JP2007127333A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007127333A
JP2007127333A JP2005320289A JP2005320289A JP2007127333A JP 2007127333 A JP2007127333 A JP 2007127333A JP 2005320289 A JP2005320289 A JP 2005320289A JP 2005320289 A JP2005320289 A JP 2005320289A JP 2007127333 A JP2007127333 A JP 2007127333A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
indoor
air conditioner
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005320289A
Other languages
Japanese (ja)
Other versions
JP2007127333A5 (en
Inventor
Masayuki Nonaka
正之 野中
Yasushi Shigenaga
康 繁永
Shinichi Abe
伸一 阿部
Hiroshi Yamazaki
洋 山崎
Kazumasa Yoshida
和正 吉田
Kazuo Odate
一夫 大舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2005320289A priority Critical patent/JP2007127333A/en
Priority to CN2006100022699A priority patent/CN1959238B/en
Priority to KR1020060038437A priority patent/KR100863639B1/en
Publication of JP2007127333A publication Critical patent/JP2007127333A/en
Priority to KR1020070053300A priority patent/KR100897981B1/en
Priority to KR1020080116189A priority patent/KR100930762B1/en
Publication of JP2007127333A5 publication Critical patent/JP2007127333A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent dew condensation in a cross flow fan and a casing during cooling operation, and to suppress dew condensation while preventing breakage of a compressor during cooling operation when using a heat exchanger with a reduced amount of materials of an indoor unit in an air conditioner. <P>SOLUTION: The amount of used materials is reduced by providing one row of heat transfer tubes with respect to a flowing direction of air of an indoor heat exchanger, and dew condensation due to inflow of air that has not been cooled or dehumidified into the cross flow fan is suppressed by providing a means for heating a refrigerant between one row of heat exchangers and a compressor suction part during cooling operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、室内熱交換器と貫流ファンにより構成される室内ユニットを備えた空気調和機に関する。   The present invention relates to an air conditioner including an indoor unit including an indoor heat exchanger and a cross-flow fan.

従来、空気調和機に使用される室内ユニットは、例えば特許文献1に開示した構造が知られている。この特許文献1に記載された室内ユニットの熱交換器は、上部前側熱交換器と上部後側熱交換器とを逆V字形状に配置し、この上部前側熱交換器の下部に下部前側熱交換器をしてなる室内熱交換器と、上部後側熱交換器の風上に配置された補助熱交換器(サブクーラ)が設けられている。この室内熱交換器の風下に貫流ファンが設けられている。そして、この室内熱交換器は、空気の流れ方向に対する伝熱管の列数が複数列である2列となっている。   2. Description of the Related Art Conventionally, an indoor unit used in an air conditioner has a structure disclosed in Patent Document 1, for example. In the heat exchanger of the indoor unit described in Patent Document 1, the upper front heat exchanger and the upper rear heat exchanger are arranged in an inverted V shape, and the lower front heat exchanger is disposed below the upper front heat exchanger. An indoor heat exchanger configured as an exchanger and an auxiliary heat exchanger (subcooler) arranged on the windward side of the upper rear heat exchanger are provided. A cross-flow fan is provided leeward of the indoor heat exchanger. And this indoor heat exchanger becomes two rows in which the number of rows of heat exchanger tubes with respect to the air flow direction is a plurality of rows.

特開2002−81672号公報(図6)JP 2002-81672 A (FIG. 6)

この特許文献1に記載された空気調和機の室内ユニット内に設けられた室内熱交換器は、空気の流れ方向に対する伝熱管の列数が複数列で構成されているため、一般には銅材でつくられている伝熱管を多く必要としている。銅は地球上では有限な資源であり、銅資源の減少という問題があった。また伝熱管内の空間容積も大きいため必要な封入するべき冷媒量が多く必要であった。現在のエアコンは、一般にR410AやR407CやR22という冷媒が使われているが、いずれも地球温暖化能力を有することから、エアコンの移設や廃棄時に冷媒が大気に漏れた場合、地球環境に影響を与えることが懸念されている。   Since the indoor heat exchanger provided in the indoor unit of the air conditioner described in Patent Document 1 is composed of a plurality of rows of heat transfer tubes with respect to the air flow direction, it is generally made of a copper material. Many heat transfer tubes are needed. Copper is a finite resource on the earth, and there was a problem of a decrease in copper resources. Moreover, since the space volume in the heat transfer tube is large, a large amount of refrigerant to be sealed is necessary. Current air conditioners generally use refrigerants R410A, R407C, and R22, but they all have global warming potential, so if refrigerant leaks into the atmosphere when moving or disposing of air conditioners, the global environment will be affected. There are concerns about giving.

上記の目的で、材料を低減した空気調和機とすると、室内ユニットの空気吹き出し口から結露水が流出するという問題があった。   If the air conditioner with reduced material is used for the above purpose, there is a problem that condensed water flows out from the air outlet of the indoor unit.

本発明の第一の目的は、地球環境負荷を低減する空気調和機を提供することにある。   The first object of the present invention is to provide an air conditioner that reduces the global environmental load.

また本発明の第二の目的は、材料を低減した空気調和機としたとき、結露水が室内ユニットの空気吹き出し口から流出することを抑制した空気調和機を提供することにある。   A second object of the present invention is to provide an air conditioner that suppresses the flow of condensed water from the air outlet of an indoor unit when the air conditioner has a reduced material.

上記第一の目的は、室内熱交換器及び貫流ファンを有する室内ユニットを備えた空気調和機おいて、前記室内熱交換器の空気の流れ方向に対する伝熱管の列数を1列とした空気調和機とすることにより達成される。   The first object is to provide an air conditioner having an indoor unit having an indoor heat exchanger and a cross-flow fan, wherein the number of rows of heat transfer tubes in the air flow direction of the indoor heat exchanger is one. This is achieved by using a machine.

上記第二の目的は、室内熱交換器及び貫流ファンを有する室内ユニットを備えた空気調和機おいて、前記室内熱交換器の空気の流れ方向に対する伝熱管の列数を1列とし、冷房運転時に前記室内熱交換器と圧縮機吸込部との間の冷媒を加熱する冷媒過熱手段を備えた空気調和機とすることにより達成される。   The second object is an air conditioner including an indoor unit having an indoor heat exchanger and a cross-flow fan, wherein the number of rows of heat transfer tubes with respect to the air flow direction of the indoor heat exchanger is one, and cooling operation is performed. This is sometimes achieved by providing an air conditioner equipped with refrigerant overheating means for heating the refrigerant between the indoor heat exchanger and the compressor suction section.

本発明によれば、地球環境負荷を低減する空気調和機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which reduces a global environmental load can be provided.

また、材料を低減した空気調和機としたとき、結露水が室内ユニットの空気吹き出し口から流出することを抑制した空気調和機を提供することができる。   Moreover, when it is set as the air conditioner which reduced material, the air conditioner which suppressed that dew condensation water flows out from the air blower outlet of an indoor unit can be provided.

本発明の実施例を図1を用いて説明する。空気調和機の室内ユニット1内には、貫流ファン2及び室内熱交換器3が備えられている。室内熱交換器3は、上部前側熱交換器部分3a、上部後側熱交換器部分3b及び上部前側熱交換器部分3aの下部に設けられた下部前側熱交換器部分3cにより構成されている。上部前側熱交換器部分3a及び上部後側熱交換器部分3bは、縦断面形状が逆V字形状をなしている。室内熱交換器3は、内部に冷媒を通流する伝熱管5及びアルミニウム製のフィン4から構成され、伝熱管5が積層されたフィン4と直行するように挿入されたクロスフィンチューブタイプが採用されている。下部前側熱交換器部分3cの下部には、上部前側熱交換器部分3a及び下部前側熱交換器部分3cで凝縮した空気中の水分を受ける前面露受皿20が配置されている。また、上部後側熱交換器部分3bの下部にはこの熱交換器部分で凝縮した水分を受ける背面露受皿21が設けられている。   An embodiment of the present invention will be described with reference to FIG. A cross-flow fan 2 and an indoor heat exchanger 3 are provided in the indoor unit 1 of the air conditioner. The indoor heat exchanger 3 includes an upper front heat exchanger portion 3a, an upper rear heat exchanger portion 3b, and a lower front heat exchanger portion 3c provided below the upper front heat exchanger portion 3a. The upper front heat exchanger portion 3a and the upper rear heat exchanger portion 3b have a vertical V-shaped cross section. The indoor heat exchanger 3 is composed of a heat transfer tube 5 through which refrigerant flows and an aluminum fin 4, and a cross fin tube type that is inserted so as to be orthogonal to the laminated fin 4 is adopted. Has been. A front dew tray 20 that receives moisture in the air condensed in the upper front heat exchanger portion 3a and the lower front heat exchanger portion 3c is disposed below the lower front heat exchanger portion 3c. Further, a backside dew tray 21 for receiving moisture condensed in the heat exchanger part is provided at the lower part of the upper rear heat exchanger part 3b.

そして、貫流ファン2が回転すると空気吸込み口22から吸込まれた室内空気が、室内熱交換器3にて熱交換され、貫流ファン2を介して空気吹出し口23から吹出される。   When the once-through fan 2 rotates, the indoor air sucked from the air suction port 22 is heat-exchanged by the indoor heat exchanger 3 and is blown out from the air blowing port 23 via the once-through fan 2.

ところで、室内熱交換器3は熱交換を行う空気の流れ方向に対する伝熱管5の列数を1列としている。このように室内熱交換器3の空気の流れ方向に対する伝熱管の列数を1列としたので、特許文献1に記載された列数が複数列の場合に比べて、銅材でつくられている伝熱管5の使用量を低減することができる。さらに伝熱管の内容積も低減できるので、必要な封入冷媒量を従来よりも削減することができる。このため、使用冷媒がR410AやR407CやR22をという地球温暖化能力を有する場合であっても、エアコンの移設や廃棄時に冷媒が大気に漏れ出したとしても地球環境に及ぼす影響を低減することができる。   By the way, the indoor heat exchanger 3 makes the number of rows of the heat transfer tubes 5 with respect to the flow direction of the air performing heat exchange one row. Thus, since the number of rows of the heat transfer tubes with respect to the air flow direction of the indoor heat exchanger 3 is one row, the number of rows described in Patent Document 1 is made of a copper material as compared with the case where there are a plurality of rows. The amount of heat transfer tube 5 used can be reduced. Furthermore, since the internal volume of the heat transfer tube can be reduced, the required amount of enclosed refrigerant can be reduced as compared with the conventional case. For this reason, even if the refrigerant used has the global warming ability of R410A, R407C, and R22, even if the refrigerant leaks into the atmosphere when the air conditioner is moved or discarded, the impact on the global environment can be reduced. it can.

なお、本実施例では、室内熱交換器3の形状を上部前側熱交換器部分3a及び上部後側熱交換器部分3bの縦断面形状が逆V字形状としたが、伝熱管の列数が1列であれば効果は熱交換器の形状に関わらず同様であり、図2に示すような断面が曲線により構成される円弧形状の室内熱交換器6としても良い。   In this embodiment, the shape of the indoor heat exchanger 3 is an inverted V-shaped vertical cross section of the upper front heat exchanger portion 3a and the upper rear heat exchanger portion 3b. If it is one row, the effect is the same regardless of the shape of the heat exchanger, and it may be an arc-shaped indoor heat exchanger 6 whose cross section is formed by a curve as shown in FIG.

ところで、このように室内熱交換器3の伝熱管5の列数を1列とすると、室内熱交換器3が蒸発器として作用する冷房運転時に貫流ファン2に露が付き、この露が空気吹出し口23から飛び出して室内に飛散するという問題があった。   By the way, when the number of rows of the heat transfer tubes 5 of the indoor heat exchanger 3 is 1, the dew is attached to the cross-flow fan 2 during the cooling operation in which the indoor heat exchanger 3 acts as an evaporator, and this dew is blown out into the air. There was a problem of jumping out of the mouth 23 and scattering into the room.

これは、冷房運転時に運転負荷が急激に変化したとき、若しくは起動時など減圧手段(膨張装置)での減圧量が適当でないときに、蒸発器出口付近(冷房運転時の室内熱交換器3の冷媒出口となる伝熱管から冷媒流れ上流側の1段から数段の伝熱管)での冷媒が過熱域となる場合があった。過熱域の冷媒はガス冷媒であり、熱交換器の温度は流入する空気の露点温度より高く、過熱域となっている冷媒が流れる伝熱管5の近傍を通過した空気は減湿が行われないまま室内ユニットの筐体や貫流ファンに接触する。ここで筐体や貫流ファンは、非過熱域(気液二相域)となっている冷媒が流れている伝熱管5が存在する熱交換器部分で冷却減湿された空気により低温となっている。ここに前記の減湿されていない空気が接触するとそこで結露が発生し、結露水が室内ユニット外へ滴下してしまうのである。   This is because when the operating load changes abruptly during cooling operation, or when the amount of pressure reduction in the pressure reducing means (expansion device) is not appropriate, such as during startup, the vicinity of the evaporator outlet (in the indoor heat exchanger 3 during cooling operation). In some cases, the refrigerant in the first to several stages of the heat transfer pipe upstream from the heat transfer pipe serving as the refrigerant outlet becomes an overheated region. The refrigerant in the superheated area is a gas refrigerant, the temperature of the heat exchanger is higher than the dew point temperature of the incoming air, and the air passing through the vicinity of the heat transfer pipe 5 through which the refrigerant in the superheated area flows is not dehumidified. Keep touching the indoor unit housing and cross-flow fan. Here, the casing and the cross-flow fan are cooled to low temperature by the air that has been cooled and dehumidified in the heat exchanger portion where the heat transfer pipe 5 in which the refrigerant flowing in the non-superheated region (gas-liquid two-phase region) flows exists. Yes. If the non-humidified air comes into contact therewith, condensation occurs there, and the condensed water drops outside the indoor unit.

この問題を回避するために蒸発器となっている室内熱交換器3内での過熱を抑えるように減圧手段での減圧量を低減させることが考えられる。このように減圧量を調節すると、運転負荷が急激に変化した場合や起動時などの減圧手段での減圧量が適当でない場合には、蒸発器内(室内熱交換器3)では蒸発が完了せず、圧縮機に未蒸発の冷媒が流入し、圧縮機で液圧縮を行うこととなり、圧縮機を破損してしまう虞がある。   In order to avoid this problem, it is conceivable to reduce the amount of decompression by the decompression means so as to suppress overheating in the indoor heat exchanger 3 serving as an evaporator. When the amount of pressure reduction is adjusted in this way, when the operating load changes suddenly or when the amount of pressure reduction by the pressure reduction means at the time of startup or the like is not appropriate, evaporation in the evaporator (indoor heat exchanger 3) is completed. Therefore, unevaporated refrigerant flows into the compressor and liquid compression is performed by the compressor, which may damage the compressor.

この問題を解決する実施例を図3を用いて説明する。3は室内熱交換器、7は補助熱交換器である。補助熱交換器7は、冷媒流路としては、室内熱交換器3が蒸発器として作用する冷房運転時に、蒸発器出口部すなわち室内熱交換器3と圧縮機吸込部の間の冷媒配管に接続されている。また、風路としては、室内熱交換器3の風上側、すなわち室内熱交換器3と複数列となるように配置されている。この実施例では、上部後側熱交換器部3bの風上に配置されている。   An embodiment for solving this problem will be described with reference to FIG. 3 is an indoor heat exchanger and 7 is an auxiliary heat exchanger. The auxiliary heat exchanger 7 is connected to the outlet of the evaporator, that is, to the refrigerant pipe between the indoor heat exchanger 3 and the compressor suction portion during the cooling operation in which the indoor heat exchanger 3 acts as an evaporator. Has been. Moreover, as an air path, it arrange | positions so that it may become a windward side of the indoor heat exchanger 3, ie, the indoor heat exchanger 3, and a some line. In this embodiment, it is disposed on the windward side of the upper rear heat exchanger section 3b.

本室内ユニット1は冷凍サイクルに組み込まれており、8は圧縮機、9は冷媒流路切替え装置としての四方弁、10は冷房時は凝縮器、暖房時は蒸発器として作用する室外熱交換器、11は減圧手段としてのキャピラリチューブ、12は室外送風ファンである。   The indoor unit 1 is incorporated in a refrigeration cycle, 8 is a compressor, 9 is a four-way valve as a refrigerant flow switching device, 10 is a condenser during cooling, and an outdoor heat exchanger that functions as an evaporator during heating. , 11 is a capillary tube as decompression means, and 12 is an outdoor fan.

以上のように構成された空気調和機の冷房運転時の動作について説明する。圧縮機8で圧縮された高温高圧の冷媒ガスは四方弁9を通り、室外熱交換器10で送風ファン12により送風される空気に放熱して凝縮する。さらにキャピラリチューブ11で減圧されて低温低圧状態になり、室内ユニット1内に入り、冷媒分岐器24により二系統に分岐されて室内熱交換器3の上部前側熱交換器部3aに流入する。一方に分岐された冷媒は、上部前側熱交換器部3a内の伝熱管5を4段流れた後、上部後側熱交換器部3bに流入する。そしてこの上部後側熱交換器部3bを流出した冷媒は補助熱交換器7に流入する。他方の冷媒は上部前側熱交換器部3aを2段の伝熱管5を流れた後、下部前側熱交換器部3cに流入する。この下部前側熱交換器部3cを流れ出た冷媒は補助熱交換器7に流入して、先の冷媒と冷媒分岐器25にて合流して、室外機に至り、四方弁9を介して圧縮機8の吸込部に至る。室内熱交換器3及び補助熱交換器7を流れている間に、冷媒は貫流ファン2により送風される空気から吸熱することで蒸発して、前述の如く、再び圧縮機8へ戻る。   An operation during the cooling operation of the air conditioner configured as described above will be described. The high-temperature and high-pressure refrigerant gas compressed by the compressor 8 passes through the four-way valve 9, dissipates heat to the air blown by the blower fan 12 in the outdoor heat exchanger 10 and condenses. Further, the pressure is reduced by the capillary tube 11 to become a low temperature and low pressure state, enters the indoor unit 1, is branched into two systems by the refrigerant branching device 24, and flows into the upper front heat exchanger section 3 a of the indoor heat exchanger 3. The refrigerant branched to one side flows through the heat transfer tubes 5 in the upper front heat exchanger section 3a in four stages and then flows into the upper rear heat exchanger section 3b. The refrigerant that has flowed out of the upper rear heat exchanger section 3 b flows into the auxiliary heat exchanger 7. The other refrigerant flows through the upper front heat exchanger section 3a through the two heat transfer tubes 5 and then flows into the lower front heat exchanger section 3c. The refrigerant that has flowed out of the lower front heat exchanger section 3 c flows into the auxiliary heat exchanger 7, joins with the previous refrigerant at the refrigerant branching device 25, reaches the outdoor unit, and is connected to the compressor via the four-way valve 9. 8 suction parts. While flowing through the indoor heat exchanger 3 and the auxiliary heat exchanger 7, the refrigerant evaporates by absorbing heat from the air blown by the once-through fan 2, and returns to the compressor 8 again as described above.

以上のように構成することで、貫流ファン2に付いた露が室内ユニット1から流出することを防止することができる。その作用を説明する。貫流ファン2の風量が急激に増加した場合、室温が急に上昇した場合、若しくはキャピラリーチューブ11における減圧量が過多の場合、室内熱交換器3で冷媒の蒸発が完了してしまい、前述の如く、露付きの原因となる。しかし、本実施例では、補助熱交換器7を設けており、上記の極端な場合でも室内熱交換器3内では飽和域となるような冷媒封入量とすることで、室内熱交換器3内が過熱域となることを防止できる。このように補助熱交換器7の空気下流側を冷媒が過熱域にない室内熱交換器3とすることができるため、通過する空気は室内熱交換器3の全面で冷却減湿されることになる。このため一部の空気の減湿が不十分なためにおこる貫流ファンや筐体での結露の発生を防止できる。   By configuring as described above, it is possible to prevent dew attached to the cross-flow fan 2 from flowing out of the indoor unit 1. The operation will be described. When the air flow rate of the once-through fan 2 suddenly increases, when the room temperature rapidly increases, or when the amount of pressure reduction in the capillary tube 11 is excessive, the evaporation of the refrigerant is completed in the indoor heat exchanger 3, and as described above. Cause dew condensation. However, in this embodiment, the auxiliary heat exchanger 7 is provided, and even in the above extreme case, the amount of refrigerant filled in the indoor heat exchanger 3 is a saturated region, so that the inside of the indoor heat exchanger 3 Can be prevented from overheating. In this way, the air downstream side of the auxiliary heat exchanger 7 can be the indoor heat exchanger 3 in which the refrigerant is not in the overheating region, so that the passing air is cooled and dehumidified on the entire surface of the indoor heat exchanger 3. Become. For this reason, it is possible to prevent the occurrence of dew condensation in the cross-flow fan or the casing due to insufficient dehumidification of some air.

以上の実施例では、室内熱交換器3の伝熱管内部の冷媒の状態を飽和域とするために冷房運転時の冷媒流れにおける室内熱交換器3の下流に補助熱交換器7を設けることで、補助熱交換器7によって飽和域にある冷媒を過熱域としていた。補助熱交換器7を用いないで室内熱交換器3内の冷媒を飽和域とする実施例を図4を用いて説明する。   In the above embodiment, the auxiliary heat exchanger 7 is provided downstream of the indoor heat exchanger 3 in the refrigerant flow during the cooling operation in order to set the state of the refrigerant inside the heat transfer tube of the indoor heat exchanger 3 to the saturation region. The refrigerant in the saturation region was made the superheated region by the auxiliary heat exchanger 7. An embodiment in which the refrigerant in the indoor heat exchanger 3 is saturated without using the auxiliary heat exchanger 7 will be described with reference to FIG.

図4に示すように、本実施例においては室内ユニット1に補助熱交換器7を設けていない。この代わりに、冷房運転時における室内熱交換器3の冷媒出口から圧縮機吸込部間の冷媒配管に冷媒過熱手段としての電気ヒータ13を設けている。   As shown in FIG. 4, the auxiliary heat exchanger 7 is not provided in the indoor unit 1 in this embodiment. Instead, an electric heater 13 as a refrigerant overheating means is provided in the refrigerant pipe between the refrigerant outlet of the indoor heat exchanger 3 and the compressor suction portion during the cooling operation.

以上のように構成することで、冷房運転時に室内熱交換器3で冷媒が蒸発を完了できなくても、室内熱交換器3を出た後に電気ヒータ13から吸熱して蒸発が完了する。このため圧縮機8に未蒸発の冷媒が流入することがないので、圧縮機で液圧縮を起こすことが無く、圧縮機の破損を防止することができる。なおこのとき室内熱交換器3には流入する空気の露点温度より高くなる過熱域がないので、前述の実施例の効果と同様に貫流ファンや筐体での結露の発生が起こらない。   With the configuration described above, even if the refrigerant cannot complete evaporation in the indoor heat exchanger 3 during the cooling operation, the heat is absorbed from the electric heater 13 after exiting the indoor heat exchanger 3 to complete evaporation. For this reason, since the non-evaporated refrigerant does not flow into the compressor 8, liquid compression is not caused in the compressor, and damage to the compressor can be prevented. At this time, the indoor heat exchanger 3 does not have an overheating region that is higher than the dew point temperature of the inflowing air, so that no dew condensation occurs in the cross-flow fan or the housing as in the effect of the above-described embodiment.

なお本実施例において、電気ヒータで過熱された後に冷媒過熱量検出手段(図示せず)を設け、過度な過熱量とならないように電気ヒータの電気入力量を制御すれば、電気ヒータの過度な入力による消費電力量の増加を防止できる。   In this embodiment, if the refrigerant superheat amount detection means (not shown) is provided after being overheated by the electric heater and the electric input amount of the electric heater is controlled so as not to become an excessive amount of overheat, the electric heater An increase in power consumption due to input can be prevented.

また本実施例は、未蒸発冷媒の過熱手段に電気ヒータを用いた場合について説明したが、図5に示すように室内熱交換器3と圧縮機8間の冷媒配管を圧縮機のチャンバと熱的に接触させて圧縮機余熱利用熱交換器14として用い、圧縮機8からの余熱により過熱させても良い。この場合圧縮機が蒸発温度、すなわち低温の冷媒により冷却されることになるので、圧縮機内のモータ効率の向上や、温度上昇による熱変形に伴う圧縮効率の低下を低減することができ、省電力化も図れる。   In the present embodiment, the case where an electric heater is used as the means for heating the non-evaporated refrigerant has been described. However, as shown in FIG. 5, the refrigerant pipe between the indoor heat exchanger 3 and the compressor 8 is connected to the compressor chamber and the heat. May be used as a heat exchanger 14 using the residual heat of the compressor, and may be overheated by the residual heat from the compressor 8. In this case, since the compressor is cooled by the evaporating temperature, that is, the low-temperature refrigerant, the motor efficiency in the compressor can be improved, and the reduction in the compression efficiency due to the thermal deformation due to the temperature rise can be reduced. Can also be achieved.

また圧縮機吸込部の冷媒を冷媒過熱手段である圧縮機余熱利用熱交換器14により過熱状態にできるので、蒸発器3では過熱域とはならないように前記キャピラリチューブ11を設定するか、減圧手段としてキャピラリチューブではなく減圧量可変型の電動膨張弁24を用い、これを蒸発器3では過熱域とはならないように制御しても良い。この場合室内熱交換器3の全面が温度の高くない二相域になるので、前実施例の効果と同様に貫流ファンや筐体での結露の発生を抑えられる。   Further, since the refrigerant in the compressor suction portion can be overheated by the compressor residual heat use heat exchanger 14 as the refrigerant overheating means, the capillary tube 11 is set so that the evaporator 3 is not overheated, or the pressure reducing means As an alternative, an electric expansion valve 24 of variable pressure reduction type may be used instead of a capillary tube, and this may be controlled so that the evaporator 3 does not become an overheating region. In this case, since the entire surface of the indoor heat exchanger 3 is in a two-phase region where the temperature is not high, it is possible to suppress the occurrence of dew condensation in the cross-flow fan and the housing as in the effect of the previous embodiment.

以上の実施例では、過熱手段として、補助熱交換器7、電気ヒータ13若しくは圧縮機余熱利用熱交換器14を用いたが、これらも用いない他の実施例を図6を用いて説明する。本実施例では、冷媒加熱用熱交換器15、逆止弁16を設けている。すなわち、室外熱交換器10とキャピラリーチューブ11との間の冷媒配管と並列に逆止弁16と冷媒加熱用熱交換器15の冷房運転時に高圧となる高圧側熱交換器15aを設け、室内熱交換器3と四方弁9との間の配管に冷房運転時に低圧となる低圧側熱交換器15bを設けている。高圧側熱交換器15aと低圧側熱交換器15bとにより冷媒加熱用熱交換器15が構成され、これらの間で冷媒間の熱交換が行われる。   In the above embodiment, the auxiliary heat exchanger 7, the electric heater 13, or the compressor residual heat utilization heat exchanger 14 is used as the superheating means. However, another embodiment that does not use these will be described with reference to FIG. In this embodiment, a refrigerant heating heat exchanger 15 and a check valve 16 are provided. That is, a high-pressure side heat exchanger 15 a that is high in the cooling operation of the check valve 16 and the refrigerant heating heat exchanger 15 is provided in parallel with the refrigerant pipe between the outdoor heat exchanger 10 and the capillary tube 11. A low-pressure-side heat exchanger 15b that has a low pressure during the cooling operation is provided in the pipe between the exchanger 3 and the four-way valve 9. The high-pressure side heat exchanger 15a and the low-pressure side heat exchanger 15b constitute the refrigerant heating heat exchanger 15, and heat exchange between the refrigerants is performed between them.

冷媒加熱用熱交換器15と逆止弁16は冷房運転時のみに室内熱交換器3と圧縮機8との間の冷媒と、室外熱交換器10とキャピラリチューブ11との間の冷媒が熱交換するように接続されている。暖房運転時は、逆止弁16の作用によりこのバイパス流路には冷媒が流れない。   The refrigerant heating heat exchanger 15 and the check valve 16 heat the refrigerant between the indoor heat exchanger 3 and the compressor 8 and the refrigerant between the outdoor heat exchanger 10 and the capillary tube 11 only during the cooling operation. Connected to replace. During the heating operation, the refrigerant does not flow through the bypass flow path due to the action of the check valve 16.

以上のように構成することで、冷房運転時に室内熱交換器3で冷媒が蒸発を完了できなくても、室内熱交換器3を出た後に冷媒加熱用熱交換器15で凝縮器として作用する室外熱交換器10から出た過冷却域の冷媒の熱を吸熱して蒸発し、さらに過熱ガスとなる。このため圧縮機8に未蒸発の冷媒が流入することがないので、圧縮機で液圧縮を起こすことが無く、圧縮機の破損を防止することができる。なおこのとき室内熱交換器3には流入する空気の露点温度より高くなる過熱域がないので、前実施例の効果と同様に貫流ファンや筐体での結露の発生が起こらない。   By configuring as described above, even if the refrigerant cannot complete evaporation in the indoor heat exchanger 3 during the cooling operation, it functions as a condenser in the refrigerant heating heat exchanger 15 after leaving the indoor heat exchanger 3. It absorbs the heat of the refrigerant in the supercooling region that has come out of the outdoor heat exchanger 10 and evaporates to become superheated gas. For this reason, since the non-evaporated refrigerant does not flow into the compressor 8, liquid compression is not caused in the compressor, and damage to the compressor can be prevented. At this time, the indoor heat exchanger 3 does not have an overheating region that is higher than the dew point temperature of the inflowing air, so that no dew condensation occurs in the cross-flow fan or the casing as in the effect of the previous embodiment.

さらに本実施例の場合、図7に示すように室外熱交換器10で凝縮して過冷却状態にある冷媒が冷媒加熱用熱交換器15で蒸発器を出た冷媒と熱交換するのでさらに過冷却度が増加する。これにより室内熱交換器3(=蒸発器)に流入する際の冷媒乾き度が小さくなるので、室内熱交換器3での入口から出口までの冷媒の平均乾き度が低減し、伝熱管内の圧力損失が低減し、圧縮機吸込圧力が増加し、消費電力量を低減できる効果もある。   Further, in the case of the present embodiment, as shown in FIG. 7, the refrigerant in the supercooled state that is condensed in the outdoor heat exchanger 10 exchanges heat with the refrigerant that has left the evaporator in the refrigerant heating heat exchanger 15, so Increased cooling. As a result, the dryness of the refrigerant when flowing into the indoor heat exchanger 3 (= evaporator) is reduced, so that the average dryness of the refrigerant from the inlet to the outlet in the indoor heat exchanger 3 is reduced. The pressure loss is reduced, the compressor suction pressure is increased, and the power consumption can be reduced.

次に上記実施例で示された室内熱交換器3について図8、図9を用いて説明する。図8は室内熱交換器3のフィン4の一部を示す図である。フィン4は伝熱性能を向上させるために、ルーバ17が設けられている。ルーバは上下方向に交互に切り起こされており、ルーバ高さとフィン厚さを含めたフィンの総高さはHfである。室内熱交換器3ではフィン4が積層され、伝熱管5を直行に配置する。図9は本実施例でありフィンピッチPf(=フィンの積層間隔)をPf≦Hfとしている。熱交換を行う空気は図に示した矢印の如く左から右方向に流れるが、フィンピッチが狭くルーバが隣接するフィンのルーバに食い込むように密に設置されている。このためフィン表面に触れない空気(バイパス空気)の発生を抑え、蒸発器として用いた場合に冷却減湿が行いやすくなる。よってフィンと接触して冷却減湿された空気により冷却されている貫流ファンや筐体に、減湿されていないバイパス空気が接触し、結露するという問題を防止できる。   Next, the indoor heat exchanger 3 shown by the said Example is demonstrated using FIG. 8, FIG. FIG. 8 is a view showing a part of the fins 4 of the indoor heat exchanger 3. The fin 4 is provided with a louver 17 in order to improve heat transfer performance. The louvers are cut and raised alternately in the vertical direction, and the total height of the fins including the louver height and the fin thickness is Hf. In the indoor heat exchanger 3, the fins 4 are laminated, and the heat transfer tubes 5 are arranged in a straight line. FIG. 9 shows the present embodiment, and the fin pitch Pf (= fin stacking interval) is set to Pf ≦ Hf. The air for heat exchange flows from left to right as shown by the arrows in the figure, but the fin pitch is narrow and the louvers are densely installed so as to bite into the adjacent fin louvers. For this reason, generation | occurrence | production of the air (bypass air) which does not touch a fin surface is suppressed, and when it uses as an evaporator, it becomes easy to perform cooling dehumidification. Therefore, it is possible to prevent the problem that the bypass air that has not been dehumidified comes into contact with the cross-flow fan or the casing that is cooled by the air that has been cooled and dehumidified in contact with the fins, thereby causing condensation.

本発明の一実施例に係る室内ユニットの構成図。The block diagram of the indoor unit which concerns on one Example of this invention. 本発明の一実施例に係る室内ユニットの構成図。The block diagram of the indoor unit which concerns on one Example of this invention. 本発明の一実施例に係る空気調和装置の構成図。The block diagram of the air conditioning apparatus which concerns on one Example of this invention. 本発明の一実施例に係る空気調和装置の構成図。The block diagram of the air conditioning apparatus which concerns on one Example of this invention. 本発明の一実施例に係る空気調和装置の構成図。The block diagram of the air conditioning apparatus which concerns on one Example of this invention. 本発明の一実施例に係る空気調和装置の構成図。The block diagram of the air conditioning apparatus which concerns on one Example of this invention. 本発明の一実施例に係る発明の効果の説明図。Explanatory drawing of the effect of the invention which concerns on one Example of this invention. 本発明の一実施例に係るフィンの構造図。FIG. 3 is a structural diagram of a fin according to an embodiment of the present invention. 本発明の一実施例に係る熱交換器の構成図。The block diagram of the heat exchanger which concerns on one Example of this invention.

符号の説明Explanation of symbols

1…室内ユニット、2…貫流ファン、3…室内熱交換器、4…フィン、5…伝熱管、7…補助熱交換器、8…圧縮機、10…室外熱交換器、11…キャピラリチューブ、13…電気ヒータ、14…圧縮機余熱利用熱交換器、15…冷媒加熱用熱交換器、16…逆止弁。
DESCRIPTION OF SYMBOLS 1 ... Indoor unit, 2 ... Cross-flow fan, 3 ... Indoor heat exchanger, 4 ... Fin, 5 ... Heat transfer tube, 7 ... Auxiliary heat exchanger, 8 ... Compressor, 10 ... Outdoor heat exchanger, 11 ... Capillary tube, DESCRIPTION OF SYMBOLS 13 ... Electric heater, 14 ... Compressor residual heat utilization heat exchanger, 15 ... Refrigerant heating heat exchanger, 16 ... Check valve.

Claims (7)

室内熱交換器及び貫流ファンを有する室内ユニットを備えた空気調和機おいて、前記室内熱交換器の空気の流れ方向に対する伝熱管の列数を1列とした空気調和機。   An air conditioner including an indoor unit having an indoor heat exchanger and a cross-flow fan, wherein the number of rows of heat transfer tubes in the air flow direction of the indoor heat exchanger is one. 室内熱交換器及び貫流ファンを有する室内ユニットを備えた空気調和機おいて、前記室内熱交換器の空気の流れ方向に対する伝熱管の列数を1列とし、冷房運転時に前記室内熱交換器と圧縮機吸込部との間の冷媒を加熱する冷媒過熱手段を備えた空気調和機。   In an air conditioner including an indoor heat exchanger and an indoor unit having a cross-flow fan, the number of rows of heat transfer tubes in the air flow direction of the indoor heat exchanger is one row, and the indoor heat exchanger and The air conditioner provided with the refrigerant | coolant overheating means which heats the refrigerant | coolant between compressor suction parts. 請求項2において、前記冷媒加熱手段は、補助熱交換器であり、この補助熱交換器と前記室内熱交換器とによって、空気の流れ方向に対する伝熱管の列数が複数列となるように配置した空気調和機。   3. The refrigerant heating means according to claim 2, wherein the refrigerant heating means is an auxiliary heat exchanger, and the auxiliary heat exchanger and the indoor heat exchanger are arranged so that the number of rows of heat transfer tubes in the air flow direction is a plurality of rows. Air conditioner. 請求項2において、前記冷媒加熱手段を電気ヒータとした空気調和機。   The air conditioner according to claim 2, wherein the refrigerant heating means is an electric heater. 請求項2において、前記冷媒加熱手段は圧縮機から放熱される熱を熱源とする熱交換器である空気調和機。   3. The air conditioner according to claim 2, wherein the refrigerant heating means is a heat exchanger that uses heat radiated from the compressor as a heat source. 請求項2において、前記冷媒加熱手段は、冷房運転時に凝縮器となる熱交換器と減圧機構間の冷媒の熱を熱源とする熱交換器である空気調和機。   3. The air conditioner according to claim 2, wherein the refrigerant heating means is a heat exchanger that uses heat of the refrigerant between a heat exchanger serving as a condenser and a pressure reducing mechanism during a cooling operation as a heat source. 請求項1において、前記室内熱交換器のフィンピッチPfと全フィン高さHfが、Pf≦Hfの関係にあるようにした空気調和機。
The air conditioner according to claim 1, wherein the fin pitch Pf and the total fin height Hf of the indoor heat exchanger are in a relationship of Pf≤Hf.
JP2005320289A 2005-11-04 2005-11-04 Air conditioner Pending JP2007127333A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005320289A JP2007127333A (en) 2005-11-04 2005-11-04 Air conditioner
CN2006100022699A CN1959238B (en) 2005-11-04 2006-01-27 Air conditioner
KR1020060038437A KR100863639B1 (en) 2005-11-04 2006-04-28 Air conditioner
KR1020070053300A KR100897981B1 (en) 2005-11-04 2007-05-31 Air conditioner
KR1020080116189A KR100930762B1 (en) 2005-11-04 2008-11-21 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320289A JP2007127333A (en) 2005-11-04 2005-11-04 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007127333A true JP2007127333A (en) 2007-05-24
JP2007127333A5 JP2007127333A5 (en) 2010-07-08

Family

ID=38071054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320289A Pending JP2007127333A (en) 2005-11-04 2005-11-04 Air conditioner

Country Status (3)

Country Link
JP (1) JP2007127333A (en)
KR (3) KR100863639B1 (en)
CN (1) CN1959238B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108954794A (en) * 2018-08-31 2018-12-07 四川长虹空调有限公司 A kind of Air-Conditioning Straflo Fan heat-exchanging component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593925B2 (en) * 2016-04-26 2019-10-23 Vigo Medical株式会社 Oxygen concentrator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246506A (en) * 1997-03-03 1998-09-14 Hitachi Ltd Indoor unit for air conditioner
JP2002364873A (en) * 2001-06-07 2002-12-18 Hitachi Ltd Air conditioner
JP2005069681A (en) * 2004-11-02 2005-03-17 Mitsubishi Electric Corp Heat exchanger for air conditioners

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170998A (en) * 1975-09-26 1979-10-16 Chattanooga Pharmacal Company Portable cooling apparatus
KR0182518B1 (en) * 1992-12-30 1999-05-01 윤종용 Cooling airconditioner and its control method with over-cooling device and over-heating device
JP3294059B2 (en) * 1995-05-23 2002-06-17 三菱重工業株式会社 Wall-mounted air conditioner
JP3526367B2 (en) * 1995-06-28 2004-05-10 東芝キヤリア株式会社 Air conditioner
JP3367353B2 (en) * 1996-11-12 2003-01-14 松下電器産業株式会社 Finned heat exchanger
KR19980028855U (en) * 1996-11-25 1998-08-05 배순훈 Defroster of air conditioner
CN1186933A (en) * 1996-12-30 1998-07-08 三星电子株式会社 Heat exchange fin for air conditioner
WO2001016533A1 (en) * 1999-08-31 2001-03-08 Toshiba Carrier Corporation Indoor unit for air conditioner
KR20010109550A (en) * 2000-05-30 2001-12-12 황한규 Airconditon system equipped support heat exchanging device
CN1201120C (en) * 2001-03-14 2005-05-11 方炜 Pressure-accumulating and waste heat utilizing mechanism for steam compressing air conditioner or refrigerator
CN2505741Y (en) * 2001-09-18 2002-08-14 张端桥 Multi-functional central air conditioner for household

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246506A (en) * 1997-03-03 1998-09-14 Hitachi Ltd Indoor unit for air conditioner
JP2002364873A (en) * 2001-06-07 2002-12-18 Hitachi Ltd Air conditioner
JP2005069681A (en) * 2004-11-02 2005-03-17 Mitsubishi Electric Corp Heat exchanger for air conditioners

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108954794A (en) * 2018-08-31 2018-12-07 四川长虹空调有限公司 A kind of Air-Conditioning Straflo Fan heat-exchanging component
CN108954794B (en) * 2018-08-31 2023-11-10 四川长虹空调有限公司 Heat exchange assembly of air conditioner cross-flow fan

Also Published As

Publication number Publication date
CN1959238A (en) 2007-05-09
KR20070075373A (en) 2007-07-18
KR100863639B1 (en) 2008-10-15
KR20080104251A (en) 2008-12-02
CN1959238B (en) 2010-07-14
KR100897981B1 (en) 2009-05-18
KR20070048573A (en) 2007-05-09
KR100930762B1 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP6371046B2 (en) Air conditioner and heat exchanger for air conditioner
JP4428341B2 (en) Refrigeration cycle equipment
WO2015133626A1 (en) Heat exchanger and air conditioner
JP6098951B2 (en) Heat exchanger and air conditioner
JP6420677B2 (en) Air conditioner
JP5812997B2 (en) Condenser with refrigeration cycle and supercooling section
JP2015218907A (en) Heat exchanger
KR100622604B1 (en) Gas engine heat pump with an enhanced accumulator
JP5646257B2 (en) Refrigeration cycle equipment
JP6298992B2 (en) Air conditioner
JP2007127333A (en) Air conditioner
JP2013137151A (en) Air conditioner
JP3650358B2 (en) Air conditioner
JP6678413B2 (en) Air conditioner
KR101497813B1 (en) Vapor injection heat pump system
KR101423137B1 (en) a heating apparatus without an outside-equipment
JP2008121995A (en) Air conditioner
KR20050043089A (en) Heat pump
WO2011111602A1 (en) Air conditioner
WO2023062801A1 (en) Heat exchanger and air conditioner
TWI784343B (en) Dehumidifier
WO2022157979A1 (en) Outdoor unit, air conditioner, and method for designing outdoor unit
JP2010236855A (en) Additional condenser, and refrigerating cycle device with additional condensation system using this
JP2011133132A (en) Refrigerating device
JP2002022307A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018