WO2018123691A1 - Composition for forming anisotropic dye film, and anisotropic dye film - Google Patents

Composition for forming anisotropic dye film, and anisotropic dye film Download PDF

Info

Publication number
WO2018123691A1
WO2018123691A1 PCT/JP2017/045329 JP2017045329W WO2018123691A1 WO 2018123691 A1 WO2018123691 A1 WO 2018123691A1 JP 2017045329 W JP2017045329 W JP 2017045329W WO 2018123691 A1 WO2018123691 A1 WO 2018123691A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic dye
group
dye film
composition
film
Prior art date
Application number
PCT/JP2017/045329
Other languages
French (fr)
Japanese (ja)
Inventor
朋子 山川
輝恒 大澤
祐三 金子
太 田中
政昭 西村
直幸 内田
崇志 藤原
水上 潤二
靖 志賀
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2018123691A1 publication Critical patent/WO2018123691A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention is useful for anisotropic dye films formed by a wet film forming method, in particular, polarizing films included in display elements of light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs).
  • the present invention relates to a composition for forming an anisotropic dye film exhibiting high dichroism and an anisotropic dye film.
  • a linearly polarizing film and a circularly polarizing film are used to control optical rotation and birefringence in display.
  • a circularly polarizing film is used for preventing reflection of external light.
  • iodine has been widely used as a dichroic material in these polarizing films.
  • iodine has a high sublimation property, when used as a polarizing element using a polarizing film, its heat resistance and light resistance are not sufficient. Further, since the extinction color is deep blue, it cannot be said that it is an ideal achromatic polarizing element over the entire visible spectrum region.
  • anisotropic dye film using an organic dye as a dichroic material has been studied.
  • anisotropic dye films using organic dyes conventional polymers impregnated with organic dyes, methods for obtaining films by applying organic dyes on substrates, etc. And a film formed by using a film method.
  • an adhesive layer is provided on the anisotropic dye film, a protective film of the adhesive layer is bonded, and the polarizing film is bonded with the protective film.
  • Patent Document 1 discloses an anisotropic dye film forming composition containing a trisazo dye for obtaining an anisotropic dye film having a high dichroic ratio.
  • specific dyes are used in combination in order to obtain a high dichroic ratio of the anisotropic dye film.
  • an anisotropic dye film forming composition containing an azo compound having an anthraquinone ring and a disazo dye having a naphthalene ring Patent Document 2
  • Patent Document 3 an anisotropic dye film forming composition containing a disazo dye and a monoazo compound
  • Patent Documents 4 and 5 also shows that an anisotropic dye film was obtained by combining two types of disazo dyes.
  • Patent Document 6 a composition to which an amino acid or the like is added has been developed for the purpose of improving dichroism and heat resistance.
  • the addition of surfactants improves the wettability to the substrate during coating, and at the same time inhibits the anisotropy of the dye by accumulating the surfactant at the gas-liquid interface during the drying process.
  • Patent Document 7 studies have been made to improve the dichroic ratio.
  • An object is to develop a composition for forming an anisotropic dye film capable of producing an anisotropic dye film having high moisture resistance.
  • the present inventors have found that the above problem can be solved by using a composition containing a dye and a specific polymer compound. That is, the gist of the present invention is as follows.
  • An anisotropic dye film-forming composition comprising a dye and a polymer compound having an acidic group and a basic group.
  • the composition for forming an anisotropic dye film according to any one of [1] to [7] further comprising a water-soluble organic compound.
  • An anisotropic dye film comprising a dye, a polymer compound having an acidic group and a basic group, and a water-soluble organic compound.
  • An optical element comprising the anisotropic dye film according to any one of [16] to [16].
  • the present invention has the following gist.
  • An anisotropic film-forming composition comprising a filler having an average primary particle diameter of 1 nm to 500 nm.
  • a filler having an average primary particle diameter of 1 nm to 500 nm.
  • the filler is a metal oxide.
  • the metal oxide is silica and / or alumina.
  • the basic group includes an amino group.
  • acidic group contains a sulfo group.
  • composition for forming an anisotropic dye film of the present invention By using the composition for forming an anisotropic dye film of the present invention, improvement in moisture resistance of the formed anisotropic dye film can be expected. In addition to improving the margin for the storage environment at the time of manufacture, it contributes to stable manufacturing, and the storage environment can be made cheaper.
  • an embodiment of the present invention provides a composition for forming an anisotropic dye film that contains a water-soluble organic compound and has excellent storage stability and can be uniformly applied.
  • the present invention provides an anisotropic dye film that suppresses film defects over time by being excellent in moisture resistance, has high film hardness, and is excellent in dichroic ratio.
  • the anisotropic dye film forming composition of one embodiment of the present invention containing a water-soluble organic compound the moisture resistance and hardness of the formed anisotropic dye film can be improved over time. Suppression of film defects can be expected.
  • coating an anisotropic dye film composition is suppressed, and the anisotropic dye film excellent in mass-productivity is formed.
  • anisotropic dye film-forming composition of one aspect of the present invention containing a specific filler, in addition to the improvement of moisture resistance, other base materials
  • An anisotropic film having both high productivity and handling property due to suppression of adhesion and high polarization degree is provided.
  • the anisotropic dye film referred to in the present invention is an electromagnetic property in any two directions selected from a total of three directions in the three-dimensional coordinate system of the thickness direction of the anisotropic dye film and any two orthogonal in-plane directions.
  • the electromagnetic property include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
  • films having optical anisotropy such as absorption and refraction include polarizing films such as linearly polarizing films and circularly polarizing films, retardation films, and conductive anisotropic dye films.
  • the anisotropic dye film of the present invention is preferably used for a polarizing film, a retardation film and a conductive anisotropic dye film, and more preferably used for a polarizing film.
  • the composition for forming an anisotropic dye film of the present invention includes a dye and a polymer compound having an acidic group and a basic group.
  • the aspect of the composition for forming an anisotropic dye film is not particularly limited as long as the polymer compound and the dye described above are included.
  • the composition for forming an anisotropic dye film may be a solution, a liquid crystal, or a dispersed state.
  • the liquid crystal phase is preferably from the viewpoint that the anisotropic dye film formed after the solvent evaporates is formed with a high degree of orientation.
  • the state of the liquid crystal phase is specifically described on pages 1 to 16 of “Basics and Applications of Liquid Crystal” (Shinichi Matsumoto, Ryo Tsunoda, 1991).
  • it is a liquid crystal state exhibiting both liquid and crystal properties, which means a nematic phase, a cholesteric phase, a smectic phase, or a discotic phase.
  • the liquid crystal phase is preferably a nematic phase because the order in the solution tends to be low and the viscosity tends to be low.
  • the polymer compound that can be used in the present invention is a polymer compound having an acidic group and a basic group (hereinafter sometimes referred to as “polymer compound” in the present specification).
  • the basic group or acidic group has good compatibility with water molecules and has hygroscopicity, so that the anisotropic dye film has a property of easily adsorbing moisture.
  • the anisotropic dye film the dye forms an aggregate having a certain size in order to exhibit its anisotropy.
  • Compounds such as amino acids described in Patent Document 6 are presumed to connect and fix this dye aggregate.
  • the compounds such as amino acids that are connected to each other are bonded by weak hydrogen bonds, and the association force is weakened by absorbing moisture. For this reason, it is presumed that the movement of the dye aggregate cannot be suppressed and precipitation and cracking occur.
  • a part of a weak hydrogen bond network between compounds such as amino acids is replaced with a strong covalent bond. Therefore, it is presumed that even when moisture is adsorbed, the state in which the movement of the dye aggregate is suppressed can be maintained.
  • the anisotropic dye film formed by the dye alone tends to be brittle, the hardness is low, but by adding the above polymer compound, the brittleness is eliminated by the plasticizer effect, and the hardness is improved. Presumed.
  • the substituent which the said high molecular compound has it can explain as follows.
  • a liquid crystalline composition that does not cause phase separation.
  • a pigment may have an acidic group or a basic group. Basic groups are usually positively charged or cationic, and acidic groups are usually negatively charged or anionic. Therefore, in order for the dye and the polymer compound to form an association pair, the polymer compound needs to have a basic group or an acidic group.
  • the polymer compound when the polymer compound has only one of an acidic group and a basic group, it is presumed that either a strong association with the dye or a strong repulsion occurs.
  • the dye aggregates are cross-linked through the polymer compound, and it becomes difficult to form a uniform liquid crystal phase.
  • the polymer compound preferably has a basic group and an acidic group at the same time.
  • the basic group and acidic group possessed by the polymer compound are as follows.
  • the acidic group and the basic group are functional groups having a pKa of less than 7 and a basic group of 7 or more, respectively.
  • pKa is a logarithmic value of the reciprocal of the concentration acid dissociation constant Ka, that is, -log Ka.
  • the acidic group possessed by the polymer compound examples include a sulfo group, a carboxyl group, and a phosphate group. Among these, it is preferable that the acidic group does not have an aromatic partial structure in order to suppress the lamination failure of the dye. In view of maintaining water solubility and improving order, the acidic group preferably contains a sulfo group, and particularly preferably a sulfo group.
  • the basic group examples include nitrogen-containing basic groups (which preferably include an electron-donating nitrogen atom, and the nitrogen atom preferably has a property of being positively charged or cationic).
  • the basic group preferably does not have an aromatic partial structure, and particularly preferably includes an amino group, and particularly preferably an amino group, in order to suppress the lamination failure of the dye.
  • a part or all of the acidic group and the basic group contained in the polymer compound may take a salt form. At least a part of the acidic group may be a salt-type acidic group.
  • an alkali metal such as sodium, lithium or potassium, an ammonium which may be substituted with an alkyl group or a hydroxyalkyl group
  • organic amines include lower alkyl amines having 1 to 6 carbon atoms, hydroxy-substituted lower alkyl amines having 1 to 6 carbon atoms, carboxy-substituted lower alkyl amines having 1 to 6 carbon atoms, and the like. Is mentioned.
  • the type is not limited to one type, and a plurality of types may be mixed.
  • an alkali metal salt having a high ionization tendency is desirable.
  • lithium and / or sodium are preferable, and lithium is particularly preferable from the viewpoint of suppressing the phase separation of the composition containing the pigment and the polymer compound and improving the solubility.
  • lithium is particularly preferable from the viewpoint of increasing the dichroic ratio of a film made of a composition containing a dye and a polymer compound.
  • At least a part of the basic group may be a salt type basic group.
  • the basic group salt type include salts of inorganic acids such as hydrochloric acid and sulfuric acid, and salts of organic acids such as acetic acid and formic acid. Is mentioned.
  • the molecular weight (weight average molecular weight) of the polymer compound is usually preferably 800 or more, more preferably 1000 or more, and particularly preferably 1400 or more. Further, it is usually preferably 10,000 or less, more preferably 7000 or less, and particularly preferably 5000 or less. For example, 800 or more and 10,000 or less are preferable, 1000 or more and 7000 or less are more preferable, and 1400 or more and 5000 or less are more preferable.
  • the molecular weight is not less than the above lower limit value, moisture resistance tends to be obtained, and when the molecular weight is not more than the above upper limit value, solubility tends to be obtained.
  • the main chain of the polymer compound is not particularly limited, but from the compatibility of the dye described later, an amide bond, an ester bond, an ether bond, a —NR 1 — group (R 1 is a hydrogen atom, a methyl group or an ethyl group) And a carbon chain containing at least one selected from the group consisting of a sulfonyl group, a carbon chain consisting only of a saturated bond, and the like, particularly a carbon chain consisting only of a saturated bond, an amide bond and / or —NR. It is desirable to have a carbon chain structure containing a 1 -group.
  • the main chain may have a plurality of the bonds or the groups.
  • the unsaturated bond portion is inhibited from inhibiting the ⁇ - ⁇ stack of the dye, and the anisotropic dye film-forming composition has liquid crystallinity.
  • the degree of polarization of the anisotropic dye film tends to be improved.
  • the side chain of the polymer compound is not particularly limited as in the case of the main chain.
  • amide bond, ester bond, ether bond, —NR 1 — group R 1 represents a hydrogen atom, a methyl group or an ethyl group
  • a carbon chain containing at least one selected from the group consisting of a sulfonyl group, a carbon chain consisting only of a saturated bond, and the like are desirable.
  • the number of atoms from the side chain to the most distant atom is preferably 2 or more and 10 or less, more preferably 8 or less.
  • the ratio of the acidic group and the basic group in the same main chain is not particularly limited.
  • the numerical value of basic group / (basic group + acidic group) is preferably greater than 0.05, more preferably 0.1 or more, and even more preferably 0.2 or more. 0.8 or less, more preferably 0.7 or less, still more preferably 0.6 or less, still more preferably 0.5 or less, and even more preferably 0.4 or less.
  • more than 0.05 and 0.8 or less are preferable, 0.1 or more and 0.7 or less are more preferable, 0.2 or more and 0.6 or less are more preferable, and 0.2 or more and 0.5 or less are more preferable.
  • 0.2 to 0.4 is even more preferable.
  • the compatibility between the dye and the polymer compound tends to be improved.
  • the lamination between the dyes proceeds from the association of the dye and the polymer compound, the liquid crystallinity of the composition is improved, and the polarization degree of the anisotropic dye film tends to be improved.
  • the combination of the basic group and the acidic group of the polymer compound is not particularly limited.
  • the basic group is an amino group
  • the acidic group is a sulfo group, a carboxyl group and / or a phosphate group.
  • the basic group is an amino group and the acidic group is a sulfo group.
  • a basic group an amino group that has a small skeleton and generates a hard cation according to the HSAB rule when cationized has a strong interaction with the dye, and is less likely to cause phase separation.
  • the acidic group is preferably a sulfo group or a phosphate group.
  • the two or more groups may be the same group or different groups.
  • the polymer compound may have a random structure or a block structure, and particularly preferably has a random structure. Due to the random structure, the compatibility of the polymer compound and the dye tends to be high. Further, it may be a linear polymer or a branched polymer. Since the said high molecular compound has high hydrophilicity, when the composition for anisotropic dye film formation of this invention contains the below-mentioned filler, it is preferable from a viewpoint of improving the dispersion stability. Furthermore, the addition of a polymer compound tends to lower the refractive index and extinction coefficient of the anisotropic dye film, so it is anisotropic when the anisotropic dye film is used for a polarizing film or an antireflection film. In some cases, it is possible to reduce interface reflection between the photosensitive dye film and the adjacent layer.
  • polymer compound examples include JP-A No. 2004-027162, JP-A No. 2002-293842, JP-A No. 52-101291, JP-B No. 03-020127, JP-A No. 2004-115675, and the like. Can be produced by the method described in the above publication. Exemplary compounds of the polymer compound are shown below, but are not limited to the following structures. All counter cations are described in the form of protons, but the counter cations include those described above such as alkali metals. Moreover, the proton form and the salt form may be mixed, or a plurality of salt forms may be included. L, m, and n in the following exemplary compounds represent arbitrary integers.
  • the content of the polymer compound (% by weight in the total solid content) is not particularly limited.
  • the polymer compound is preferably 90% by weight or less, more preferably 80% by weight or less, still more preferably 70% by weight or less, based on the total solid content of the anisotropic dye film-forming composition. It is particularly preferable that it is 60% by weight or less. On the other hand, it is preferably 0.1% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, more preferably 5% by weight or more, more preferably 10% by weight or more, and more preferably 20% by weight or more. 30% by weight or more is particularly preferable, and 40% by weight or more is particularly preferable.
  • it is preferably 0.1% by weight or more and 90% by weight or less, more preferably 1% by weight or more and 90% by weight or less, further preferably 5% by weight or more and 80% by weight or less, and further preferably 10% by weight or more and 70% by weight or less. It is preferably 20% by weight or more and 60% by weight or less, more preferably 30% by weight or more and 60% by weight or less, still more preferably 40% by weight or more and 60% by weight or less.
  • the degree of polarization of the anisotropic dye film tends to increase.
  • By setting it to the above lower limit or more brittleness of the anisotropic dye film tends to be suppressed, the hardness is improved, and the reflectance is reduced. It exists in the tendency which is excellent in moisture resistance because it is the said range.
  • the mixing ratio of the polymer compound and the dye in the composition for forming an anisotropic dye film of the present invention is not particularly limited.
  • Dye: polymer compound 10: 90 to 99.9: 0.1 is preferable. Further, it is more preferably 20:80 to 90:10, further preferably 25:75 to 80:20, and particularly preferably 30:70 to 60:40.
  • the anisotropic dye film has excellent polarization and moisture resistance, and further tends to suppress brittleness of the anisotropic dye film and improve hardness.
  • a pigment means a substance or compound that absorbs at least a part of the wavelength in the visible light region.
  • a dye that can be used in the present invention a water-soluble organic dye or a dichroic dye is used.
  • dye is a pigment
  • the pigment having liquid crystallinity means a pigment exhibiting lyotropic liquid crystallinity in a solvent.
  • the dye exhibiting lyotropic liquid crystallinity used in the present invention is preferably soluble in water or an organic solvent in order to form an anisotropic dye film by coating.
  • water-soluble means that the pigment is dissolved in water at room temperature, usually 0.1% by weight or more, preferably 1% by weight or more.
  • the above dye preferably has a molecular weight of 200 or more, particularly preferably 300 or more, in a free state that does not take a salt form. Moreover, it is preferable that it is 1500 or less, and it is especially preferable that it is 1200 or less. For example, it is preferably 200 or more and 1500 or less, and particularly preferably 300 or more and 1200 or less. Moreover, the said pigment
  • the dye examples include azo dyes (hereinafter also simply referred to as “azo dyes”), stilbene dyes, cyanine dyes, phthalocyanine dyes, condensed polycyclic dyes (perylene dyes, oxazine dyes), and the like. Can be mentioned. Among these dyes, azo dyes that can take a high molecular arrangement in the anisotropic dye film are preferable.
  • An azo dye means a dye having at least one azo group. The number of azo groups in one molecule is preferably 2 or more, preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less from the viewpoint of color tone and production.
  • an azo dye having at least one group selected from the group consisting of a sulfo group, a carboxyl group, a phospho group, and a phosphinic acid group can cause the anisotropic dye film to dissolve, drop off, crack, etc. There is a tendency that it is possible to obtain the effect of suppressing the deterioration of the optical characteristics and reducing the deterioration of the optical characteristics.
  • the azo dye has a sulfo group.
  • the pigment that can be used in the present invention is not particularly limited, and a known pigment can be used.
  • the dye include, for example, JP-A-2006-0799030, JP-A-2010-168570, JP-A-2007-302807, JP-A-2008-081700, JP-A-09-230142, JP-A-2007-. No.
  • the dye used in the present invention may be used in the form of a free acid, or a part of the acid group may have a salt form. Further, a salt-type dye and a free acid-type dye may be mixed. When the dye is obtained in a salt form at the time of production, it may be used as it is or may be converted into a desired salt form (salt exchange).
  • salt exchange method a known method can be arbitrarily used, and examples thereof include the following methods.
  • a strong acid such as hydrochloric acid is added to an aqueous solution of a dye obtained in a salt form, the dye is acidified in the form of a free acid, and then the dye is added with an alkaline solution having a desired counter ion (eg, lithium hydroxide aqueous solution).
  • a desired counter ion eg, lithium hydroxide aqueous solution.
  • a method of neutralizing acidic groups and salt exchange A method in which a large excess of a neutral salt (for example, lithium chloride) having a desired counter ion is added to an aqueous dye solution obtained in a salt form, and salt exchange is performed in the form of a salting-out cake.
  • An aqueous solution of a dye obtained in a salt form is treated with a strongly acidic cation exchange resin, and the dye is acidified in the form of a free acid, and then an alkali solution having a desired counter ion (for example, an aqueous lithium hydroxide solution). ) To neutralize the acidic group of the dye and perform salt exchange. 4) A method in which an aqueous solution of a dye obtained in a salt form is allowed to act on a strongly acidic cation exchange resin that has been previously treated with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution), thereby performing salt exchange.
  • the acidic group of the dye is a free acid type or a salt type depends on the pKa of the dye and the pH of the aqueous dye solution.
  • the salt form include salts of alkali metals such as sodium, lithium and potassium, ammonium salts optionally substituted with an alkyl group or hydroxyalkyl group, and salts of organic amines.
  • the organic amine include a lower alkyl amine having 1 to 6 carbon atoms, a hydroxy-substituted lower alkyl amine having 1 to 6 carbon atoms, a carboxy-substituted lower alkyl amine having 1 to 6 carbon atoms, and the like.
  • the type is not limited to one type, and a plurality of types may be mixed.
  • dye can be used independently, these 2 or more types may be used together, and it is also possible to mix
  • pigments when blended with other pigments include C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 34, C.I. I. Direct Yellow 86, C.I. I. Direct Yellow 142, C.I. I. Direct Yellow 132, C.I. I. Acid Yellow 9, C.I. I. Acid Yellow 25, C.I. I. Direct Orange 39, C.I. I. Direct Orange 72, C.I. I. Direct Orange 79, C.I. I. Acid Orange 28, C.I. I. Direct Red 39, C.I. I. Direct Red 79, C.I. I. Direct Red 81, C.I. I. Direct Red 83, C.I. I. Direct Red89, C.I. I.
  • the blending dye may include an azo dye whose free acid form is represented by the formula (I).
  • Ar 21 and Ar 22 each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, n represents 0 or 1.
  • Ar 21 and Ar 22 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • aromatic hydrocarbon group examples include groups derived from a single ring and a plurality of rings.
  • the number of rings contained in the groups derived from a plurality of rings is not particularly limited, but is usually 2 or more and 4 or less, preferably 3 or less.
  • the aromatic hydrocarbon group in Ar 22 has two free valences, benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene. Ring, acenaphthene ring, fluoranthene ring, fluorene ring and the like.
  • the aromatic hydrocarbon group may have a substituent.
  • substituents that may have include a hydrophilic group that is usually introduced to enhance the solubility of the azo compound, and an electron-withdrawing group or electron-donating group that is introduced to adjust the color tone as a dye. preferable.
  • substituent include an alkoxy group, a hydroxyl group, an amino group, an acylamino group, a carbamoyl group, a sulfamoyl group, a carboxy group, a sulfo group, a cyano group, and a phosphate group.
  • the aromatic heterocyclic group is not particularly limited, but is preferably a group derived from a monocyclic or bicyclic heterocyclic ring from the viewpoint of increasing the degree of polarization.
  • atoms other than carbon constituting the aromatic heterocyclic group include a nitrogen atom, a sulfur atom, and an oxygen atom. From the viewpoint of increasing the degree of polarization, a nitrogen atom is particularly preferable.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • Preferable examples include pyridine ring, quinoline ring, isoquinoline ring, thiazole ring, benzothiazole ring and the like.
  • the aromatic heterocyclic group may have a substituent.
  • substituents that may be included include a hydrophilic group, an electron withdrawing group, an electron donating group, and a hydrogen bonding functional group. Specific examples include an alkyl group, an alkoxy group, an acylamino group, an amino group, a carbamoyl group, a sulfamoyl group, a nitro group, a carboxy group, a sulfo group, a hydroxyl group, a cyano group, and a halogen atom.
  • substituent groups and substituents are respectively synonymous with those mentioned as the substituents that the aromatic hydrocarbon group of Ar 21 may have, and preferred ranges and substituents that may be included. Are also synonymous.
  • azo dyes in which the form of the free acid is represented by the formula (I) include, but are not limited to, the dyes described below.
  • blending can be used individually or in mixture of 2 or more types.
  • the anisotropic dye film can be appropriately adjusted to a desired color tone by adjusting the addition amount of the compounding dye.
  • the concentration of the dye in the composition for forming an anisotropic dye film is preferably 0, although it depends on the film forming conditions of the anisotropic dye film. 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 50% by weight or less, more preferably 30% by weight or less. For example, 0.01 wt% or more and 50 wt% or less are preferable, and 0.1 wt% or more and 30 wt% or less are more preferable.
  • the dye concentration is within the above range, the viscosity of the composition for forming an anisotropic dye film capable of applying a uniform thin film is obtained, and the dye does not tend to precipitate.
  • anisotropy such as a sufficient dichroic ratio tends to be obtained in the anisotropic dye film.
  • the composition for forming an anisotropic dye film of the present invention may further contain a water-soluble organic compound.
  • the water-soluble organic compound is preferably a compound excluding the above-mentioned dye (including a compounding dye when a compounding dye is used).
  • the water-soluble organic compound is not particularly limited, but is preferably a compound that can easily accumulate at the gas-liquid interface of the coating film of the composition for forming an anisotropic dye film and has an action of making the surface tension uniform.
  • a compound having a leveling action can be used.
  • the term “water-soluble” refers to a molecular state that hydrates and disperses in water.
  • the water-soluble organic compound is not particularly limited, but preferably has both a hydrophilic group and a hydrophobic group. Since the water-soluble organic compound has a hydrophilic group and a hydrophobic group, the hydrophobic group part of the water-soluble organic compound is on the film interface side and the hydrophilic group part is on the film side when the coating film of the anisotropic dye film forming composition is dried. As a result, water-soluble organic compounds tend to accumulate at the gas-liquid interface.
  • the composition for forming the anisotropic dye film As a result, in the state of the composition for forming the anisotropic dye film, it was mixed with the anisotropic dye, but during application, phase separation occurred between the anisotropic dye layer and the water-soluble organic compound layer, and the substrate side
  • the dichroic ratio can be maintained as in the case where no polymer compound is added without impairing the order of the accumulated anisotropic dye.
  • the water-soluble organic compounds densely accumulated on the surface after drying the coating film of the anisotropic dye film-forming composition tend to prevent water from entering the anisotropic dye film and improve moisture resistance. At the same time, lower the surface tension. From these results, it is possible to achieve both the improvement of mass productivity and the maintenance of the dichroic ratio of the anisotropic dye film when applying the composition for forming an anisotropic dye film, which has been impossible in the past.
  • hydrophilic groups include nonionic groups and ionic groups.
  • the nonionic group include a hydroxy group, an alkyloxy group having 1 to 4 carbon atoms, a polyethyleneoxy group, and a polypropyleneoxy group.
  • the ionic group include an amino group, a monoalkylamino group, a dialkylamino group, a carboxy group, a sulfo group, a pyridinium group, a quaternary ammonium group, a phosphoric acid group, and a polyethyleneimino group.
  • hydrophobic group examples include a linear alkyl group, a branched alkyl group, a phenylalkyl group which may have a substituent, a perpropylene oxide, a polyorganosiloxy group, and a perfluoroalkyl group.
  • water-soluble organic compounds examples include silicone-based, fluorine-based, acrylic-based, and vinyl-based compounds.
  • silicone-based and fluorine-based compounds are particularly preferable.
  • the molecular weight of the water-soluble organic compound is not particularly limited, but is preferably 10,000 or less, more preferably 5000 or less, and still more preferably 2000 or less. Moreover, a minimum is not specifically limited.
  • water-soluble organic compound examples include the following.
  • Silicone compounds contain Si atoms in the compound, specifically polydimethylsiloxane, polyether-modified polydimethylsiloxane, polymethylalkylsiloxane, modified polysiloxane, reactive silicone, silicone surfactants, etc. Is mentioned.
  • the fluorine-based compound contains F atoms in the compound, and specifically includes fluorine group-containing oligomers or polymers, perfluoro group-containing oligomers or polymers, perfluoroalkyl group-containing carboxylates, perfluoroalkyl groups, Examples thereof include phosphoric acid-containing phosphate esters, fluorine group- and carboxyl group-containing oligomers. Moreover, the thing containing the reactive group which reacts with a heat
  • the acrylic compound is an acrylate or acrylate oligomer having a skeleton such as acrylate or methacrylate, in which a hydrogen atom of a side chain carboxy group is substituted with another functional group.
  • a hydrogen atom of a side chain carboxy group is substituted with another functional group.
  • other functional groups in which the hydrogen atom of the side chain carboxy group is substituted include reactive groups such as alkyl groups, polyethyleneoxyethyl groups, polyester groups, amino groups, and hydroxyl groups.
  • Vinyl-based is an oligomer or polymer obtained by polymerizing a compound containing a vinyl group, and specific examples include vinyl acetate.
  • the concentration of the water-soluble organic compound in the composition for forming an anisotropic dye film is not particularly limited as long as the effect of the present invention is not significantly impaired.
  • it is 0.001 mass% or more, More preferably, it is 0.003 mass% or more.
  • it is 0.1 mass% or less, More preferably, it is 0.05 mass% or less.
  • 0.001 mass% or more and 0.1 mass% or less are preferable, and 0.003 mass% or more and 0.05 mass% or less are more preferable.
  • the compounding ratio of the water-soluble organic compound and the dye in the composition for forming an anisotropic dye film of the present invention is not particularly limited.
  • the blending ratio of the dye and the water-soluble organic compound (weight ratio of the water-soluble organic compound to the dye) is preferably 0.00001 or more, more preferably 0.0001 or more, and further preferably 0.0005 or more. Further, it is preferably 0.5 or less, more preferably 0.1 or less, further preferably 0.01 or less, and still more preferably 0.005 or less.
  • 0.00001 or more and 0.5 or less are preferable, 0.00001 or more and 0.1 or less are more preferable, 0.0001 or more and 0.01 or less are more preferable, and 0.0005 or more and 0.005 or less are more preferable.
  • leveling effects can be obtained, and the orientation of the dye molecules tends not to be hindered.
  • the composition for forming an anisotropic dye film of the present invention may further contain a filler having an average primary particle diameter of 1 nm to 500 nm. Since such a composition and an anisotropic dye film formed from such a composition contain a filler on the film surface, unevenness is formed on the film surface, the adhesion area with other base materials is reduced, and adhesion is lowered. By doing so, it is considered that handling and productivity are improved. Moreover, since the elastic modulus of the anisotropic dye film is increased by adding the filler, it is considered that the adhesiveness is lowered. Further, by adding a filler, the refractive index and extinction coefficient of the anisotropic dye film are reduced.
  • the layer between the anisotropic dye film and the adjacent layer It is possible to reduce the difference in refractive index and extinction coefficient, and as a result, it is considered possible to reduce interface reflection.
  • the filler that can be used in the composition for forming an anisotropic dye film is not particularly limited, and is, for example, an inorganic filler.
  • silicon oxide silicon oxide
  • aluminum oxide alumina
  • titanium oxide antimony oxide
  • metal oxides such as tin oxide, zinc oxide, zirconium oxide, selenium oxide, yttrium oxide and cerium oxide, metal nitrides such as silicon nitride, and metal sulfides such as palladium sulfide and cadmium sulfide.
  • the filler may be composed of only one of these, or may be composed of two or more.
  • metal oxides such as silicon oxide, aluminum oxide, titanium oxide, zinc oxide, and zirconium oxide are preferable from the viewpoint of filler stability, and silicon oxide and oxidation are particularly preferable from the viewpoint of affinity with dyes and polymer compounds.
  • those containing aluminum are more preferable, and those containing silicon oxide and aluminum oxide are more preferable from the viewpoint of the stability of the composition for forming an anisotropic dye film.
  • the surface of these fillers may be modified with a specific organic substance, or may be shared with a dispersant or the like. From the viewpoint of reducing the reflectance of an anisotropic dye film and an optical element produced from such a film, silicon oxide is particularly preferable.
  • the shape of a filler is not specifically limited, A spherical shape, rod shape, plate shape, etc. are mentioned. From the viewpoint of enhancing the transparency of the anisotropic dye film, a spherical shape is preferable.
  • the method for producing the filler is not particularly limited, and the filler can be produced by any method such as a gas phase method, a sol-gel method, a molten metal spray oxidation method, a colloidal precipitation method, or arc discharge.
  • the filler may be subjected to a surface coating treatment for dispersion stability and suppression of deterioration, and the surface coating may be homogeneous or heterogeneous.
  • Specific materials for the surface coating are inorganic materials or organic materials, such as metal oxides such as zirconium oxide and silicon oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, etc. 1 type or 2 types or more can be used.
  • metal oxides such as zirconium oxide and silicon oxide
  • metal hydroxides such as aluminum hydroxide
  • organic acids such as organosiloxane and stearic acid, etc. 1 type or 2 types or more can be used.
  • a metal oxide or a metal hydroxide is preferable, and a metal hydroxide is more preferable.
  • the filler may be subjected to plasma surface modification treatment or mechanochemical treatment.
  • the average primary particle size of the filler of the present invention is preferably 500 nm or less, more preferably 200 nm or less, further preferably 100 nm or less, particularly preferably 90 nm or less, particularly preferably 70 nm or less, even more preferably 50 nm or less, preferably 1 nm or more, More preferably, it is 5 nm or more, More preferably, it is 7 nm or more, Most preferably, it is 10 nm or more.
  • it is preferably 1 nm or more and 500 nm or less, more preferably 5 nm or more and 200 nm or less, further preferably 7 nm or more and 100 nm or less, still more preferably 10 nm or more and 90 nm or less, even more preferably 10 nm or more and 70 nm or less, and even more preferably 10 nm or more and 50 nm or less.
  • the adhesion of the anisotropic dye film tends to be suppressed, and the dispersion stability of the filler in the composition tends to be improved.
  • the average primary particle size of the particles is determined by confirming the primary particles from the TEM (transmission electron microscope) and SEM (scanning electron microscope) photograph images of the anisotropic dye film formed from the composition of the present invention or the composition film. , 30 average values can be obtained.
  • evaluation may be performed by a dynamic light scattering method.
  • the filler content (% by weight in the total solid content) with respect to the total solid content is preferably 0.1% or more, more preferably 0.5% or more, and still more preferably 0. 0.7% or more, particularly preferably 1.0% or more, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, particularly preferably 15% or less, and particularly preferably 10% or less.
  • 0.1% to 50% is preferable, 0.5% to 30% is more preferable, 0.7% to 20% is more preferable, 1.0% to 15% is more preferable, 1.0% or more and 10% or less are especially preferable.
  • the refractive index and extinction coefficient of the anisotropic dye film tend to be reduced, and the reflectance tends to be reduced. By doing so, the degree of polarization and transparency of the anisotropic dye film tend to be high.
  • the composition for forming an anisotropic dye film of the present invention contains a resin other than a low molecular dispersant, a high molecular dispersant, and a binder resin, which are usually marketed as a dispersant, in order to improve the dispersion stability of the filler. It is also possible. Among these, it is preferable to blend a polymer dispersant from the viewpoint of dispersion stability of the filler in the composition.
  • polymer dispersant examples include a urethane dispersant, a polyethyleneimine dispersant, a polyoxyethylene alkyl ether dispersant, a polyoxyethylene glycol diester dispersant, a sorbitan aliphatic ester dispersant, and an aliphatic modified polyester. And the like, and the like. These dispersants can be used alone or in admixture of two or more.
  • composition for forming an anisotropic dye film of the present invention contains a dispersant
  • its content is preferably 0.1% by weight or more, more preferably 0.5% by weight or more. More preferably 1% by weight or more, particularly preferably 2% by weight or more, preferably 50% by weight or less, more preferably 30% by weight or less, still more preferably 20% by weight or less, particularly preferably 10% by weight or less, particularly preferably. Is 5% by weight or less.
  • 0.1 wt% or more and 50 wt% or less are preferable, 0.5 wt% or more and 30 wt% or less are more preferable, 1 wt% or more and 20 wt% or less are more preferable, and 2 wt% or more and 10 wt% or less are preferable. Even more preferred is 2 wt% or more and 5 wt% or less.
  • the amount is not less than the lower limit, the dispersion stability of the filler in the composition tends to be improved, and when the amount is not more than the upper limit, the degree of polarization and the transparency of the anisotropic dye film tend to increase. is there.
  • solvent water, a water-miscible organic solvent, or a mixture thereof is suitable.
  • organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and glycerin, glycols such as ethylene glycol and diethylene glycol, and cellosolves such as methyl cellosolve and ethyl cellosolve. These may be used alone or in admixture of two or more.
  • the total solid content of the composition for forming an anisotropic dye film is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, and preferably 50%.
  • % By mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, particularly preferably 25% by mass or less, for example, preferably 5% by mass to 50% by mass, more preferably 10% by mass to 40% by mass. % Or less, more preferably 15% by mass or more and 30% by mass or less, and still more preferably 15% by mass or more and 25% by mass or less.
  • an anisotropic dye film having a desired film thickness can be formed by setting it to the lower limit value or more, and a film thickness uniformity of the anisotropic dye film tends to be improved by setting the upper limit value or less. is there.
  • the composition for forming an anisotropic dye film of the present invention may or may not express a lyotropic liquid crystal phase, but only the amount of solvent in the composition for forming an anisotropic dye film when the lyotropic liquid crystal phase is not expressed. It is preferable that the lyotropic liquid crystal phase is expressed by changing the above. The expression of the lyotropic liquid crystal phase is preferable because the dye exhibits a high degree of orientation in the anisotropic dye film and a high dichroic anisotropic dye film tends to be obtained. It is more preferable that the composition for forming an anisotropic dye film expresses a lyotropic liquid crystal phase because higher orientation in the anisotropic dye film tends to be obtained.
  • the pH of the composition for forming an anisotropic dye film is not particularly limited, but is preferably 4.0 or more, more preferably 5.0 or more, and most preferably 5.5 or more. Further, it is preferably 12 or less, more preferably 11 or less, and most preferably 10 or less.
  • the pH value is less than or equal to the above upper limit value, the basic group of the polymer compound is cationized, the compatibility with the dye is improved, and phase separation (precipitation) tends to be suppressed.
  • the acidic group is anionized, and in the composition for forming an anisotropic dye film, phase separation due to excessive interaction between the dye and the polymer compound can be suppressed. There is a tendency.
  • composition for forming an anisotropic dye film may further include a surfactant, a leveling agent, a coupling agent, a pH adjuster, alanine, valine, leucine, isoleucine, glycine, glycylglycine, glycylglycyl.
  • Acidic groups and basic groups such as glycine, serine, proline, cysteine, cystine, glutamine, 6-aminohexanoic acid, amino acids described in WO 2005/069048, 3-amino-1-propanesulfonic acid, taurine, etc.
  • Additives such as low molecular weight compounds having Depending on the additive, wettability, applicability, stability of the composition for forming an anisotropic dye film, and the like may be improved.
  • the surfactant any of anionic, cationic and nonionic properties can be used.
  • the addition concentration is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably as the concentration in the composition for forming an anisotropic dye film. It is 0.05 mass% or more. Moreover, Preferably it is 0.8 mass% or less, More preferably, it is 0.5 mass% or less.
  • 0.001% by mass to 0.8% by mass is preferable, 0.01% by mass to 0.5% by mass is more preferable, and 0.05% by mass to 0.5% by mass is further preferable.
  • a known pH adjuster such as acid / alkali is anisotropically used. May be added either before or after mixing the constituents of the composition for forming a functional dye film or during mixing.
  • additives other than those described above “Additive for Coating”, Edited by J. et al. Known additives described in Bieleman, Willy-VCH (2000) can also be used.
  • the method for producing the composition for forming an anisotropic dye film of the present invention is not particularly limited.
  • a dye, other additives, a solvent, and the like are mixed, and the dye is dissolved by stirring and shaking at 0 to 100 ° C.
  • a homogenizer, a bead mill disperser or the like may be used.
  • a method for removing foreign substances and the like in the composition other than filtration there is a method using centrifugation described in JP 2012-53388 A.
  • the anisotropic dye film of the present invention can be formed using the anisotropic dye film forming composition of the present invention.
  • the anisotropic dye film of the present invention may contain a dye and a polymer compound having an acidic group and a basic group.
  • the anisotropic dye film of the present invention may contain a dye, a polymer compound having an acidic group and a basic group, and a water-soluble organic compound.
  • the orientation characteristics of the anisotropic dye film can be expressed using a dichroic ratio.
  • a dichroic ratio of 8 or more functions as a polarizing element, but is preferably 15 or more, more preferably 20 or more, further preferably 25 or more, and particularly preferably 30 or more. Also, the higher the dichroic ratio, the better. When the dichroic ratio is a specific value or more, it is useful as an optical element described later, particularly as a polarizing element.
  • the dichroic ratio (D) referred to in the present invention is represented by the following formula when the pigment is uniformly oriented.
  • D Az / Ay
  • Az is the absorbance observed when the polarization direction of the light incident on the anisotropic dye film is parallel to the alignment direction of the pigment
  • Ay is the absorbance observed when the polarization direction is perpendicular.
  • Each absorbance is not particularly limited as long as the same wavelength is used, and any wavelength may be selected depending on the purpose. However, when the degree of orientation of the anisotropic dye film is expressed, the maximum absorption of the anisotropic dye film is used. It is preferable to use a value in wavelength.
  • the transmittance in the visible light wavelength region of the anisotropic dye film of the present invention is preferably 25% or more. 35% or more is more preferable, and 40% or more is particularly preferable.
  • permeability should just be an upper limit according to a use. For example, when increasing the degree of polarization, the transmittance is preferably 50% or less. When the transmittance is in a specific range, it is useful as the following optical element, and particularly useful as an optical element for a liquid crystal display used for color display.
  • the degree of polarization of the anisotropic dye film in an aspect of the present invention at a transmittance of 42.5% is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, and particularly preferably 91% or more. It is. The higher the degree of polarization, the better. When the degree of polarization is not less than a specific value, it is useful as an optical element described later, particularly as a polarizing element.
  • the anisotropic dye film of the present invention is preferably produced by a wet film forming method.
  • the wet film-forming method referred to in the present invention is a method in which a composition for forming an anisotropic dye film is applied on a substrate by any method, and a dye or the like is oriented and laminated on the substrate through a process of drying the solvent. .
  • the dye when the composition for forming an anisotropic dye film is applied on a substrate, the dye itself self-associates in the anisotropic dye film forming composition or in the process of drying the solvent. Causes orientation in a small area.
  • an anisotropic dye film having desired performance can be obtained by orienting in a certain direction in a macro region.
  • This is different from the method based on the principle that a so-called polyvinyl alcohol (PVA) film or the like is dyed with a solution containing a dye and stretched, and the dye is oriented only by a stretching process.
  • the external field includes the influence of the alignment treatment layer previously applied on the substrate, shear force, magnetic field, and the like, and these may be used alone or in combination.
  • the process of applying the anisotropic dye film-forming composition on the substrate to form a film, the process of aligning by applying an external field, and the process of drying the solvent may be performed sequentially or simultaneously.
  • the method for applying the composition for forming an anisotropic dye film on the substrate in the wet film forming method include a coating method, a dip coating method, an LB film forming method, a known printing method, and the like.
  • the present invention preferably uses a coating method.
  • the orientation direction of the anisotropic dye film is usually coincident with the application direction, but may be different from the application direction.
  • the orientation direction of the anisotropic dye film is, for example, a polarizing transmission axis or absorption axis in the case of a polarizing film, and a fast axis or a slow axis in the case of a retardation film. That is.
  • the anisotropic dye film in this embodiment functions as a polarizing film or retardation film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, as well as a film forming process and a substrate. And by selecting a composition containing an organic compound (pigment or transparent material), it can be functionalized as various anisotropic dye films such as refractive anisotropy and conduction anisotropy.
  • the method for obtaining the anisotropic dye film by applying the composition for forming the anisotropic dye film is not particularly limited.
  • Yuji Harasaki “Coating Engineering” (Asakura Shoten Co., Ltd., March 20, 1971). Issue) Method described on pages 253 to 277, “Creation and application of molecularly coordinated materials” supervised by Kunihiro Ichimura (CMC Publishing Co., Ltd., published on March 3, 1998), pages 118 to 149, Slot die coating method, spin coating method, spray coating method, bar coating method, roll coating method, blade coating method, curtain coating method, fountain method, dipping method on a substrate having a step structure (which may be subjected to orientation treatment in advance) The method of apply
  • a die coater used in the slot die coating method generally includes a coating machine that discharges a coating solution, a so-called slit die.
  • the slit die is disclosed in, for example, JP-A-2-164480, JP-A-6-154687, JP-A-9-131559, “Basics and Applications of Dispersion / Coating / Drying” (2014, Technosystem Corporation).
  • composition for use can also be suitably used for a bar coater.
  • Examples of the substrate used for forming the anisotropic dye film of the present invention include glass, triacetate, acrylic, polyester, polyimide, triacetylcellulose, or urethane film.
  • the substrate surface is aligned by a known method described in “Liquid Crystal Handbook” Maruzen Co., Ltd., issued October 30, 2000, pages 226 to 239, etc.
  • a treatment layer (alignment film) may be provided.
  • the alignment treatment layer it is considered that the dye is oriented due to the influence of the orientation treatment of the orientation treatment layer and the shearing force applied to the composition for forming an anisotropic dye film during coating.
  • the method for supplying the composition for forming an anisotropic dye film and the supply interval when applying the composition for forming an anisotropic dye film are not particularly limited.
  • the anisotropic dye film When the anisotropic dye film is thin, it may continuously occur because the supply operation of the coating liquid becomes complicated and the coating film thickness may vary when the coating liquid starts and stops. It is desirable to apply while supplying the composition for forming an anisotropic dye film.
  • the speed at which the composition for forming an anisotropic dye film is applied is usually 1 mm / second or more, preferably 5 mm / second or more. Moreover, it is 1000 mm / sec or less normally, Preferably it is 200 mm / sec or less.
  • the coating temperature of the composition for forming an anisotropic dye film is usually 0 ° C. or higher and 80 ° C. or lower, preferably 40 ° C. or lower.
  • coating of the composition for anisotropic dye film formation becomes like this. Preferably it is 10% RH or more, More preferably, it is 30% RH or more, Preferably it is 80% RH or less.
  • the film thickness of the anisotropic dye film is preferably 10 nm or more, more preferably 50 nm or more as a dry film thickness. On the other hand, it is preferably 30 ⁇ m or less, more preferably 1 ⁇ m or less. When the film thickness of the anisotropic dye film is within an appropriate range, uniform orientation and uniform film thickness of the dye tend to be obtained in the film.
  • the anisotropic dye film may be insolubilized.
  • Insolubilization means a treatment step that increases the stability of the film by controlling the elution of the compound from the anisotropic dye film by reducing the solubility of the compound in the anisotropic dye film.
  • an ion with a lower valence is replaced with an ion with a higher valence (for example, a monovalent ion is replaced with a polyvalent ion), or an organic molecule or polymer having a plurality of ionic groups.
  • a replacement process is listed.
  • the anisotropic dye film thus obtained is treated by the method described in JP-A-2007-241267, etc. to form an anisotropic dye film that is insoluble in water. From the viewpoint of durability and the like.
  • the optical element of the present invention includes the anisotropic dye film of the present invention.
  • the optical element is a polarizing element that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, a retardation element, an element having functions such as refractive anisotropy and conduction anisotropy. Represents. These functions can be appropriately adjusted according to the anisotropic dye film forming process and the selection of a composition containing a substrate or an organic compound (a dye or a transparent material). In the present invention, it is most preferably used as a polarizing element.
  • the polarizing element of the present invention may have any other film (layer) as long as it has the anisotropic dye film of the present invention.
  • it can be produced by providing an alignment film on a substrate and forming an anisotropic dye film on the surface of the alignment film.
  • the polarizing element is not limited to an anisotropic dye film, but an overcoat layer having functions such as improving polarization performance and improving mechanical strength; adhesive layer or antireflection layer; alignment film; retardation film , A function as a brightness enhancement film, a function as a reflection or antireflection film, a function as a transflective film, a layer having an optical function such as a function as a diffusion film; .
  • the layers having various functions described above may be formed by lamination by coating, bonding, or the like, and used as a laminate. These layers can be provided as appropriate in accordance with the manufacturing process, characteristics, and functions, and the position and order of the layers are not particularly limited.
  • the positions where the above layers are formed may be formed on the anisotropic dye film, or may be formed on the opposite surface of the substrate provided with the anisotropic dye film.
  • the order of forming the above layers may be before or after forming the anisotropic dye film.
  • the layer having a function as a retardation film can be formed by bonding a retardation film obtained by the following method to another layer constituting the polarizing element.
  • the retardation film is subjected to, for example, a stretching process described in JP-A-2-59703, JP-A-4-230704, or a process described in JP-A-7-230007. Can be formed.
  • the layer having a function as a brightness enhancement film can be formed by bonding the brightness enhancement film obtained by the following method to another layer constituting the polarizing element.
  • the brightness enhancement film is formed by forming a fine hole by a method as described in JP-A No. 2002-169025 and JP-A No. 2003-29030, or two or more layers having different central wavelengths of selective reflection. It can be formed by superposing cholesteric liquid crystal layers.
  • a layer having a function as a reflective film or a transflective film can be formed by, for example, bonding a metal thin film obtained by vapor deposition or sputtering to another layer constituting the polarizing element. it can.
  • the layer having a function as a diffusion film can be formed, for example, by coating the other layer constituting the polarizing element with a resin solution containing fine particles.
  • the layer having a function as a retardation film or an optical compensation film is obtained by applying and aligning a liquid crystal compound such as a discotic liquid crystal compound or a nematic liquid crystal compound on another layer constituting the polarizing element. Can be formed.
  • the anisotropic dye film in the present embodiment is used as an anisotropic dye film for various display elements such as LCDs and OLEDs, it is directly anisotropic on the surface of the electrode substrate or the like constituting these display elements.
  • a dye film can be formed, or a substrate on which an anisotropic dye film is formed can be used as a constituent member of these display elements.
  • the optical element of the present invention can be suitably used for applications such as a flexible display because a polarizing element can be obtained by forming an anisotropic dye film on a substrate by coating or the like.
  • the wet cake of this monoazo compound was dissolved in 220 parts by weight of N-methylpyrrolidone and 110 parts by weight of water, diazotized by adding 3.00 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and dissolved in 200 parts by weight of water.
  • the precipitate was taken out by salting out. It is dissolved in water, neutralized with sodium hydroxide, isopropyl alcohol is added, the precipitated solid is filtered and separated, and the resulting wet cake is dried to obtain an azo dye represented by the following formula (I-1). 31.1 parts by weight of sodium salt were obtained.
  • aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-2) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried.
  • a lithium salt of a trisazo dye represented by the following formula Dye-1 was obtained.
  • composition A2 An anisotropic dye film-forming composition A2 was prepared in the same manner as in Comparative Example A1, except that sodium polyacrylate (weight average molecular weight: 5000) was used instead of sodium polystyrene sulfonate in Comparative Example A1. Thereafter, liquid crystal properties were confirmed at room temperature, and it was confirmed that the liquid crystal portion and the non-liquid crystal portion were in a phase separated state.
  • sodium polyacrylate weight average molecular weight: 5000
  • composition A3 An anisotropic dye film-forming composition A3 was prepared in the same manner as in Comparative Example A1, except that polyallylamine (weight average molecular weight: 3000) was used instead of sodium polystyrene sulfonate in Comparative Example A1. Thereafter, liquid crystal properties were confirmed at room temperature, and it was confirmed that there was no liquid crystal properties.
  • polyallylamine weight average molecular weight: 3000
  • Example A1 Polymer compound (polymer AA) having an acidic group and a basic group, which is a copolymer containing allylamine and sodium allylsulfonate in a molar ratio of 4: 6 instead of sodium polystyrenesulfonate in Comparative Example A1 (weight)
  • An anisotropic dye film-forming composition A4 was produced in the same manner as in Comparative Example A1, except that the average molecular weight was 1700). Then, when liquid crystal property was confirmed at normal temperature, it was confirmed that the liquid crystal state was uniform.
  • Example A2 In the same manner as in Example A1, except that the ratio of Dye-1 to polymer AA in Example A1 was changed to 60:40, and the counter cation of polymer AA was changed to polymer AB salt-exchanged with lithium, an anisotropic dye A film-forming composition A5 was produced.
  • the polymer AA is replaced with a lithium salt by passing an aqueous solution of the polymer AA (sodium salt) through a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to obtain an aqueous solution of free acid, and then the pH of the aqueous solution is increased with an aqueous lithium hydroxide solution. This was carried out by neutralizing to 7.0 and concentrating to dryness. Then, when liquid crystal property was confirmed at normal temperature, it was confirmed that the liquid crystal state was uniform.
  • Example A4 An anisotropic dye film-forming composition A6 was produced in the same manner as in Example A2, except that all of the polymer AB in Example A2 was replaced with L-(+)-Lysine. Then, when liquid crystal property was confirmed at normal temperature, it was confirmed that the liquid crystal state was uniform.
  • a saturated aqueous solution of potassium sulfide was prepared to create a constant humidity environment. At this time, when the hygrometer was confirmed, it was kept at 97% humidity at 25 ° C.
  • composition of the present invention containing a dye and a specific polymer compound can form an anisotropic dye film because it maintains a uniform liquid crystal state. Moreover, it was shown that the obtained anisotropic pigment
  • Reference Example B2 an anisotropic dye film-forming composition B2 was prepared in the same manner as in Reference Example B1, except that water was mixed so that the solution had a solid concentration of 17%.
  • liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform.
  • the isotropic phase appearance temperature when the temperature was raised was 46.4 ° C.
  • the viscosity at normal temperature was measured with an E-type viscometer, it was 111 cP under the condition of the rotor rotation speed of 10 rpm.
  • Example B1 In Reference Example B1, 0.02% of a fluorine-based water-soluble organic compound (Megafac F-444 manufactured by DIC Corporation, having an ethylene oxide group as a hydrophilic group) based on the solid content of the composition for forming an anisotropic dye film
  • an anisotropic dye film-forming composition B4 having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that perfluoroalkyl was further added as a hydrophobic group.
  • perfluoroalkyl was further added as a hydrophobic group.
  • Example B2 In Reference Example B1, 0.02% of a fluorine-based water-soluble organic compound (Megafac F-477 manufactured by DIC Corporation, having a hydrophilic group and a hydrophobic group) based on the solid content of the composition for forming an anisotropic dye film A composition B5 for forming an anisotropic dye film having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a fluorine group was further added.
  • liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform.
  • the isotropic phase appearance temperature when the temperature was raised was 48.3 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 112 cP under the condition of the rotor rotation speed of 10 rpm.
  • Example B3 In Reference Example B1, 0.02% of a fluorine-based water-soluble organic compound (Megafac F-553 manufactured by DIC Corporation, having a hydrophilic group and a hydrophobic group) based on the solid content of the composition for forming an anisotropic dye film
  • the composition B6 for forming an anisotropic dye film having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a fluorine group was further added.
  • liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform.
  • the isotropic phase appearance temperature when the temperature was raised was 56.8 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 108 cP under the condition of the rotor rotation speed of 10 rpm.
  • Example B4 In Reference Example B1, 0.02% of a fluorine-based water-soluble organic compound (Megafac F-556 manufactured by DIC Corporation, having a hydrophilic group and a hydrophobic group) based on the solid content of the composition for forming an anisotropic dye film
  • the composition B7 for forming an anisotropic dye film having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a fluorine group was further added.
  • liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform.
  • the isotropic phase appearance temperature when the temperature was raised was 49.8 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 108 cP under the condition of the rotor rotation speed of 10 rpm.
  • Example B5 In Reference Example B1, 0.02% of a silicone-based water-soluble organic compound (BYK-348 manufactured by BYK-Chemie Co., Ltd., having a polyether group as a hydrophilic group and hydrophobic An anisotropic dye film-forming composition B8 having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a siloxane group was added as a group.
  • a siloxane group was added as a group.
  • the isotropic phase appearance temperature when the temperature was raised was 51.2 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 112 cP under the condition of the rotor rotation speed of 10 rpm.
  • Example B6 In Reference Example B1, 0.02% of a silicone-based water-soluble organic compound (BYK-349 manufactured by BYK-Chemie Co., Ltd. based on the solid content of the anisotropic dye film-forming composition.
  • An anisotropic dye film-forming composition B9 having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a siloxane group was added as a group.
  • liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform.
  • the isotropic phase appearance temperature when the temperature was raised was 51.5 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 103 cP under the condition of the rotor rotation speed of 10 rpm.
  • Example B7 In Reference Example B1, 0.02% of a silicone-based water-soluble organic compound (KP-104 manufactured by Shin-Etsu Chemical Co., Ltd. having a polyol group as a hydrophilic group) based on the solid content of the composition for forming an anisotropic dye film
  • An anisotropic dye film-forming composition B10 having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a siloxane group as a hydrophobic group was further added.
  • liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform.
  • the isotropic phase appearance temperature when the temperature was raised was 51.0 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 116 cP under the condition of the rotor rotation speed of 10 rpm.
  • Example B8 In Reference Example B2, 0.01% of a silicone-based water-soluble organic compound (BYK-349, manufactured by BYK Chemie Co., Ltd., having a polyether group as a hydrophilic group and hydrophobic An anisotropic dye film-forming composition B11 having a solid concentration of 17% was prepared in the same manner as in Reference Example B2, except that a siloxane group was added as a group.
  • a siloxane group was added as a group.
  • the isotropic phase appearance temperature when the temperature was raised was 45.1 ° C.
  • the viscosity at normal temperature was measured with an E-type viscometer, it was 110 cP under the condition of the rotor rotation speed of 10 rpm.
  • Example B9 In Reference Example B2, 0.01% acrylic water-soluble organic compound (BYK-380N manufactured by BYK-Chemie Co., Ltd. having a hydrophilic group and a hydrophobic group based on the solid content of the composition for forming an anisotropic dye film.
  • a composition B12 for forming an anisotropic dye film having a solid content concentration of 17% was prepared in the same manner as in Reference Example B2, except that it was further added.
  • liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform.
  • the isotropic phase appearance temperature when the temperature was raised was 45.5 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 111 cP under the condition of the rotor rotation speed of 10 rpm.
  • Example B10 In Reference Example B3, 0.006% of a silicone-based water-soluble organic compound (BYK-348 manufactured by BYK-Chemie Co., Ltd., having a polyether group as a hydrophilic group, hydrophobic An anisotropic dye film-forming composition B13 having a solid content concentration of 17% was prepared in the same manner as in Reference Example B3 except that an alkyl group was added as a group.
  • an alkyl group was added as a group.
  • the isotropic phase appearance temperature when the temperature was raised was 30.7 ° C. Further, when the viscosity at room temperature was measured with an E-type viscometer, it was 134 cP under the condition of the rotor rotation speed of 10 rpm.
  • Example B11 In Reference Example B3, 0.006% of a silicone-based water-soluble organic compound (BYK-349 manufactured by BYK-Chemie Co., Ltd. based on the solid content of the anisotropic dye film-forming composition.
  • An anisotropic dye film-forming composition B14 having a solid content concentration of 17% was prepared in the same manner as in Reference Example B3 except that a siloxane group was added as a group.
  • liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform.
  • the isotropic phase appearance temperature when the temperature was raised was 30.4 ° C. Further, the viscosity at room temperature was measured with an E-type viscometer.
  • Example B12 In Reference Example B3, 0.006% acrylic water-soluble organic compound (BYK-380N manufactured by BYK-Chemie Co., Ltd., having a hydrophilic group and a hydrophobic group based on the solid content of the composition for forming an anisotropic dye film.
  • the composition B15 for forming an anisotropic dye film having a solid content concentration of 17% was prepared in the same manner as in Reference Example B3, except that it was added in the form of a block structure.
  • liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform.
  • the isotropic phase appearance temperature when the temperature was raised was 32.0 ° C. Further, when the viscosity at room temperature was measured with an E-type viscometer, it was 158 cP under the condition of the rotor rotation speed of 10 rpm.
  • the anisotropic dye film-forming compositions of Reference Examples B1 to B3 and Examples B1 to B12 of the present invention containing a dye and a specific polymer compound are all in a uniform liquid crystal state at room temperature.
  • the moisture resistance was improved.
  • the composition for forming an anisotropic dye film of Examples B1 to B12 which is a composition for forming an anisotropic dye film of one embodiment of the present invention containing a water-soluble organic compound, significantly reduces coating stripes, and , Transferability to film was significantly reduced. Furthermore, the liquid crystallinity (isotropic phase appearance temperature) of the anisotropic dye film-forming composition and the optical characteristics of the anisotropic dye film were maintained without greatly increasing the viscosity.
  • Example C1 Filler CB1 (BYK-3600, average primary particle size 40 nm, manufactured by Big Chemie Japan Co., Ltd.) is 5% in the total solid content while maintaining the mixing ratio of the pigment and polymer compound in Reference Example C1 at 30:70 (weight ratio). Then, ion-exchanged water was added so that the solution had a solid content concentration of 16.5%. Then, it stirred for 90 minutes at 80 degreeC, and it was made to melt
  • Example C2 Filler CB2 (manufactured by Nissan Chemical Industries, Snowtex CM, average primary particle size 20) with the mixing ratio of Dye-1, polymer compound CC1 and additive CD1 in Reference Example C2 being 30:60:10 (weight ratio) ⁇ 25 nm) was added to 1% of the total solids, and ion-exchanged water was added so as to obtain a solution having a solids concentration of 17.7%. Then, it stirred for 90 minutes at 80 degreeC, and it was made to melt
  • Example 3 An anisotropic dye film-forming composition C5 was produced in the same manner as in Example C2, except that the amount of filler CB2 added to the total solid content was 5% and the solid content concentration was changed to 18.8%.
  • Example C4 An anisotropic dye film-forming composition C6 was produced in the same manner as in Example C3 except that the amount of filler CB2 added to the total solid content was changed to 10%.
  • Example C5 Similar to Example C4 except that filler CB1 was replaced with filler CB3 (Nissan Chemical Industries, Snowtex C, average primary particle size 10-15 nm) and the solid content concentration was changed to 17.1%.
  • the composition C7 for forming a functional dye film was prepared.
  • Example C6 Similar to Example C2, except that filler CB1 was replaced with filler CB4 (manufactured by Nissan Chemical Industries, Snowtex 20L, average primary particle size 40-50 nm), and the solid content concentration was changed to 16.9%.
  • the composition C8 for forming a functional dye film was prepared.
  • the anisotropic dye film-forming compositions prepared in Examples C1 to C6 and Reference Examples C1 to C2 were each coated on a glass substrate using an applicator and then air-dried to prepare anisotropic dye films.
  • the transmittance and polarization degree of the obtained anisotropic dye film were measured using a spectrophotometer (product name “RETS-100” manufactured by Otsuka Electronics Co., Ltd.) equipped with a Gram Thomson polarizer. The following is shown from the transmittance wavelength dependence (Ty ( ⁇ ), Tz ( ⁇ ), Tm ( ⁇ )) of 400 nm to 800 nm obtained by making linearly polarized measuring light incident on the anisotropic dye film.
  • the anisotropic dye film-forming compositions prepared in Examples C1 to C6 and Reference Examples C1 to C2 were each coated on a glass substrate using an applicator and then air-dried to prepare anisotropic dye films.
  • the obtained anisotropic dye film was allowed to stand for 1 day in an atmosphere of 71% relative humidity at room temperature. Thereafter, the PET film was pressed against the coating film with a load of 0.025 kgf / mm 2 , and the adhesion of the coating film to the PET film after peeling was observed and evaluated according to the following criteria.
  • B When there is much adhesion
  • A When there is almost no adhesion
  • the anisotropic dye film-forming compositions of the present invention of Reference Examples C1 to C2 and Examples C1 to C6 containing a dye and a specific polymer compound are all in a uniform liquid crystal state at room temperature and have moisture resistance. It was improved. In Example C1 to which the filler was added, the degree of polarization was only reduced by 0.5% with respect to Reference Example 1, and the adhesion could be further reduced. In Examples C2 to C6 to which the filler was added, the degree of polarization was only reduced by 0.1 to 0.4% with respect to Reference Example 2, and the adhesion could be further reduced. From these results, it was shown that the composition for forming an anisotropic dye film of one embodiment of the present invention containing a filler can further reduce adhesion while maintaining a high degree of polarization.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a composition for forming an anisotropic dye film, wherein the composition can produce an anisotropic dye film having high moisture resistance. Provided is a composition for forming an anisotropic dye film, wherein the composition comprises a dye and a polymer compound having an acidic group and a basic group.

Description

異方性色素膜形成用組成物及び異方性色素膜Anisotropic dye film forming composition and anisotropic dye film
 本発明は、湿式成膜法により形成される異方性色素膜、特に、調光素子、液晶素子(LCD)及び有機エレクトロルミネッセンス素子(OLED)の表示素子に具備される偏光膜等に有用な高い二色性を示す異方性色素膜形成用組成物及び異方性色素膜に関するものである。
 2016年12月27日に日本国特許庁に出願された特願2016-253443、2017年3月27日に日本国特許庁に出願された特願2017-61968、及び2017年6月1日に日本国特許庁に出願された特願2017-109354の明細書、特許請求の範囲、図面、及び要約書の全内容、並びに、本明細書で引用された文献等に開示された内容の一部又は全部をここに引用し、本明細書の開示内容として取り入れる。
INDUSTRIAL APPLICABILITY The present invention is useful for anisotropic dye films formed by a wet film forming method, in particular, polarizing films included in display elements of light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs). The present invention relates to a composition for forming an anisotropic dye film exhibiting high dichroism and an anisotropic dye film.
Japanese Patent Application No. 2016-253443 filed with the Japan Patent Office on December 27, 2016, Japanese Patent Application No. 2017-61968 filed with the Japan Patent Office on March 27, 2017, and June 1, 2017 The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2017-109354 filed with the Japan Patent Office, and part of the contents disclosed in the documents cited in this specification Or the entirety of which is hereby incorporated herein by reference.
 LCDでは、表示における旋光性や複屈折性を制御するために直線偏光膜及び円偏光膜が用いられている。OLEDにおいても、外光の反射防止のために円偏光膜が使用されている。
 従来、これらの偏光膜にはヨウ素が二色性物質として広く使用されてきた。しかしながら、ヨウ素は昇華性が大きいために、偏光膜を用いた偏光素子として使用した場合、その耐熱性や耐光性が十分ではなかった。また、その消光色が深い青色となるため、全可視スペクトル領域に亘って、理想的な無彩色の偏光素子とは言えなかった。
In the LCD, a linearly polarizing film and a circularly polarizing film are used to control optical rotation and birefringence in display. Also in the OLED, a circularly polarizing film is used for preventing reflection of external light.
Conventionally, iodine has been widely used as a dichroic material in these polarizing films. However, since iodine has a high sublimation property, when used as a polarizing element using a polarizing film, its heat resistance and light resistance are not sufficient. Further, since the extinction color is deep blue, it cannot be said that it is an ideal achromatic polarizing element over the entire visible spectrum region.
 理想的な無彩色の偏光素子を得るために、有機系の色素を二色性物質に使用する異方性色素膜が検討されている。有機系の色素を使用する異方性色素膜としては、従来のポリマーに有機系の色素を含浸させた膜、基板等の上に有機系の色素を塗布することで膜を得る方法(湿式成膜法)を用いて形成させた膜等が挙げられる。
 従来のポリマーに有機系の色素を含浸させた異方性色素膜を用いる場合、該異方性色素膜に接着層を設け、接着層の保護フィルムを貼り合わせ、該保護フィルムを貼り合せた偏光膜をディスプレイ製造ラインに移送し、ディスプレイ製造ラインで保護フィルムを剥がし、異方性色素膜を基板等に貼合するというプロセスが取られている。これをガラスや透明フィルム等の基板上に、湿式成膜法を用いて異方性色素膜を形成する方法に置き換えれば、前記の従来のポリマーに有機系の色素を含浸させた異方性色素膜を用いる方法と比較して、製造プロセスを簡略化でき、生産性向上に寄与するものと考えられる。
In order to obtain an ideal achromatic polarizing element, an anisotropic dye film using an organic dye as a dichroic material has been studied. As anisotropic dye films using organic dyes, conventional polymers impregnated with organic dyes, methods for obtaining films by applying organic dyes on substrates, etc. And a film formed by using a film method.
When using an anisotropic dye film in which an organic dye is impregnated in a conventional polymer, an adhesive layer is provided on the anisotropic dye film, a protective film of the adhesive layer is bonded, and the polarizing film is bonded with the protective film The process of transferring a film | membrane to a display manufacturing line, peeling off a protective film with a display manufacturing line, and bonding an anisotropic pigment | dye film | membrane to a board | substrate etc. is taken. If this is replaced with a method of forming an anisotropic dye film on a substrate such as glass or transparent film by using a wet film forming method, an anisotropic dye obtained by impregnating the above-mentioned conventional polymer with an organic dye Compared with the method using a film, the manufacturing process can be simplified, which is considered to contribute to productivity improvement.
 特許文献1には二色比の高い異方性色素膜を得るための、トリスアゾ色素を含む異方性色素膜形成用組成物が示されている。
 また、異方性色素膜の高い二色比を得るために、特定の色素を組み合わせて用いることが示されている。例えば、アントラキノン環を有するアゾ化合物と、ナフタレン環を有するジスアゾ色素と含む異方性色素膜形成用組成物(特許文献2)、ジスアゾ色素とモノアゾ化合物と含む異方性色素膜形成用組成物(特許文献3)、ジスアゾ色素を2種組み合わせて用いて異方性色素膜を得たことも示されている(特許文献4及び5)。
Patent Document 1 discloses an anisotropic dye film forming composition containing a trisazo dye for obtaining an anisotropic dye film having a high dichroic ratio.
In addition, it has been shown that specific dyes are used in combination in order to obtain a high dichroic ratio of the anisotropic dye film. For example, an anisotropic dye film forming composition containing an azo compound having an anthraquinone ring and a disazo dye having a naphthalene ring (Patent Document 2), an anisotropic dye film forming composition containing a disazo dye and a monoazo compound ( Patent Document 3) also shows that an anisotropic dye film was obtained by combining two types of disazo dyes (Patent Documents 4 and 5).
 異方性色素膜の性能を向上させるため、添加材の開発が同時に進められている。例えば、二色性の向上や耐熱性の向上を目的としてアミノ酸などを添加する組成物が開発されている(特許文献6)。また、アミノ酸以外にも、界面活性剤の添加により塗布時の基板への濡れ性を向上させると同時に、乾燥過程で界面活性剤が気液界面に集積することで色素の異方性を阻害せずに、二色比が向上する検討がなされている(特許文献7)。 In order to improve the performance of anisotropic dye films, the development of additives is being promoted at the same time. For example, a composition to which an amino acid or the like is added has been developed for the purpose of improving dichroism and heat resistance (Patent Document 6). In addition to amino acids, the addition of surfactants improves the wettability to the substrate during coating, and at the same time inhibits the anisotropy of the dye by accumulating the surfactant at the gas-liquid interface during the drying process. However, studies have been made to improve the dichroic ratio (Patent Document 7).
 しかしながら、このような化合物の添加は、湿度の変動により、析出、凝集及びひび割れの発生等の懸念があり、さらに耐湿性が悪化する懸念があった。
 また、このような添加剤含有異方性色素膜は、他の基材との密着性が高まるため、膜の製造性、ハンドリング性が低下する懸念がある。一方、光学フィルムに二酸化ケイ素等の無機フィラーを添加し、付着性を低下する(アンチブロッキング性を高める)方法が報告されている(特許文献8)。
However, the addition of such a compound has concerns about precipitation, aggregation, cracking, and the like due to fluctuations in humidity, and there is a concern that the moisture resistance will deteriorate.
Moreover, since such an additive-containing anisotropic dye film has improved adhesion to other substrates, there is a concern that the film manufacturability and handling properties may decrease. On the other hand, a method has been reported in which an inorganic filler such as silicon dioxide is added to an optical film to reduce adhesion (increase antiblocking properties) (Patent Document 8).
特開2010-168570号公報JP 2010-168570 A 特開2008-101154号公報JP 2008-101154 A 特開2012-194357号公報JP 2012-194357 A 特開2007-126628号公報JP 2007-126628 A 国際公開第2015/087978号International Publication No. 2015/088798 国際公開第2005/069048号International Publication No. 2005/069048 特開2009-180975号公報JP 2009-180975 A 国際公開第2010/061917号International Publication No. 2010/061917
 耐湿性が高い異方性色素膜を製造できる異方性色素膜形成用組成物の開発を課題とする。 An object is to develop a composition for forming an anisotropic dye film capable of producing an anisotropic dye film having high moisture resistance.
 本発明者らは、色素と特定の高分子化合物を含む組成物を用いることにより、前記課題を解決できることを見出した。
 すなわち、本発明は以下を要旨とする。
The present inventors have found that the above problem can be solved by using a composition containing a dye and a specific polymer compound.
That is, the gist of the present invention is as follows.
[1]
 色素並びに、酸性基及び塩基性基を有する高分子化合物を含むものである、異方性色素膜形成用組成物。
[2]
 前記塩基性基がアミノ基を含むものである、[1]に記載の異方性色素膜形成用組成物。
[3]
 前記酸性基がスルホ基を含むものである、[1]又は[2]に記載の異方性色素膜形成用組成物。
[4]
 前記酸性基の少なくとも一部が塩型の酸性基であり、前記塩型の酸性基の対カチオンが、リチウムイオン及び/又はナトリウムイオンである、[1]~[3]のいずれか一項に記載の異方性色素膜形成用組成物。
[5]
 前記塩基性基及び/又は前記酸性基が、芳香族性の部分構造を有さないものである、[1]~[4]のいずれか一項に記載の異方性色素膜形成用組成物。
[6]
 前記高分子化合物の重量平均分子量が800以上10000以下である、[1]~[5]のいずれか一項に記載の異方性色素膜形成用組成物。
[7]
 前記色素が水溶性有機色素である、[1]~[6]のいずれか一項に記載の異方性色素膜形成用組成物。
[8]
 さらに、水溶性有機化合物を含むものである、[1]~[7]のいずれか一項に記載の異方性色素膜形成用組成物。
[9]
 前記水溶性有機化合物が親水基及び疎水基を有するものである、[8]に記載の異方性色素膜形成用組成物。
[10]
 さらに、平均一次粒子径1nm~500nmのフィラーを含むものである、[1]~[9]のいずれか一項に記載の異方性色素膜形成用組成物。
[11]
 前記フィラーが金属酸化物である、[10]に記載の異方性色素膜形成用組成物。
[12]
 前記金属酸化物がシリカ及び/又はアルミナである、[11]に記載の異方性色素膜形成用組成物。
[13]
 前記フィラーを全固形分中に0.1~50重量%含有していることを特徴とする[10]~[12]のいずれか一項に記載の異方性色素膜形成用組成物。
[14]
 [1]~[13]のいずれか一項に記載の異方性色素膜形成用組成物を用いて形成された、異方性色素膜。
[15]
 色素、並びに、酸性基及び塩基性基を有する高分子化合物を含むものである、異方性色素膜。
[16]
 色素、酸性基及び塩基性基を有する高分子化合物、並びに、水溶性有機化合物を含むものである、異方性色素膜。
[17]
 [14]~[16]のいずれか一項に記載の異方性色素膜を含む、光学素子。
[1]
An anisotropic dye film-forming composition comprising a dye and a polymer compound having an acidic group and a basic group.
[2]
The composition for forming an anisotropic dye film according to [1], wherein the basic group includes an amino group.
[3]
The composition for forming an anisotropic dye film according to [1] or [2], wherein the acidic group contains a sulfo group.
[4]
[1] to [3], wherein at least a part of the acidic group is a salt-type acidic group, and a counter cation of the salt-type acidic group is a lithium ion and / or a sodium ion. The composition for forming an anisotropic dye film as described.
[5]
The composition for forming an anisotropic dye film according to any one of [1] to [4], wherein the basic group and / or the acidic group does not have an aromatic partial structure. .
[6]
The composition for forming an anisotropic dye film according to any one of [1] to [5], wherein the polymer compound has a weight average molecular weight of 800 to 10,000.
[7]
The composition for forming an anisotropic dye film according to any one of [1] to [6], wherein the dye is a water-soluble organic dye.
[8]
Furthermore, the composition for forming an anisotropic dye film according to any one of [1] to [7], further comprising a water-soluble organic compound.
[9]
The composition for forming an anisotropic dye film according to [8], wherein the water-soluble organic compound has a hydrophilic group and a hydrophobic group.
[10]
The composition for forming an anisotropic dye film according to any one of [1] to [9], further comprising a filler having an average primary particle diameter of 1 nm to 500 nm.
[11]
The composition for forming an anisotropic dye film according to [10], wherein the filler is a metal oxide.
[12]
The composition for forming an anisotropic dye film according to [11], wherein the metal oxide is silica and / or alumina.
[13]
The composition for forming an anisotropic dye film as described in any one of [10] to [12], wherein the filler is contained in an amount of 0.1 to 50% by weight in the total solid content.
[14]
An anisotropic dye film formed by using the anisotropic dye film-forming composition according to any one of [1] to [13].
[15]
An anisotropic dye film comprising a dye and a polymer compound having an acidic group and a basic group.
[16]
An anisotropic dye film comprising a dye, a polymer compound having an acidic group and a basic group, and a water-soluble organic compound.
[17]
[14] An optical element comprising the anisotropic dye film according to any one of [16] to [16].
 また、本発明の別の一態様として、本発明は以下を要旨とする。 Further, as another aspect of the present invention, the present invention has the following gist.
<1>
 平均一次粒子径1nm~500nmのフィラーを含有していることを特徴とする異方性膜形成用組成物。
<2>
 前記フィラーが金属酸化物である、<1>に記載の異方性膜形成用組成物。
<3>
 前記金属酸化物がシリカ及び/又はアルミナである、<2>に記載の異方性膜形成用組成物。
<4>
 前記フィラーを全固形分中に0.1~50重量%含有していることを特徴とする<1>~<3>のいずれか一項に記載の異方性膜形成用組成物。
<5>
 前記組成物が、更に色素を含むことを特徴とする<1>~<4>のいずれか一項に記載の異方性膜形成用組成物。
<6>
 前記組成物が、更に酸性基及び塩基性基を有する高分子化合物を含むことを特徴とする<1>~<5>のいずれか一項に記載の異方性膜形成用組成物。
<7>
 前記塩基性基がアミノ基を含むものである、<6>に記載の異方性膜形成用組成物。
<8>
 前記酸性基がスルホ基を含むものである、<6>又は<7>に記載の異方性膜形成用組成物。
<9>
 前記酸性基の対カチオンが、リチウムイオン及び/又はナトリウムイオンである、<6>~<8>のいずれか一項に記載の異方性膜形成用組成物。
<10>
 前記酸性基及び/又は前記塩基性基が、芳香族性の部分構造を有しないものである、<6>~<9>のいずれか一項に記載の異方性膜形成用組成物。
<11>
 <1>~<10>のいずれか一項に記載の異方性膜形成用組成物を用いて形成された、異方性膜。
<12>
 <11>に記載の異方性膜を含む、光学素子。
<1>
An anisotropic film-forming composition comprising a filler having an average primary particle diameter of 1 nm to 500 nm.
<2>
The composition for forming an anisotropic film according to <1>, wherein the filler is a metal oxide.
<3>
The composition for forming an anisotropic film according to <2>, wherein the metal oxide is silica and / or alumina.
<4>
The composition for forming an anisotropic film according to any one of <1> to <3>, wherein the filler is contained in an amount of 0.1 to 50% by weight in the total solid content.
<5>
The composition for forming an anisotropic film according to any one of <1> to <4>, wherein the composition further contains a dye.
<6>
The composition for forming an anisotropic film according to any one of <1> to <5>, wherein the composition further comprises a polymer compound having an acidic group and a basic group.
<7>
The composition for forming an anisotropic film according to <6>, wherein the basic group includes an amino group.
<8>
The composition for forming an anisotropic film according to <6> or <7>, wherein the acidic group contains a sulfo group.
<9>
The composition for forming an anisotropic film according to any one of <6> to <8>, wherein the counter cation of the acidic group is lithium ion and / or sodium ion.
<10>
The composition for forming an anisotropic film according to any one of <6> to <9>, wherein the acidic group and / or the basic group does not have an aromatic partial structure.
<11>
An anisotropic film formed using the anisotropic film forming composition according to any one of <1> to <10>.
<12>
An optical element comprising the anisotropic film according to <11>.
 本発明の異方性色素膜形成用組成物を用いることにより、形成された異方性色素膜の耐湿性の向上が期待できる。また、製造時における保管環境に対するマージンの向上により安定製造に寄与するほか、保管環境の安価化が図れるものである。 By using the composition for forming an anisotropic dye film of the present invention, improvement in moisture resistance of the formed anisotropic dye film can be expected. In addition to improving the margin for the storage environment at the time of manufacture, it contributes to stable manufacturing, and the storage environment can be made cheaper.
 さらに、本発明のある態様は、水溶性有機化合物を含有することで、保管安定性に優れ、均一塗布が可能である異方性色素膜形成用組成物を提供するものである。また、耐湿性に優れることで経時での膜欠陥を抑制し、膜硬度が高く、さらに二色比に優れた異方性色素膜を提供するものである。
 具体的には、水溶性有機化合物を含有する本発明の一態様の異方性色素膜形成用組成物を用いることにより、形成された異方性色素膜の耐湿性及び硬度の向上、経時での膜欠陥の抑制が期待できる。また、製造時における保管環境に対するマージンの向上により安定製造に寄与するほか、保管環境の安価化が図れるものである。さらに、異方性色素膜組成物を塗布する際の膜厚分布により形成される塗布膜の不均一性を抑制し、量産性に優れた異方性色素膜を形成するものである。
Furthermore, an embodiment of the present invention provides a composition for forming an anisotropic dye film that contains a water-soluble organic compound and has excellent storage stability and can be uniformly applied. In addition, the present invention provides an anisotropic dye film that suppresses film defects over time by being excellent in moisture resistance, has high film hardness, and is excellent in dichroic ratio.
Specifically, by using the anisotropic dye film forming composition of one embodiment of the present invention containing a water-soluble organic compound, the moisture resistance and hardness of the formed anisotropic dye film can be improved over time. Suppression of film defects can be expected. In addition to improving the margin for the storage environment at the time of manufacture, it contributes to stable manufacturing, and the storage environment can be made cheaper. Furthermore, the nonuniformity of the coating film formed by the film thickness distribution at the time of apply | coating an anisotropic dye film composition is suppressed, and the anisotropic dye film excellent in mass-productivity is formed.
 さらに、本発明の別のある態様においては、特定のフィラーを含有する本発明の一態様の異方性色素膜形成用組成物を用いることにより、耐湿性の向上に加えて、他の基材との密着性が抑制されることによる高い生産性及びハンドリング性と、高い偏光度とが両立した異方性膜が提供される。 Furthermore, in another certain aspect of the present invention, by using the anisotropic dye film-forming composition of one aspect of the present invention containing a specific filler, in addition to the improvement of moisture resistance, other base materials An anisotropic film having both high productivity and handling property due to suppression of adhesion and high polarization degree is provided.
 以下、本発明の実施の形態を具体的に説明するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。 Hereinafter, embodiments of the present invention will be specifically described. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
 本発明でいう異方性色素膜とは、異方性色素膜の厚み方向及び任意の直交する面内2方向の立体座標系における合計3方向から選ばれる、任意の2方向における電磁気学的性質に異方性を有する色素膜である。電磁気学的性質としては、吸収、屈折等の光学的性質、抵抗、容量等の電気的性質等が挙げられる。
 吸収、屈折等の光学的異方性を有する膜としては、例えば、直線偏光膜、円偏光膜等の偏光膜、位相差膜、導電異方性色素膜等がある。本発明の異方性色素膜は、偏光膜、位相差膜及び導電異方性色素膜に用いられることが好ましく、偏光膜に用いられることがより好ましい。
The anisotropic dye film referred to in the present invention is an electromagnetic property in any two directions selected from a total of three directions in the three-dimensional coordinate system of the thickness direction of the anisotropic dye film and any two orthogonal in-plane directions. Is a dye film having anisotropy. Examples of the electromagnetic property include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
Examples of films having optical anisotropy such as absorption and refraction include polarizing films such as linearly polarizing films and circularly polarizing films, retardation films, and conductive anisotropic dye films. The anisotropic dye film of the present invention is preferably used for a polarizing film, a retardation film and a conductive anisotropic dye film, and more preferably used for a polarizing film.
[異方性色素膜形成用組成物]
 まず、本発明の異方性色素膜形成用組成物について説明する。
 本発明の異方性色素膜形成用組成物は、色素並びに、酸性基及び塩基性基を有する高分子化合物を含むものである。
 該異方性色素膜形成用組成物の態様としては、前述の高分子化合物及び色素を含めば特に限定されない。異方性色素膜形成用組成物が相分離を引き起こさない状態であれば、溶液であっても、液晶であっても、分散状態であってもよいが、異方性色素膜形成用組成物として液晶相の状態であることが、溶剤が蒸発した後に形成される異方性色素膜が高配向度に形成される観点から好ましい。なお、本実施の形態において、液晶相の状態であるとは、具体的には、『液晶の基礎と応用』(松本正一・角田市良著、1991)の1~16ページに記載されているように、液体と結晶の双方の性質を示す液晶状態であり、ネマティック相、コレステリック相、スメクティック相又はディスコティック相であることをいう。特に、溶液中での秩序性が低く、粘度が低い傾向にあるため、液晶相はネマティック相が好ましい。
[Anisotropic Dye Film Forming Composition]
First, the composition for forming an anisotropic dye film of the present invention will be described.
The composition for forming an anisotropic dye film of the present invention includes a dye and a polymer compound having an acidic group and a basic group.
The aspect of the composition for forming an anisotropic dye film is not particularly limited as long as the polymer compound and the dye described above are included. As long as the composition for forming an anisotropic dye film does not cause phase separation, the composition for forming an anisotropic dye film may be a solution, a liquid crystal, or a dispersed state. The liquid crystal phase is preferably from the viewpoint that the anisotropic dye film formed after the solvent evaporates is formed with a high degree of orientation. In the present embodiment, the state of the liquid crystal phase is specifically described on pages 1 to 16 of “Basics and Applications of Liquid Crystal” (Shinichi Matsumoto, Ryo Tsunoda, 1991). As described above, it is a liquid crystal state exhibiting both liquid and crystal properties, which means a nematic phase, a cholesteric phase, a smectic phase, or a discotic phase. In particular, the liquid crystal phase is preferably a nematic phase because the order in the solution tends to be low and the viscosity tends to be low.
[高分子化合物]
 本発明に用いることができる高分子化合物は、酸性基及び塩基性基を有する高分子化合物(以下、本明細書において「高分子化合物」と表すことがある。)である。
 上記高分子化合物を用いることで、本発明の効果が得られる理由は次のように推察される。
 基本的には、塩基性基又は酸性基は水分子との相性が良く、吸湿性を持つため、異方性色素膜は水分を吸着しやすい性質がある。異方性色素膜中において、色素は、その異方性を発現するため、ある程度の大きさを有する集合体を形成する。特許文献6に記載のアミノ酸などの化合物は、この色素集合体をつなぎ、固定していると推定される。このつなぎとなっているアミノ酸などの化合物同士は弱い水素結合で結ばれており、水分を吸湿する事によりその会合力が弱くなる。そのため、色素集合体の動きを抑制できず、析出やひび割れが起こってしまうと推定される。一方で、上記高分子化合物を用いることにより、アミノ酸などの化合物同士の弱い水素結合のネットワークの一部を強固な共有結合に置き換えることとなる。従って、水分が吸着しても、色素の集合体の動きを抑制した状態を維持できると推定される。
 また、色素単独で形成する異方性色素膜は脆くなる傾向にあるため硬度が低くなるが、上記高分子化合物を添加することで可塑剤的な効果により脆さが解消され、硬度が向上すると推定される。
[Polymer compound]
The polymer compound that can be used in the present invention is a polymer compound having an acidic group and a basic group (hereinafter sometimes referred to as “polymer compound” in the present specification).
The reason why the effects of the present invention can be obtained by using the polymer compound is presumed as follows.
Basically, the basic group or acidic group has good compatibility with water molecules and has hygroscopicity, so that the anisotropic dye film has a property of easily adsorbing moisture. In the anisotropic dye film, the dye forms an aggregate having a certain size in order to exhibit its anisotropy. Compounds such as amino acids described in Patent Document 6 are presumed to connect and fix this dye aggregate. The compounds such as amino acids that are connected to each other are bonded by weak hydrogen bonds, and the association force is weakened by absorbing moisture. For this reason, it is presumed that the movement of the dye aggregate cannot be suppressed and precipitation and cracking occur. On the other hand, by using the above polymer compound, a part of a weak hydrogen bond network between compounds such as amino acids is replaced with a strong covalent bond. Therefore, it is presumed that even when moisture is adsorbed, the state in which the movement of the dye aggregate is suppressed can be maintained.
In addition, since the anisotropic dye film formed by the dye alone tends to be brittle, the hardness is low, but by adding the above polymer compound, the brittleness is eliminated by the plasticizer effect, and the hardness is improved. Presumed.
 上記高分子化合物が有する置換基については、以下のように説明できる。
 本発明の異方性色素膜を形成するには、相分離を起こさない液晶性の組成物を形成する事が好ましい。そのためには、色素と高分子化合物が会合体を形成し、且つ、色素同士が積層した色素集合体が形成されることが必要である。後述するが、色素は、水溶性を発現させるために、酸性基又は塩基性基を有する場合がある。塩基性基は通常正電荷又はカチオン性を、酸性基は通常負電荷又はアニオン性を有する。そのため、色素と高分子化合物が会合対を形成するためには、高分子化合物は塩基性基又は酸性基を有する必要がある。このとき、高分子化合物が酸性基又は塩基性基のどちらか一方の基のみを有する場合、色素と強く会合するか、強く反発を引き起こすかのいずれかが起こると推定される。前者の場合、高分子化合物を介して色素会合体同士が架橋され、均一な液晶相の形成が困難となる。一方後者の場合、同じ電荷を有するが故に色素と高分子化合物がそれぞれ独自の凝集体を形成し、相分離状態となってしまうと推定される。そのため、高分子化合物は塩基性基と酸性基を同時に有することが好ましい。
About the substituent which the said high molecular compound has, it can explain as follows.
In order to form the anisotropic dye film of the present invention, it is preferable to form a liquid crystalline composition that does not cause phase separation. For this purpose, it is necessary to form a dye aggregate in which the dye and the polymer compound form an aggregate and the dyes are laminated. Although mentioned later, in order to express water solubility, a pigment may have an acidic group or a basic group. Basic groups are usually positively charged or cationic, and acidic groups are usually negatively charged or anionic. Therefore, in order for the dye and the polymer compound to form an association pair, the polymer compound needs to have a basic group or an acidic group. At this time, when the polymer compound has only one of an acidic group and a basic group, it is presumed that either a strong association with the dye or a strong repulsion occurs. In the former case, the dye aggregates are cross-linked through the polymer compound, and it becomes difficult to form a uniform liquid crystal phase. On the other hand, in the latter case, it is presumed that the dye and the polymer compound form their own aggregates because they have the same electric charge, resulting in a phase separation state. Therefore, the polymer compound preferably has a basic group and an acidic group at the same time.
 高分子化合物が有する塩基性基及び酸性基は、以下の通りである。
 酸性基及び塩基性基とは、それぞれ、酸性基は7未満、塩基性基は7以上のpKaを有する官能基のことである。なお、pKaとは、濃度酸解離定数Kaの逆数の対数値、すなわち-log Kaである。
The basic group and acidic group possessed by the polymer compound are as follows.
The acidic group and the basic group are functional groups having a pKa of less than 7 and a basic group of 7 or more, respectively. Note that pKa is a logarithmic value of the reciprocal of the concentration acid dissociation constant Ka, that is, -log Ka.
 高分子化合物が有する酸性基としては、例えば、スルホ基、カルボキシル基、リン酸基などが挙げられる。これらの中でも、色素の積層崩壊を抑制するため、酸性基は、芳香族性の部分構造を有しないことが好ましい。また、水溶性の維持と秩序性向上の観点では、酸性基はスルホ基を含むことが好ましく、とりわけスルホ基が望ましい。 Examples of the acidic group possessed by the polymer compound include a sulfo group, a carboxyl group, and a phosphate group. Among these, it is preferable that the acidic group does not have an aromatic partial structure in order to suppress the lamination failure of the dye. In view of maintaining water solubility and improving order, the acidic group preferably contains a sulfo group, and particularly preferably a sulfo group.
 塩基性基としては、含窒素塩基性基(電子供与性の窒素原子を含み、該窒素原子が正電荷又はカチオン性を有しやすい性質を持つものが好ましい)が挙げられ、アミノ基、アルキルアミノ基(メチルアミノ基、エチルアミノ基等)、ピロリル基、3-ピロリニル基、ピロリジニル基、ピラゾーリル基、2-ピラゾリニル基、ピラゾリジニル基、イミダゾリル基、1,2,3-トリアゾリル基、1,2,4-トリアゾリル基、ピリジニル基、ピリダジニル基、ピペリジニル基、ピラジニル基、ピペラジニル基、ピリミジニル基、トリアジニル基等が挙げられる。これらの中でも、色素の積層崩壊を抑制するため、塩基性基は、芳香族性の部分構造を有しないことが好ましく、特にアミノ基を含むことが好ましく、とりわけアミノ基が望ましい。 Examples of the basic group include nitrogen-containing basic groups (which preferably include an electron-donating nitrogen atom, and the nitrogen atom preferably has a property of being positively charged or cationic). Group (methylamino group, ethylamino group, etc.), pyrrolyl group, 3-pyrrolinyl group, pyrrolidinyl group, pyrazolyl group, 2-pyrazolinyl group, pyrazolidinyl group, imidazolyl group, 1,2,3-triazolyl group, 1,2, Examples include 4-triazolyl group, pyridinyl group, pyridazinyl group, piperidinyl group, pyrazinyl group, piperazinyl group, pyrimidinyl group, triazinyl group and the like. Among these, the basic group preferably does not have an aromatic partial structure, and particularly preferably includes an amino group, and particularly preferably an amino group, in order to suppress the lamination failure of the dye.
 高分子化合物に含まれる酸性基と塩基性基は、それぞれその一部または全部が塩型をとっても良い。
 酸性基の少なくとも一部は塩型の酸性基であってもよく、酸性基の対カチオンとしては、ナトリウム、リチウム、カリウム等のアルカリ金属、アルキル基もしくはヒドロキシアルキル基で置換されていても良いアンモニウム、有機アミン等が挙げられる。有機アミンの例として、炭素数1以上、6以下の低級アルキルアミン、ヒドロキシ置換された炭素数1以上、6以下の低級アルキルアミン、カルボキシ置換された炭素数1以上、6以下の低級アルキルアミン等が挙げられる。これらの塩型の場合、その種類は1種類に限られず、複数種混在していてもよい。溶解性の観点から、イオン化傾向が高いアルカリ金属の塩が望ましい。特に、リチウム及び/又はナトリウムが好ましく、色素と高分子化合物とを含む組成物の相分離を抑制し、溶解性を向上する観点から、リチウムが特に好ましい。また、色素と高分子化合物とを含む組成物からなる膜の二色比を高める観点からも、リチウムが特に好ましい。
 塩基性基の少なくとも一部は塩型の塩基性基であってもよく、塩基性基の塩型としては、例えば、塩酸、硫酸等の無機酸の塩、酢酸、ギ酸等の有機酸の塩が挙げられる。
A part or all of the acidic group and the basic group contained in the polymer compound may take a salt form.
At least a part of the acidic group may be a salt-type acidic group. As the counter cation of the acidic group, an alkali metal such as sodium, lithium or potassium, an ammonium which may be substituted with an alkyl group or a hydroxyalkyl group And organic amines. Examples of organic amines include lower alkyl amines having 1 to 6 carbon atoms, hydroxy-substituted lower alkyl amines having 1 to 6 carbon atoms, carboxy-substituted lower alkyl amines having 1 to 6 carbon atoms, and the like. Is mentioned. In the case of these salt types, the type is not limited to one type, and a plurality of types may be mixed. From the viewpoint of solubility, an alkali metal salt having a high ionization tendency is desirable. In particular, lithium and / or sodium are preferable, and lithium is particularly preferable from the viewpoint of suppressing the phase separation of the composition containing the pigment and the polymer compound and improving the solubility. Also, lithium is particularly preferable from the viewpoint of increasing the dichroic ratio of a film made of a composition containing a dye and a polymer compound.
At least a part of the basic group may be a salt type basic group. Examples of the basic group salt type include salts of inorganic acids such as hydrochloric acid and sulfuric acid, and salts of organic acids such as acetic acid and formic acid. Is mentioned.
 高分子化合物の分子量(重量平均分子量)としては、通常800以上が好ましく、1000以上がさらに好ましく、1400以上が特に好ましい。また、通常10000以下が好ましく、7000以下がさらに好ましく、5000以下が特に好ましい。例えば、800以上10000以下が好ましく、1000以上7000以下がより好ましく、1400以上5000以下がさらに好ましい。分子量が上記下限値以上であることで耐湿性が得られる傾向にあり、分子量が上記上限値以下であることで溶解性が得られる傾向にある。 The molecular weight (weight average molecular weight) of the polymer compound is usually preferably 800 or more, more preferably 1000 or more, and particularly preferably 1400 or more. Further, it is usually preferably 10,000 or less, more preferably 7000 or less, and particularly preferably 5000 or less. For example, 800 or more and 10,000 or less are preferable, 1000 or more and 7000 or less are more preferable, and 1400 or more and 5000 or less are more preferable. When the molecular weight is not less than the above lower limit value, moisture resistance tends to be obtained, and when the molecular weight is not more than the above upper limit value, solubility tends to be obtained.
 高分子化合物の主鎖は、特に限定される物ではないが、後述する色素の相性から、アミド結合、エステル結合、エーテル結合、-NR1-基(R1は、水素原子、メチル基又はエチル基を表す。)及びスルホニル基からなる群から選ばれる少なくとも1つを含む炭素鎖、飽和結合のみからなる炭素鎖等が好ましく、特に、飽和結合のみからなる炭素鎖、アミド結合及び/又は-NR1-基を含む炭素鎖の構造を有することが望ましい。なお、主鎖は、上記結合又は上記基を複数有していてもよい。
 一方で、不飽和結合やフェニレンのような芳香族性を有する部分構造を有さない方が望ましい。不飽和結合や芳香族性を有する部分構造を有さないことで、不飽和結合部が色素のπ-πスタックを阻害することを抑制し、異方性色素膜形成用組成物が液晶性を得て、異方性色素膜の偏光度を向上できる傾向にある。
The main chain of the polymer compound is not particularly limited, but from the compatibility of the dye described later, an amide bond, an ester bond, an ether bond, a —NR 1 — group (R 1 is a hydrogen atom, a methyl group or an ethyl group) And a carbon chain containing at least one selected from the group consisting of a sulfonyl group, a carbon chain consisting only of a saturated bond, and the like, particularly a carbon chain consisting only of a saturated bond, an amide bond and / or —NR. It is desirable to have a carbon chain structure containing a 1 -group. The main chain may have a plurality of the bonds or the groups.
On the other hand, it is desirable not to have a partial structure having aromaticity such as an unsaturated bond or phenylene. By not having a partial structure having an unsaturated bond or aromaticity, the unsaturated bond portion is inhibited from inhibiting the π-π stack of the dye, and the anisotropic dye film-forming composition has liquid crystallinity. Thus, the degree of polarization of the anisotropic dye film tends to be improved.
 高分子化合物の側鎖に関しても、主鎖と同様に特に限定されるものではないが、主鎖同様、後述する色素との相性から、アミド結合、エステル結合、エーテル結合、-NR1-基(R1は、水素原子、メチル基又はエチル基を表す。)及びスルホニル基からなる群から選ばれる少なくとも1つを含む炭素鎖、飽和結合のみからなる炭素鎖等が望ましい。特に、飽和結合のみからなる炭素鎖、アミド結合及び-NR1-基からなる群から選ばれる少なくとも1つを含む炭素鎖を有することが望ましい。
 一方で、不飽和結合やフェニレンのような芳香族性を有する部分構造を有さない方が望ましい。不飽和結合やフェニレンのような芳香族性を有する部分構造を有さないことで、色素のπ-πスタックを阻害することを抑制し、異方性色素膜形成用組成物が液晶性を得て、異方性色素膜の偏光度を向上できる傾向にある。
 同様に、側鎖の鎖長は短い方が好ましい。側鎖が短いことで、色素の会合を阻害することを抑制できる傾向にある。そのため、側鎖は、最も主鎖から離れた原子(H原子を除く)までの原子数が2以上、10以下であることが好ましく、より好ましくは8以下である。
 酸性基及び塩基性基の同一主鎖中の比率は、特に限定されない。液晶性を維持する観点からは、塩基性基/(塩基性基+酸性基)の数値が0.05より大きいことが好ましく、より好ましくは0.1以上、さらに好ましくは0.2以上であり、0.8以下が好ましく、0.7以下がより好ましく、0.6以下がさらに好ましく、0.5以下がよりさらに好ましく、0.4以下がことさら好ましい。例えば、0.05より大きく0.8以下が好ましく、0.1以上0.7以下がより好ましく、0.2以上0.6以下がさらに好ましく、0.2以上0.5以下がよりさらに好ましく、0.2以上0.4以下がことさら好ましい。上記下限値以上とすることで、色素と高分子化合物との相溶性が向上する傾向にある。上記上限値以下とすることで、色素と高分子化合物との会合より色素間の積層が進み、組成物の液晶性が向上し、異方性色素膜の偏光度が向上する傾向にある。
The side chain of the polymer compound is not particularly limited as in the case of the main chain. However, in the same manner as the main chain, amide bond, ester bond, ether bond, —NR 1 — group ( R 1 represents a hydrogen atom, a methyl group or an ethyl group) and a carbon chain containing at least one selected from the group consisting of a sulfonyl group, a carbon chain consisting only of a saturated bond, and the like are desirable. In particular, it is desirable to have a carbon chain comprising at least one selected from the group consisting of a saturated carbon bond, an amide bond, and an —NR 1 — group.
On the other hand, it is desirable not to have a partial structure having aromaticity such as an unsaturated bond or phenylene. By not having an aromatic bond-like partial structure such as an unsaturated bond or phenylene, inhibition of the π-π stack of the dye is suppressed, and the composition for forming an anisotropic dye film obtains liquid crystallinity. Thus, the degree of polarization of the anisotropic dye film tends to be improved.
Similarly, shorter side chains are preferred. When the side chain is short, inhibition of dye association tends to be suppressed. Therefore, the number of atoms from the side chain to the most distant atom (excluding H atoms) is preferably 2 or more and 10 or less, more preferably 8 or less.
The ratio of the acidic group and the basic group in the same main chain is not particularly limited. From the viewpoint of maintaining liquid crystallinity, the numerical value of basic group / (basic group + acidic group) is preferably greater than 0.05, more preferably 0.1 or more, and even more preferably 0.2 or more. 0.8 or less, more preferably 0.7 or less, still more preferably 0.6 or less, still more preferably 0.5 or less, and even more preferably 0.4 or less. For example, more than 0.05 and 0.8 or less are preferable, 0.1 or more and 0.7 or less are more preferable, 0.2 or more and 0.6 or less are more preferable, and 0.2 or more and 0.5 or less are more preferable. 0.2 to 0.4 is even more preferable. By setting it to the above lower limit or more, the compatibility between the dye and the polymer compound tends to be improved. By setting it to the upper limit value or less, the lamination between the dyes proceeds from the association of the dye and the polymer compound, the liquid crystallinity of the composition is improved, and the polarization degree of the anisotropic dye film tends to be improved.
 高分子化合物が有する塩基性基及び酸性基の種類の組合せも特に限定されない。好ましくは、塩基性基がアミノ基であり、酸性基がスルホ基、カルボキシル基及び/又はリン酸基であることが好ましい。さらに、塩基性基がアミノ基であり、酸性基がスルホ基であることが好ましい。塩基性基としては、骨格が小さく、カチオン化した場合にHSAB則における堅いカチオンが発生するアミノ基は、色素との相互作用が強くなり、相分離を起こしにくくなる。色素と静電反発し、色素と高分子化合物の過度な相互作用による相分離を抑制する観点から、酸性基はスルホ基又はリン酸基が好ましい。
 なお、高分子化合物が、複数の種類の塩基性基及び酸性基を有する場合、二つ以上の基は、同一の基であっても異なる基であっても良い。
The combination of the basic group and the acidic group of the polymer compound is not particularly limited. Preferably, the basic group is an amino group, and the acidic group is a sulfo group, a carboxyl group and / or a phosphate group. Furthermore, it is preferable that the basic group is an amino group and the acidic group is a sulfo group. As a basic group, an amino group that has a small skeleton and generates a hard cation according to the HSAB rule when cationized has a strong interaction with the dye, and is less likely to cause phase separation. From the viewpoint of electrostatic repulsion with the dye and suppressing phase separation due to excessive interaction between the dye and the polymer compound, the acidic group is preferably a sulfo group or a phosphate group.
In the case where the polymer compound has a plurality of types of basic groups and acidic groups, the two or more groups may be the same group or different groups.
 高分子化合物は、ランダム構造であってもブロック構造であってもよく、特にランダム構造であることが好ましい。ランダム構造であることで、高分子化合物及び色素の相溶性が高くなる傾向にある。また線状の高分子であっても、分岐状の高分子であってもよい。
 上記高分子化合物は親水性が高いため、本発明の異方性色素膜形成用組成物が後述のフィラーを含有する場合、その分散安定性を高める観点で好ましい。さらに高分子化合物を添加することにより、異方性色素膜の屈折率と消衰係数が低下する傾向にあるため、異方性色素膜を偏光膜や反射防止膜に用いた場合に、異方性色素膜と隣接する層との界面反射を低減することが可能となる場合がある。
The polymer compound may have a random structure or a block structure, and particularly preferably has a random structure. Due to the random structure, the compatibility of the polymer compound and the dye tends to be high. Further, it may be a linear polymer or a branched polymer.
Since the said high molecular compound has high hydrophilicity, when the composition for anisotropic dye film formation of this invention contains the below-mentioned filler, it is preferable from a viewpoint of improving the dispersion stability. Furthermore, the addition of a polymer compound tends to lower the refractive index and extinction coefficient of the anisotropic dye film, so it is anisotropic when the anisotropic dye film is used for a polarizing film or an antireflection film. In some cases, it is possible to reduce interface reflection between the photosensitive dye film and the adjacent layer.
 高分子化合物の具体例としては、特開2004-027162号公報、特開2002-293842号公報、特開昭52-101291号公報、特公平03-020127号公報、特開2004-115675号公報等に記載の高分子化合物が挙げられ、また、上記公報記載の方法で製造することができる。
 高分子化合物の例示化合物を下記に示すが、下記構造に限定されるものではない。なお、すべて対カチオンがプロトン体での記載だが、対カチオンがアルカリ金属等の上述した対カチオンであるものも含まれる。また、プロトン体と塩型が混合していてもよいし、塩型が複数含まれていてもよい。下記例示化合物中のl、m及びnは任意の整数を表す。
Specific examples of the polymer compound include JP-A No. 2004-027162, JP-A No. 2002-293842, JP-A No. 52-101291, JP-B No. 03-020127, JP-A No. 2004-115675, and the like. Can be produced by the method described in the above publication.
Exemplary compounds of the polymer compound are shown below, but are not limited to the following structures. All counter cations are described in the form of protons, but the counter cations include those described above such as alkali metals. Moreover, the proton form and the salt form may be mixed, or a plurality of salt forms may be included. L, m, and n in the following exemplary compounds represent arbitrary integers.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
[高分子化合物の含有量]
 高分子化合物の含有量(全固形分中の重量%)は特に制限されない。高分子化合物は異方性色素膜形成用組成物の全固形分に対して、90重量%以下が好ましく、80重量%以下であることがより好ましく、70重量%以下であることがさらに好ましく、60重量%以下であることが特に好ましい。一方、0.1重量%以上が好ましく、1重量%以上がより好ましく、3重量%以上がさらに好ましく、5重量%以上がより好ましく、10重量%以上がより好ましく、20重量%以上がより好ましく、30重量%以上がとりわけ好ましく、40重量%以上がことさら好ましい。例えば、0.1重量%以上90重量%以下が好ましく、1重量%以上90重量%以下がより好ましく、5重量%以上80重量%以下がさらに好ましく、10重量%以上70重量%以下がよりさらに好ましく、20重量%以上60重量%以下がことさら好ましく、30重量%以上60重量%以下がよりことさら好ましく、40重量%以上60重量%以下がさらにことさら好ましい。上記上限値以下とすることで、異方性色素膜の偏光度が高くなる傾向がある。上記下限値以上とすることで、異方性色素膜の脆さを抑制し、硬度を向上し、反射率を低減する傾向がある。上記範囲であることで、耐湿性に優れる傾向にある。
[Content of polymer compound]
The content of the polymer compound (% by weight in the total solid content) is not particularly limited. The polymer compound is preferably 90% by weight or less, more preferably 80% by weight or less, still more preferably 70% by weight or less, based on the total solid content of the anisotropic dye film-forming composition. It is particularly preferable that it is 60% by weight or less. On the other hand, it is preferably 0.1% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, more preferably 5% by weight or more, more preferably 10% by weight or more, and more preferably 20% by weight or more. 30% by weight or more is particularly preferable, and 40% by weight or more is particularly preferable. For example, it is preferably 0.1% by weight or more and 90% by weight or less, more preferably 1% by weight or more and 90% by weight or less, further preferably 5% by weight or more and 80% by weight or less, and further preferably 10% by weight or more and 70% by weight or less. It is preferably 20% by weight or more and 60% by weight or less, more preferably 30% by weight or more and 60% by weight or less, still more preferably 40% by weight or more and 60% by weight or less. By setting it to the upper limit or less, the degree of polarization of the anisotropic dye film tends to increase. By setting it to the above lower limit or more, brittleness of the anisotropic dye film tends to be suppressed, the hardness is improved, and the reflectance is reduced. It exists in the tendency which is excellent in moisture resistance because it is the said range.
 本発明の異方性色素膜形成用組成物における高分子化合物と色素の配合比は特に制限されない。色素:高分子化合物=10:90~99.9:0.1であることが好ましい。さらに20:80~90:10であることがより好ましく、25:75~80:20であることがさらに好ましく、30:70~60:40であることが特に好ましい。上記範囲であることで、異方性色素膜は偏光性、耐湿性に優れ、さらに異方性色素膜の脆さを抑制し、硬度を向上する傾向にある。 The mixing ratio of the polymer compound and the dye in the composition for forming an anisotropic dye film of the present invention is not particularly limited. Dye: polymer compound = 10: 90 to 99.9: 0.1 is preferable. Further, it is more preferably 20:80 to 90:10, further preferably 25:75 to 80:20, and particularly preferably 30:70 to 60:40. By being in the above range, the anisotropic dye film has excellent polarization and moisture resistance, and further tends to suppress brittleness of the anisotropic dye film and improve hardness.
[色素]
 本明細書において色素とは、可視光領域の波長の少なくとも一部を吸収する物質又は化合物を意味する。
 本発明に用いることができる色素としては、水溶性有機色素又は二色性色素が用いられる。また、色素は、配向制御のため液晶性を有する色素であることが好ましい。ここで、液晶性を有する色素とは、溶剤中でリオトロピック液晶性を示す色素を意味する。
 本発明で用いられるリオトロピック液晶性を示す色素としては、塗布により異方性色素膜を形成するために、水又は有機溶媒に可溶であることが好ましい。さらに好ましいものは、「有機概念図-基礎と応用」(甲田善生著、三共出版、1984年)で定義される無機性値が有機性値よりも小さな化合物である。なお、水溶性とは、室温で色素が水に、通常0.1重量%以上、好ましくは1重量%以上溶解することをいう。
[Dye]
In this specification, a pigment means a substance or compound that absorbs at least a part of the wavelength in the visible light region.
As a dye that can be used in the present invention, a water-soluble organic dye or a dichroic dye is used. Moreover, it is preferable that a pigment | dye is a pigment | dye which has liquid crystallinity for orientation control. Here, the pigment having liquid crystallinity means a pigment exhibiting lyotropic liquid crystallinity in a solvent.
The dye exhibiting lyotropic liquid crystallinity used in the present invention is preferably soluble in water or an organic solvent in order to form an anisotropic dye film by coating. Further preferred are compounds having an inorganic value smaller than the organic value as defined in “Organic Conceptual Diagram-Fundamentals and Applications” (Yoshio Koda, Sankyo Publishing, 1984). The term “water-soluble” means that the pigment is dissolved in water at room temperature, usually 0.1% by weight or more, preferably 1% by weight or more.
 上記色素は、塩型をとらない遊離の状態で、その分子量が200以上であるのが好ましく、300以上であるのが特に好ましい。また、1500以下であるのが好ましく、1200以下であるのが特に好ましい。例えば、200以上1500以下であるのが好ましく、300以上1200以下であるのが特に好ましい。
 また、上記色素は、1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。
The above dye preferably has a molecular weight of 200 or more, particularly preferably 300 or more, in a free state that does not take a salt form. Moreover, it is preferable that it is 1500 or less, and it is especially preferable that it is 1200 or less. For example, it is preferably 200 or more and 1500 or less, and particularly preferably 300 or more and 1200 or less.
Moreover, the said pigment | dye may use only 1 type and may be used in combination of 2 or more type.
 色素として、具体的には、アゾ系色素(以下、単に「アゾ色素」とも言う。)、スチルベン系色素、シアニン系色素、フタロシアニン系色素、縮合多環系色素(ペリレン系、オキサジン系)等が挙げられる。これら色素の中でも、異方性色素膜中で高い分子配列を取り得るアゾ系色素が好ましい。アゾ系色素とは、アゾ基を少なくとも1個以上持つ色素をいう。その一分子中のアゾ基の数は、色調及び製造面の観点から、2以上が好ましく、6以下が好ましく、4以下がより好ましく、3以下がさらに好ましい。特にアゾ色素において、スルホ基、カルボキシル基、ホスホ基及びホスフィン酸基からなる群より選ばれる少なくとも1つの基を有することが、異方性色素膜の水への溶解、脱落、割れ等の発生を抑制し、さらに光学特性の劣化を小さくする効果を得ることができる傾向にある。これらの中でも、アゾ色素がスルホ基を有することが特に好ましい。 Specific examples of the dye include azo dyes (hereinafter also simply referred to as “azo dyes”), stilbene dyes, cyanine dyes, phthalocyanine dyes, condensed polycyclic dyes (perylene dyes, oxazine dyes), and the like. Can be mentioned. Among these dyes, azo dyes that can take a high molecular arrangement in the anisotropic dye film are preferable. An azo dye means a dye having at least one azo group. The number of azo groups in one molecule is preferably 2 or more, preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less from the viewpoint of color tone and production. In particular, in an azo dye, having at least one group selected from the group consisting of a sulfo group, a carboxyl group, a phospho group, and a phosphinic acid group can cause the anisotropic dye film to dissolve, drop off, crack, etc. There is a tendency that it is possible to obtain the effect of suppressing the deterioration of the optical characteristics and reducing the deterioration of the optical characteristics. Among these, it is particularly preferable that the azo dye has a sulfo group.
 本発明に用いることができる色素は特に限定されず、公知の色素を用いることができる。
 色素としては、例えば、特開2006-079030号公報、特開2010-168570号公報、特開2007-302807号公報、特開2008-081700号公報、特開平09-230142号公報、特開2007-272211号公報、特開2007-186428号公報、特開2008-69300号公報、特開2009-169341号公報、特開2009-161722号公報、特開2009-173849号公報、特開2010-039154号公報、特開2010-180314号公報、特開2010-266769号公報、特開2010-031268号公報、特開2011-012152号公報、特開2011―016922号公報、特開2010-100059号公報、特開2011-141331号公報、特開2011-190313号公報、特表平08-511109号公報、特表2001-504238号公報、特開2006-48078号公報、特開2006-98927号公報、特開2006-193722号公報、特開2006-206878号公報、特開2005-255846号公報、特開2007-145995号公報、特開2007-126628号公報、特開2008-102417号公報、特開2012-194357号公報、特開2012-194297号公報、特開2011-034061号公報、特開2009-110902号公報、特開2011-100059号公報、特開2012-194365号公報、特開2011-016920号公報等に記載の色素が挙げられる。
The pigment that can be used in the present invention is not particularly limited, and a known pigment can be used.
Examples of the dye include, for example, JP-A-2006-0799030, JP-A-2010-168570, JP-A-2007-302807, JP-A-2008-081700, JP-A-09-230142, JP-A-2007-. No. 272211, JP-A 2007-186428, JP-A 2008-69300, JP-A 2009-169341, JP-A 2009-161722, JP-A 2009-173849, JP-A 2010-039154 JP, JP 2010-180314, JP 2010-266769, JP 2010-031268, JP 2011-012152, JP 2011-016922, JP 2010-100059, JP 2011-141331 A, Special JP 2011-190313, JP 08-511109, JP 2001-504238, JP 2006-48078, JP 2006-98927, JP 2006-193722, JP 2006. -206878, JP-A 2005-255846, JP-A 2007-145995, JP-A 2007-126628, JP-A 2008-102417, JP-2012-194357, JP-2012-194297 And JP-A 2011-034061, JP-A 2009-110902, JP-A 2011-100059, JP-2012-194365, JP-A 2011-016920, and the like. .
 本発明に用いられる色素は、遊離酸の形のまま使用してもよく、酸基の一部が塩型を取っているものであってもよい。また、塩型の色素と遊離酸型の色素が混在していてもよい。
 製造時に色素が塩型で得られた場合はそのまま使用してもよいし、所望の塩型に変換(塩交換)してもよい。塩交換の方法としては、公知の方法を任意に用いることができ、例えば以下の方法が挙げられる。
The dye used in the present invention may be used in the form of a free acid, or a part of the acid group may have a salt form. Further, a salt-type dye and a free acid-type dye may be mixed.
When the dye is obtained in a salt form at the time of production, it may be used as it is or may be converted into a desired salt form (salt exchange). As the salt exchange method, a known method can be arbitrarily used, and examples thereof include the following methods.
 1)塩型で得られた色素の水溶液に塩酸等の強酸を添加し、色素を遊離酸の形で酸析せしめた後、所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で色素酸性基を中和し塩交換する方法。
 2)塩型で得られた色素の水溶液に、所望の対イオンを有する大過剰の中性塩(例えば、塩化リチウム)を添加し、塩析ケーキの形で塩交換する方法。
 3)塩型で得られた色素の水溶液を、強酸性陽イオン交換樹脂で処理し、色素を遊離酸の形で酸析せしめた後、所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で色素酸性基を中和し塩交換する方法。
 4)予め所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で処理した強酸性陽イオン交換樹脂に、塩型で得られた色素の水溶液を作用させ、塩交換する方法。
1) A strong acid such as hydrochloric acid is added to an aqueous solution of a dye obtained in a salt form, the dye is acidified in the form of a free acid, and then the dye is added with an alkaline solution having a desired counter ion (eg, lithium hydroxide aqueous solution). A method of neutralizing acidic groups and salt exchange.
2) A method in which a large excess of a neutral salt (for example, lithium chloride) having a desired counter ion is added to an aqueous dye solution obtained in a salt form, and salt exchange is performed in the form of a salting-out cake.
3) An aqueous solution of a dye obtained in a salt form is treated with a strongly acidic cation exchange resin, and the dye is acidified in the form of a free acid, and then an alkali solution having a desired counter ion (for example, an aqueous lithium hydroxide solution). ) To neutralize the acidic group of the dye and perform salt exchange.
4) A method in which an aqueous solution of a dye obtained in a salt form is allowed to act on a strongly acidic cation exchange resin that has been previously treated with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution), thereby performing salt exchange.
 また、色素が有する酸性基が、遊離酸型となるか塩型となるかは、色素のpKaと色素水溶液のpHに依存する。前記の塩型の例としては、ナトリウム、リチウム、カリウム等のアルカリ金属の塩、アルキル基又はヒドロキシアルキル基で置換されていてもよいアンモニウムの塩、有機アミンの塩等が挙げられる。
 有機アミンの例として、炭素数1~6の低級アルキルアミン、ヒドロキシ置換された炭素数1~6の低級アルキルアミン、カルボキシ置換された炭素数1~6の低級アルキルアミン等が挙げられる。
 これらの塩型の場合、その種類は1種類に限らず複数種混在していてもよい。また、本発明において、色素は単独で使用することができるが、これらの2種以上を併用してもよく、また、配向を低下させない程度に前記例示色素以外の色素を配合して用いることもできる。これにより各種の色相を有する異方性色素膜を製造することができる。
Whether the acidic group of the dye is a free acid type or a salt type depends on the pKa of the dye and the pH of the aqueous dye solution. Examples of the salt form include salts of alkali metals such as sodium, lithium and potassium, ammonium salts optionally substituted with an alkyl group or hydroxyalkyl group, and salts of organic amines.
Examples of the organic amine include a lower alkyl amine having 1 to 6 carbon atoms, a hydroxy-substituted lower alkyl amine having 1 to 6 carbon atoms, a carboxy-substituted lower alkyl amine having 1 to 6 carbon atoms, and the like.
In the case of these salt types, the type is not limited to one type, and a plurality of types may be mixed. Moreover, in this invention, although a pigment | dye can be used independently, these 2 or more types may be used together, and it is also possible to mix | blend and use pigments other than the said exemplary pigment | dye to such an extent that orientation is not reduced. it can. Thereby, anisotropic dye films having various hues can be produced.
 他の色素を配合する場合の色素(「配合用色素」とも言う。)の例としては、C.I.Direct Yellow 12、C.I.Direct Yellow 34、C.I.DirectYellow 86、C.I.Direct Yellow 142、C.I.DirectYellow 132、C.I.Acid Yellow 9、C.I.Acid Yellow 25、C.I.Direct Orange 39、C.I.Direct Orange 72、C.I.Direct Orange 79、C.I.Acid Orange 28、C.I.Direct Red 39、C.I.Direct Red 79、C.I.Direct Red 81、C.I.Direct Red 83、C.I.Direct Red89、C.I.Acid Red 37、C.I.Direct Violet 9、C.I.Direct Violet 35、C.I.Direct Violet 48、C.I.Direct Violet 57、C.I.Direct Blue 1、C.I.Direct Blue 67、C.I.Direct Blue 83、C.I.Direct Blue 90、C.I.Direct Green 42、C.I.Direct Green 51、C.I.Direct Green 59、特許5092345号公報等に記載の色素等が挙げられる。 Examples of pigments when blended with other pigments (also referred to as “mixing pigments”) include C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 34, C.I. I. Direct Yellow 86, C.I. I. Direct Yellow 142, C.I. I. Direct Yellow 132, C.I. I. Acid Yellow 9, C.I. I. Acid Yellow 25, C.I. I. Direct Orange 39, C.I. I. Direct Orange 72, C.I. I. Direct Orange 79, C.I. I. Acid Orange 28, C.I. I. Direct Red 39, C.I. I. Direct Red 79, C.I. I. Direct Red 81, C.I. I. Direct Red 83, C.I. I. Direct Red89, C.I. I. Acid Red 37, C.I. I. Direct Violet 9, C.I. I. Direct Violet 35, C.I. I. Direct Violet 48, C.I. I. Direct Violet 57, C.I. I. Direct Blue 1, C.I. I. Direct Blue 67, C.I. I. Direct Blue 83, C.I. I. Direct Blue 90, C.I. I. Direct Green 42, C.I. I. Direct Green 51, C.I. I. Examples thereof include dyes described in Direct Green 59, Japanese Patent No. 5092345, and the like.
 配合用色素として、上述の配合用色素の他、遊離酸の形が式(I)で表されるアゾ色素を含んでもよい。 In addition to the above-described blending dye, the blending dye may include an azo dye whose free acid form is represented by the formula (I).
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
(式(I)において、
Ar21及びAr22は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
nは0又は1を表す。)
(In the formula (I),
Ar 21 and Ar 22 each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent,
n represents 0 or 1. )
[Ar21及びAr22
 Ar21及びAr22は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。
[Ar 21 and Ar 22 ]
Ar 21 and Ar 22 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
[芳香族炭化水素基]
 芳香族炭化水素基としては、単環及び複数の環由来の基が挙げられる。複数の環由来の基に含まれる環の数は特に限定されないが、通常、2以上、4以下であり、好ましくは3以下である。
 例えば、Ar21における芳香族炭化水素基としては、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。また、Ar22における芳香族炭化水素基としては、2個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。
[Aromatic hydrocarbon group]
Examples of the aromatic hydrocarbon group include groups derived from a single ring and a plurality of rings. The number of rings contained in the groups derived from a plurality of rings is not particularly limited, but is usually 2 or more and 4 or less, preferably 3 or less.
For example, as the aromatic hydrocarbon group in Ar 21 , a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene having one free valence Ring, acenaphthene ring, fluoranthene ring, fluorene ring and the like. The aromatic hydrocarbon group in Ar 22 has two free valences, benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene. Ring, acenaphthene ring, fluoranthene ring, fluorene ring and the like.
 前記芳香族炭化水素基は置換基を有していてもよい。有していてもよい置換基としては、通常、アゾ化合物の溶解性を高めるために導入される親水性基、色素としての色調を調節するために導入される電子求引基又は電子供与基が好ましい。
 置換基としては、アルコキシ基、水酸基、アミノ基、アシルアミノ基、カルバモイル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、リン酸基等が挙げられる。
The aromatic hydrocarbon group may have a substituent. Examples of the substituent that may have include a hydrophilic group that is usually introduced to enhance the solubility of the azo compound, and an electron-withdrawing group or electron-donating group that is introduced to adjust the color tone as a dye. preferable.
Examples of the substituent include an alkoxy group, a hydroxyl group, an amino group, an acylamino group, a carbamoyl group, a sulfamoyl group, a carboxy group, a sulfo group, a cyano group, and a phosphate group.
[芳香族複素環基]
 芳香族複素環基としては、特に限定されないが、単環又は二環性の複素環由来の基であることが、偏光度を高める観点で好ましい。芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子及び酸素原子が挙げられる。偏光度を高める観点で、特に、窒素原子が好ましい。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。好ましい例として、ピリジン環、キノリン環、イソキノリン環、チアゾール環、ベンゾチアゾール環等が挙げられる。
[Aromatic heterocyclic group]
The aromatic heterocyclic group is not particularly limited, but is preferably a group derived from a monocyclic or bicyclic heterocyclic ring from the viewpoint of increasing the degree of polarization. Examples of atoms other than carbon constituting the aromatic heterocyclic group include a nitrogen atom, a sulfur atom, and an oxygen atom. From the viewpoint of increasing the degree of polarization, a nitrogen atom is particularly preferable. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different. Preferable examples include pyridine ring, quinoline ring, isoquinoline ring, thiazole ring, benzothiazole ring and the like.
 前記芳香族複素環基は置換基を有していてもよい。有していてもよい置換基としては、親水性基、電子求引基、電子供与基、水素結合性官能基等が挙げられる。具体的には、アルキル基、アルコキシ基、アシルアミノ基、アミノ基、カルバモイル基、スルファモイル基、ニトロ基、カルボキシ基、スルホ基、水酸基、シアノ基、ハロゲン原子等が挙げられる。これら置換基の群及び置換基は、前述のAr21の芳香族炭化水素基が有していてもよい置換基として挙げたものとそれぞれ同義であり、好ましい範囲及び有していてもよい置換基もそれぞれ同義である。 The aromatic heterocyclic group may have a substituent. Examples of the substituent that may be included include a hydrophilic group, an electron withdrawing group, an electron donating group, and a hydrogen bonding functional group. Specific examples include an alkyl group, an alkoxy group, an acylamino group, an amino group, a carbamoyl group, a sulfamoyl group, a nitro group, a carboxy group, a sulfo group, a hydroxyl group, a cyano group, and a halogen atom. These substituent groups and substituents are respectively synonymous with those mentioned as the substituents that the aromatic hydrocarbon group of Ar 21 may have, and preferred ranges and substituents that may be included. Are also synonymous.
[遊離酸の形が式(I)で表されるアゾ色素の具体例]
 遊離酸の形が式(I)で表されるアゾ色素の具体例としては、以下に記載の色素が挙げられるが、これらに限定されるものではない。
[Specific examples of azo dyes in which the form of the free acid is represented by the formula (I)]
Specific examples of the azo dye in which the form of the free acid is represented by the formula (I) include, but are not limited to, the dyes described below.
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 配合用色素は、単独で又は2種以上を混合して使用することができる。
 配合用色素の添加量を調整することにより、異方性色素膜を適宜所望の色調に調整可能である。
The pigment | dye for a mixing | blending can be used individually or in mixture of 2 or more types.
The anisotropic dye film can be appropriately adjusted to a desired color tone by adjusting the addition amount of the compounding dye.
[異方性色素膜形成用組成物中の色素濃度]
 異方性色素膜形成用組成物中の色素(配合用色素を使用する場合、配合用色素を含む。)の濃度としては、異方性色素膜の成膜条件にもよるが、好ましくは0.01重量%以上、更に好ましくは0.1重量%以上であり、好ましくは50重量%以下、更に好ましくは30重量%以下である。例えば、0.01重量%以上50重量%以下が好ましく、0.1重量%以上30重量%以下がより好ましい。色素濃度が前記範囲であることで、均一な薄膜塗布ができる異方性色素膜形成用組成物の粘度が得られ、且つ、色素が析出しない傾向にある。また、異方性色素膜において十分な二色比等の異方性を得られる傾向にある。
[Dye concentration in composition for forming anisotropic dye film]
The concentration of the dye in the composition for forming an anisotropic dye film (including a dye for compounding when a dye for blending is used) is preferably 0, although it depends on the film forming conditions of the anisotropic dye film. 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 50% by weight or less, more preferably 30% by weight or less. For example, 0.01 wt% or more and 50 wt% or less are preferable, and 0.1 wt% or more and 30 wt% or less are more preferable. When the dye concentration is within the above range, the viscosity of the composition for forming an anisotropic dye film capable of applying a uniform thin film is obtained, and the dye does not tend to precipitate. In addition, anisotropy such as a sufficient dichroic ratio tends to be obtained in the anisotropic dye film.
[水溶性有機化合物]
 本発明の異方性色素膜形成用組成物は、さらに水溶性有機化合物を含んでもよい。水溶性有機化合物としては、上記の色素(配合用色素を使用する場合、配合用色素を含む。)を除いた化合物であることが好ましい。
 水溶性有機化合物は特に限定されないが、異方性色素膜形成用組成物の塗膜の気液界面に集積しやすく、その表面張力を均一化させる作用のある化合物であることが好ましい。異方性色素膜形成用組成物の塗膜の膜厚を均一化するため、レベリング作用のある化合物を用いることができる。
 なお、本発明において水溶性とは、水中で水和して分散する分子状態となることをいう。
[Water-soluble organic compounds]
The composition for forming an anisotropic dye film of the present invention may further contain a water-soluble organic compound. The water-soluble organic compound is preferably a compound excluding the above-mentioned dye (including a compounding dye when a compounding dye is used).
The water-soluble organic compound is not particularly limited, but is preferably a compound that can easily accumulate at the gas-liquid interface of the coating film of the composition for forming an anisotropic dye film and has an action of making the surface tension uniform. In order to make the film thickness of the coating film of the anisotropic dye film forming composition uniform, a compound having a leveling action can be used.
In the present invention, the term “water-soluble” refers to a molecular state that hydrates and disperses in water.
 水溶性有機化合物は特に限定されないが、親水基及び疎水基の両基を有することが好ましい。水溶性有機化合物が親水基と疎水基を有することで、異方性色素膜形成用組成物の塗膜乾燥時に水溶性有機化合物の疎水基部分が膜界面側に、親水基部分が膜中側に集まることにより、水溶性有機化合物が気液界面に集積する傾向にある。この結果、異方性色素膜形成用組成物の状態では異方性色素と混合していたが、塗布時には異方性色素の層と水溶性有機化合物層に相分離を生じて、基板側に集積した異方性色素の秩序性を損なうことなく、高分子化合物等を添加しない場合と同等にその二色比を維持させることができる。
 加えて、異方性色素膜形成用組成物の塗膜乾燥後に表面に緻密に集積した水溶性有機化合物が、異方性色素膜内部への水の浸入を防ぎ、耐湿性を向上させる傾向にあるとともに、表面張力を下げる。これらの結果から、従来不可能であった異方性色素膜形成用組成物を塗布する際の量産性の向上と異方性色素膜の二色比の維持を両立させることができる。
The water-soluble organic compound is not particularly limited, but preferably has both a hydrophilic group and a hydrophobic group. Since the water-soluble organic compound has a hydrophilic group and a hydrophobic group, the hydrophobic group part of the water-soluble organic compound is on the film interface side and the hydrophilic group part is on the film side when the coating film of the anisotropic dye film forming composition is dried. As a result, water-soluble organic compounds tend to accumulate at the gas-liquid interface. As a result, in the state of the composition for forming the anisotropic dye film, it was mixed with the anisotropic dye, but during application, phase separation occurred between the anisotropic dye layer and the water-soluble organic compound layer, and the substrate side The dichroic ratio can be maintained as in the case where no polymer compound is added without impairing the order of the accumulated anisotropic dye.
In addition, the water-soluble organic compounds densely accumulated on the surface after drying the coating film of the anisotropic dye film-forming composition tend to prevent water from entering the anisotropic dye film and improve moisture resistance. At the same time, lower the surface tension. From these results, it is possible to achieve both the improvement of mass productivity and the maintenance of the dichroic ratio of the anisotropic dye film when applying the composition for forming an anisotropic dye film, which has been impossible in the past.
 親水基としては、ノニオン性基及びイオン性基が挙げられる。
 ノニオン性基は、ヒドロキシ基、炭素数が1~4のアルキルオキシ基、ポリエチレンオキシ基、ポリプロピレンオキシ基等が挙げられる。
 イオン性基は、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、カルボキシ基、スルホ基、ピリジニウム基、第4級アンモニウム基、リン酸基、ポリエチレンイミノ基等が挙げられる。
 疎水基としては、直鎖アルキル基、分岐鎖アルキル基、置換基を有していても良いフェニルアルキル基、パープロピレンオキサイド、ポリオルガノシロキシ基、パーフルオロアルキル基等が挙げられる。
Examples of hydrophilic groups include nonionic groups and ionic groups.
Examples of the nonionic group include a hydroxy group, an alkyloxy group having 1 to 4 carbon atoms, a polyethyleneoxy group, and a polypropyleneoxy group.
Examples of the ionic group include an amino group, a monoalkylamino group, a dialkylamino group, a carboxy group, a sulfo group, a pyridinium group, a quaternary ammonium group, a phosphoric acid group, and a polyethyleneimino group.
Examples of the hydrophobic group include a linear alkyl group, a branched alkyl group, a phenylalkyl group which may have a substituent, a perpropylene oxide, a polyorganosiloxy group, and a perfluoroalkyl group.
 水溶性有機化合物としては、シリコーン系、フッ素系、アクリル系、ビニル系化合物等が挙げられる。異方性色素膜形成用組成物の気液界面に素早く物質移動して集積しやすくするため、一般的に比較的低分子量であり、且つ、高極性の物質が、レベリング作用が大きくなるため好ましい。気液界面に集積し、塗膜均一性を向上する観点で、特に、シリコーン系、フッ素系化合物が好ましい。
 水溶性有機化合物の分子量は特に限定されないが、10000以下であることが好ましく、5000以下であることがより好ましく、2000以下であることがさらに好ましい。また、下限は特に限定されない。
Examples of water-soluble organic compounds include silicone-based, fluorine-based, acrylic-based, and vinyl-based compounds. In order to facilitate mass transfer and accumulation at the gas-liquid interface of the anisotropic dye film-forming composition, it is generally preferable to use a substance having a relatively low molecular weight and a high polarity because the leveling action is increased. . From the viewpoint of accumulating at the gas-liquid interface and improving the uniformity of the coating film, silicone-based and fluorine-based compounds are particularly preferable.
The molecular weight of the water-soluble organic compound is not particularly limited, but is preferably 10,000 or less, more preferably 5000 or less, and still more preferably 2000 or less. Moreover, a minimum is not specifically limited.
 水溶性有機化合物は具体的には以下が挙げられる。
 シリコーン系化合物は、化合物中にSi原子を含むものであり、具体的にはポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリメチルアルキルシロキサン、変性ポリシロキサン、反応性シリコーン、シリコーン系界面活性剤等が挙げられる。
Specific examples of the water-soluble organic compound include the following.
Silicone compounds contain Si atoms in the compound, specifically polydimethylsiloxane, polyether-modified polydimethylsiloxane, polymethylalkylsiloxane, modified polysiloxane, reactive silicone, silicone surfactants, etc. Is mentioned.
 フッ素系化合物は、化合物中にF原子を含むものであり、具体的には、フッ素基含有オリゴマーまたはポリマー、パーフルオロ基含有オリゴマーまたはポリマー、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキル基・リン酸含有リン酸エステル、フッ素基およびカルボキシル基含有オリゴマー等が挙げられる。また、熱やUVにより反応する反応性基を含むものも挙げられる。 The fluorine-based compound contains F atoms in the compound, and specifically includes fluorine group-containing oligomers or polymers, perfluoro group-containing oligomers or polymers, perfluoroalkyl group-containing carboxylates, perfluoroalkyl groups, Examples thereof include phosphoric acid-containing phosphate esters, fluorine group- and carboxyl group-containing oligomers. Moreover, the thing containing the reactive group which reacts with a heat | fever or UV is also mentioned.
 アクリル系化合物は、アクリレートやメタクリレートなどのアクリルを骨格としたオリゴマーまたはポリマーで、側鎖カルボキシ基の水素原子を他の官能基と置換したアクリル酸エステルである。側鎖カルボキシ基の水素原子を置換した他の官能基は、アルキル基、ポリエチレンオキシエチル基、ポリエステル基、アミノ基、水酸基などの反応基などが挙げられる。 The acrylic compound is an acrylate or acrylate oligomer having a skeleton such as acrylate or methacrylate, in which a hydrogen atom of a side chain carboxy group is substituted with another functional group. Examples of other functional groups in which the hydrogen atom of the side chain carboxy group is substituted include reactive groups such as alkyl groups, polyethyleneoxyethyl groups, polyester groups, amino groups, and hydroxyl groups.
 ビニル系は、ビニル基を含む化合物を重合したオリゴマーまたはポリマーであり、具体的には酢酸ビニルが挙げられる。 Vinyl-based is an oligomer or polymer obtained by polymerizing a compound containing a vinyl group, and specific examples include vinyl acetate.
 水溶性有機化合物の異方性色素膜形成用組成物中の濃度は本発明の効果を著しく損なわない範囲であれば特に限定されない。好ましくは0.001質量%以上であり、より好ましくは0.003質量%以上である。また、好ましくは0.1質量%以下であり、より好ましくは0.05質量%以下である。例えば、0.001質量%以上0.1質量%以下が好ましく、0.003質量%以上0.05質量%以下がより好ましい。この範囲であることで、レベリング作用効果が得られ、且つ、色素分子の配向を阻害しない傾向にある。 The concentration of the water-soluble organic compound in the composition for forming an anisotropic dye film is not particularly limited as long as the effect of the present invention is not significantly impaired. Preferably it is 0.001 mass% or more, More preferably, it is 0.003 mass% or more. Moreover, Preferably it is 0.1 mass% or less, More preferably, it is 0.05 mass% or less. For example, 0.001 mass% or more and 0.1 mass% or less are preferable, and 0.003 mass% or more and 0.05 mass% or less are more preferable. By being in this range, a leveling effect can be obtained, and the orientation of the dye molecules tends not to be inhibited.
 本発明の異方性色素膜形成用組成物における水溶性有機化合物と色素の配合比は特に制限されない。色素と水溶性有機化合物の配合比(色素に対する水溶性有機化合物の重量比)が、好ましくは0.00001以上、より好ましくは0.0001以上、さらに好ましくは0.0005以上である。また好ましくは0.5以下、より好ましくは0.1以下、さらに好ましくは0.01以下、よりさらに好ましくは0.005以下である。例えば、0.00001以上0.5以下が好ましく、0.00001以上0.1以下がより好ましく、0.0001以上0.01以下がさらに好ましく、0.0005以上0.005以下がよりさらに好ましい。上記範囲であることでレベリング作用効果が得られ、且つ、色素分子の配向を阻害しない傾向にある。 The compounding ratio of the water-soluble organic compound and the dye in the composition for forming an anisotropic dye film of the present invention is not particularly limited. The blending ratio of the dye and the water-soluble organic compound (weight ratio of the water-soluble organic compound to the dye) is preferably 0.00001 or more, more preferably 0.0001 or more, and further preferably 0.0005 or more. Further, it is preferably 0.5 or less, more preferably 0.1 or less, further preferably 0.01 or less, and still more preferably 0.005 or less. For example, 0.00001 or more and 0.5 or less are preferable, 0.00001 or more and 0.1 or less are more preferable, 0.0001 or more and 0.01 or less are more preferable, and 0.0005 or more and 0.005 or less are more preferable. Within the above range, leveling effects can be obtained, and the orientation of the dye molecules tends not to be hindered.
[フィラー]
(フィラーの種類)
 本発明の異方性色素膜形成用組成物は、さらに平均一次粒子径1nm~500nmのフィラーを含んでもよい。
 かかる組成物及びかかる組成物から形成した異方性色素膜は、膜表面にフィラーを含有するため、膜表面に凹凸を形成して他の基材との接着面積が減少し、付着性が低下することで、ハンドリング性、生産性が向上すると考えられる。また、フィラー添加により異方性色素膜の弾性率が高くなるため、付着性が低下すると考えられる。さらにフィラーを添加することにより、異方性色素膜の屈折率と消衰係数を低下させるため、異方性色素膜を光学素子として用いた場合に、異方性色素膜と隣接する層との屈折率差、及び消衰係数の差を小さくすることが可能であり、結果として界面反射を低減することが可能と考えられる。
 異方性色素膜形成用組成物に使用可能なフィラーは特に制限はなく、例えば、無機フィラーであり、具体的には、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化チタン、酸化アンチモン、酸化錫、酸化亜鉛、酸化ジルコニウム、酸化セレン、酸化イットリウム、酸化セリウムなどの金属酸化物、窒化ケイ素などの金属窒化物、硫化パラジウム、硫化カドニウムなどの金属硫化物等が挙げられる。
 フィラーはこれらの1種のみからなるものであっても良く、2種以上からなるものであっても良い。これらのうち、フィラーの安定性の観点から酸化ケイ素、酸化アルミニウム、酸化チタン、酸化亜鉛、酸化ジルコニウム等の金属酸化物が好ましく、中でも色素、高分子化合物との親和性の観点で酸化ケイ素、酸化アルミニウムを含むものがより好ましく、異方性色素膜形成用組成物の安定性の観点では酸化ケイ素、酸化アルミニウムを含むものが更に好ましい。これらのフィラーは、溶媒、あるいは液晶との相互作用を制御するため、特定の有機物で表面を修飾されていても良く、分散剤等と共用されても良い。異方性色素膜およびかかる膜から作製した光学素子の反射率を低減する観点から、酸化ケイ素が特に好ましい。
[Filler]
(Filler type)
The composition for forming an anisotropic dye film of the present invention may further contain a filler having an average primary particle diameter of 1 nm to 500 nm.
Since such a composition and an anisotropic dye film formed from such a composition contain a filler on the film surface, unevenness is formed on the film surface, the adhesion area with other base materials is reduced, and adhesion is lowered. By doing so, it is considered that handling and productivity are improved. Moreover, since the elastic modulus of the anisotropic dye film is increased by adding the filler, it is considered that the adhesiveness is lowered. Further, by adding a filler, the refractive index and extinction coefficient of the anisotropic dye film are reduced. Therefore, when the anisotropic dye film is used as an optical element, the layer between the anisotropic dye film and the adjacent layer It is possible to reduce the difference in refractive index and extinction coefficient, and as a result, it is considered possible to reduce interface reflection.
The filler that can be used in the composition for forming an anisotropic dye film is not particularly limited, and is, for example, an inorganic filler. Specifically, silicon oxide (silica), aluminum oxide (alumina), titanium oxide, antimony oxide, Examples thereof include metal oxides such as tin oxide, zinc oxide, zirconium oxide, selenium oxide, yttrium oxide and cerium oxide, metal nitrides such as silicon nitride, and metal sulfides such as palladium sulfide and cadmium sulfide.
The filler may be composed of only one of these, or may be composed of two or more. Of these, metal oxides such as silicon oxide, aluminum oxide, titanium oxide, zinc oxide, and zirconium oxide are preferable from the viewpoint of filler stability, and silicon oxide and oxidation are particularly preferable from the viewpoint of affinity with dyes and polymer compounds. Those containing aluminum are more preferable, and those containing silicon oxide and aluminum oxide are more preferable from the viewpoint of the stability of the composition for forming an anisotropic dye film. In order to control the interaction with the solvent or liquid crystal, the surface of these fillers may be modified with a specific organic substance, or may be shared with a dispersant or the like. From the viewpoint of reducing the reflectance of an anisotropic dye film and an optical element produced from such a film, silicon oxide is particularly preferable.
 フィラーの形状は特に限定されるものではないが、球状、棒状、板状などが挙げられる。異方性色素膜の透明性を高める観点で、球状が好ましい。
 フィラーの製造法は特に限定されず、気相法、ゾルゲル法、溶融金属噴霧酸化法、コロイド沈殿法、アーク放電などの任意の方法で製造することができる。
 フィラーは分散安定性や劣化抑制のために、表面被覆処理が施されていてもよく、表面被覆は均質でも不均質でもよい。表面被覆の具体的な材料としては、無機材料又は有機材料であり、酸化ジルコニウム、酸化ケイ素などの金属酸化物、水酸化アルミニウムなどの金属水酸化物、オルガノシロキサン、ステアリン酸などの有機酸等が挙げられ、これらの1種又は2種以上を用いることができる。中でも異方性色素膜形成用組成物の安定性の観点では金属酸化物又は金属水酸化物が好ましく、金属水酸化物が更に好ましい。
 その他にも、フィラーの分散安定性の観点から、フィラーには、プラズマ表面改質処理やメカノケミカル処理などが施されていても良い。
Although the shape of a filler is not specifically limited, A spherical shape, rod shape, plate shape, etc. are mentioned. From the viewpoint of enhancing the transparency of the anisotropic dye film, a spherical shape is preferable.
The method for producing the filler is not particularly limited, and the filler can be produced by any method such as a gas phase method, a sol-gel method, a molten metal spray oxidation method, a colloidal precipitation method, or arc discharge.
The filler may be subjected to a surface coating treatment for dispersion stability and suppression of deterioration, and the surface coating may be homogeneous or heterogeneous. Specific materials for the surface coating are inorganic materials or organic materials, such as metal oxides such as zirconium oxide and silicon oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, etc. 1 type or 2 types or more can be used. Among these, from the viewpoint of stability of the composition for forming an anisotropic dye film, a metal oxide or a metal hydroxide is preferable, and a metal hydroxide is more preferable.
In addition, from the viewpoint of the dispersion stability of the filler, the filler may be subjected to plasma surface modification treatment or mechanochemical treatment.
(フィラーの平均一次粒子径)
 本発明のフィラーの平均一次粒子径は好ましくは500nm以下、より好ましくは200nm以下、さらに好ましくは100nm以下、特に好ましくは90nm以下、とりわけ好ましくは70nm以下、ことさら好ましくは50nm以下、好ましくは1nm以上、より好ましくは5nm以上、さらに好ましくは7nm以上、特に好ましくは10nm以上である。例えば、1nm以上500nm以下が好ましく、5nm以上200nm以下がより好ましく、7nm以上100nm以下がさらに好ましく、10nm以上90nm以下がよりさらに好ましく、10nm以上70nm以下がことさら好ましく、10nm以上50nm以下がよりことさら好ましい。前記下限値以上とすることで異方性色素膜の付着性を抑制し、組成物中でのフィラーの分散安定性が向上する傾向がある。また前記上限値以下とすることで、フィラーによる異方性色素膜中の色素の配向阻害を抑制し、フィラーを添加しても高い偏光度を維持できる傾向がある。
 なお、粒子の平均一次粒子径は本発明の組成物、又は組成膜から形成される異方性色素膜のTEM(透過電子顕微鏡)、SEM(走査電子顕微鏡)写真像から一次粒子を確認して、30個の平均値として求めることができる。また、上記の方法による測定が困難な場合、動的光散乱法で評価してもよい。
(Average primary particle diameter of filler)
The average primary particle size of the filler of the present invention is preferably 500 nm or less, more preferably 200 nm or less, further preferably 100 nm or less, particularly preferably 90 nm or less, particularly preferably 70 nm or less, even more preferably 50 nm or less, preferably 1 nm or more, More preferably, it is 5 nm or more, More preferably, it is 7 nm or more, Most preferably, it is 10 nm or more. For example, it is preferably 1 nm or more and 500 nm or less, more preferably 5 nm or more and 200 nm or less, further preferably 7 nm or more and 100 nm or less, still more preferably 10 nm or more and 90 nm or less, even more preferably 10 nm or more and 70 nm or less, and even more preferably 10 nm or more and 50 nm or less. . By setting it to the lower limit value or more, the adhesion of the anisotropic dye film tends to be suppressed, and the dispersion stability of the filler in the composition tends to be improved. Moreover, by setting it as the said upper limit or less, there exists a tendency which can suppress the orientation inhibition of the pigment | dye in the anisotropic pigment | dye film | membrane by a filler, and can maintain a high degree of polarization even if a filler is added.
The average primary particle size of the particles is determined by confirming the primary particles from the TEM (transmission electron microscope) and SEM (scanning electron microscope) photograph images of the anisotropic dye film formed from the composition of the present invention or the composition film. , 30 average values can be obtained. When measurement by the above method is difficult, evaluation may be performed by a dynamic light scattering method.
(フィラーの含有量)
 異方性色素膜形成用組成物中において、全固形分に対するフィラー含有量(全固形分中の重量%)は好ましくは0.1%以上、より好ましくは0.5%以上、さらに好ましくは0.7%以上、特に好ましくは1.0%以上、好ましくは50%以下、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは15%以下、とりわけ好ましくは10%以下である。例えば、0.1%以上50%以下が好ましく、0.5%以上30%以下がより好ましく、0.7%以上20%以下がさらに好ましく、1.0%以上15%以下がよりさらに好ましく、1.0%以上10%以下がことさら好ましい。前記下限値以上とすることで異方性色素膜の付着性を抑制し、異方性色素膜の屈折率及び消衰係数を下げ、反射率を低減する傾向があり、また前記上限値以下とすることで、異方性色素膜の偏光度、透明性が高くなる傾向がある。
(Filler content)
In the composition for forming an anisotropic dye film, the filler content (% by weight in the total solid content) with respect to the total solid content is preferably 0.1% or more, more preferably 0.5% or more, and still more preferably 0. 0.7% or more, particularly preferably 1.0% or more, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, particularly preferably 15% or less, and particularly preferably 10% or less. For example, 0.1% to 50% is preferable, 0.5% to 30% is more preferable, 0.7% to 20% is more preferable, 1.0% to 15% is more preferable, 1.0% or more and 10% or less are especially preferable. By suppressing the adhesion of the anisotropic dye film by setting the lower limit value or more, the refractive index and extinction coefficient of the anisotropic dye film tend to be reduced, and the reflectance tends to be reduced. By doing so, the degree of polarization and transparency of the anisotropic dye film tend to be high.
[分散剤]
(分散剤の種類)
 本発明の異方性色素膜形成用組成物は、フィラーの分散安定性向上のために、通常分散剤として市販されている低分子分散剤、高分子分散剤、バインダー樹脂以外の樹脂を含有させることも可能である。中でも組成物中でのフィラーの分散安定性の観点で、高分子分散剤を配合することが好ましい。
 高分子分散剤としては、例えば、ウレタン系分散剤、ポリエチレンイミン系分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレングリコールジエステル系分散剤、ソルビタン脂肪族エステル系分散剤、脂肪族変性ポリエステル系分散剤等を挙げることができる。これらの分散剤は、単独で又は2種以上を混合して使用することができる。
[Dispersant]
(Dispersant type)
The composition for forming an anisotropic dye film of the present invention contains a resin other than a low molecular dispersant, a high molecular dispersant, and a binder resin, which are usually marketed as a dispersant, in order to improve the dispersion stability of the filler. It is also possible. Among these, it is preferable to blend a polymer dispersant from the viewpoint of dispersion stability of the filler in the composition.
Examples of the polymer dispersant include a urethane dispersant, a polyethyleneimine dispersant, a polyoxyethylene alkyl ether dispersant, a polyoxyethylene glycol diester dispersant, a sorbitan aliphatic ester dispersant, and an aliphatic modified polyester. And the like, and the like. These dispersants can be used alone or in admixture of two or more.
(分散剤の含有量)
 本発明の異方性色素膜形成用組成物が分散剤を含む場合、その含有量(全固形分中の重量%)は好ましくは0.1重量%以上、より好ましくは0.5重量%以上、さらに好ましくは1重量%以上、特に好ましくは2重量%以上、好ましくは50重量%以下、より好ましくは30重量%以下、さらに好ましくは20重量%以下、特に好ましくは10重量%以下、とりわけ好ましくは5重量%以下である。例えば、0.1重量%以上50重量%以下が好ましく、0.5重量%以上30重量%以下がより好ましく、1重量%以上20重量%以下がさらに好ましく、2重量%以上10重量%以下がよりさらに好ましく、2重量%以上5重量%以下がことさら好ましい。前記下限値以上とすることで組成物中におけるフィラーの分散安定性が向上する傾向があり、また前記上限値以下とすることで、異方性色素膜の偏光度、透明性が高くなる傾向がある。
(Dispersant content)
When the composition for forming an anisotropic dye film of the present invention contains a dispersant, its content (% by weight in the total solid content) is preferably 0.1% by weight or more, more preferably 0.5% by weight or more. More preferably 1% by weight or more, particularly preferably 2% by weight or more, preferably 50% by weight or less, more preferably 30% by weight or less, still more preferably 20% by weight or less, particularly preferably 10% by weight or less, particularly preferably. Is 5% by weight or less. For example, 0.1 wt% or more and 50 wt% or less are preferable, 0.5 wt% or more and 30 wt% or less are more preferable, 1 wt% or more and 20 wt% or less are more preferable, and 2 wt% or more and 10 wt% or less are preferable. Even more preferred is 2 wt% or more and 5 wt% or less. When the amount is not less than the lower limit, the dispersion stability of the filler in the composition tends to be improved, and when the amount is not more than the upper limit, the degree of polarization and the transparency of the anisotropic dye film tend to increase. is there.
[異方性色素膜形成用組成物の溶剤]
 溶剤としては、水、水混和性のある有機溶剤又はこれらの混合物が適している。有機溶剤の具体例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、グリセリン等のアルコール類、エチレングリコール、ジエチレングリコール等のグリコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類等が挙げられる。これらは、単独で用いても、2種以上を混合して用いてもよい。
 上記溶剤を用いた場合、異方性色素膜形成用組成物の全固形分濃度は好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上、また、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、特に好ましくは25質量%以下、例えば、好ましくは5質量%以上50質量%以下、より好ましくは10質量%以上40質量%以下、さらに好ましくは15質量%以上30質量%以下、よりさらに好ましくは15質量%以上25質量%以下となるように調液して使用される。前記下限値以上とすることで所望の膜厚の異方性色素膜を形成できる傾向があり、また、前記上限値以下とすることで異方性色素膜の膜厚均一性が向上する傾向がある。
[Solvent of composition for forming anisotropic dye film]
As the solvent, water, a water-miscible organic solvent, or a mixture thereof is suitable. Specific examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and glycerin, glycols such as ethylene glycol and diethylene glycol, and cellosolves such as methyl cellosolve and ethyl cellosolve. These may be used alone or in admixture of two or more.
When the above solvent is used, the total solid content of the composition for forming an anisotropic dye film is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, and preferably 50%. % By mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, particularly preferably 25% by mass or less, for example, preferably 5% by mass to 50% by mass, more preferably 10% by mass to 40% by mass. % Or less, more preferably 15% by mass or more and 30% by mass or less, and still more preferably 15% by mass or more and 25% by mass or less. There is a tendency that an anisotropic dye film having a desired film thickness can be formed by setting it to the lower limit value or more, and a film thickness uniformity of the anisotropic dye film tends to be improved by setting the upper limit value or less. is there.
 本発明の異方性色素膜形成用組成物は、リオトロピック液晶相の発現有無は問わないが、リオトロピック液晶相を発現していない場合において、異方性色素膜形成用組成物中の溶剤量のみを変更することでリオトロピック液晶相が発現することが好ましい。リオトロピック液晶相が発現することで、異方性色素膜中で色素が高い配向度を発現し、高い二色性の異方性色素膜が得られる傾向にあるため好ましい。
 異方性色素膜形成用組成物がリオトロピック液晶相を発現していれば、より異方性色素膜中での高い配向が得られる傾向にあるため、さらに好ましい。
The composition for forming an anisotropic dye film of the present invention may or may not express a lyotropic liquid crystal phase, but only the amount of solvent in the composition for forming an anisotropic dye film when the lyotropic liquid crystal phase is not expressed. It is preferable that the lyotropic liquid crystal phase is expressed by changing the above. The expression of the lyotropic liquid crystal phase is preferable because the dye exhibits a high degree of orientation in the anisotropic dye film and a high dichroic anisotropic dye film tends to be obtained.
It is more preferable that the composition for forming an anisotropic dye film expresses a lyotropic liquid crystal phase because higher orientation in the anisotropic dye film tends to be obtained.
[異方性色素膜形成用組成物のpH]
 異方性色素膜形成用組成物のpHは、特に限定されるものではないが、好ましくは、4.0以上、さらに好ましくは5.0以上、最も好ましくは5.5以上である。また、好ましくは12以下、さらに好ましくは11以下、最も好ましくは10以下である。pHの数値が上記上限値以下であることで、高分子化合物の塩基性基がカチオン化され、色素との相溶性が向上し、相分離(析出)を抑制する傾向にある。また、pHの数値が上記下限値以上であることで、酸性基がアニオン化され、異方性色素膜形成用組成物中において、色素と高分子化合物の過度な相互作用による相分離を抑制できる傾向にある。
[PH of anisotropic dye film forming composition]
The pH of the composition for forming an anisotropic dye film is not particularly limited, but is preferably 4.0 or more, more preferably 5.0 or more, and most preferably 5.5 or more. Further, it is preferably 12 or less, more preferably 11 or less, and most preferably 10 or less. When the pH value is less than or equal to the above upper limit value, the basic group of the polymer compound is cationized, the compatibility with the dye is improved, and phase separation (precipitation) tends to be suppressed. Further, when the pH value is equal to or higher than the above lower limit, the acidic group is anionized, and in the composition for forming an anisotropic dye film, phase separation due to excessive interaction between the dye and the polymer compound can be suppressed. There is a tendency.
[異方性色素膜形成用組成物の添加剤]
 異方性色素膜形成用組成物には、さらに必要に応じて、界面活性剤、レベリング剤、カップリング剤、pH調整剤、アラニン、バリン、ロイシン、イソロイシン、グリシン、グリシルグリシン、グリシルグリシルグリシン、セリン、プロリン、システイン、シスチン、グルタミン、6-アミノヘキサン酸、国際公開第2005/069048号公報に記載のアミノ酸、3-アミノ-1-プロパンスルホン酸、タウリン等の酸性基及び塩基性基を有する低分子化合物等の添加剤を配合することができる。添加剤により、濡れ性、塗布性、異方性色素膜形成用組成物の安定性等を向上させ得る場合がある。
 界面活性剤としては、アニオン性、カチオン性及びノニオン性のいずれも使用可能である。その添加濃度は、特に限定されるものではないが、異方性色素膜形成用組成物中の濃度として、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.05質量%以上である。また、好ましくは0.8質量%以下であり、より好ましくは0.5質量%以下である。例えば、0.001質量%以上0.8質量%以下が好ましく、0.01質量%以上0.5質量%以下がより好ましく、0.05質量%以上0.5質量%以下がさらに好ましい。この範囲であることで、界面活性剤の添加効果が得られ、且つ、色素分子の配向を阻害しない傾向にある。
 異方性色素膜形成用組成物中での異方性材料の造塩や凝集等の不安定性を抑制する等の目的のために、公知の酸/アルカリ等のpH調整剤等を、異方性色素膜形成用組成物の構成成分の混合の前後或いは混合中のいずれかで添加してもよい。なお、前記以外の添加剤として“Additive for Coating”,Edited by J.Bieleman,Willey-VCH(2000)に記載の公知の添加剤を用いることもできる。
[Additive of composition for forming anisotropic dye film]
If necessary, the composition for forming an anisotropic dye film may further include a surfactant, a leveling agent, a coupling agent, a pH adjuster, alanine, valine, leucine, isoleucine, glycine, glycylglycine, glycylglycyl. Acidic groups and basic groups such as glycine, serine, proline, cysteine, cystine, glutamine, 6-aminohexanoic acid, amino acids described in WO 2005/069048, 3-amino-1-propanesulfonic acid, taurine, etc. Additives such as low molecular weight compounds having Depending on the additive, wettability, applicability, stability of the composition for forming an anisotropic dye film, and the like may be improved.
As the surfactant, any of anionic, cationic and nonionic properties can be used. The addition concentration is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably as the concentration in the composition for forming an anisotropic dye film. It is 0.05 mass% or more. Moreover, Preferably it is 0.8 mass% or less, More preferably, it is 0.5 mass% or less. For example, 0.001% by mass to 0.8% by mass is preferable, 0.01% by mass to 0.5% by mass is more preferable, and 0.05% by mass to 0.5% by mass is further preferable. By being in this range, the effect of adding a surfactant can be obtained, and the orientation of the dye molecules tends not to be inhibited.
For the purpose of suppressing instability such as salt formation and aggregation of anisotropic materials in the composition for forming an anisotropic dye film, a known pH adjuster such as acid / alkali is anisotropically used. May be added either before or after mixing the constituents of the composition for forming a functional dye film or during mixing. As additives other than those described above, “Additive for Coating”, Edited by J. et al. Known additives described in Bieleman, Willy-VCH (2000) can also be used.
[異方性色素膜形成用組成物の製造方法]
 本発明の異方性色素膜形成用組成物の製造方法は特に限定されない。例えば、色素、その他の添加剤及び溶剤等を混合し、0~100℃で撹拌、振盪して色素を溶解する。難溶性の場合は、ホモジナイザー、ビーズミル分散機等を用いてもよい。
  本発明の異方性色素膜形成用組成物の製造方法として、組成物中の異物等を除去する目的でろ過工程を有していてもよい。ろ過以外の組成物中の異物等を除去する方法としては、特開2012-53388号公報に記載の遠心分離を用いる方法もある。
[Method for producing composition for forming anisotropic dye film]
The method for producing the composition for forming an anisotropic dye film of the present invention is not particularly limited. For example, a dye, other additives, a solvent, and the like are mixed, and the dye is dissolved by stirring and shaking at 0 to 100 ° C. In the case of poor solubility, a homogenizer, a bead mill disperser or the like may be used.
As a manufacturing method of the composition for anisotropic dye film formation of this invention, you may have a filtration process in order to remove the foreign material etc. in a composition. As a method for removing foreign substances and the like in the composition other than filtration, there is a method using centrifugation described in JP 2012-53388 A.
[異方性色素膜]
 本発明の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて形成することができる。また、本発明の異方性色素膜は、色素、並びに、酸性基及び塩基性基を有する高分子化合物を含むものであってもよい。また、本発明の異方性色素膜は、色素、酸性基及び塩基性基を有する高分子化合物、並びに、水溶性有機化合物を含むものであってもよい。
 本発明の異方性色素膜を液晶ディスプレイ用の偏光素子として使う場合は、異方性色素膜の配向特性は二色比を用いて表すことができる。二色比は8以上あれば偏光素子として機能するが、15以上が好ましく、20以上がさらに好ましく、25以上がさらに好ましく、30以上が特に好ましい。また、二色比は高いほど好ましい。二色比が特定値以上であることで、後述する光学素子、特に偏光素子として有用である。
[Anisotropic dye film]
The anisotropic dye film of the present invention can be formed using the anisotropic dye film forming composition of the present invention. The anisotropic dye film of the present invention may contain a dye and a polymer compound having an acidic group and a basic group. The anisotropic dye film of the present invention may contain a dye, a polymer compound having an acidic group and a basic group, and a water-soluble organic compound.
When the anisotropic dye film of the present invention is used as a polarizing element for a liquid crystal display, the orientation characteristics of the anisotropic dye film can be expressed using a dichroic ratio. A dichroic ratio of 8 or more functions as a polarizing element, but is preferably 15 or more, more preferably 20 or more, further preferably 25 or more, and particularly preferably 30 or more. Also, the higher the dichroic ratio, the better. When the dichroic ratio is a specific value or more, it is useful as an optical element described later, particularly as a polarizing element.
 本発明で言う二色比(D)とは、色素が一様に配向している場合、以下の式で表される。
D=Az/Ay
 ここで、Azは異方性色素膜に入射した光の偏光方向が色素の配向方向に平行な場合に観測される吸光度であり、Ayはその偏光方向が垂直な場合に観測される吸光度である。それぞれの吸光度は同じ波長のものを用いれば特に制限なく、目的によっていずれの波長を選択してもよいが、異方性色素膜の配向の度合を表す場合は、異方性色素膜の極大吸収波長における値を用いることが好ましい。
The dichroic ratio (D) referred to in the present invention is represented by the following formula when the pigment is uniformly oriented.
D = Az / Ay
Here, Az is the absorbance observed when the polarization direction of the light incident on the anisotropic dye film is parallel to the alignment direction of the pigment, and Ay is the absorbance observed when the polarization direction is perpendicular. . Each absorbance is not particularly limited as long as the same wavelength is used, and any wavelength may be selected depending on the purpose. However, when the degree of orientation of the anisotropic dye film is expressed, the maximum absorption of the anisotropic dye film is used. It is preferable to use a value in wavelength.
 また、本発明の異方性色素膜の可視光波長域における透過率は、好ましくは25%以上である。35%以上が更に好ましく、40%以上が特に好ましい。また、透過率は用途に応じた上限であればよい。
 例えば、偏光度を高くする場合には、透過率は50%以下であることが好ましい。透過率が特定範囲であることで、下記の光学素子として有用であり、特にカラー表示に用いる液晶ディスプレイ用の光学素子として有用である。
Further, the transmittance in the visible light wavelength region of the anisotropic dye film of the present invention is preferably 25% or more. 35% or more is more preferable, and 40% or more is particularly preferable. Moreover, the transmittance | permeability should just be an upper limit according to a use.
For example, when increasing the degree of polarization, the transmittance is preferably 50% or less. When the transmittance is in a specific range, it is useful as the following optical element, and particularly useful as an optical element for a liquid crystal display used for color display.
 本発明のある態様における異方性色素膜の、透過率42.5%における偏光度は、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、特に好ましくは91%以上である。偏光度は高いほど好ましい。偏光度が特定値以上であることで、後述する光学素子、特に偏光素子として有用である。 The degree of polarization of the anisotropic dye film in an aspect of the present invention at a transmittance of 42.5% is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, and particularly preferably 91% or more. It is. The higher the degree of polarization, the better. When the degree of polarization is not less than a specific value, it is useful as an optical element described later, particularly as a polarizing element.
[異方性色素膜の形成方法]
 本発明の異方性色素膜は、湿式成膜法により作製することが好ましい。
 本発明でいう湿式成膜法とは、異方性色素膜形成用組成物を基板上に何らかの手法により付与し、溶剤が乾燥する過程を経て色素等を基板上で配向・積層させる方法である。湿式成膜法では、異方性色素膜形成用組成物を基板上に付与すると、すでに異方性色素膜形成用組成物中で、又は溶剤が乾燥する過程で、色素自体が自己会合することにより微小面積での配向が起こる。この状態に外場を与えることにより、マクロな領域で一定方向に配向させ、所望の性能を有する異方性色素膜を得ることができる。この点で、いわゆるポリビニルアルコール(PVA)フィルム等を、色素を含む溶液で染色して延伸し、延伸工程だけで色素を配向させることを原理とする方法とは異なる。なお、ここで外場とは、あらかじめ基板上に施された配向処理層の影響、せん断力、磁場等が挙げられ、これらを単独で用いてもよく、複数組み合わせて用いてもよい。
[Method of forming anisotropic dye film]
The anisotropic dye film of the present invention is preferably produced by a wet film forming method.
The wet film-forming method referred to in the present invention is a method in which a composition for forming an anisotropic dye film is applied on a substrate by any method, and a dye or the like is oriented and laminated on the substrate through a process of drying the solvent. . In the wet film forming method, when the composition for forming an anisotropic dye film is applied on a substrate, the dye itself self-associates in the anisotropic dye film forming composition or in the process of drying the solvent. Causes orientation in a small area. By applying an external field to this state, an anisotropic dye film having desired performance can be obtained by orienting in a certain direction in a macro region. This is different from the method based on the principle that a so-called polyvinyl alcohol (PVA) film or the like is dyed with a solution containing a dye and stretched, and the dye is oriented only by a stretching process. Here, the external field includes the influence of the alignment treatment layer previously applied on the substrate, shear force, magnetic field, and the like, and these may be used alone or in combination.
 また、異方性色素膜形成用組成物を基板上に付与し成膜する過程、外場を与えて配向させる過程、溶剤を乾燥させる過程は、逐次行ってもよいし、同時に行ってもよい。
 湿式成膜法における異方性色素膜形成用組成物を基板上へ付与する方法としては、例えば、塗布法、ディップコート法、LB膜形成法、公知の印刷法等が挙げられる。またこのようにして得た異方性色素膜を別の基板に転写する方法もある。これらの中でも、本発明は塗布法を用いることが好ましい。
 異方性色素膜の配向方向は、通常、塗布方向と一致するが、塗布方向と異なっていてもよい。なお、本実施の形態において異方性色素膜の配向方向とは、例えば、偏光膜であれば、偏光の透過軸又は吸収軸であり、位相差膜であれば、進相軸又は遅相軸のことである。
In addition, the process of applying the anisotropic dye film-forming composition on the substrate to form a film, the process of aligning by applying an external field, and the process of drying the solvent may be performed sequentially or simultaneously. .
Examples of the method for applying the composition for forming an anisotropic dye film on the substrate in the wet film forming method include a coating method, a dip coating method, an LB film forming method, a known printing method, and the like. There is also a method of transferring the anisotropic dye film thus obtained to another substrate. Among these, the present invention preferably uses a coating method.
The orientation direction of the anisotropic dye film is usually coincident with the application direction, but may be different from the application direction. In the present embodiment, the orientation direction of the anisotropic dye film is, for example, a polarizing transmission axis or absorption axis in the case of a polarizing film, and a fast axis or a slow axis in the case of a retardation film. That is.
 そして、本実施の形態における異方性色素膜は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏光等を得る偏光膜又は位相差膜として機能する他、膜形成プロセスと基板や有機化合物(色素や透明材料)を含有する組成物の選択により、屈折異方性や伝導異方性等の各種異方性色素膜として機能化が可能である。 The anisotropic dye film in this embodiment functions as a polarizing film or retardation film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, as well as a film forming process and a substrate. And by selecting a composition containing an organic compound (pigment or transparent material), it can be functionalized as various anisotropic dye films such as refractive anisotropy and conduction anisotropy.
 異方性色素膜形成用組成物を塗布し、異方性色素膜を得る方法としては、特に限定されないが、例えば、原崎勇次著「コーティング工学」(株式会社朝倉書店、1971年3月20日発行)253頁~277頁に記載の方法、市村國宏監修「分子協調材料の創製と応用」(株式会社シーエムシー出版、1998年3月3日発行)118頁~149頁に記載の方法、段差構造を有する基板(予め配向処理を施してもよい)上にスロットダイコート法、スピンコート法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法、カーテンコート法、ファウンテン法、ディップ法等で塗布する方法が挙げられる。中でも、スロットダイコート法を採用すると、均一性の高い異方性色素膜が得られるため好適である。
 スロットダイコート法に用いるダイコーターは、一般的に塗布液を吐出する塗布機、いわゆるスリットダイを備えている。該スリットダイは、例えば、特開平2-164480号公報、特開平6-154687号公報、特開平9-131559号公報、「分散・塗布・乾燥の基礎と応用」(2014年、株式会社テクノシステ、ISBN9784924728707 C 305))、「ディスプレイ・光学部材における湿式コーティング技術」(2007年、情報機構、ISBN9784901677752)、「エレクトロニクス分野における精密塗布・乾燥技術」(2007年、技術情報教会、ISBN9784861041389)等に開示されている。これら公知のスリットダイは、フィルムやテープなどの可撓性を有した部材やガラス基板のような硬い部材であっても塗布が実施できる。
 本発明の異方性色素膜形成用組成物は、塗布装置への給液が容易であり、スロットダイコート法での塗布を行う場合にも、実用に耐える塗布速度で塗布することができ、生産性の高い異方性色素膜製造プロセスを構築することができる。一方で近年、設備投資やメンテナンスに関して低コストで、かつ高速塗布により生産性の向上を両立できる方法として、バーコーターによる塗布プロセスの構築が課題となっており、本発明の異方性色素膜形成用組成物はバーコーターにも好適に用いることができる。
The method for obtaining the anisotropic dye film by applying the composition for forming the anisotropic dye film is not particularly limited. For example, Yuji Harasaki, “Coating Engineering” (Asakura Shoten Co., Ltd., March 20, 1971). Issue) Method described on pages 253 to 277, “Creation and application of molecularly coordinated materials” supervised by Kunihiro Ichimura (CMC Publishing Co., Ltd., published on March 3, 1998), pages 118 to 149, Slot die coating method, spin coating method, spray coating method, bar coating method, roll coating method, blade coating method, curtain coating method, fountain method, dipping method on a substrate having a step structure (which may be subjected to orientation treatment in advance) The method of apply | coating etc. is mentioned. Among these, the slot die coating method is preferable because an anisotropic dye film with high uniformity can be obtained.
A die coater used in the slot die coating method generally includes a coating machine that discharges a coating solution, a so-called slit die. The slit die is disclosed in, for example, JP-A-2-164480, JP-A-6-154687, JP-A-9-131559, “Basics and Applications of Dispersion / Coating / Drying” (2014, Technosystem Corporation). , ISBN9784924728707 C 305)), "wet coating technology for displays and optical components" (2007, Information Organization, ISBN9784901677752), "precision coating and drying technology in electronics field" (2007, Technical Information Church, ISBN9784861041389), etc. Has been. These known slit dies can be applied even with a flexible member such as a film or a tape or a hard member such as a glass substrate.
The composition for forming an anisotropic dye film of the present invention can be easily supplied to a coating apparatus, and can be applied at a coating speed that can withstand practical use even when applied by the slot die coating method. A highly reliable anisotropic dye film manufacturing process can be constructed. On the other hand, in recent years, construction of a coating process using a bar coater has become an issue as a method that can improve productivity by high-speed coating at a low cost with respect to capital investment and maintenance. The composition for use can also be suitably used for a bar coater.
 本発明の異方性色素膜形成に使用される基板として、ガラスやトリアセテート、アクリル、ポリエステル、ポリイミド、トリアセチルセルロース又はウレタン系のフィルム等が挙げられる。また、この基板表面には、色素の配向方向を制御するために、「液晶便覧」丸善株式会社、平成12年10月30日発行、226頁から239頁等に記載の公知の方法により、配向処理層(配向膜)を施していてもよい。配向処理層を設けた場合、配向処理層の配向処理の影響と塗布時に異方性色素膜形成用組成物にかかるせん断力とによって色素が配向すると考えられる。 Examples of the substrate used for forming the anisotropic dye film of the present invention include glass, triacetate, acrylic, polyester, polyimide, triacetylcellulose, or urethane film. In addition, in order to control the alignment direction of the dye, the substrate surface is aligned by a known method described in “Liquid Crystal Handbook” Maruzen Co., Ltd., issued October 30, 2000, pages 226 to 239, etc. A treatment layer (alignment film) may be provided. When the alignment treatment layer is provided, it is considered that the dye is oriented due to the influence of the orientation treatment of the orientation treatment layer and the shearing force applied to the composition for forming an anisotropic dye film during coating.
 異方性色素膜形成用組成物を塗布する際の、異方性色素膜形成用組成物の供給方法、供給間隔は特に限定されない。塗布液の供給操作が繁雑になったり、塗布液の開始時と停止時に塗布膜厚の変動を生じてしまったりする場合があるため、異方性色素膜の膜厚が薄い時には、連続的に異方性色素膜形成用組成物を供給しながら塗布することが望ましい。 The method for supplying the composition for forming an anisotropic dye film and the supply interval when applying the composition for forming an anisotropic dye film are not particularly limited. When the anisotropic dye film is thin, it may continuously occur because the supply operation of the coating liquid becomes complicated and the coating film thickness may vary when the coating liquid starts and stops. It is desirable to apply while supplying the composition for forming an anisotropic dye film.
 異方性色素膜形成用組成物を塗布する速度としては、通常1mm/秒以上であり、好ましくは5mm/秒以上である。また、通常1000mm/秒以下であり、好ましくは200mm/秒以下である。塗布速度が適当な範囲であることで、異方性色素膜の異方性が得られ、均一に塗布できる傾向にある。
 なお、異方性色素膜形成用組成物の塗布温度としては、通常0℃以上80℃以下、好ましくは40℃以下である。また、異方性色素膜形成用組成物の塗布時の湿度は、好ましくは10%RH以上、さらに好ましくは30%RH以上であり、好ましくは80%RH以下である。
The speed at which the composition for forming an anisotropic dye film is applied is usually 1 mm / second or more, preferably 5 mm / second or more. Moreover, it is 1000 mm / sec or less normally, Preferably it is 200 mm / sec or less. When the coating speed is in an appropriate range, anisotropy of the anisotropic dye film is obtained, and the coating tends to be performed uniformly.
The coating temperature of the composition for forming an anisotropic dye film is usually 0 ° C. or higher and 80 ° C. or lower, preferably 40 ° C. or lower. Moreover, the humidity at the time of application | coating of the composition for anisotropic dye film formation becomes like this. Preferably it is 10% RH or more, More preferably, it is 30% RH or more, Preferably it is 80% RH or less.
 異方性色素膜の膜厚は、乾燥膜厚として、好ましくは10nm以上、さらに好ましくは50nm以上である。一方、好ましくは30μm以下、さらに好ましくは1μm以下である。異方性色素膜の膜厚が適当な範囲にあることで、膜内で色素の均一な配向及び均一な膜厚を得られる傾向にある。 The film thickness of the anisotropic dye film is preferably 10 nm or more, more preferably 50 nm or more as a dry film thickness. On the other hand, it is preferably 30 μm or less, more preferably 1 μm or less. When the film thickness of the anisotropic dye film is within an appropriate range, uniform orientation and uniform film thickness of the dye tend to be obtained in the film.
 異方性色素膜には、不溶化処理を行ってもよい。不溶化とは、異方性色素膜中の化合物の溶解性を低下させることにより、該化合物の異方性色素膜からの溶出を制御し、膜の安定性を高める処理工程を意味する。
 具体的には、例えば少ない価数のイオンを、それより大きい価数のイオンに置き換える(例えば、1価のイオンを多価のイオンに置き換える)処理や、イオン基を複数有する有機分子やポリマーに置き換える処理が挙げられる。このような処理方法としては、例えば、細田豊著「理論製造 染色化学」(技報堂、1957年)435~437頁等に記載されている処理工程等の公知の方法を用いることができる。
 これらの中でも、得られた異方性色素膜を特開2007-241267号公報等に記載の方法で処理し、水に対して不溶性の異方性色素膜とすることが、後工程の容易さ、耐久性等の点から好ましい。
The anisotropic dye film may be insolubilized. Insolubilization means a treatment step that increases the stability of the film by controlling the elution of the compound from the anisotropic dye film by reducing the solubility of the compound in the anisotropic dye film.
Specifically, for example, an ion with a lower valence is replaced with an ion with a higher valence (for example, a monovalent ion is replaced with a polyvalent ion), or an organic molecule or polymer having a plurality of ionic groups. A replacement process is listed. As such a treatment method, for example, known methods such as treatment steps described in Yutaka Hosoda, “Theoretical Manufacturing, Dyeing Chemistry” (Gihodo, 1957), pages 435 to 437 can be used.
Among these, the anisotropic dye film thus obtained is treated by the method described in JP-A-2007-241267, etc. to form an anisotropic dye film that is insoluble in water. From the viewpoint of durability and the like.
[光学素子]
 本発明の光学素子は、本発明の異方性色素膜を含む。
 本発明において、光学素子は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏光等を得る偏光素子、位相差素子、屈折異方性や伝導異方性等の機能を有する素子を表す。これらの機能は、異方性色素膜形成プロセスと基板や有機化合物(色素や透明材料)を含有する組成物の選択により、適宜調整することができる。本発明では、偏光素子として用いることが最も好ましい。
[Optical element]
The optical element of the present invention includes the anisotropic dye film of the present invention.
In the present invention, the optical element is a polarizing element that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, a retardation element, an element having functions such as refractive anisotropy and conduction anisotropy. Represents. These functions can be appropriately adjusted according to the anisotropic dye film forming process and the selection of a composition containing a substrate or an organic compound (a dye or a transparent material). In the present invention, it is most preferably used as a polarizing element.
[偏光素子]
 本発明の偏光素子は、本発明の異方性色素膜を有するものであれば他の如何なる膜(層)を有するものであってもよい。例えば、基板上に配向膜を設け、該配向膜の表面に、異方性色素膜を形成することにより製造することができる。
 また、偏光素子は異方性色素膜だけに限らず、偏光性能を向上させる、機械的強度を向上させる等の機能を有するオーバーコート層;粘着層又は反射防止層;配向膜;位相差フィルムとしての機能、輝度向上フィルムとしての機能、反射又は反射防止フィルムとしての機能、半透過反射フィルムとしての機能、拡散フィルムとしての機能などの光学機能を有する層;等、と組み合わせて使用してもよい。具体的には、前述の様々な機能を有する層を塗布や貼合等により積層形成し、積層体として使用してもよい。
 これらの層は、製造プロセス、特性及び機能に合わせ適宜設けることができ、その積層の位置、順番等は特に限定されない。例えば、上記各層を形成する位置は、異方性色素膜の上に形成してもよく、また、異方性色素膜を設けた基板の反対面に形成してもよい。一方、上記各層を形成する順番は、異方性色素膜を形成する前でも形成した後でもよい。
[Polarizing element]
The polarizing element of the present invention may have any other film (layer) as long as it has the anisotropic dye film of the present invention. For example, it can be produced by providing an alignment film on a substrate and forming an anisotropic dye film on the surface of the alignment film.
In addition, the polarizing element is not limited to an anisotropic dye film, but an overcoat layer having functions such as improving polarization performance and improving mechanical strength; adhesive layer or antireflection layer; alignment film; retardation film , A function as a brightness enhancement film, a function as a reflection or antireflection film, a function as a transflective film, a layer having an optical function such as a function as a diffusion film; . Specifically, the layers having various functions described above may be formed by lamination by coating, bonding, or the like, and used as a laminate.
These layers can be provided as appropriate in accordance with the manufacturing process, characteristics, and functions, and the position and order of the layers are not particularly limited. For example, the positions where the above layers are formed may be formed on the anisotropic dye film, or may be formed on the opposite surface of the substrate provided with the anisotropic dye film. On the other hand, the order of forming the above layers may be before or after forming the anisotropic dye film.
 これら光学機能を有する層は、以下の様な方法により形成することができる。
 位相差フィルムとしての機能を有する層は、以下のような方法で得られた位相差フィルムを、偏光素子を構成する他の層に貼合等を行うことにより、形成することができる。
 位相差フィルムは、例えば、特開平2-59703号公報、特開平4-230704号公報等に記載の延伸処理を施したり、特開平7-230007号公報等に記載された処理を施したりすることにより形成することができる。
These layers having an optical function can be formed by the following method.
The layer having a function as a retardation film can be formed by bonding a retardation film obtained by the following method to another layer constituting the polarizing element.
The retardation film is subjected to, for example, a stretching process described in JP-A-2-59703, JP-A-4-230704, or a process described in JP-A-7-230007. Can be formed.
 輝度向上フィルムとしての機能を有する層は、以下のような方法で得られた輝度向上フィルムを、偏光素子を構成する他の層に貼合等を行うことにより、形成することができる。
 輝度向上フィルムは、例えば、特開2002-169025号公報及び特開2003-29030号公報に記載されるような方法で微細孔を形成すること、又は、選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより形成することができる。
The layer having a function as a brightness enhancement film can be formed by bonding the brightness enhancement film obtained by the following method to another layer constituting the polarizing element.
For example, the brightness enhancement film is formed by forming a fine hole by a method as described in JP-A No. 2002-169025 and JP-A No. 2003-29030, or two or more layers having different central wavelengths of selective reflection. It can be formed by superposing cholesteric liquid crystal layers.
 反射フィルムまたは半透過反射フィルムとしての機能を有する層は、例えば、蒸着やスパッタリングなどで得られた金属薄膜を、偏光素子を構成する他の層に貼合等を行うことにより、形成することができる。
 拡散フィルムとしての機能を有する層は、例えば、偏光素子を構成する他の層に微粒子を含む樹脂溶液をコーティングすることにより、形成することができる。
A layer having a function as a reflective film or a transflective film can be formed by, for example, bonding a metal thin film obtained by vapor deposition or sputtering to another layer constituting the polarizing element. it can.
The layer having a function as a diffusion film can be formed, for example, by coating the other layer constituting the polarizing element with a resin solution containing fine particles.
 また、位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコティック液晶性化合物、ネマティック液晶性化合物等の液晶性化合物を、偏光素子を構成する他の層に塗布して配向させることにより形成することができる。 The layer having a function as a retardation film or an optical compensation film is obtained by applying and aligning a liquid crystal compound such as a discotic liquid crystal compound or a nematic liquid crystal compound on another layer constituting the polarizing element. Can be formed.
 本実施の形態における異方性色素膜をLCDやOLED等の各種の表示素子に異方性色素膜等として用いる場合には、これらの表示素子を構成する電極基板等の表面に直接異方性色素膜を形成したり、異方性色素膜を形成した基板をこれら表示素子の構成部材として用いたりすることができる。
 本発明の光学素子は、基板上に塗布などにより異方性色素膜を形成することで偏光素子を得ることができるという点から、フレキシブルディスプレイ等の用途にも好適に使用することができる。
When the anisotropic dye film in the present embodiment is used as an anisotropic dye film for various display elements such as LCDs and OLEDs, it is directly anisotropic on the surface of the electrode substrate or the like constituting these display elements. A dye film can be formed, or a substrate on which an anisotropic dye film is formed can be used as a constituent member of these display elements.
The optical element of the present invention can be suitably used for applications such as a flexible display because a polarizing element can be obtained by forming an anisotropic dye film on a substrate by coating or the like.
 実施例により本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
 なお、下記の実施例における物性、製造条件および評価結果等の各種数値は、本発明の実施態様における上限または下限の好ましい値としての意味を持つものであり、好ましい範囲は前記した上限または下限の値と下記実施例の値との組合せまたは実施例同士の値の組合せで規定される範囲であってもよい。
 以下の記載において、「部」は「質量部」を示し、「%」は「重量%」を示す。
EXAMPLES The present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
Various numerical values such as physical properties, production conditions and evaluation results in the following examples have meanings as preferred values of the upper limit or lower limit in the embodiment of the present invention, and the preferred range is the upper limit or lower limit described above. It may be a range defined by a combination of values and values of the following examples or a combination of values of the examples.
In the following description, “part” indicates “part by mass”, and “%” indicates “% by weight”.
Dye-1の合成
 4-アミノベンズアミド5.45重量部、および水200重量部に塩酸酸性条件下、亜硝酸ナトリウム3.00重量部を加えてジアゾ化し、水240重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)8.93重量部とpH=2~3でカップリングを行った後、中和、塩析して析出固体を濾過分離し、モノアゾ化合物のウエットケーキを得た。
 このモノアゾ化合物のウエットケーキをN-メチルピロリドン220重量部、および水110重量部に溶解し、塩酸酸性条件下、亜硝酸ナトリウム3.00重量部を加えてジアゾ化し、水200重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)8.93重量部とpH=2~3でカップリングを行った後、塩析して析出物を取り出した。水に溶解して水酸化ナトリウムで中和し、イソプロピルアルコールを加えて析出固体を濾過分離し、得られたウエットケーキを乾燥することにより、下記式(I-1)で表されるアゾ色素のナトリウム塩31.1重量部を得た。
Synthesis of Dye-1 8-aminobenzamide and 5.200 parts by weight of sodium dinitrate were added with 3.00 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid and dissolved in 240 parts by weight of water. After coupling with 8.93 parts by weight of -2-naphthalenesulfonic acid (1,7-clebic acid) at pH = 2 to 3, neutralization and salting out were performed, and the precipitated solid was separated by filtration to obtain a monoazo compound. A wet cake was obtained.
The wet cake of this monoazo compound was dissolved in 220 parts by weight of N-methylpyrrolidone and 110 parts by weight of water, diazotized by adding 3.00 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and dissolved in 200 parts by weight of water. After coupling with 8.93 parts by weight of 8-amino-2-naphthalenesulfonic acid (1,7-claveic acid) at pH = 2 to 3, the precipitate was taken out by salting out. It is dissolved in water, neutralized with sodium hydroxide, isopropyl alcohol is added, the precipitated solid is filtered and separated, and the resulting wet cake is dried to obtain an azo dye represented by the following formula (I-1). 31.1 parts by weight of sodium salt were obtained.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 式(I-1)で表されるアゾ色素のナトリウム塩31.3重量部をN-メチルピロリドン200重量部、および水260重量部に溶解し、塩酸酸性条件下、亜硝酸ナトリウム3.04重量部を加えてジアゾ化し、水400重量部に溶解した7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)(純度:65.5%)19.5重量部とpH=9~10でカップリングを行った。反応後、析出固体を濾過分離し、下記で表される(I-2)のナトリウム塩を得た。 31.3 parts by weight of the sodium salt of the azo dye represented by the formula (I-1) is dissolved in 200 parts by weight of N-methylpyrrolidone and 260 parts by weight of water, and under acidic conditions of hydrochloric acid, 3.04 parts by weight of sodium nitrite. 19.5 parts by weight of 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) (purity: 65.5%) dissolved in 400 parts by weight of water and pH = 9 to 10 was coupled. After the reaction, the precipitated solid was separated by filtration to obtain a sodium salt of (I-2) shown below.
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
 式(I-2)で表されるトリスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱ケミカル社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、下記式Dye-1で表されるトリスアゾ色素のリチウム塩を得た。 An aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-2) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried. As a result, a lithium salt of a trisazo dye represented by the following formula Dye-1 was obtained.
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
[比較例A1]
 Dye-1とポリスチレンスルホン酸ナトリウム(重量平均分子量:5200)を80:20の重量比率で混ぜ、固形分濃度が13%の溶液になるように水を添加した。その後、80℃で90分攪拌して完全に溶解させ、異方性色素膜形成用組成物A1を作製した。
 その後、偏光顕微鏡を用いて常温(25℃)にて、液晶性の確認をしたところ、液晶部分と非液晶部分が混在した相分離状態であることが確認できた。
[Comparative Example A1]
Dye-1 and sodium polystyrene sulfonate (weight average molecular weight: 5200) were mixed at a weight ratio of 80:20, and water was added so that the solution had a solid concentration of 13%. Then, it stirred for 90 minutes at 80 degreeC, and it was made to melt | dissolve completely, and produced anisotropic dye film | membrane formation composition A1.
Then, when liquid crystal property was confirmed at normal temperature (25 degreeC) using the polarizing microscope, it has confirmed that it was a phase-separation state with which the liquid-crystal part and the non-liquid-crystal part were mixed.
[比較例A2]
 比較例A1におけるポリスチレンスルホン酸ナトリウムの代わりに、ポリアクリル酸ナトリウム(重量平均分子量:5000)を用いた以外は比較例A1と同様に、異方性色素膜形成用組成物A2を作製した。
 その後、常温にて、液晶性の確認をしたところ、液晶部分と非液晶部分が混在した相分離状態であることが確認できた。
[Comparative Example A2]
An anisotropic dye film-forming composition A2 was prepared in the same manner as in Comparative Example A1, except that sodium polyacrylate (weight average molecular weight: 5000) was used instead of sodium polystyrene sulfonate in Comparative Example A1.
Thereafter, liquid crystal properties were confirmed at room temperature, and it was confirmed that the liquid crystal portion and the non-liquid crystal portion were in a phase separated state.
[比較例A3]
 比較例A1におけるポリスチレンスルホン酸ナトリウムの代わりに、ポリアリルアミン(重量平均分子量:3000)を用いた以外は比較例A1と同様に、異方性色素膜形成用組成物A3を作製した。
 その後、常温にて、液晶性の確認をしたところ、液晶性がないことが確認できた。
[Comparative Example A3]
An anisotropic dye film-forming composition A3 was prepared in the same manner as in Comparative Example A1, except that polyallylamine (weight average molecular weight: 3000) was used instead of sodium polystyrene sulfonate in Comparative Example A1.
Thereafter, liquid crystal properties were confirmed at room temperature, and it was confirmed that there was no liquid crystal properties.
[実施例A1]
 比較例A1におけるポリスチレンスルホン酸ナトリウムの代わりに、アリルアミンとアリルスルホン酸ナトリウムが4:6のモル比で含まれる共重合体である酸性基及び塩基性基を有する高分子化合物(ポリマーAA)(重量平均分子量:1700)を用いた以外は比較例A1と同様に、異方性色素膜形成用組成物A4を作製した。
 その後、常温にて、液晶性の確認をしたところ、均一な液晶状態であることが確認できた。
[Example A1]
Polymer compound (polymer AA) having an acidic group and a basic group, which is a copolymer containing allylamine and sodium allylsulfonate in a molar ratio of 4: 6 instead of sodium polystyrenesulfonate in Comparative Example A1 (weight) An anisotropic dye film-forming composition A4 was produced in the same manner as in Comparative Example A1, except that the average molecular weight was 1700).
Then, when liquid crystal property was confirmed at normal temperature, it was confirmed that the liquid crystal state was uniform.
[実施例A2]
 実施例A1におけるDye-1とポリマーAAの比を60:40に変更し、さらにポリマーAAの対カチオンをリチウムに塩交換したポリマーABに変更した以外は実施例A1と同様に、異方性色素膜形成用組成物A5を作製した。なお、ポリマーAAのリチウム塩への交換は、ポリマーAA(ナトリウム塩)の水溶液を陽イオン交換樹脂(三菱ケミカル社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液でpHが7.0になるまで中和、濃縮乾燥することにより実施した。
 その後、常温にて、液晶性の確認をしたところ、均一な液晶状態であることが確認できた。
[Example A2]
In the same manner as in Example A1, except that the ratio of Dye-1 to polymer AA in Example A1 was changed to 60:40, and the counter cation of polymer AA was changed to polymer AB salt-exchanged with lithium, an anisotropic dye A film-forming composition A5 was produced. The polymer AA is replaced with a lithium salt by passing an aqueous solution of the polymer AA (sodium salt) through a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to obtain an aqueous solution of free acid, and then the pH of the aqueous solution is increased with an aqueous lithium hydroxide solution. This was carried out by neutralizing to 7.0 and concentrating to dryness.
Then, when liquid crystal property was confirmed at normal temperature, it was confirmed that the liquid crystal state was uniform.
 [比較例A4]
 実施例A2におけるポリマーABをすべてL-(+)-Lysineで置き換えた以外は実施例A2と同様に、異方性色素膜形成用組成物A6を作製した。
 その後、常温にて、液晶性の確認をしたところ、均一な液晶状態であることが確認できた。
[Comparative Example A4]
An anisotropic dye film-forming composition A6 was produced in the same manner as in Example A2, except that all of the polymer AB in Example A2 was replaced with L-(+)-Lysine.
Then, when liquid crystal property was confirmed at normal temperature, it was confirmed that the liquid crystal state was uniform.
[耐湿試験]
 実施例A1~A2、比較例A4で調製した異方性色素膜形成用組成物をそれぞれガラス基板上にアプリケーターを用いて塗布し、風乾して、異方性色素膜を作製した。
 硫化カリウムの飽和水溶液を用いて25℃、相対湿度97%に調整した恒湿環境に、得られた異方性色素膜を1日放置した。その後、膜を偏光顕微鏡で観察し、耐湿性を下記基準にて評価した。
  A:膜に析出や凝集、ひび割れが無い場合
  B:膜に析出や凝集、ひび割れが有る場合
[Moisture resistance test]
The anisotropic dye film-forming compositions prepared in Examples A1 to A2 and Comparative Example A4 were each applied onto a glass substrate using an applicator and air-dried to prepare anisotropic dye film.
The obtained anisotropic dye film was left for 1 day in a constant humidity environment adjusted to 25 ° C. and a relative humidity of 97% using a saturated aqueous solution of potassium sulfide. Thereafter, the film was observed with a polarizing microscope, and the moisture resistance was evaluated according to the following criteria.
A: When there is no precipitation, aggregation, or crack in the film B: When there is precipitation, aggregation, or crack in the film
 本発明においては、硫化カリウムの飽和水溶液を作成し、恒湿環境を作成した。この際、湿度計を確認したところ、25℃において97%の湿度で保たれている状態であった。 In the present invention, a saturated aqueous solution of potassium sulfide was prepared to create a constant humidity environment. At this time, when the hygrometer was confirmed, it was kept at 97% humidity at 25 ° C.
 これらの結果から、色素と特定の高分子化合物を含む本発明の組成物は、均一な液晶状態を維持することから、異方性色素膜を形成可能であることが示された。また、得られた異方性色素膜は耐湿性に優れることが示された。 From these results, it was shown that the composition of the present invention containing a dye and a specific polymer compound can form an anisotropic dye film because it maintains a uniform liquid crystal state. Moreover, it was shown that the obtained anisotropic pigment | dye film | membrane is excellent in moisture resistance.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
<水溶性有機化合物を用いた実施例>
[参考例B1]
 Dye-1とアリルアミンとアリルスルホン酸が4:6のモル比で含まれる共重合体の対カチオンをリチウムに塩交換して得られた酸性基及び塩基性基を有する高分子化合物(ポリマーBA)(質量平均分子量:1700)を60:40の質量比率で混ぜ、固形分濃度が18%の溶液になるように水を添加した。その後、80℃で90分攪拌して完全に溶解させ、異方性色素膜形成用組成物B1を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は51.3℃であった。また、常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で116cPであった。
 なお、合成したポリマーの対カチオンのリチウム塩への交換は、ナトリウム塩体のポリマー水溶液を陽イオン交換樹脂(三菱ケミカル株式会社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液でpHが7.0になるまで中和し、濃縮乾燥することにより実施した。
<Examples using water-soluble organic compounds>
[Reference Example B1]
Polymer compound having an acidic group and a basic group obtained by salt exchange of a counter cation of a copolymer containing Dye-1, allylamine and allylsulfonic acid in a molar ratio of 4: 6 to lithium (polymer BA) (Mass average molecular weight: 1700) was mixed at a mass ratio of 60:40, and water was added so that the solution had a solid concentration of 18%. Then, it stirred for 90 minutes at 80 degreeC, and it was made to melt | dissolve completely, and produced anisotropic dye film | membrane formation composition B1.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 51.3 ° C. Moreover, when the viscosity at normal temperature was measured with an E-type viscometer, it was 116 cP under the condition of a rotor rotation speed of 10 rpm.
In addition, the exchange of the synthesized polymer to the counter cation lithium salt is carried out by passing a sodium salt polymer aqueous solution through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to obtain an aqueous solution of a free acid, and then an aqueous lithium hydroxide solution. The solution was neutralized to pH 7.0 and concentrated and dried.
[参考例B2]
 参考例B1において、固形分濃度が17%の溶液になるように水を混ぜた以外は参考例B1と同様に、異方性色素膜形成用組成物B2を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は46.4℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で111cPであった。
[Reference Example B2]
In Reference Example B1, an anisotropic dye film-forming composition B2 was prepared in the same manner as in Reference Example B1, except that water was mixed so that the solution had a solid concentration of 17%.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 46.4 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 111 cP under the condition of the rotor rotation speed of 10 rpm.
[参考例B3]
 参考例B2において、Dye-1とポリマーBAを30:70の質量比率で混ぜた以外は参考例B2と同様に、固形分濃度が17%の異方性色素膜形成用組成物B3を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は29.7℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で139cPであった。
[Reference Example B3]
An anisotropic dye film-forming composition B3 having a solid content concentration of 17% was prepared in the same manner as in Reference Example B2, except that Dye-1 and polymer BA were mixed in a mass ratio of 30:70 in Reference Example B2. .
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 29.7 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 139 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B1]
 参考例B1において、異方性色素膜形成用組成物の固形分に対して0.02%のフッ素系水溶性有機化合物(DIC株式会社製メガファックF-444。親水基としてエチレンオキサイド基を有し、疎水基としてパーフルオロアルキルを有する。)を更に添加した以外は参考例B1と同様に、固形分濃度が18%の異方性色素膜形成用組成物B4を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は65.2℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で115cPであった。
[Example B1]
In Reference Example B1, 0.02% of a fluorine-based water-soluble organic compound (Megafac F-444 manufactured by DIC Corporation, having an ethylene oxide group as a hydrophilic group) based on the solid content of the composition for forming an anisotropic dye film In addition, an anisotropic dye film-forming composition B4 having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that perfluoroalkyl was further added as a hydrophobic group.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 65.2 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 115 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B2]
 参考例B1において、異方性色素膜形成用組成物の固形分に対して0.02%のフッ素系水溶性有機化合物(DIC株式会社製メガファックF-477。親水基を有し、疎水基としてフッ素基を有する。)を更に添加した以外は参考例B1と同様に、固形分濃度が18%の異方性色素膜形成用組成物B5を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は48.3℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で112cPであった。
[Example B2]
In Reference Example B1, 0.02% of a fluorine-based water-soluble organic compound (Megafac F-477 manufactured by DIC Corporation, having a hydrophilic group and a hydrophobic group) based on the solid content of the composition for forming an anisotropic dye film A composition B5 for forming an anisotropic dye film having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a fluorine group was further added.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 48.3 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 112 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B3]
 参考例B1において、異方性色素膜形成用組成物の固形分に対して0.02%のフッ素系水溶性有機化合物(DIC株式会社製メガファックF-553。親水基を有し、疎水基としてフッ素基を有する。)を更に添加した以外は参考例B1と同様に、固形分濃度が18%の異方性色素膜形成用組成物B6を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は56.8℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で108cPであった。
[Example B3]
In Reference Example B1, 0.02% of a fluorine-based water-soluble organic compound (Megafac F-553 manufactured by DIC Corporation, having a hydrophilic group and a hydrophobic group) based on the solid content of the composition for forming an anisotropic dye film The composition B6 for forming an anisotropic dye film having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a fluorine group was further added.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 56.8 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 108 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B4]
 参考例B1において、異方性色素膜形成用組成物の固形分に対して0.02%のフッ素系水溶性有機化合物(DIC株式会社製メガファックF-556。親水基を有し、疎水基としてフッ素基を有する。)を更に添加した以外は参考例B1と同様に、固形分濃度が18%の異方性色素膜形成用組成物B7を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は49.8℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で108cPであった。
[Example B4]
In Reference Example B1, 0.02% of a fluorine-based water-soluble organic compound (Megafac F-556 manufactured by DIC Corporation, having a hydrophilic group and a hydrophobic group) based on the solid content of the composition for forming an anisotropic dye film The composition B7 for forming an anisotropic dye film having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a fluorine group was further added.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 49.8 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 108 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B5]
 参考例B1において、異方性色素膜形成用組成物の固形分に対して0.02%のシリコーン系水溶性有機化合物(ビックケミー社製BYK-348。親水基としてポリエーテル基を有し、疎水基としてシロキサン基を有する。)を更に添加した以外は参考例B1と同様に、固形分濃度が18%の異方性色素膜形成用組成物B8を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は51.2℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で112cPであった。
[Example B5]
In Reference Example B1, 0.02% of a silicone-based water-soluble organic compound (BYK-348 manufactured by BYK-Chemie Co., Ltd., having a polyether group as a hydrophilic group and hydrophobic An anisotropic dye film-forming composition B8 having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a siloxane group was added as a group.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 51.2 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 112 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B6]
 参考例B1において、異方性色素膜形成用組成物の固形分に対して0.02%のシリコーン系水溶性有機化合物(ビックケミー社製BYK-349。親水基としてポリエーテル基を有し、疎水基としてシロキサン基を有する。)を更に添加した以外は参考例B1と同様に、固形分濃度が18%の異方性色素膜形成用組成物B9を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は51.5℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で103cPであった。
[Example B6]
In Reference Example B1, 0.02% of a silicone-based water-soluble organic compound (BYK-349 manufactured by BYK-Chemie Co., Ltd. based on the solid content of the anisotropic dye film-forming composition. An anisotropic dye film-forming composition B9 having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a siloxane group was added as a group.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 51.5 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 103 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B7]
 参考例B1において、異方性色素膜形成用組成物の固形分に対して0.02%のシリコーン系水溶性有機化合物(信越化学工業株式会社製KP-104。親水基としてポリオール基を有し、疎水基としてシロキサン基を有する。)を更に添加した以外は参考例B1と同様に、固形分濃度が18%の異方性色素膜形成用組成物B10を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は51.0℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で116cPであった。
[Example B7]
In Reference Example B1, 0.02% of a silicone-based water-soluble organic compound (KP-104 manufactured by Shin-Etsu Chemical Co., Ltd. having a polyol group as a hydrophilic group) based on the solid content of the composition for forming an anisotropic dye film An anisotropic dye film-forming composition B10 having a solid content concentration of 18% was prepared in the same manner as in Reference Example B1, except that a siloxane group as a hydrophobic group was further added.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 51.0 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 116 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B8]
 参考例B2において、異方性色素膜形成用組成物の固形分に対して0.01%のシリコーン系水溶性有機化合物(ビックケミー社製BYK-349。親水基としてポリエーテル基を有し、疎水基としてシロキサン基を有する。)を更に添加した以外は参考例B2と同様に、固形分濃度が17%の異方性色素膜形成用組成物B11を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は45.1℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で110cPであった。
[Example B8]
In Reference Example B2, 0.01% of a silicone-based water-soluble organic compound (BYK-349, manufactured by BYK Chemie Co., Ltd., having a polyether group as a hydrophilic group and hydrophobic An anisotropic dye film-forming composition B11 having a solid concentration of 17% was prepared in the same manner as in Reference Example B2, except that a siloxane group was added as a group.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 45.1 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 110 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B9]
 参考例B2において、異方性色素膜形成用組成物の固形分に対して0.01%のアクリル系水溶性有機化合物(ビックケミー社製BYK-380N。親水基及び疎水基を有し、これらをブロック構造で有する。)を更に添加した以外は参考例B2と同様に、固形分濃度が17%の異方性色素膜形成用組成物B12を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は45.5℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で111cPであった。
[Example B9]
In Reference Example B2, 0.01% acrylic water-soluble organic compound (BYK-380N manufactured by BYK-Chemie Co., Ltd. having a hydrophilic group and a hydrophobic group based on the solid content of the composition for forming an anisotropic dye film. A composition B12 for forming an anisotropic dye film having a solid content concentration of 17% was prepared in the same manner as in Reference Example B2, except that it was further added.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 45.5 ° C. Further, when the viscosity at normal temperature was measured with an E-type viscometer, it was 111 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B10]
 参考例B3において、異方性色素膜形成用組成物の固形分に対して0.006%のシリコーン系水溶性有機化合物(ビックケミー社製BYK-348。親水基としてポリエーテル基を有し、疎水基としてアルキル基を有する。)を更に添加した以外は参考例B3と同様に、固形分濃度が17%の異方性色素膜形成用組成物B13を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は30.7℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で134cPであった。
[Example B10]
In Reference Example B3, 0.006% of a silicone-based water-soluble organic compound (BYK-348 manufactured by BYK-Chemie Co., Ltd., having a polyether group as a hydrophilic group, hydrophobic An anisotropic dye film-forming composition B13 having a solid content concentration of 17% was prepared in the same manner as in Reference Example B3 except that an alkyl group was added as a group.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 30.7 ° C. Further, when the viscosity at room temperature was measured with an E-type viscometer, it was 134 cP under the condition of the rotor rotation speed of 10 rpm.
[実施例B11]
 参考例B3において、異方性色素膜形成用組成物の固形分に対して0.006%のシリコーン系水溶性有機化合物(ビックケミー社製BYK-349。親水基としてポリエーテル基を有し、疎水基としてシロキサン基を有する。)を更に添加した以外は参考例B3と同様に、固形分濃度が17%の異方性色素膜形成用組成物B14を作製した。
 偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は30.4℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で132cPであった。
[Example B11]
In Reference Example B3, 0.006% of a silicone-based water-soluble organic compound (BYK-349 manufactured by BYK-Chemie Co., Ltd. based on the solid content of the anisotropic dye film-forming composition. An anisotropic dye film-forming composition B14 having a solid content concentration of 17% was prepared in the same manner as in Reference Example B3 except that a siloxane group was added as a group.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 30.4 ° C. Further, the viscosity at room temperature was measured with an E-type viscometer.
[実施例B12]
 参考例B3において、異方性色素膜形成用組成物の固形分に対して0.006%のアクリル系水溶性有機化合物(ビックケミー社製BYK-380N。親水基及び疎水基を有し、これらをブロック構造で有する。)を更に添加した以外は参考例B3と同様に、固形分濃度が17%の異方性色素膜形成用組成物B15を作製した。
偏光顕微鏡を用いて常温(25℃)にて液晶性の確認をしたところ、均一な液晶状態であることが確認できた。昇温させた時の等方相出現温度は32.0℃であった。また常温の粘度をE型粘度計で測定したところ、ローター回転数10rpmの条件で158cPであった。
[Example B12]
In Reference Example B3, 0.006% acrylic water-soluble organic compound (BYK-380N manufactured by BYK-Chemie Co., Ltd., having a hydrophilic group and a hydrophobic group based on the solid content of the composition for forming an anisotropic dye film. The composition B15 for forming an anisotropic dye film having a solid content concentration of 17% was prepared in the same manner as in Reference Example B3, except that it was added in the form of a block structure.
When liquid crystallinity was confirmed at normal temperature (25 ° C.) using a polarizing microscope, it was confirmed that the liquid crystal state was uniform. The isotropic phase appearance temperature when the temperature was raised was 32.0 ° C. Further, when the viscosity at room temperature was measured with an E-type viscometer, it was 158 cP under the condition of the rotor rotation speed of 10 rpm.
[塗布試験]
 実施例B1~B12、参考例B1~B3で調製した異方性色素膜形成用組成物をそれぞれUVオゾン処理装置で600秒間処理したガラス基板上にバーコーター(松尾産業製OSPシリーズ)を用いて速度40mm/sの速度で機械塗布し、風乾して、異方性色素膜B1~B15を作製した。異方性色素膜を目視で観察し、バーによる塗布スジがみられない場合はA、みられる場合はBと評価した。
[Application test]
Using a bar coater (OSP series manufactured by Matsuo Sangyo Co., Ltd.) on a glass substrate obtained by treating the composition for forming an anisotropic dye film prepared in Examples B1 to B12 and Reference Examples B1 to B3 with a UV ozone treatment apparatus for 600 seconds. Anisotropic dye films B1 to B15 were produced by mechanical coating at a speed of 40 mm / s and air drying. The anisotropic dye film was visually observed, and was evaluated as A when no coating streak due to a bar was observed, and as B when observed.
[偏光性評価]
 得られた各異方性色素膜について大塚電子製RETS-TS100を用いて、空気の透過率を100%とした時の単体透過率(Ts)及び偏光度(Pe)を測定し、光学特性について評価した。
 Tsは25%以上50%以下であり、且つ、Peが15以上であるものはA、Peが15未満の場合をBと評価した。
[Evaluation of polarization]
About each of the anisotropic dye films obtained, Otsuka Electronics RETS-TS100 was used to measure the single transmittance (Ts) and the degree of polarization (Pe) when the air transmittance was 100%, and the optical characteristics. evaluated.
When Ts was 25% or more and 50% or less and Pe was 15 or more, A and Pe were evaluated as B when Pe was less than 15.
[フィルム転写試験]
 温度23℃、相対湿度70%に調整した恒湿環境に、得られた各異方性色素膜を1日放置した。その後、3cm角にカットしたPET製フィルムを塗膜の上に載せ、さらにそのフィルム上に直径2cmの円柱状の200gの錘を載せて10秒間荷重を負荷した。フィルムをはがしてその裏移りを目視で評価し、異方性色素膜からの転写試験を実施した。フィルムへの転写が無い場合はA、フィルムに異方性色素膜の一部が転写する場合はBとして、塗膜の機械特性を評価した。
[Film transfer test]
Each anisotropic dye film obtained was left for 1 day in a constant humidity environment adjusted to a temperature of 23 ° C. and a relative humidity of 70%. Thereafter, a PET film cut into 3 cm square was placed on the coating film, and a cylindrical 200 g weight having a diameter of 2 cm was placed on the film, and a load was applied for 10 seconds. The film was peeled off and the setback was visually evaluated, and a transfer test from an anisotropic dye film was performed. The mechanical properties of the coating film were evaluated as A when there was no transfer to the film and B when a portion of the anisotropic dye film was transferred onto the film.
 上記の評価結果から、色素及び特定の高分子化合物を含む、参考例B1~B3及び実施例B1~B12の本発明の異方性色素膜形成用組成物は、いずれも常温で均一な液晶状態であり、耐湿性が改良されたものであった。
 水溶性有機化合物を含む、本発明の一態様の異方性色素膜形成用組成物である実施例B1~B12の異方性色素膜形成用組成物は、塗布スジを有意に減少させ、また、フィルムへの転写性を有意に低下させた。さらに、粘度が大きく増加することなく、異方性色素膜形成用組成物の液晶性(等方相出現温度)や異方性色素膜の光学特性は維持されていた。これは塗布・乾燥の過程で水溶性有機化合物が塗膜表面に集積して表面張力を低下させると同時に、色素と酸性基及び塩基性基を有する高分子化合物からなる組成物の表面をカバーするためである。このことから、実施例B1~B12の異方性色素膜形成用組成物は、塗膜の均一塗布化を実現し、さらにハンドリング性が高いことが示された。
From the above evaluation results, the anisotropic dye film-forming compositions of Reference Examples B1 to B3 and Examples B1 to B12 of the present invention containing a dye and a specific polymer compound are all in a uniform liquid crystal state at room temperature. The moisture resistance was improved.
The composition for forming an anisotropic dye film of Examples B1 to B12, which is a composition for forming an anisotropic dye film of one embodiment of the present invention containing a water-soluble organic compound, significantly reduces coating stripes, and , Transferability to film was significantly reduced. Furthermore, the liquid crystallinity (isotropic phase appearance temperature) of the anisotropic dye film-forming composition and the optical characteristics of the anisotropic dye film were maintained without greatly increasing the viscosity. In this process, water-soluble organic compounds accumulate on the surface of the coating film during coating and drying, reducing the surface tension, and at the same time covering the surface of a composition comprising a dye, a polymer compound having an acidic group and a basic group. Because. From this, it was shown that the anisotropic dye film-forming compositions of Examples B1 to B12 realize uniform coating of the coating film and have high handling properties.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
<フィラーを用いた実施例>
[参考例C1]
 Dye-1とアリルアミンとアリルスルホン酸ナトリウムが4:6のモル比で含まれる共重合体である酸性基及び塩基性基を有する高分子化合物CC1(重量平均分子量:1700)を30:70の重量比率で混ぜ、固形分濃度が16.5%の溶液になるようにイオン交換水を添加した。その後、80℃で90分攪拌して完全に溶解させ、異方性色素膜形成用組成物C1を調製した。
<Example using filler>
[Reference Example C1]
Weight of 30:70 polymer compound CC1 (weight average molecular weight: 1700) having an acidic group and a basic group, which is a copolymer containing Dye-1, allylamine, and sodium allylsulfonate in a molar ratio of 4: 6 Mixing at a ratio, ion-exchanged water was added so that the solution had a solid concentration of 16.5%. Then, it stirred for 90 minutes at 80 degreeC, and it was made to melt | dissolve completely, and the composition C1 for anisotropic dye film formation was prepared.
[実施例C1]
 参考例C1における色素と高分子化合物の混合比を30:70(重量比)としたままフィラーCB1(ビックケミー・ジャパン社製、BYK-3600、平均一次粒子径40nm)を全固形分中に5%添加し、固形分濃度が16.5%の溶液になるようにイオン交換水を添加した。その後、80℃で90分攪拌して完全に溶解させ、異方性色素膜形成用組成物C2を調製した。
[Example C1]
Filler CB1 (BYK-3600, average primary particle size 40 nm, manufactured by Big Chemie Japan Co., Ltd.) is 5% in the total solid content while maintaining the mixing ratio of the pigment and polymer compound in Reference Example C1 at 30:70 (weight ratio). Then, ion-exchanged water was added so that the solution had a solid content concentration of 16.5%. Then, it stirred for 90 minutes at 80 degreeC, and it was made to melt | dissolve completely, and the composition C2 for anisotropic dye film formation was prepared.
[参考例C2]
 Dye-1と高分子化合物CC1(重量平均分子量:1700)と添加剤CD1(トリグリシン)を30:60:10の重量比率で混ぜ、固形分濃度が17.6%の溶液になるようにイオン交換水を添加した。その後、80℃で90分攪拌して完全に溶解させ、異方性色素膜形成用組成物C3を調製した。
[Reference Example C2]
Dye-1, polymer compound CC1 (weight average molecular weight: 1700) and additive CD1 (triglycine) were mixed at a weight ratio of 30:60:10, so that the solid concentration was 17.6%. Exchange water was added. Then, it stirred for 90 minutes at 80 degreeC, and it was made to melt | dissolve completely, and the composition C3 for anisotropic dye film formation was prepared.
[実施例C2]
 参考例C2におけるDye-1、高分子化合物CC1、添加剤CD1の混合比を30:60:10(重量比)としたままフィラーCB2(日産化学工業社製、スノーテックスCM、平均一次粒子径20~25nm)を全固形分中に1%添加し、固形分濃度が17.7%の溶液になるようにイオン交換水を添加した。その後、80℃で90分攪拌して完全に溶解させ、異方性色素膜形成用組成物C4を調製した。
[Example C2]
Filler CB2 (manufactured by Nissan Chemical Industries, Snowtex CM, average primary particle size 20) with the mixing ratio of Dye-1, polymer compound CC1 and additive CD1 in Reference Example C2 being 30:60:10 (weight ratio) ˜25 nm) was added to 1% of the total solids, and ion-exchanged water was added so as to obtain a solution having a solids concentration of 17.7%. Then, it stirred for 90 minutes at 80 degreeC, and it was made to melt | dissolve completely, and the composition C4 for anisotropic dye film formation was prepared.
[実施例3]
 フィラーCB2の全固形分中に対する添加量を5%とし、固形分濃度を18.8%に変更したこと以外は実施例C2と同様に、異方性色素膜形成用組成物C5を作製した。
[Example 3]
An anisotropic dye film-forming composition C5 was produced in the same manner as in Example C2, except that the amount of filler CB2 added to the total solid content was 5% and the solid content concentration was changed to 18.8%.
[実施例C4]
 フィラーCB2の全固形分中に対する添加量を10%に変更したこと以外は実施例C3と同様に、異方性色素膜形成用組成物C6を作製した。
[Example C4]
An anisotropic dye film-forming composition C6 was produced in the same manner as in Example C3 except that the amount of filler CB2 added to the total solid content was changed to 10%.
[実施例C5]
 フィラーCB1をフィラーCB3(日産化学工業社製、スノーテックスC、平均一次粒子径10~15nm)で置き換え、固形分濃度を17.1%に変更したこと以外は実施例C4と同様に、異方性色素膜形成用組成物C7を作製した。
[Example C5]
Similar to Example C4 except that filler CB1 was replaced with filler CB3 (Nissan Chemical Industries, Snowtex C, average primary particle size 10-15 nm) and the solid content concentration was changed to 17.1%. The composition C7 for forming a functional dye film was prepared.
[実施例C6]
 フィラーCB1をフィラーCB4(日産化学工業社製、スノーテックス20L、平均一次粒子径40~50nm)で置き換え、固形分濃度を16.9%に変更したこと以外は実施例C2と同様に、異方性色素膜形成用組成物C8を作製した。
[Example C6]
Similar to Example C2, except that filler CB1 was replaced with filler CB4 (manufactured by Nissan Chemical Industries, Snowtex 20L, average primary particle size 40-50 nm), and the solid content concentration was changed to 16.9%. The composition C8 for forming a functional dye film was prepared.
[偏光度及び透過率]
 実施例C1~C6、参考例C1~C2で調製した異方性色素膜形成用組成物をそれぞれガラス基板上にアプリケーターを用いて塗布後、風乾し、異方性色素膜を作製した。
 得られた異方性色素膜の透過率及び偏光度は、グラムトムソン偏光子を備える分光光度計(大塚電子(株)社製、製品名「RETS-100」)を用いて測定した。異方性色素膜に直線偏光の測定光を入射し、測定により得られる400nm~800nmの透過率波長依存性(Ty(λ)、Tz(λ)、Tm(λ))から、以下に示される計算により、測定素子の単体透過率(Tm)[%]及び偏光度(PE)を算出した。
  Tm[%]=ΣV(λ)D65(λ)Tm(λ)/ΣV(λ)D65(λ)×100
  Ty[%]=ΣV(λ)D65(λ)Ty(λ)/ΣV(λ)D65(λ)×100
  Tz[%]=ΣV(λ)D65(λ)Tz(λ)/ΣV(λ)D65(λ)×100
  PE  ={(Ty-Tz)/(Ty+Tz)}1/2x100
  Ts[%]=Tm[%]=(Ty+Tz)/2
  Tm(λ):各波長における基材付き異方性色素膜の単体透過率
  Tz(λ):各波長における基材付き異方性色素膜の吸収軸方向の偏光に対する透過率
  Ty(λ):各波長における基材付異方性色素膜の偏光軸方向の偏光に対する透過率
  D65(λ):各波長における物体色の測定用光源強度(CIE、ISOの基準光強度)
  V(λ):国際照明委員会、国際度量衡総会により定められる比視感度波長依存性
[Degree of polarization and transmittance]
The anisotropic dye film-forming compositions prepared in Examples C1 to C6 and Reference Examples C1 to C2 were each coated on a glass substrate using an applicator and then air-dried to prepare anisotropic dye films.
The transmittance and polarization degree of the obtained anisotropic dye film were measured using a spectrophotometer (product name “RETS-100” manufactured by Otsuka Electronics Co., Ltd.) equipped with a Gram Thomson polarizer. The following is shown from the transmittance wavelength dependence (Ty (λ), Tz (λ), Tm (λ)) of 400 nm to 800 nm obtained by making linearly polarized measuring light incident on the anisotropic dye film. The single transmittance (Tm) [%] and the degree of polarization (PE) of the measurement element were calculated by calculation.
Tm [%] = ΣV (λ) D 65 (λ) Tm (λ) / ΣV (λ) D 65 (λ) × 100
Ty [%] = ΣV (λ) D 65 (λ) Ty (λ) / ΣV (λ) D 65 (λ) × 100
Tz [%] = ΣV (λ) D 65 (λ) Tz (λ) / ΣV (λ) D 65 (λ) × 100
PE = {(Ty−Tz) / (Ty + Tz)} 1/2 x100
Ts [%] = Tm [%] = (Ty + Tz) / 2
Tm (λ): single transmittance of anisotropic dye film with substrate at each wavelength Tz (λ): transmittance with respect to polarized light in the absorption axis direction of anisotropic dye film with substrate at each wavelength Ty (λ): D 65 (λ): Light source intensity for measuring object color at each wavelength (CIE, ISO standard light intensity)
V (λ): Specific luminous sensitivity wavelength dependency determined by the International Commission on Illumination and the International Metrology and General Assembly
[付着性]
 実施例C1~C6、参考例C1~C2で調製した異方性色素膜形成用組成物をそれぞれガラス基板上にアプリケーターを用いて塗布後、風乾し、異方性色素膜を作製した。
 常温で相対湿度71%雰囲気下に、得られた異方性色素膜を1日放置した。その後、PETフィルムを塗膜に荷重0.025kgf/mmをかけて押し付け、剥離後のPETフィルムへの塗膜の付着性を観察し、下記基準にて評価した。
  B:付着が多い場合
  A:ほとんど付着していない場合
[Adhesiveness]
The anisotropic dye film-forming compositions prepared in Examples C1 to C6 and Reference Examples C1 to C2 were each coated on a glass substrate using an applicator and then air-dried to prepare anisotropic dye films.
The obtained anisotropic dye film was allowed to stand for 1 day in an atmosphere of 71% relative humidity at room temperature. Thereafter, the PET film was pressed against the coating film with a load of 0.025 kgf / mm 2 , and the adhesion of the coating film to the PET film after peeling was observed and evaluated according to the following criteria.
B: When there is much adhesion A: When there is almost no adhesion
 上記異方性色素膜について、各種評価を行った。結果を表4に示す。
 色素及び特定の高分子化合物を含む、参考例C1~C2及び実施例C1~C6の本発明の異方性色素膜形成用組成物は、いずれも常温で均一な液晶状態であり、耐湿性が改良されたものであった。
 フィラーを添加した実施例C1は、参考例1に対して偏光度は0.5%低下したのみで、付着性をさらに低減することができた。
 フィラーを添加した実施例C2~C6は、参考例2に対して偏光度は0.1~0.4%低下したのみで、付着性をさらに低減することができた。
 これらの結果から、フィラーを含有する本発明の一態様の異方性色素膜形成用組成物は、高い偏光度を維持したまま、付着性をさらに低減可能であることが示された。
Various evaluations were performed on the anisotropic dye film. The results are shown in Table 4.
The anisotropic dye film-forming compositions of the present invention of Reference Examples C1 to C2 and Examples C1 to C6 containing a dye and a specific polymer compound are all in a uniform liquid crystal state at room temperature and have moisture resistance. It was improved.
In Example C1 to which the filler was added, the degree of polarization was only reduced by 0.5% with respect to Reference Example 1, and the adhesion could be further reduced.
In Examples C2 to C6 to which the filler was added, the degree of polarization was only reduced by 0.1 to 0.4% with respect to Reference Example 2, and the adhesion could be further reduced.
From these results, it was shown that the composition for forming an anisotropic dye film of one embodiment of the present invention containing a filler can further reduce adhesion while maintaining a high degree of polarization.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (17)

  1.  色素並びに、酸性基及び塩基性基を有する高分子化合物を含むものである、異方性色素膜形成用組成物。 An anisotropic dye film forming composition comprising a dye and a polymer compound having an acidic group and a basic group.
  2.  前記塩基性基がアミノ基を含むものである、請求項1に記載の異方性色素膜形成用組成物。 The composition for forming an anisotropic dye film according to claim 1, wherein the basic group contains an amino group.
  3.  前記酸性基がスルホ基を含むものである、請求項1又は2に記載の異方性色素膜形成用組成物。 The composition for forming an anisotropic dye film according to claim 1 or 2, wherein the acidic group contains a sulfo group.
  4.  前記酸性基の少なくとも一部が塩型の酸性基であり、前記塩型の酸性基の対カチオンが、リチウムイオン及び/又はナトリウムイオンである、請求項1~3のいずれか一項に記載の異方性色素膜形成用組成物。 The at least part of the acidic group is a salt-type acidic group, and a counter cation of the salt-type acidic group is a lithium ion and / or a sodium ion. An anisotropic dye film forming composition.
  5.  前記塩基性基及び/又は前記酸性基が、芳香族性の部分構造を有さないものである、請求項1~4のいずれか一項に記載の異方性色素膜形成用組成物。 The composition for forming an anisotropic dye film according to any one of claims 1 to 4, wherein the basic group and / or the acidic group does not have an aromatic partial structure.
  6.  前記高分子化合物の重量平均分子量が800以上10000以下である、請求項1~5のいずれか一項に記載の異方性色素膜形成用組成物。 6. The composition for forming an anisotropic dye film according to claim 1, wherein the polymer compound has a weight average molecular weight of 800 or more and 10,000 or less.
  7.  前記色素が水溶性有機色素である、請求項1~6のいずれか一項に記載の異方性色素膜形成用組成物。 The composition for forming an anisotropic dye film according to any one of claims 1 to 6, wherein the dye is a water-soluble organic dye.
  8.  さらに、水溶性有機化合物を含むものである、請求項1~7のいずれか一項に記載の異方性色素膜形成用組成物。 The composition for forming an anisotropic dye film according to any one of claims 1 to 7, further comprising a water-soluble organic compound.
  9.  前記水溶性有機化合物が親水基及び疎水基を有するものである、請求項8に記載の異方性色素膜形成用組成物。 The composition for forming an anisotropic dye film according to claim 8, wherein the water-soluble organic compound has a hydrophilic group and a hydrophobic group.
  10.  さらに、平均一次粒子径1nm~500nmのフィラーを含むものである、請求項1~9のいずれか一項に記載の異方性色素膜形成用組成物。 The composition for forming an anisotropic dye film according to any one of claims 1 to 9, further comprising a filler having an average primary particle diameter of 1 nm to 500 nm.
  11.  前記フィラーが金属酸化物である、請求項10に記載の異方性色素膜形成用組成物。 The composition for forming an anisotropic dye film according to claim 10, wherein the filler is a metal oxide.
  12.  前記金属酸化物がシリカ及び/又はアルミナである、請求項11に記載の異方性色素膜形成用組成物。 The composition for forming an anisotropic dye film according to claim 11, wherein the metal oxide is silica and / or alumina.
  13.  前記フィラーを全固形分中に0.1~50重量%含有していることを特徴とする請求項10~12のいずれか一項に記載の異方性色素膜形成用組成物。 The composition for forming an anisotropic dye film according to any one of claims 10 to 12, wherein the filler is contained in an amount of 0.1 to 50% by weight in the total solid content.
  14.  請求項1~13のいずれか一項に記載の異方性色素膜形成用組成物を用いて形成された、異方性色素膜。 An anisotropic dye film formed using the anisotropic dye film-forming composition according to any one of claims 1 to 13.
  15.  色素、並びに、酸性基及び塩基性基を有する高分子化合物を含むものである、異方性色素膜。 An anisotropic dye film comprising a dye and a polymer compound having an acidic group and a basic group.
  16.  色素、酸性基及び塩基性基を有する高分子化合物、並びに、水溶性有機化合物を含むものである、異方性色素膜。 An anisotropic dye film comprising a dye, a polymer compound having an acidic group and a basic group, and a water-soluble organic compound.
  17.  請求項14~16のいずれか一項に記載の異方性色素膜を含む、光学素子。 An optical element comprising the anisotropic dye film according to any one of claims 14 to 16.
PCT/JP2017/045329 2016-12-27 2017-12-18 Composition for forming anisotropic dye film, and anisotropic dye film WO2018123691A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016253443 2016-12-27
JP2016-253443 2016-12-27
JP2017-061968 2017-03-27
JP2017061968 2017-03-27
JP2017-109354 2017-06-01
JP2017109354 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018123691A1 true WO2018123691A1 (en) 2018-07-05

Family

ID=62708085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045329 WO2018123691A1 (en) 2016-12-27 2017-12-18 Composition for forming anisotropic dye film, and anisotropic dye film

Country Status (1)

Country Link
WO (1) WO2018123691A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031495A (en) * 2018-07-16 2018-12-18 深圳市华星光电技术有限公司 It is coated with the production method and display device of type dye light polarizing film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003864A (en) * 2004-01-19 2006-01-05 Mitsubishi Chemicals Corp Dye composition for anisotropic dye film, anisotropic dye film and polarizing element
JP2007518135A (en) * 2004-01-14 2007-07-05 トランジションズ オプティカル, インコーポレイテッド Polarizing device and method of manufacturing the polarizing device
JP2009102573A (en) * 2007-10-25 2009-05-14 Teijin Dupont Films Japan Ltd Support film to be used as support at step of manufacturing polarizing film
JP2009199075A (en) * 2008-01-25 2009-09-03 Mitsubishi Chemicals Corp Insolubilized anisotropic membrane, treatment liquid for insolubilization, method for producing insolubilized anisotropic membrane using the same, and optical element using insolubilized anisotropic membrane
JP2010026479A (en) * 2008-06-20 2010-02-04 Nitto Denko Corp Method for producing water-resistant polarizing film
JP2012047853A (en) * 2010-08-25 2012-03-08 Sekisui Chem Co Ltd Polarization film, pva based resin film for polarization film, and manufacturing method of polarization film
JP2016133728A (en) * 2015-01-21 2016-07-25 Jxエネルギー株式会社 Method for manufacturing laminate, laminate, polarizing plate and image display device
JP2016535156A (en) * 2013-09-30 2016-11-10 エルジー・ケム・リミテッド Optical film excellent in solvent resistance and polarizing plate including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518135A (en) * 2004-01-14 2007-07-05 トランジションズ オプティカル, インコーポレイテッド Polarizing device and method of manufacturing the polarizing device
JP2006003864A (en) * 2004-01-19 2006-01-05 Mitsubishi Chemicals Corp Dye composition for anisotropic dye film, anisotropic dye film and polarizing element
JP2009102573A (en) * 2007-10-25 2009-05-14 Teijin Dupont Films Japan Ltd Support film to be used as support at step of manufacturing polarizing film
JP2009199075A (en) * 2008-01-25 2009-09-03 Mitsubishi Chemicals Corp Insolubilized anisotropic membrane, treatment liquid for insolubilization, method for producing insolubilized anisotropic membrane using the same, and optical element using insolubilized anisotropic membrane
JP2010026479A (en) * 2008-06-20 2010-02-04 Nitto Denko Corp Method for producing water-resistant polarizing film
JP2012047853A (en) * 2010-08-25 2012-03-08 Sekisui Chem Co Ltd Polarization film, pva based resin film for polarization film, and manufacturing method of polarization film
JP2016535156A (en) * 2013-09-30 2016-11-10 エルジー・ケム・リミテッド Optical film excellent in solvent resistance and polarizing plate including the same
JP2016133728A (en) * 2015-01-21 2016-07-25 Jxエネルギー株式会社 Method for manufacturing laminate, laminate, polarizing plate and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031495A (en) * 2018-07-16 2018-12-18 深圳市华星光电技术有限公司 It is coated with the production method and display device of type dye light polarizing film

Similar Documents

Publication Publication Date Title
US7960521B2 (en) Azo dyes, compositions for anisotropic dye films using them, anisotropic dye films and polarizing elements
JP2007126628A (en) Pigment for anisotropic pigment film, composition containing the pigment, anisotropic pigment film, and polarizing element
JP2010026024A (en) Composition for anisotropic film, anisotropic film, polarizing element, and azo compound
TWI396719B (en) Anisotropic dye film composition, anisotropic dye film and polarizing element
JP5168878B2 (en) Composition for anisotropic dye film, anisotropic dye film and polarizing element
JP4784417B2 (en) Composition for anisotropic dye film, anisotropic dye film and polarizing element
JP4736823B2 (en) Composition for anisotropic dye film, anisotropic dye film, polarizing element and dye for anisotropic dye film
KR100832759B1 (en) Dye composition for anisotropic dye film, anisotropic dye film and polarizer
JP2007272211A (en) Optical element, and method for the manufacturing optical element
WO2018123691A1 (en) Composition for forming anisotropic dye film, and anisotropic dye film
JP2007291246A (en) Azo dye, composition for anisotropic dye film having the dye, anisotropic dye film, and polarizing element
JP2006047966A (en) Pigment for anisotropic pigment film, pigment composition for anisotropic pigment film, anisotropic pigment film and polarizing element
JP2007226212A (en) Coating liquid material, anisotropic film, method for manufacturing anisotropic film, and optical element
KR102170099B1 (en) Composition for anisotropic dye film, anisotropic dye film and optical element
JP2007302807A (en) Azo dye for anisotropic dye film, composition containing the azo dye, anisotropic dye film and polarizing element
JP2009192577A (en) Polarizing film
JP2009057551A (en) Azo compound for anisotropic film
JP7024379B2 (en) Anisotropic dye film forming composition, anisotropic dye film and polarizing element
JP7024458B2 (en) Anisotropic dye film forming composition, anisotropic dye film and polarizing element
JP2018205712A (en) Composition for anisotropic membrane, anisotropic membrane, and optical element
JP2008020908A (en) Pigment for anisotropic pigment film
JP4654882B2 (en) Anisotropic optical film manufacturing method, anisotropic optical film, and optical element
JP2007148179A (en) Dye composition for anisotropic dye film, film forming composition for anisotropic dye film, anisotropic dye film and polarization element
JP5499791B2 (en) Azo compound for anisotropic film, composition for anisotropic film, anisotropic film and polarizing element
JP2007121458A (en) Substrate for anisotropic dye film, anisotropic dye film and its manufacturing method, and polarizing element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889353

Country of ref document: EP

Kind code of ref document: A1