JP3367353B2 - Finned heat exchanger - Google Patents

Finned heat exchanger

Info

Publication number
JP3367353B2
JP3367353B2 JP30001896A JP30001896A JP3367353B2 JP 3367353 B2 JP3367353 B2 JP 3367353B2 JP 30001896 A JP30001896 A JP 30001896A JP 30001896 A JP30001896 A JP 30001896A JP 3367353 B2 JP3367353 B2 JP 3367353B2
Authority
JP
Japan
Prior art keywords
heat transfer
fins
fin
mountain
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30001896A
Other languages
Japanese (ja)
Other versions
JPH10141880A (en
Inventor
治 青柳
昭一 横山
仁 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP30001896A priority Critical patent/JP3367353B2/en
Publication of JPH10141880A publication Critical patent/JPH10141880A/en
Application granted granted Critical
Publication of JP3367353B2 publication Critical patent/JP3367353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として空気調和
機等に用いられるフィン付き熱交換器に関するものであ
る。
TECHNICAL FIELD The present invention relates to a finned heat exchanger mainly used in air conditioners and the like.

【0002】[0002]

【従来の技術】従来のフィン付き熱交換器は、図11に
示すように、所定間隔で平行に並べられたフィン群10
1とこのフィン群101に略直角に挿入し貫通する伝熱
管群102とから構成されている。気流103はフィン
間を矢印方向に流動して伝熱管群102の管内の流体と
熱交換を行う。
2. Description of the Related Art As shown in FIG. 11, a conventional finned heat exchanger has a fin group 10 arranged in parallel at predetermined intervals.
1 and a heat transfer tube group 102 which is inserted into the fin group 101 at a substantially right angle and penetrates the fin group 101. The airflow 103 flows between the fins in the arrow direction to exchange heat with the fluid in the tubes of the heat transfer tube group 102.

【0003】第1の従来例を、図12(a)、(b)、
(c)に示す。図12(a)はフィンの部分平面図を、
(b)及び(c)は(a)のA−A線及びB−B線での
断面図である。フィン110には山部104と谷部10
5が交互に連続して波状型の凹凸を有している。109
は伝熱管後流部の止水域、111はフィン間を流れる流
体の流線である。このフィン形状においては、波状型の
凹凸により、伝熱面積の増大、流線111の蛇行による
温度境界層の薄膜化などが図れ、伝熱促進を図ることが
できる。
A first conventional example is shown in FIGS. 12 (a), (b),
It shows in (c). FIG. 12A is a partial plan view of the fin,
(B) And (c) is sectional drawing in the AA line and BB line of (a). The fin 110 has a mountain portion 104 and a valley portion 10.
5 alternately and continuously have wave-shaped irregularities. 109
Is a water shutoff area at the downstream of the heat transfer tube, and 111 is a streamline of the fluid flowing between the fins. In this fin shape, due to the corrugated irregularities, the heat transfer area can be increased, the temperature boundary layer can be thinned by the meandering of the streamlines 111, and heat transfer can be promoted.

【0004】また、第2の従来例の実開平5−1736
6号公報を、図13(a)、(b)に示す。図13
(a)はフィンの斜視図、(b)は側面図である。これ
は第1の従来例に対し、三角状の波を、台形状とし、さ
らに、山部120及び谷部121にディンプル122を
形成することにより、三角状の曲折部で発生していた空
気の停滞域を抑制し、山部及び谷部に設けたディンプル
122により空気を攪拌し、伝熱促進を図るものであ
る。なお、実開平5−17366号公報の実施例である
図13(b)においては、山高さH1はフィンピッチF
pの2倍以上の高さを有しているものの、山高さH1と
隣接するフィンとの距離Fpの関係については開示して
いない。
A second conventional example, the actual flat opening 5-1736.
Publication No. 6 is shown in FIGS. 13 (a) and 13 (b). FIG.
(A) is a perspective view of a fin, (b) is a side view. This is different from the first conventional example in that the triangular wave is trapezoidal and the dimples 122 are formed in the peaks 120 and the valleys 121, so that the air generated in the triangular bend is The stagnation area is suppressed, and the air is agitated by the dimples 122 provided at the peaks and the valleys to promote heat transfer. In addition, in FIG. 13B which is an embodiment of Japanese Utility Model Laid-Open No. 5-17366, the peak height H1 is the fin pitch F.
Although the height is more than twice p, the relationship between the mountain height H1 and the distance Fp between the adjacent fins is not disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、第1の従来例の場合、伝熱面積の増大も
僅かであり、流線の蛇行も小さく、これによる温度境界
層の薄膜化はそれほど期待できない。また、第2の従来
例の場合、伝熱面積の増大の割に、気流の通過する抵抗
の増加が著しく、空気調和機に搭載した場合、騒音値の
増加や風量の減少などの課題を有していた。このため気
流の通過する抵抗を抑制しながら伝熱性能の向上を図る
ことが要求されていた。
However, in the above-mentioned conventional structure, in the case of the first conventional example, the increase of the heat transfer area is small, the meandering of the streamline is small, and the thinning of the temperature boundary layer is thereby achieved. Can not expect so much. Further, in the case of the second conventional example, the resistance of the airflow increases remarkably in spite of the increase in the heat transfer area, and when mounted in an air conditioner, there are problems such as an increase in noise value and a decrease in air volume. Was. Therefore, it has been required to improve the heat transfer performance while suppressing the resistance of the air flow.

【0006】本発明はこのような従来の課題を解決する
ものであり、気流の通過する抵抗の増加を抑制しながら
伝熱性能の向上が図れるフィン付き熱交換器を提供する
ことを目的とする。
The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a finned heat exchanger capable of improving heat transfer performance while suppressing an increase in resistance of air flow. .

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、フィンに形成した波状型の山部、または、
挿入した伝熱管の中心と同心円状に形成した円状の山部
の高さが、隣接するフィンとの距離より大きく、この距
離の2倍より小さい高さで形成するものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a wavy peak portion formed on a fin, or
The height of the circular mountain portion formed concentrically with the center of the inserted heat transfer tube is larger than the distance between the adjacent fins and smaller than twice this distance.

【0008】上記波状または円状の山部によって、フィ
ンの表面積が増加し、またフィン間を流動する気流を大
きく蛇行することができ、気流の通過する抵抗の増加を
抑制しながら伝熱性能の向上が図れ、熱交換性能の高い
フィン付き熱交換器が得られる。
The wavy or circular peaks increase the surface area of the fins, and the air current flowing between the fins can be greatly meandered, and the heat transfer performance can be improved while suppressing an increase in the resistance of the air flow. A finned heat exchanger with improved heat exchange performance can be obtained.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の発明
は、所定間隔で平行に並べられるとともに、その間を気
体が流動するフィン群と、このフィン群に略直角に挿入
し貫通して内部を流体が流動する伝熱管群とを備え、前
記フィンを山部と谷部が交互に連続した波状型を形成
し、少なくとも一つの前記山部の高さが隣接するフィン
との距離より大きく、この距離の2倍より小さい山を形
成したものである。そしてこの構成によれば、フィン間
を流動する気流を大きく蛇行することができ、気流の通
過する抵抗の増加を抑制しながら伝熱性能の向上を図る
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is arranged in parallel at a predetermined interval, and a fin group through which gas flows, and the fin group is inserted at a substantially right angle to penetrate the fin group. A heat transfer tube group through which a fluid flows, and the fins form a wavy shape in which peaks and valleys are alternately continuous, and the height of at least one peak is larger than the distance between adjacent fins. , A mountain smaller than twice this distance is formed. According to this configuration, the airflow flowing between the fins can be greatly meandered, and the heat transfer performance can be improved while suppressing an increase in the resistance of the airflow.

【0010】本発明の請求項2に記載の発明は、所定間
隔で平行に並べられるとともに、その間を気体が流動す
るフィン群と、このフィン群に略直角に挿入し貫通して
内部を流体が流動する伝熱管群とを備え、挿入した伝熱
管の中心と同心円状または同心円弧状に山部を形成し、
この山部の外側に山部と谷部が交互に連続した波状型を
形成した山部の高さが隣接するフィンとの距離より大き
く、この距離の2倍より小さい山を形成したものであ
る。そしてこの構成によれば、フィン間を流動する気流
が大きく蛇行するとともに、気流の通過する抵抗の増加
を抑制しながら伝熱性能の向上を図ることができる。
According to the second aspect of the present invention, the fins are arranged in parallel at a predetermined interval, and the gas flows between them, and the fins are inserted at a substantially right angle to penetrate the fins so that the fluid flows inside. A group of flowing heat transfer tubes is provided, and a mountain portion is formed concentrically or concentrically with the center of the inserted heat transfer tube,
A wavy pattern in which peaks and valleys are alternately continuous outside the peaks is formed so that the height of the peaks is larger than the distance between adjacent fins and is smaller than twice this distance. . According to this configuration, the airflow flowing between the fins greatly meanders, and the heat transfer performance can be improved while suppressing an increase in the resistance of the airflow.

【0011】本発明の請求項1又は2に記載の発明は、
伝熱管中心線上またはその近傍に形成した谷部が、伝熱
管近傍の平坦部より高い位置で形成したもので、これに
よって、伝熱性能の向上が図れるとともに、山部及び谷
部の凹凸成形時の破断を抑制できる。
The invention according to claim 1 or 2 of the present invention is
The valley formed on or near the center line of the heat transfer tube is formed at a higher position than the flat part near the heat transfer tube, which improves heat transfer performance and also when forming unevenness on the peaks and valleys. Can be suppressed.

【0012】本発明の請求項3に記載の発明は、前記し
た請求項3記載のフィンを、山部を形成する二つの斜面
の長さを等しくしたもので、これによって、請求項3記
載と同様に、伝熱性能の向上が図れ、成形性が向上する
とともに、山部及び谷部の凹凸成形時に均等に素材を伸
ばすことができ、さらに破断を抑制できる。
According to a third aspect of the present invention, the fins of the above-mentioned third aspect have the same lengths of the two slopes forming the ridges. Similarly, the heat transfer performance can be improved, the formability can be improved, and the material can be evenly stretched during the concavo-convex molding of the ridges and valleys, and the fracture can be further suppressed.

【0013】本発明の請求項4に記載の発明は、前記し
請求項1から3のいずれか1項記載のフィンを、挿入
した伝熱管の中心と同心円状または同心円弧状に形成し
た山部の高さ、または、この山部の外側に、山部と谷部
が交互に連続した波状型を形成した山部の高さが、伝熱
管中心線に対し、風上側の山部の高さより風下側の山部
の高さを高く形成することにより、請求項1から3記載
と同様に伝熱性能の向上及び成形性の向上を図るととも
に、気流の通過する抵抗の増加を抑制しながら伝熱性能
の向上を図ることができる。
According to a fourth aspect of the present invention, the fins according to any one of the first to third aspects of the present invention are provided in a mountain portion formed concentrically or concentrically with the center of the inserted heat transfer tube. The height, or the height of the ridges that form a wavy pattern in which ridges and valleys alternate alternately outside this ridge, is leeward from the height of the ridge on the windward side with respect to the center line of the heat transfer tube. By forming the mountain portion on the side higher, the heat transfer performance and the formability are improved in the same manner as in claims 1 to 3, and the increase in the resistance of the air flow is suppressed. While improving heat transfer performance.

【0014】本発明の請求項5に記載の発明は、前記し
請求項2記載のフィンを、挿入した伝熱管の中心と同
心円状または同心円弧状に形成した山部の高さが隣接す
るフィンとの距離より大きく、この距離の2倍より小さ
い山を形成したもので、これによって、請求項2から5
記載と同様に伝熱性能の向上を図るとともに、伝熱管近
傍を流動する気流が大きく蛇行することができ、さらに
伝熱性能の向上を図ることができる。
According to a fifth aspect of the present invention, the fin according to the second aspect is a fin formed concentrically or concentrically with the center of the inserted heat transfer tube so that the heights of the peaks are adjacent to each other. Forming a mountain which is larger than the distance and smaller than twice this distance.
In the same manner as described above, the heat transfer performance can be improved, and the airflow flowing in the vicinity of the heat transfer tube can be greatly meandered, and the heat transfer performance can be further improved.

【0015】本発明の請求項6に記載の発明は、所定間
隔で平行に並べられるとともに、その間を気体が流動す
るフィン群と、このフィン群に略直角に挿入し貫通して
内部を流体が流動する伝熱管群とを備え、挿入した伝熱
管の中心と同心円状に山部を形成し、前記山部の高さが
隣接するフィンとの距離より大きく、この距離の2倍よ
り小さい山を形成したものである。そして、この構成に
よれば、フィン間を流動する気流を大きく蛇行すること
ができ、気流の通過する抵抗の増加を抑制しながら伝熱
性能の向上を図ることができる。
According to a sixth aspect of the present invention, the fins are arranged in parallel at a predetermined interval, and the gas flows between the fins. A group of flowing heat transfer tubes, and a mountain portion is formed concentrically with the center of the inserted heat transfer tube, and the height of the mountain portion is larger than the distance between the adjacent fins and smaller than twice the distance. It was formed. According to this configuration, the airflow flowing between the fins can be greatly meandered, and the heat transfer performance can be improved while suppressing an increase in resistance of the airflow.

【0016】本発明の請求項7に記載の発明は、前記し
請求項6のフィンを、挿入した伝熱管の中心と同心円
状に山部を形成し、この山部の高さが伝熱管中心線に対
し、風上側の山高さより風下側の山高さが高く形成する
もので、これによって、請求項6記載と同様に伝熱性能
の向上を図るとともに、気流の通過する抵抗の増加を抑
制しながら伝熱性能の向上を図ることができる。
According to a seventh aspect of the present invention, the fin of the sixth aspect is formed with a mountain portion concentric with the center of the inserted heat transfer tube, and the height of this mountain portion is the center of the heat transfer tube. The height of the leeward side is higher than that of the leeward side with respect to the line, thereby improving the heat transfer performance in the same manner as in claim 6 and suppressing the increase in the resistance of the air flow. However, the heat transfer performance can be improved.

【0017】[0017]

【実施例】以下本発明の実施例について図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】(実施例1) 図1(a)は実施例1の熱交換器のフィンの部分平面
図、(b)及び(c)は(a)のA−A線及びB−B線
での断面図である。図1(a)及び(b)及び(c)に
おいて、1は波型形状のフィン1、2は内部を流体が流
動する伝熱管2であり、所定間隔で平行に並べられたフ
ィン1に複数本の伝熱管2が略直角に貫通状に挿入され
たもので、矢印方向3から気流が流動する。
Example 1 FIG. 1A is a partial plan view of a fin of a heat exchanger of Example 1, and FIGS. 1B and 1C are lines AA and BB of FIG. FIG. 1 (a), (b) and (c), 1 is a wave-shaped fin 1, 2 is a heat transfer tube 2 through which a fluid flows, and a plurality of fins 1 are arranged in parallel at a predetermined interval. A book heat transfer tube 2 is inserted substantially at a right angle in a penetrating manner, and an air flow flows in the direction of arrow 3.

【0019】フィン1には、気流方向3に対して垂直方
向に山部4と谷部5、5aが、谷部5a、山部4、谷部
5、山部4の順に連続する波型形状を形成し、山部4の
山高さH1は、隣接するフィンとの距離Fpより大き
く、この距離の2倍より小さい山高さに形成したもので
ある。
The fin 1 has a corrugated shape in which peaks 4 and valleys 5 and 5a are continuous in the direction perpendicular to the air flow direction 3 in the order of valleys 5a, peaks 4, valleys 5, and peaks 4. And the mountain height H1 of the mountain portion 4 is larger than the distance Fp between the adjacent fins and smaller than twice this distance.

【0020】図1(b)にフィン間を流動する気流の流
線9を示す。図12(b)の従来例の流線111より蛇
行する量が大きく、乱流促進や温度境界層の薄膜化及び
伝熱面積の増加などにより伝熱性能の向上を図ることが
できる。また、山部4の山高さH1は、隣接するフィン
との距離の2倍より小さい範囲内の山高さであることか
ら気流の通過する抵抗の著しい増加を抑制できる。
FIG. 1 (b) shows streamlines 9 of the air flow flowing between the fins. The amount of meandering is larger than that of the streamline 111 of the conventional example of FIG. 12B, and the heat transfer performance can be improved by promoting turbulence, thinning the temperature boundary layer, and increasing the heat transfer area. Further, since the mountain height H1 of the mountain portion 4 is within a range smaller than twice the distance from the adjacent fins, it is possible to suppress a significant increase in the resistance against which the air flow passes.

【0021】なお、本発明での山部の稜線は、気流方向
3に対し、略直角に直線状であるが、所定の角度に傾斜
した稜線また曲線状の稜線であっても同様の効果が得ら
れる。
In the present invention, the ridge line of the mountain portion is a straight line substantially at right angles to the air flow direction 3, but the same effect can be obtained even if it is a ridge line inclined at a predetermined angle or a curved ridge line. can get.

【0022】(実施例2) 図2(a)は実施例2の熱交換器のフィンの部分平面
図、(b)及び(c)は(a)のA−A線及びB−B線
での断面図である。
Example 2 FIG. 2A is a partial plan view of a fin of a heat exchanger of Example 2, and FIGS. 2B and 2C are lines AA and BB of FIG. FIG.

【0023】フィン1には、伝熱管挿入部7と同心円状
または同心円弧状に山部10を形成し、この山部の外側
に、気流方向3に対して垂直方向に山部4と谷部5、5
aが、谷部5a、山部4、谷部5、山部4の順に連続す
る波型形状を形成し、山部4の山高さH1は、隣接する
フィンとの距離Fpより大きく、この距離の2倍より小
さい山高さに形成したものである。
The fin 1 is formed with a mountain portion 10 concentrically or concentrically with the heat transfer tube inserting portion 7, and a mountain portion 4 and a valley portion 5 are formed outside the mountain portion in a direction perpendicular to the air flow direction 3. 5,
a forms a corrugated shape in which the valley portion 5a, the mountain portion 4, the valley portion 5, and the mountain portion 4 are continuous in this order, and the mountain height H1 of the mountain portion 4 is larger than the distance Fp between the adjacent fins. It is formed to have a mountain height smaller than twice.

【0024】図2(b)にフィン間を流動する気流の流
線9を示す。図12(b)の従来例の流線111より蛇
行する量が大きく、乱流促進や温度境界層の薄膜化及び
伝熱面積の増加、また、伝熱管挿入部7と同心円状また
は同心円弧状に山部10により伝熱管後流部の止水域8
bを小さくでき、伝熱性能の向上を図ることができる。
また、山部4の山高さH1は、隣接するフィンとの距離
の2倍より小さい山高さであることから気流の通過する
抵抗を抑制できる。
FIG. 2B shows streamlines 9 of the air flow flowing between the fins. The amount of meandering is larger than that of the streamline 111 of the conventional example of FIG. 12B, turbulent flow promotion, thinning of the temperature boundary layer, and increase of the heat transfer area. Water stop area 8 downstream of the heat transfer tube due to the mountain portion 10
b can be reduced, and heat transfer performance can be improved.
Further, since the mountain height H1 of the mountain portion 4 is smaller than twice the distance between the adjacent fins, it is possible to suppress the resistance against which the air flow passes.

【0025】なお、伝熱管挿入部7と同心円状または同
心円弧状に山部10の山高さH4は、図2のように隣接
するフィンとの距離の2倍より小さい山高さであれば、
この距離Fpより小さくてもよい。
If the mountain height H4 of the mountain portion 10 concentric with the heat transfer tube insertion portion 7 or concentric arc is less than twice the distance between adjacent fins as shown in FIG.
It may be smaller than this distance Fp.

【0026】(実施例3) 図3(a)は実施例3の熱交換器のフィンの部分平面
図、(b)及び(c)は(a)のA−A線及びB−B線
での断面図である。
Example 3 FIG. 3A is a partial plan view of a fin of a heat exchanger of Example 3, and FIGS. 3B and 3C are lines AA and BB of FIG. FIG.

【0027】フィン1には、気流方向3に対して垂直方
向に山部4と谷部5a、5aが、谷部5a、山部4、谷
部5b、山部4の順に連続する波型形状を形成し、山部
4の山高さH1は、隣接するフィンとの距離Fpより大
きく、この距離の2倍より小さい山高さに形成したもの
である。また、谷部5bは、伝熱管近傍の平坦部6より
高い位置で、この高さH2を形成する。
The fin 1 has a corrugated shape in which a ridge portion 4 and valley portions 5a, 5a are continuous in the direction perpendicular to the air flow direction 3 in the order of the valley portion 5a, the ridge portion 4, the valley portion 5b, and the ridge portion 4. And the mountain height H1 of the mountain portion 4 is larger than the distance Fp between the adjacent fins and smaller than twice this distance. Further, the valley portion 5b forms the height H2 at a position higher than the flat portion 6 near the heat transfer tube.

【0028】山部4により実施例1同様に、気流の通過
する抵抗の抑制、また、伝熱性能の向上が図れるととも
に、谷部5bにより山部及び谷部の凹凸成形時の破断を
抑制できる。
Similar to the first embodiment, the ridges 4 can suppress the resistance against the passage of the air flow, and can improve the heat transfer performance, and the valleys 5b can prevent the ridges and the valleys from being broken during the concavo-convex molding. .

【0029】(実施例4) 図4(a)は実施例4の熱交換器のフィンの部分平面
図、(b)及び(c)は(a)のA−A線及びB−B線
での断面図である。
Example 4 FIG. 4A is a partial plan view of fins of a heat exchanger of Example 4, and FIGS. 4B and 4C are lines AA and BB of FIG. 4A. FIG.

【0030】フィン1には、伝熱管挿入部7と同心円状
または同心円弧状に山部10を形成し、この山部の外側
に、気流方向3に対して垂直方向に山部4と谷部5a、
5bが、谷部5a、山部4、谷部5b、山部4の順に連
続する波型形状を形成し、山部4の山高さH1は、隣接
するフィンとの距離Fpより大きく、この距離の2倍よ
り小さい山高さに形成したものである。また、谷部5b
は、伝熱管近傍の平坦部6より高い位置で、この高さH
2を形成する。
On the fin 1, a mountain portion 10 is formed concentrically or concentrically with the heat transfer tube inserting portion 7, and a mountain portion 4 and a valley portion 5a are formed outside the mountain portion in a direction perpendicular to the air flow direction 3. ,
5b forms a corrugated shape in which the valley portion 5a, the mountain portion 4, the valley portion 5b, and the mountain portion 4 are continuous in this order, and the mountain height H1 of the mountain portion 4 is larger than the distance Fp between the adjacent fins. It is formed to have a mountain height smaller than twice. In addition, the valley 5b
Is higher than the flat portion 6 near the heat transfer tube, and the height H
Form 2.

【0031】山部4により実施例2同様に、気流の通過
する抵抗の抑制、伝熱性能の向上を図るとともに、さら
に、谷部5bにより山部及び谷部の凹凸成形時の破断を
抑制できる。
As in the case of the second embodiment, the ridges 4 suppress the resistance against which the air flow passes, improve the heat transfer performance, and further, the valleys 5b suppress the breakage of the ridges and the valleys during the concavo-convex forming. .

【0032】(実施例5) 図5(a)は実施例5の熱交換器のフィンの部分平面
図、(b)及び(c)は(a)のA−A線及びB−B線
での断面図である。
Example 5 FIG. 5A is a partial plan view of a fin of a heat exchanger of Example 5, and FIGS. 5B and 5C are lines AA and BB in FIG. 5A. FIG.

【0033】フィン1には、気流方向3に対して垂直方
向に山部4aと谷部5a、5bが、谷部5a、山部4
a、谷部5b、山部4aの順に連続する波型形状を形成
する。山部4aの山高さH1は、隣接するフィンとの距
離Fpより大きく、この距離の2倍より小さい山高さで
あり、さらに、山部4aを形成する二つの斜面41、4
2の長さ11、12は等しく形成する。また、谷部5b
は、伝熱管近傍の平坦部6より高い位置で、この高さH
2を形成する。
On the fin 1, a ridge portion 4a and valley portions 5a and 5b are formed in a direction perpendicular to the air flow direction 3, and the valley portion 5a and the ridge portion 4 are formed.
a, a valley portion 5b, and a mountain portion 4a are successively formed in this order to form a corrugated shape. The mountain height H1 of the mountain portion 4a is larger than the distance Fp between the adjacent fins and less than twice this distance, and further, the two slopes 41, 4 forming the mountain portion 4a.
The two lengths 11 and 12 are made equal. In addition, the valley 5b
Is higher than the flat portion 6 near the heat transfer tube, and the height H
Form 2.

【0034】山部4aにより実施例3または4同様に、
気流の通過する抵抗の抑制、伝熱性能の向上、また、成
形性の向上が図れ、さらに、山部4aを形成する二つの
斜面41、42の長さ11、12が等しいことで、凹凸
成形時に素材を均等に伸ばすことができ、破断を抑制で
きる。
By the mountain portion 4a, as in the third or fourth embodiment,
The resistance to the passage of the airflow can be suppressed, the heat transfer performance can be improved, and the formability can be improved. Further, the lengths 11 and 12 of the two slopes 41 and 42 forming the mountain portion 4a are equal to each other, thereby forming the concavo-convex shape. Sometimes the material can be stretched evenly and breakage can be suppressed.

【0035】(実施例6) 図6(a)は実施例6の熱交換器のフィンの部分平面
図、(b)及び(c)は(a)のA−A線及びB−B線
での断面図である。
Example 6 FIG. 6A is a partial plan view of fins of a heat exchanger of Example 6, and FIGS. 6B and 6C are lines AA and BB of FIG. FIG.

【0036】フィン1には、気流方向3に対して垂直方
向に山部4b、4cと谷部5a、5cが、谷部5a、山
部4b、谷部5c、山部4cの順に連続する波型形状を
形成する。山部4cの山高さH1は、隣接するフィンと
の距離Fpより大きく、この距離の2倍より小さい山高
さで、山部4bの山高さH3は、H1より低い。また、
谷部5cは、伝熱管近傍の平坦部6より高い位置で、こ
の高さH2を形成する。
On the fin 1, peaks 4b, 4c and valleys 5a, 5c are formed in the direction perpendicular to the air flow direction 3, and the waves are continuous in the order of the valleys 5a, the peaks 4b, the valleys 5c, and the peaks 4c. Form a mold shape. The mountain height H1 of the mountain portion 4c is larger than the distance Fp between the adjacent fins and smaller than twice this distance, and the mountain height H3 of the mountain portion 4b is lower than H1. Also,
The valley portion 5c forms the height H2 at a position higher than the flat portion 6 near the heat transfer tube.

【0037】山部4c、4bにより実施例1または3ま
たは4同様に、気流の通過する抵抗の抑制、乱流促進、
また、成形性の向上が図れるとともに、山部4bの山高
さH3を、H1より小さくすることで、前記伝熱性能の
向上を維持しつつ、気流の通過する抵抗を抑制でき、伝
熱性能と気流の通過する抵抗との設計上の最適形状を容
易に得ることができる。
As in the first, third, or fourth embodiment, the peak portions 4c, 4b suppress the resistance of the air flow therethrough and promote the turbulent flow.
Further, by improving the formability and making the peak height H3 of the peak portion 4b smaller than H1, it is possible to suppress the resistance of the air flow while maintaining the improvement of the heat transfer performance, and to improve the heat transfer performance. It is possible to easily obtain the optimum design shape with the resistance against which the air flow passes.

【0038】(実施例7) 図7(a)は実施例7の熱交換器のフィンの部分平面
図、(b)及び(c)は(a)のA−A線及びB−B線
での断面図である。
Example 7 FIG. 7A is a partial plan view of a fin of a heat exchanger of Example 7, and FIGS. 7B and 7C are lines AA and BB of FIG. FIG.

【0039】フィン1には、伝熱管挿入部7と同心円状
または同心円弧状に山部10を形成し、この山部の外側
に、気流方向3に対して垂直方向に山部4b、4cと谷
部5a、5cが、谷部5a、山部4b、谷部5c、山部
4cの順に連続する波型形状を形成する。山部4cの山
高さH1は、隣接するフィンとの距離Fpより大きく、
この距離の2倍より小さい山高さで、山部4bの山高さ
H3は、H1より低い。また、谷部5cは、伝熱管近傍
の平坦部6より高い位置で、この高さH2を形成する。
On the fin 1, a mountain portion 10 is formed concentrically or concentrically with the heat transfer tube insertion portion 7, and on the outer side of this mountain portion, mountain portions 4b and 4c and valleys are formed in a direction perpendicular to the air flow direction 3. The portions 5a and 5c form a corrugated shape in which the valley portion 5a, the mountain portion 4b, the valley portion 5c, and the mountain portion 4c are continuous in this order. The mountain height H1 of the mountain portion 4c is larger than the distance Fp between the adjacent fins,
At a mountain height smaller than twice this distance, the mountain height H3 of the mountain portion 4b is lower than H1. Further, the valley portion 5c forms the height H2 at a position higher than the flat portion 6 near the heat transfer tube.

【0040】山部4c、4bにより実施例2または4ま
たは5記載と同様に、気流の通過する抵抗の抑制、伝熱
性能の向上、また、成形性の向上とともに、山部4bの
山高さH3を、H1より小さくすることで、気流の通過
する抵抗を抑制でき、伝熱性能と気流の通過する抵抗と
の設計上の最適形状を容易に得ることができる。
In the same manner as described in Example 2 or 4 or 5 by the ridges 4c and 4b, the resistance to the passage of the airflow is suppressed, the heat transfer performance is improved, and the formability is improved, and the ridge height H3 of the ridges 4b is increased. Is smaller than H1, it is possible to suppress the resistance of the air flow passing, and it is possible to easily obtain optimum design shapes of the heat transfer performance and the resistance of the air flow passing.

【0041】(実施例8) 図8(a)は実施例8の熱交換器のフィンの部分平面
図、(b)及び(c)は(a)のA−A線及びB−B線
での断面図である。
(Embodiment 8) FIG. 8A is a partial plan view of the fins of the heat exchanger of Embodiment 8, and FIGS. 8B and 8C are lines AA and BB of FIG. 8A. FIG.

【0042】フィン1には、伝熱管挿入部7と同心円状
または同心円弧状に山部10aを形成し、この山部10
aの外側に、気流方向3に対して垂直方向に山部4dと
谷部5a、5bが、谷部5a、山部4d、谷部5b、山
部4dの順に連続する波型形状を形成し、伝熱管挿入部
7と同心円状または同心円弧状に山部10aの山高さH
4は、隣接するフィンとの距離Fpより大きく、この距
離の2倍より小さい山高さに形成したものである。
The fin 1 has a mountain portion 10a formed concentrically or concentrically with the heat transfer tube insertion portion 7, and the mountain portion 10a is formed.
On the outer side of a, a ridge portion 4d and valley portions 5a, 5b are formed in a vertical direction with respect to the air flow direction 3 to form a corrugated shape in which the valley portion 5a, the ridge portion 4d, the ridge portion 5b, and the ridge portion 4d are consecutive in this order. , The mountain height H of the mountain portion 10a concentrically or concentrically with the heat transfer tube insertion portion 7
No. 4 is formed with a mountain height larger than the distance Fp between the adjacent fins and smaller than twice this distance.

【0043】山部10aにより、伝熱管近傍では、乱流
促進や温度境界層の薄膜化及び伝熱面積の増加と伝熱管
後流部の止水域8cの減少などにより伝熱性能の向上を
図ることができる。
By the mountain portion 10a, in the vicinity of the heat transfer tube, the heat transfer performance is improved by promoting turbulence, thinning the temperature boundary layer, increasing the heat transfer area, and reducing the water cutoff area 8c in the downstream part of the heat transfer tube. be able to.

【0044】なお、波型形状の山部4dは、図8では隣
接するフィンとの距離Fpより小さいが、高くてもよ
い。
The corrugated peak 4d is smaller than the distance Fp between the adjacent fins in FIG. 8, but may be higher.

【0045】(実施例9) 図9(a)は実施例9の熱交換器のフィンの部分平面
図、(b)及び(c)は(a)のA−A線及びB−B線
での断面図である。図において、1aは平板状のフィン
1a、2は内部を流体が流動する伝熱管2であり、所定
間隔で平行に並べられたフィン1aに複数本の伝熱管2
が略直角に貫通状に挿入されたもので、矢印方向3から
気流が流動する。
Example 9 FIG. 9A is a partial plan view of a fin of a heat exchanger of Example 9, and FIGS. 9B and 9C are lines AA and BB of FIG. FIG. In the figure, 1a is a plate-shaped fin 1a, 2 is a heat transfer tube 2 through which a fluid flows, and a plurality of heat transfer tubes 2 are arranged on the fins 1a arranged in parallel at a predetermined interval.
Is inserted in a penetrating manner at a substantially right angle, and an airflow flows in the direction of arrow 3.

【0046】フィン1aには、伝熱管2の挿入穴7をと
りまくように略円形状または略多角形状のリング状の山
部11を形成し、山部11の山高さH5は、隣接するフ
ィンとの距離Fpより大きく、この距離の2倍より小さ
い山高さに形成したものである。
The fin 1a is formed with a ring-shaped mountain portion 11 having a substantially circular or polygonal shape so as to surround the insertion hole 7 of the heat transfer tube 2. The mountain height H5 of the mountain portion 11 is different from that of the adjacent fin. Is larger than the distance Fp and is smaller than twice this distance.

【0047】図9(c)にフィン間を流動する気流の流
線9を示す。流線9は山部11により大きく蛇行し、乱
流促進や温度境界層の薄膜化及び伝熱面積の増加、また
は伝熱管2の後流部の止水域8dの減少などにより、伝
熱性能の向上を図ることができる。また、山部11の山
高さH1は、隣接するフィンとの距離の2倍より小さい
山高さであることから気流の通過する抵抗を抑制でき
る。
FIG. 9 (c) shows streamlines 9 of the air flow flowing between the fins. The streamline 9 meanders greatly due to the mountain portion 11, and the turbulent flow is accelerated, the temperature boundary layer is thinned, and the heat transfer area is increased, or the water stop area 8d in the wake of the heat transfer tube 2 is decreased to improve the heat transfer performance. It is possible to improve. Further, since the mountain height H1 of the mountain portion 11 is smaller than twice the distance between the adjacent fins, it is possible to suppress the resistance against the passage of airflow.

【0048】(実施例10) 図10(a)は実施例10の熱交換器のフィンの部分平
面図、(b)及び(c)は(a)のA−A線及びB−B
線での断面図である。図において、1aは平板状のフィ
ン1a、2は内部を流体が流動する伝熱管2であり、所
定間隔で平行に並べられたフィン1aに複数本の伝熱管
2が略直角に貫通状に挿入されたもので、矢印方向3か
ら気流が流動する。
Example 10 FIG. 10A is a partial plan view of a fin of a heat exchanger of Example 10, and FIGS. 10B and 10C are lines AA and BB of FIG. 10A.
It is sectional drawing in a line. In the figure, reference numeral 1a is a plate-shaped fin 1a, and 2 is a heat transfer tube 2 through which a fluid flows, and a plurality of heat transfer tubes 2 are inserted at a substantially right angle into the fins 1a arranged in parallel at a predetermined interval. The airflow flows in the direction indicated by the arrow 3.

【0049】フィン1aには、伝熱管2の挿入穴7をと
りまくように略円形状または略多角形状のリング状の山
部11aを形成し、山部11aの稜線は伝熱管中心線に
対し風下側の山高さH5は、風上側の山高さH6より高
く、前記山高さH5は、隣接するフィンとの距離Fpよ
り大きく、この距離の2倍より小さい山高さに形成した
ものである。
The fin 1a is formed with a ring-shaped mountain portion 11a having a substantially circular shape or a substantially polygonal shape so as to surround the insertion hole 7 of the heat transfer tube 2. The ridge line of the mountain portion 11a is leeward with respect to the center line of the heat transfer tube. The mountain height H5 on the side is higher than the mountain height H6 on the windward side, and the mountain height H5 is larger than the distance Fp between the adjacent fins and smaller than twice this distance.

【0050】山部11aにより、実施例9記載と同様
に、伝熱性能の向上を図るとともに、風上側山部の山高
さH6を、風下側山高さH5より小さくすることで、伝
熱性能の向上を維持しつつ、気流の通過する抵抗を抑制
でき、伝熱性能と気流の通過する抵抗との設計上の最適
形状を容易に得ることができる。
As in the ninth embodiment, the mountain portion 11a improves the heat transfer performance, and the mountain height H6 of the leeward mountain portion is made smaller than the leeward mountain height H5. While maintaining the improvement, it is possible to suppress the resistance of the airflow passing, and it is possible to easily obtain the optimum design shapes of the heat transfer performance and the resistance of the airflow passing.

【0051】[0051]

【発明の効果】上記実施例から明らかなように、請求項
1に記載の発明は、フィンに気流方向に対して垂直方向
に山部と谷部が連続して波型形状を形成し、山部の山高
さを隣接するフィンとの距離より大きく、この距離の2
倍より小さい山高さに形成するものである。
As is apparent from the above-described embodiment, the invention according to claim 1 forms a corrugated shape in which fins and valleys are continuously formed in the fin in a direction perpendicular to the air flow direction. The mountain height of the part is larger than the distance between adjacent fins,
It is formed with a mountain height smaller than double.

【0052】この構成によれば、フィン間を流動する気
流の流線を大きく蛇行させることができ、乱流促進や温
度境界層の薄膜化及び伝熱面積の増加などにより伝熱性
能の向上が図れ、また、山部が隣接するフィンとの距離
の2倍より小さい山高さを有することから気流の通過す
る抵抗を抑制できる。
According to this structure, the streamlines of the air current flowing between the fins can be greatly meandered, and the heat transfer performance can be improved by promoting turbulence, thinning the temperature boundary layer, and increasing the heat transfer area. Moreover, since the peak portion has a peak height smaller than twice the distance between the adjacent fins, it is possible to suppress the resistance of the air flow.

【0053】請求項2に記載の発明は、フィンに、挿入
した伝熱管の中心と同心円状または同心円弧状に山部を
形成し、この山部の外側に、気流方向に対して垂直方向
に山部と谷部が連続して波型形状を形成し、山部の山高
さを、隣接するフィンとの距離より大きく、この距離の
2倍より小さい山高さに形成したものである。
According to a second aspect of the present invention, the fin is formed with a mountain portion concentrically with the center of the inserted heat transfer tube or in an arc shape concentric with the center of the heat exchanger tube, and the mountain is formed outside the mountain portion in a direction perpendicular to the air flow direction. The peaks and valleys are continuously formed in a corrugated shape, and the peak height of the peaks is larger than the distance between the adjacent fins and smaller than twice this distance.

【0054】この構成によれば、フィン間を流動する気
流の流線を大きく蛇行させることができ、乱流促進や温
度境界層の薄膜化及び伝熱面積の増加、さらに、挿入し
た伝熱管の中心と同心円状または同心円弧状に設けた山
部により伝熱管後流部の止水域8bを小さくでき、伝熱
性能の向上を図ることができる。山部が隣接するフィン
との距離の2倍より小さい山高さを有することから気流
の通過する抵抗を抑制できる。
According to this structure, the streamlines of the airflow flowing between the fins can be greatly meandered, turbulence can be promoted, the temperature boundary layer can be thinned, and the heat transfer area can be increased. The peak portion provided concentrically with the center or in the shape of a concentric arc can reduce the water stop area 8b in the wake of the heat transfer tube, and can improve the heat transfer performance. Since the mountain portion has a mountain height smaller than twice the distance between the adjacent fins, it is possible to suppress the resistance against the air flow.

【0055】請求項1及び2に記載の発明は、フィンに
気流方向に対して垂直方向に山部と谷部が連続して波型
形状を形成し、山部の山高さを隣接するフィンとの距離
Fpより大きく、この距離の2倍より小さい山高さに形
成し、伝熱管中心線付近の谷部は、伝熱管近傍の平坦部
より高い位置に形成したものである。
According to the first and second aspects of the present invention, the fins have a corrugated shape in which peaks and valleys are continuous in the direction perpendicular to the air flow direction, and the peaks of the peaks are adjacent to each other. Is larger than the distance Fp and smaller than twice this distance, and the valley near the center line of the heat transfer tube is formed at a position higher than the flat portion near the heat transfer tube.

【0056】この構成によれば、気流の通過する抵抗を
抑制しながら、乱流促進や温度境界層の薄膜化及び伝熱
面積の増加などにより伝熱性能の向上が図れるととも
に、伝熱管中心線付近の谷部により、山部及び谷部の凹
凸成形時の破断を抑制できる。
According to this structure, while suppressing the resistance of the air flow, the heat transfer performance can be improved by promoting the turbulent flow, thinning the temperature boundary layer, and increasing the heat transfer area. By the valleys in the vicinity, it is possible to suppress breakage of the peaks and the valleys during the concavo-convex forming.

【0057】請求項3に記載の発明は、フィンに気流方
向に対して垂直方向に山部と谷部が連続して波型形状を
形成する。隣接するフィンとの距離より大きく、この距
離の2倍より小さい山部を形成する二つの斜面の長さを
等しく形成し、伝熱管中心線付近の谷部は、伝熱管近傍
の平坦部より高く形成したものである。
According to the third aspect of the invention, the fins have a corrugated shape in which peaks and valleys are continuous in the direction perpendicular to the air flow direction. The lengths of the two slopes that form the peaks that are greater than the distance between adjacent fins and less than twice this distance are made equal, and the valley near the center line of the heat transfer tube is higher than the flat part near the heat transfer tube. It was formed.

【0058】この構成によれば、気流の通過する抵抗を
抑制しながら、乱流促進や温度境界層の薄膜化及び伝熱
面積の増加などにより伝熱性能の向上が図れ、伝熱管中
心線付近の谷部により、山部及び谷部の凹凸成形時の破
断を抑制できるとともに、山部を形成する二つの斜面が
等しいことで、凹凸成形時に素材を均等に伸ばすことが
でき、さらに破断を抑制できる。
According to this structure, while suppressing the resistance of the air flow, the heat transfer performance can be improved by promoting turbulence, thinning the temperature boundary layer, and increasing the heat transfer area. The troughs of the ridges can prevent the ridges and valleys from breaking during uneven forming, and the two slopes that form the ridges are equal, so the material can be stretched evenly during uneven forming, and further rupture is suppressed. it can.

【0059】請求項4に記載の発明は、フィンに気流方
向に対して垂直方向に山部と谷部が連続して波型形状を
形成する。伝熱管中心線に対して、風下側の山部を、隣
接するフィンとの距離より大きく、この距離の2倍より
小さい山部を形成し、風上側山部を風下側より低い山高
さで形成する。また、伝熱管中心線付近の谷部は、伝熱
管近傍の平坦部より高い位置で形成したものである。
According to the fourth aspect of the present invention, the fins have a corrugated shape in which peaks and valleys are continuous in the direction perpendicular to the air flow direction. The mountain portion on the leeward side with respect to the center line of the heat transfer tube is formed with a mountain portion that is larger than the distance between the adjacent fins and smaller than twice this distance, and the mountain portion on the leeward side is formed with a mountain height lower than that on the leeward side. To do. The valley near the center line of the heat transfer tube is formed at a position higher than the flat portion near the heat transfer tube.

【0060】この構成によれば、請求項1から3記載と
同様に、伝熱性能の向上や山部及び谷部の凹凸成形時の
破断を抑制が図れるとともに、風下側の山部により伝熱
管後流部の止水域8aがさらに小さくできる。また、風
上側の山部の高さを、風下側の山部より低くすること
で、前記伝熱性能の向上を維持しつつ、気流の通過する
抵抗を抑制でき、伝熱性能と気流の通過する抵抗との設
計上の最適形状を容易に得ることができる。
According to this structure, similarly to the first to third aspects, it is possible to improve the heat transfer performance and suppress the breakage of the crests and the troughs during the concavo-convex forming, and the heat transfer tube is provided by the crests on the leeward side. The water stop area 8a in the wake part can be further reduced. Further, by making the height of the mountain portion on the windward side lower than that of the mountain portion on the leeward side, it is possible to suppress the resistance of the airflow to pass while maintaining the improvement of the heat transfer performance, and to improve the heat transfer performance and the passage of the airflow. It is possible to easily obtain the optimum design shape with the resistance to be used.

【0061】請求項5に記載の発明は、フィンに、挿入
した伝熱管の中心と同心円状または同心円弧状に山部を
形成し、この山部の外側に、気流方向に対して垂直方向
に山部と谷部が連続する波型形状を形成し、伝熱管挿入
部7と同心円状または同心円弧状に山部の山高さは、隣
接するフィンとの距離より大きく、この距離の2倍より
小さい山高さに形成したものである。
According to a fifth aspect of the present invention, the fin is formed with a mountain portion concentrically or concentrically with the center of the inserted heat transfer tube, and the mountain is formed outside the mountain portion in a direction perpendicular to the air flow direction. The peaks of the crests are concentrically or concentrically arcuate with the heat transfer tube insertion part 7 and are larger than the distance between adjacent fins and less than twice this distance. It has been formed.

【0062】この構成によれば、同心円状または同心円
弧状の山部により、伝熱管近傍では、乱流促進や温度境
界層の薄膜化及び伝熱面積の増加と伝熱管後流部の止水
域の減少などにより伝熱性能の向上を図ることができ
る。
According to this structure, the concentric circular or concentric arcuate ridges accelerate turbulence, thin the temperature boundary layer, increase the heat transfer area, and increase the water shutoff area downstream of the heat transfer tube near the heat transfer tube. It is possible to improve the heat transfer performance by reducing the amount.

【0063】請求項6に記載の発明は、フィンに、伝熱
管の挿入穴をとりまくように略円形状または略多角形状
のリング状の山部を形成し、山部の山高さを、隣接する
フィンとの距離より大きく、この距離の2倍より小さい
山高さに形成したものである。
According to the sixth aspect of the present invention, the fin is formed with a ring-shaped mountain portion having a substantially circular shape or a substantially polygonal shape so as to surround the insertion hole of the heat transfer tube, and the mountain heights of the mountain portions are adjacent to each other. It is formed with a mountain height that is larger than the distance from the fin and smaller than twice this distance.

【0064】この構成によれば、フィン間を流動する気
流は山部により大きく蛇行し、乱流促進や温度境界層の
薄膜化及び伝熱面積の増加、または伝熱管の後流部の止
水域の減少などにより伝熱性能の向上を図ることができ
る。
According to this structure, the air current flowing between the fins meanders greatly due to the peaks, which promotes turbulence, thins the temperature boundary layer and increases the heat transfer area, or cuts off the water in the wake of the heat transfer tube. The heat transfer performance can be improved by reducing

【0065】請求項7に記載の発明は、フィンに、伝熱
管の挿入穴をとりまくように略円形状または略多角形状
のリング状の山部を形成し、山部の稜線は伝熱管中心線
に対し、風上側より風下側で高く、この山高さは、隣接
するフィンとの距離より大きく、この距離の2倍より小
さい山高さに形成したものである。
According to a seventh aspect of the present invention, the fin is formed with a ring-shaped mountain portion having a substantially circular shape or a substantially polygonal shape so as to surround the insertion hole of the heat transfer tube, and the ridge line of the mountain portion is the center line of the heat transfer tube. On the other hand, the mountain height is higher on the leeward side than on the windward side, and the mountain height is larger than the distance between the adjacent fins and smaller than twice this distance.

【0066】この構成によれば、山部により請求項6
様に伝熱性能の向上が図れ、さらに、風上側山高さを、
風下側より低くすることで、伝熱性能の向上を維持しつ
つ、気流の通過する抵抗を抑制でき、伝熱性能と気流の
通過する抵抗との設計時の最適形状を容易に得ることが
できる。
According to this structure, the heat transfer performance can be improved by the mountain portion in the same manner as in claim 6 , and further, the windward mountain height can be
By making it lower than the leeward side, it is possible to suppress the resistance of the air flow passing while maintaining the improvement of the heat transfer performance, and it is possible to easily obtain the optimum shape at the time of designing the heat transfer performance and the resistance that the air flow passes. .

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の実施例1の熱交換器のフィンの
部分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
1A is a partial plan view of a fin of a heat exchanger according to a first embodiment of the present invention, FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A, and is taken along line BB of FIG. Cross section of

【図2】(a)本発明の実施例2の熱交換器のフィンの
部分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
FIG. 2 (a) is a partial plan view of a fin of a heat exchanger according to a second embodiment of the present invention, (b) is a cross-sectional view taken along the line AA of (a), and (c) is a line taken along the line BB of (a). Cross section of

【図3】(a)本発明の実施例3の熱交換器のフィンの
部分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
FIG. 3 (a) is a partial plan view of a fin of a heat exchanger according to a third embodiment of the present invention, (b) is a cross-sectional view taken along the line AA of (a), and (c) is a line taken along the line BB of (a). Cross section of

【図4】(a)本発明の実施例4の熱交換器のフィンの
部分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
FIG. 4 (a) is a partial plan view of a fin of a heat exchanger according to a fourth embodiment of the present invention; FIG. 4 (b) is a sectional view taken along the line AA in FIG. 4 (a); Cross section of

【図5】(a)本発明の実施例5の熱交換器のフィンの
部分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
FIG. 5 (a) is a partial plan view of a fin of a heat exchanger according to a fifth embodiment of the present invention, (b) is a cross-sectional view taken along the line AA of (a), and (c) is a line taken along the line BB of (a). Cross section of

【図6】(a)本発明の実施例6の熱交換器のフィンの
部分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
FIG. 6 (a) is a partial plan view of a fin of a heat exchanger according to a sixth embodiment of the present invention, (b) is a sectional view taken along the line AA of (a), and (c) is a line taken along the line BB of (a). Cross section of

【図7】(a)本発明の実施例7の熱交換器のフィンの
部分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
FIG. 7 (a) is a partial plan view of a fin of a heat exchanger according to a seventh embodiment of the present invention, (b) is a cross-sectional view taken along the line AA of (a), and (c) is a line taken along the line BB of (a). Cross section of

【図8】(a)本発明の実施例8の熱交換器のフィンの
部分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
FIG. 8 (a) is a partial plan view of a fin of a heat exchanger of Example 8 of the present invention, (b) is a cross-sectional view taken along the line AA of (a), and (c) is a line taken along the line BB of (a). Cross section of

【図9】(a)本発明の実施例9の熱交換器のフィンの
部分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
9 (a) is a partial plan view of a fin of a heat exchanger of Example 9 of the present invention, (b) is a cross-sectional view taken along the line AA of (a), and is taken along the line BB of (c) (a). Cross section of

【図10】(a)本発明の実施例10の熱交換器のフィ
ンの部分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
10 (a) is a partial plan view of a fin of the heat exchanger of Example 10 of the present invention, (b) is a cross-sectional view taken along the line AA of (a), and is taken along the line BB of (c) (a). Cross section of

【図11】従来の熱交換器の部分斜視図FIG. 11 is a partial perspective view of a conventional heat exchanger.

【図12】(a)第1の従来例の熱交換器のフィンの部
分平面図 (b)(a)のA−A線での断面図 (c)(a)のB−B線での断面図
FIG. 12 (a) is a partial plan view of a fin of the heat exchanger of the first conventional example, (b) is a cross-sectional view taken along the line AA of (a), and (c) is a line taken along the line BB of (a). Cross section

【図13】(a)第2の従来例の熱交換器のフィンの要
部斜視図 (b)同断面図
FIG. 13A is a perspective view of a main part of a fin of a heat exchanger of a second conventional example, and FIG.

【符号の説明】[Explanation of symbols]

1 フィン 2 伝熱管 3 気流方向 4、4a、4b、4c 山部 5、5a、5b、5c 谷部 6 伝熱管近傍の平坦部 7 伝熱管挿入部 8、8a、8b 止水域 41、42 山部の斜面 H1、H2、H3、H4 山部の高さ 1 fin 2 heat transfer tubes 3 Air flow direction 4, 4a, 4b, 4c Yamabe 5, 5a, 5b, 5c Valley 6 Flat part near the heat transfer tube 7 Heat transfer tube insertion part 8, 8a, 8b Still water area 41, 42 Mountain slope H1, H2, H3, H4 Mountain height

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−268195(JP,A) 特開 昭61−153498(JP,A) 実開 昭57−87979(JP,U) 実公 昭62−15669(JP,Y1) 実公 昭60−34952(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) F28F 1/00 - 1/44 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-4-268195 (JP, A) JP-A-61-153498 (JP, A) Actual development Sho-57-87979 (JP, U) Actual public Sho-62- 15669 (JP, Y1) S. 60-34952 (JP, Y1) (58) Fields investigated (Int.Cl. 7 , DB name) F28F 1/00-1/44

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定間隔で平行に並べられるとともに、
その間を気体が流動するフィン群と、前記フィン群に略
直角に挿入し貫通して内部を流体が流動する伝熱管群と
を備え、前記フィン群を、山部と谷部が交互に連続した
波状型を形成し、少なくとも前記山部の一つの高さが隣
接するフィンとの距離より大きく、この距離の2倍より
小さい山を形成し、前記フィンの伝熱管中心線上または
その近傍に形成した谷部が、伝熱管近傍の平坦部より高
い位置で形成したフィンで構成された事を特徴とするフ
ィン付き熱交換器。
1. Arranged in parallel at a predetermined interval,
A fin group in which gas flows between them, and a heat transfer tube group in which a fluid flows inside by penetrating through the fin group at a substantially right angle, and the fin group has peaks and valleys that are alternately continuous. Forming a wavy shape, forming at least one height of one of the peaks larger than the distance between the adjacent fins and less than twice this distance, on the heat transfer tube center line of the fins or
The valley formed near that is higher than the flat part near the heat transfer tube.
A fin characterized by being composed of fins formed at certain positions
Heat exchanger with tin.
【請求項2】 所定間隔で平行に並べられるとともに、
その間を気体が流動するフィン群と、前記フィン群に略
直角に挿入し貫通して内部を流体が流動する伝熱管群と
を備え、挿入した前記伝熱管の中心と同心円状または同
心円弧状に山部を形成し、前記山部の外側に、山部と谷
部が交互に連続した波状型を形成し、この山部の高さが
隣接するフィンとの距離より大きく、この距離の2倍よ
り小さい山を形成し、前記フィンの伝熱管中心線上また
はその近傍に形成した谷部が、伝熱管近傍の平坦部より
高い位置で形成したフィンで構成された事を特徴とする
フィン付き熱交換器。
2. Arranged in parallel at a predetermined interval,
A group of fins through which a gas flows, and a group of heat transfer tubes in which the fluid flows inside by penetrating at a substantially right angle into the group of fins and concentric with the center of the inserted heat transfer tubes or concentric arcs And a wavy pattern in which peaks and valleys are alternately continuous outside the peaks, and the height of the peaks is greater than the distance between the adjacent fins, and more than twice this distance. A small mountain is formed on the heat transfer tube center line of the fin.
Has a valley formed near it from the flat part near the heat transfer tube.
Characterized by being composed of fins formed at a high position
Heat exchanger with fins.
【請求項3】 山部を形成する二つの斜面の長さが等し
いフィンで構成された請求項1または2記載のフィン付
き熱交換器。
3. The heat exchanger with fins according to claim 1, wherein the two slopes forming the mountain portion are fins having equal lengths.
【請求項4】 伝熱管中心線に対し、風上側の山部の高
さより風下側の山部の高さを高く形成したフィンで構成
された請求項1から3のいずれか1項に記載のフィン付
き熱交換器。
4. The fin according to claim 1 , wherein the fin is formed so that the height of the leeward mountain portion is higher than the height of the windward mountain portion with respect to the center line of the heat transfer tube. Heat exchanger with fins.
【請求項5】 挿入した前記伝熱管の中心と同心円状ま
たは同心円弧状に形成した山部の高さが隣接するフィン
との距離より大きく、この距離の2倍より小さい山を形
成したフィンで構成された請求項2に記載のフィン付き
熱交換器。
5. A greater than the distance between the fins center and the concentric or height of the peak portion formed in a concentric arcuate inserted the heat transfer tubes are adjacent, constituted by fins to form a 2-fold smaller mountain this distance The heat exchanger with fins according to claim 2,
【請求項6】 所定間隔で平行に並べられるとともに、
その間を気体が流動するフィン群と、このフィン群に略
直角に挿入し貫通して内部を流体が流動する伝熱管群と
を備え、伝熱管挿入部をとりまくように略円状または略
多角形状に山部を形成し、前記山部の高さが隣接するフ
ィンとの距離より大きく、この距離の2倍より小さい山
を形成したフィンで構成されたフィン付き熱交換器。
6. Arranged in parallel at a predetermined interval,
It is equipped with a group of fins through which gas flows and a group of heat transfer tubes that are inserted into this fin group at a substantially right angle and penetrate through to allow the fluid to flow inside, with a substantially circular or polygonal shape surrounding the heat transfer tube insertion part. A heat exchanger with fins, which is formed by fins each having a mountain portion formed therein, the height of the mountain portion being larger than a distance from an adjacent fin and having a mountain smaller than twice this distance.
【請求項7】 伝熱管挿入部をとりまくように略円状ま
たは略多角形状に山部を形成し、風上側の山高さより風
下側の山高さが高く形成したフィンで構成された請求項
記載のフィン付き熱交換器。
7. A claim that the crests are formed in a substantially circular or substantially polygonal shape so as to surround the heat transfer tube insertion portion, leeward peak height than peak height of the windward side is constituted by a high-formed fin
The heat exchanger with fins according to 6 .
JP30001896A 1996-11-12 1996-11-12 Finned heat exchanger Expired - Fee Related JP3367353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30001896A JP3367353B2 (en) 1996-11-12 1996-11-12 Finned heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30001896A JP3367353B2 (en) 1996-11-12 1996-11-12 Finned heat exchanger

Publications (2)

Publication Number Publication Date
JPH10141880A JPH10141880A (en) 1998-05-29
JP3367353B2 true JP3367353B2 (en) 2003-01-14

Family

ID=17879728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30001896A Expired - Fee Related JP3367353B2 (en) 1996-11-12 1996-11-12 Finned heat exchanger

Country Status (1)

Country Link
JP (1) JP3367353B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9459053B2 (en) 2012-04-26 2016-10-04 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
WO2017209323A1 (en) * 2016-05-31 2017-12-07 군산대학교산학협력단 Three-dimensional wave-shaped fin and heat exchanger comprising same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261147B2 (en) * 2003-05-28 2007-08-28 Lg Electronics Inc. Heat exchanger
KR100518854B1 (en) * 2003-09-02 2005-09-30 엘지전자 주식회사 Heat exchanger
KR100543599B1 (en) * 2003-09-15 2006-01-20 엘지전자 주식회사 Heat exchanger
JP4687030B2 (en) * 2004-07-30 2011-05-25 パナソニック株式会社 Air conditioner
JP2007127333A (en) * 2005-11-04 2007-05-24 Hitachi Appliances Inc Air conditioner
JP4293252B2 (en) * 2007-03-19 2009-07-08 ダイキン工業株式会社 Fin for heat exchanger, guide and method of using the same
JP2008249168A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Heat exchanger
JP5185611B2 (en) * 2007-12-28 2013-04-17 三菱重工業株式会社 Fin and tube heat exchanger
KR20120119469A (en) * 2011-04-21 2012-10-31 엘지전자 주식회사 Heat exchanger
WO2013001744A1 (en) * 2011-06-29 2013-01-03 パナソニック株式会社 Fin tube heat exchanger
WO2013018270A1 (en) * 2011-08-01 2013-02-07 パナソニック株式会社 Fin-tube heat exchanger
EP2767791B1 (en) * 2011-10-11 2019-05-15 Panasonic Corporation Fin tube heat exchanger
JP5946651B2 (en) * 2012-02-28 2016-07-06 住友精密工業株式会社 Heat exchanger
JP6090699B2 (en) * 2012-04-23 2017-03-08 パナソニックIpマネジメント株式会社 Finned tube heat exchanger
JP5815128B2 (en) * 2012-04-26 2015-11-17 三菱電機株式会社 Heat exchanger and air conditioner
CN104101244B (en) * 2014-08-01 2016-06-08 兰州交通大学 The streamlined change wave amplitude corrugated fin of elliptical tube fin-tube type heat exchanger
CN104110992B (en) * 2014-08-01 2016-06-08 兰州交通大学 Elliptical tube fin-tube type heat exchanger streamlined change wave amplitude circular arc corrugated fin
CN109470075B (en) * 2017-09-08 2024-04-30 美的集团股份有限公司 Fin and heat exchanger
CN109724442A (en) * 2017-10-30 2019-05-07 美的集团股份有限公司 Fins set and finned tube exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9459053B2 (en) 2012-04-26 2016-10-04 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
WO2017209323A1 (en) * 2016-05-31 2017-12-07 군산대학교산학협력단 Three-dimensional wave-shaped fin and heat exchanger comprising same

Also Published As

Publication number Publication date
JPH10141880A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
JP3367353B2 (en) Finned heat exchanger
KR100220724B1 (en) Heat exchanger for air conditioner
JP2661356B2 (en) Finned heat exchanger
US6786274B2 (en) Heat exchanger fin having canted lances
JPH04268195A (en) Heat exchanger with fin
US20110036550A1 (en) Fin and heat exchanger having the same
JPH10197182A (en) Heat exchange for air conditioner
JP2966825B2 (en) Air conditioner heat exchanger
JP2010008034A (en) Fin tube type heat exchanger
JPS6151238B2 (en)
JP3048541B2 (en) Air conditioner heat exchanger
JP3903888B2 (en) Heat exchanger
JP3367395B2 (en) Finned heat exchanger
WO2013054508A1 (en) Finned tube heat exchanger
JPH11108575A (en) Heat exchanger having winglet
CN107024132B (en) Fin for heat exchanger and heat exchanger
JPH0517366U (en) Heat exchanger plate fins
US5853047A (en) Heat exchanger for air conditioner
JP3430921B2 (en) Heat exchanger
JP4004335B2 (en) Heat exchanger
JP2009139085A (en) Louver type corrugated insert for heat exchanger
JPH0493594A (en) Finned heat exchanger
CN215260021U (en) Heating body for warmer and warmer with heating body
CN217057677U (en) Cooling fin, heating body with cooling fin and warmer
JP2003083690A (en) Corrugated fin heat-exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees