical compensation film, rolled optical compensation film, polarizing plate, and liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115866A (en) * 2007-11-02 2009-05-28 Nitto Denko Corp Coating liquid, polarizing film and method of manufacturing polarizing film
JP2013065023A (en) * 2012-10-17 2013-04-11 Nitto Denko Corp Support film

Also Published As

Publication number Publication date
JP4654882B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4876549B2 (en) Azo dye, composition for anisotropic dye film using the same, anisotropic dye film and polarizing element
JP5223695B2 (en) Insolubilized anisotropic film, insolubilizing treatment liquid, method for producing insolubilized anisotropic film using the same, and optical element using the same
TWI396719B (en) Anisotropic dye film composition, anisotropic dye film and polarizing element
JP5168878B2 (en) Composition for anisotropic dye film, anisotropic dye film and polarizing element
JP4784417B2 (en) Composition for anisotropic dye film, anisotropic dye film and polarizing element
JP4736823B2 (en) Composition for anisotropic dye film, anisotropic dye film, polarizing element and dye for anisotropic dye film
JP4654882B2 (en) Anisotropic optical film manufacturing method, anisotropic optical film, and optical element
JP2009139825A (en) Method for manufacturing optical anisotropic film
JP2007291246A (en) Azo dye, composition for anisotropic dye film having the dye, anisotropic dye film, and polarizing element
JP2007272211A (en) Optical element, and method for the manufacturing optical element
JP2015066537A (en) Die, die coater comprising the die, manufacturing method for optical device using the die coater, optical device manufactured by the manufacturing method, and liquid crystal device comprising the optical device
JP2007226212A (en) Coating liquid material, anisotropic film, method for manufacturing anisotropic film, and optical element
JP6406262B2 (en) Manufacturing method of anisotropic dye film, anisotropic dye film manufactured by the manufacturing method, optical element including the anisotropic dye film, and liquid crystal element including the optical element
TWI640580B (en) Composition for anisotropic pigment film, anisotropic pigment film, and optical element
JP2007061755A (en) Production method of optical device
JP5422875B2 (en) Method for manufacturing anisotropic optical film
JP6160198B2 (en) Manufacturing method of polarizer
TW200813500A (en) Optical compensation film and method of producing the same, polarizing plate and liquid crystal display
JP7024379B2 (en) Anisotropic dye film forming composition, anisotropic dye film and polarizing element
JP5978529B2 (en) Polarizing film, image display device, and manufacturing method of polarizing film
JP2008020908A (en) Pigment for anisotropic pigment film
JP2007093938A (en) Liquid crystalline coating liquid material for anisotropic dye film, and method for manufacturing anisotropic dye film and optical element
JP2008102417A (en) Azo dye for anisotropic dye film, composition for anisotropic dye film containing the azo dye, anisotropic dye film and polarizing element
JP5499791B2 (en) Azo compound for anisotropic film, composition for anisotropic film, anisotropic film and polarizing element
WO2018123691A1 (en) Composition for forming anisotropic dye film, and anisotropic dye film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4654882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350