WO2013054508A1 - Finned tube heat exchanger - Google Patents

Finned tube heat exchanger Download PDF

Info

Publication number
WO2013054508A1
WO2013054508A1 PCT/JP2012/006469 JP2012006469W WO2013054508A1 WO 2013054508 A1 WO2013054508 A1 WO 2013054508A1 JP 2012006469 W JP2012006469 W JP 2012006469W WO 2013054508 A1 WO2013054508 A1 WO 2013054508A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat transfer
heat exchanger
angle
reference plane
Prior art date
Application number
PCT/JP2012/006469
Other languages
French (fr)
Japanese (ja)
Inventor
健二 名越
雅也 本間
岡市 敦雄
長谷川 寛
周平 大坪
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013538435A priority Critical patent/JP5958771B2/en
Priority to CN201280050084.9A priority patent/CN103890527B/en
Priority to EP12840153.6A priority patent/EP2767791B1/en
Publication of WO2013054508A1 publication Critical patent/WO2013054508A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Definitions

  • the present invention relates to a finned tube heat exchanger.
  • the finned tube heat exchanger is composed of a plurality of fins arranged at predetermined intervals and a heat transfer tube penetrating the plurality of fins. The air flows between the fins and exchanges heat with the fluid in the heat transfer tubes.
  • FIGS. 9A to 9D are respectively a plan view of fins used in a conventional fin tube heat exchanger, a sectional view taken along line IXB-IXB, a sectional view taken along line IXC-IXC, and a line taken along line IXD-IXD.
  • FIG. The fin 10 is formed so that the peaks 4 and the valleys 6 appear alternately in the airflow direction.
  • Such fins are commonly referred to as “corrugated fins”. According to the corrugated fin, not only the effect of increasing the heat transfer area but also the effect of thinning the temperature boundary layer by meandering the air flow 3 can be obtained.
  • Cut and raised portions 41a, 41b, 41c and 41d are provided on the fin inclined surfaces 42a, 42b, 42c and 42d of the fin 1.
  • the heights H1, H2, H3, and H4 of the cut-and-raised portions 41a, 41b, 41c, and 41d are 1/5 ⁇ Fp ⁇ (H1, H2, H3, H4) ⁇ 1 when the distance between adjacent fins 1 is Fp. / 3 ⁇ Fp is satisfied.
  • Patent Document 1 also describes another fin configured to reduce the ventilation resistance during the frosting operation as much as possible.
  • the fin inclined surfaces 12a and 12b of the fin 1 are provided with cut-and-raised portions 11a and 11b that satisfy the above-described relationship. Since the number of times of bending of the fin 1 is small, the inclination angles of the fin inclined surfaces 12a and 12b are relatively gentle.
  • This invention aims at providing the finned-tube heat exchanger which has the outstanding basic performance irrespective of the time of frost operation and non-frost operation.
  • a heat transfer tube configured to pass through the plurality of fins and to have a medium that exchanges heat with the gas flow therein;
  • the fin is a corrugated fin formed so that a peak portion appears only at one place in the airflow direction, and a plurality of through holes in which the heat transfer tubes are fitted, and a flat portion formed around the through holes And a first inclined part that is inclined with respect to the airflow direction so as to form the mountain part, and a second inclined part that connects the flat part and the first inclined part,
  • the plurality of through holes are formed along a step direction perpendicular to both the direction of arrangement of the plurality of fins and the airflow direction,
  • the length of the fin in the airflow direction is S1
  • the distance between the centers of the heat transfer tubes in the step direction is S2
  • the diameter of the flat portion is D1
  • the perspective view of the finned-tube heat exchanger which concerns on one Embodiment of this invention.
  • FIG. 9A Top view of another fin used in a conventional fin tube heat exchanger Sectional drawing along the XB-XB line of the fin shown in FIG. 10A Sectional drawing along the XC-XC line of the fin shown in FIG. 10A
  • the first aspect of the present disclosure is: A plurality of fins arranged in parallel to form a gas flow path; A heat transfer tube configured to pass through the plurality of fins and to have a medium that exchanges heat with the gas flow therein;
  • the fin is a corrugated fin formed so that a peak portion appears only at one place in the airflow direction, and a plurality of through holes in which the heat transfer tubes are fitted, and a flat portion formed around the through holes And a first inclined part that is inclined with respect to the airflow direction so as to form the mountain part, and a second inclined part that connects the flat part and the first inclined part,
  • the plurality of through holes are formed along a step direction perpendicular to both the direction of the plurality of fins and the airflow direction,
  • the length of the fin in the airflow direction is S1
  • the distance between the centers of the heat transfer tubes in the step direction is S2
  • the diameter of the flat portion is D1
  • the angle ⁇ 2 satisfies a relationship of tan ⁇ 1 ⁇ (S1 ⁇ tan ⁇ 1 ⁇ 2 ⁇ ) / (S2-D1) ⁇ ⁇ ⁇ 2 ⁇ 70 ° ⁇ 1.
  • a finned tube heat exchanger is provided.
  • the fin in addition to the first or second aspect, is configured to prohibit the flow of the gas from the front side to the back side of the fin in other regions excluding the plurality of through holes.
  • a finned tube heat exchanger Provided is a finned tube heat exchanger.
  • the fourth aspect of the present disclosure is: A plurality of fins arranged in parallel to form a gas flow path; A heat transfer tube configured to pass through the plurality of fins and to have a medium that exchanges heat with the gas flow therein;
  • the fin is a corrugated fin formed so that a peak portion appears only at one place in the airflow direction, and is closely attached to the heat transfer tube around the through hole in which the heat transfer tube is fitted.
  • the plurality of through holes are formed along a step direction perpendicular to both the direction of arrangement of the plurality of fins and the airflow direction,
  • the length of the fin in the airflow direction is S1
  • the distance between the centers of the heat transfer tubes in the step direction is S2
  • the outer diameter of the fin collar is D2
  • the upstream end and the downstream end of the fin in the airflow direction are passed.
  • a plane is defined as a reference plane
  • an angle formed between the reference plane and the first inclined portion is defined as ⁇ 1
  • an angle formed between the reference plane and the second inclined portion is defined as ⁇ 2.
  • a finned tube heat exchanger that satisfies the relationship of tan ⁇ 1 ⁇ (S1 ⁇ tan ⁇ 1) / (S2-D2) ⁇ ⁇ ⁇ 2 ⁇ 80 ° ⁇ 1.
  • the angle ⁇ 2 satisfies the relationship of tan ⁇ 1 ⁇ (S1 ⁇ tan ⁇ 1) / (S2-D2) ⁇ ⁇ ⁇ 2 ⁇ 70 ° ⁇ 1.
  • the fins prohibit the flow of the gas from the front side to the back side of the fins in other regions excluding the plurality of through holes.
  • a finned tube heat exchanger Provided is a finned tube heat exchanger.
  • the finned tube heat exchanger 100 of the present embodiment passes through a plurality of fins 31 arranged in parallel to form a flow path of air A (gas) and these fins 31. And a heat transfer tube 21.
  • the finned tube heat exchanger 100 is configured to exchange heat between the medium B flowing inside the heat transfer tube 21 and the air A flowing along the surface of the fin 31.
  • the medium B is a refrigerant such as carbon dioxide or hydrofluorocarbon.
  • the heat transfer tube 21 may be connected to one or may be divided into a plurality.
  • the fin 31 has a front edge 30a and a rear edge 30b.
  • the front edge 30a and the rear edge 30b are each linear.
  • the fins 31 have a symmetrical structure with respect to the center of the heat transfer tube 21. Therefore, it is not necessary to consider the direction of the fins 31 when assembling the heat exchanger 100.
  • the arrangement direction of the fins 31 is defined as the height direction
  • the direction parallel to the front edge 30a is defined as the step direction
  • the height direction and the direction perpendicular to the step direction are defined as the airflow direction (the flow direction of the air A).
  • the step direction is a direction perpendicular to both the height direction and the airflow direction.
  • the airflow direction is perpendicular to the longitudinal direction of the fins 31.
  • the airflow direction, the height direction, and the step direction correspond to the X direction, the Y direction, and the Z direction, respectively.
  • the fin 31 typically has a rectangular and flat plate shape.
  • the longitudinal direction of the fin 31 coincides with the step direction.
  • the fins 31 are arranged at a constant interval (fin pitch FP).
  • the interval between the two fins 31 adjacent to each other in the height direction is not necessarily constant, and may be different.
  • the fin pitch FP is adjusted to a range of 1.0 to 1.5 mm, for example.
  • the fin pitch FP is represented by the distance between two adjacent fins 31.
  • the constant width portion including the front edge 30a and the constant width portion including the rear edge 30b are parallel to the airflow direction. However, these portions are portions used for fixing the fins 31 to the mold during molding, and do not greatly affect the performance of the fins 31.
  • a flat plate made of aluminum having a thickness of 0.05 to 0.8 mm that has been punched can be suitably used as the material of the fin 31 .
  • the surface of the fin 31 may be subjected to hydrophilic treatment such as boehmite treatment or application of a hydrophilic paint. It is also possible to perform a water repellent treatment instead of the hydrophilic treatment.
  • a plurality of through holes 37h are formed in a row and at equal intervals along the step direction. Straight lines passing through the centers of the plurality of through holes 37h are parallel to the step direction.
  • the heat transfer tube 21 is fitted in each of the plurality of through holes 37h.
  • a cylindrical fin collar 37 is formed by a part of the fin 31 around the through hole 37h, and the fin collar 37 and the heat transfer tube 21 are in close contact with each other.
  • the diameter of the through hole 37h is, for example, 1 to 20 mm, and may be 4 mm or less.
  • the diameter of the through-hole 37 h matches the outer diameter of the heat transfer tube 21.
  • the center distance (pipe pitch) between two through holes 37h adjacent to each other in the step direction is, for example, 2 to 3 times the diameter of the through hole 37h.
  • the length of the fin 31 in the airflow direction is, for example, 15 to 25 mm.
  • the fin 31 is formed so that the mountain portion 34 appears only in one place in the airflow direction.
  • the ridge line of the mountain portion 34 is parallel to the step direction. That is, the fin 31 is a fin called a corrugated fin. If a portion projecting in the same direction as the projecting direction of the fin collar 37 is defined as a “mountain portion 34”, in the present embodiment, the fin 31 has only one mountain portion 34 in the airflow direction.
  • the front edge 30a and the rear edge 30b correspond to the valleys. In the airflow direction, the position of the mountain portion 34 coincides with the center position of the heat transfer tube 21.
  • the fin 31 is configured to prohibit the flow of air A from the front side (upper surface side) to the back side (lower surface side) of the fin 31 in other regions excluding the plurality of through holes 37h. Yes.
  • no opening other than the through hole 37h is provided in the fin 31. If there is no opening, there is no problem of clogging due to frost formation, which is advantageous in terms of pressure loss.
  • no opening is provided means that no slit, louver or the like is provided, that is, no hole penetrating the fin is provided.
  • the fin 31 further includes a flat portion 35, a first inclined portion 36, and a second inclined portion 38.
  • the flat portion 35 is a portion adjacent to the fin collar 37 and an annular portion formed around the through hole 37h.
  • the surface of the flat part 35 is parallel to the airflow direction and perpendicular to the height direction.
  • the first inclined portion 36 is a portion inclined with respect to the airflow direction so as to form the mountain portion 34.
  • the first inclined portion 36 occupies the widest area in the fin 31.
  • the surface of the first inclined portion 38 is flat.
  • the first inclined portions 36 are located on the left and right sides of a reference line that is parallel to the step direction and passes through the center of the heat transfer tube 21.
  • the peak portion 34 is formed by the first slope portion 36 on the windward side and the first slope portion 36 on the leeward side.
  • the second inclined portion 38 is a portion that smoothly connects the flat portion 35 and the first inclined portion 36 so as to eliminate the difference in height between the flat portion 35 and the first inclined portion 36. .
  • the surface of the second inclined portion 38 is a gently curved surface.
  • the flat portion 35 and the second inclined portion 39 form a concave portion around the fin collar 37 and the through hole 37h.
  • an appropriate radius for example, R0.5 mm to R2.0 mm
  • an appropriate radius for example, R0.5 mm to R2.0 mm
  • Such a round improves the drainage of the fin 31.
  • the length of the fin 31 in the airflow direction is defined as S1.
  • the center-to-center distance (tube pitch) of the heat transfer tubes 21 in the step direction is defined as S2.
  • the diameter of the flat part 35 is defined as D1.
  • a plane passing through the upstream end and the downstream end of the fin 31 in the airflow direction is defined as a reference plane H1.
  • the upstream end and the downstream end of the fin 31 correspond to the leading edges 30a and 30b, respectively.
  • An angle formed by the reference plane H1 and the first inclined portion 36 is defined as ⁇ 1.
  • An angle formed by the reference plane H1 and the second inclined portion 38 is defined as ⁇ 2.
  • the angle ⁇ ⁇ b> 1 is an acute angle side among the angles formed by the reference plane H ⁇ b> 1 and the first inclined portion 36.
  • the angle ⁇ ⁇ b> 2 is an acute angle side angle among the angles formed by the reference plane H ⁇ b> 1 and the second inclined portion 38.
  • the angle ⁇ 1 and the angle ⁇ 2 are respectively referred to as “first inclination angle ⁇ 1” and “second inclination angle ⁇ 2”.
  • the distance from the reference plane H1 to the flat portion 35 is defined as ⁇ . In the embodiment shown in FIGS. 2A-2D, the distance ⁇ is zero. That is, in the height direction, the position of the flat portion 35, the position of the front edge 30a, and the position of the rear edge 30b coincide. At this time, the reference plane H1 coincides with a plane including the surface of the flat portion 35.
  • the finned tube heat exchanger 100 satisfies the following formula (1).
  • the position of the flat portion 35 may be different from the position of the front edge 30a and the position of the rear edge 30b.
  • the left side of the equation (1) is expressed as tan ⁇ 1 ⁇ (S1 ⁇ tan ⁇ 1-2 ⁇ ) / (S2 ⁇ D1) ⁇ . If the flat portion 35 is located closer to the ridgeline of the mountain portion 34 than the reference plane H1, the angle formed by the first inclined portion 36 and the second inclined portion 38 is increased, so that the surface area of the fin 31 is reduced. However, pressure loss is reduced. That is, the fin 31 with a low pressure loss is obtained.
  • the left side of the expression (1) is tan ⁇ 1 ⁇ (S1 ⁇ tan ⁇ 1 + 2 ⁇ ) / (S2-D1) ⁇ .
  • the angle formed by the first inclined portion 36 and the second inclined portion 38 is reduced, so that the pressure loss increases, but the fin 31 Increases surface area.
  • produces behind the heat exchanger tube 21 can also be anticipated by the angle (theta) 2 of the 2nd inclination part 38 increasing. That is, the fin 31 with high heat exchange capability is obtained.
  • 2nd inclination part 38 is a curved surface as a whole
  • 2nd inclination angle (theta) 2 can be specified in the cross section shown to FIG. 2C or FIG. 2D.
  • the cross section of FIG. 2C is a cross section observed when the fins 31 are cut along a plane perpendicular to the step direction and passing through the center of the heat transfer tube 21.
  • 2D is a cross section observed when the fins 31 are cut along a plane perpendicular to the flow direction and passing through the center of the heat transfer tube.
  • Equation (1) the technical significance of Equation (1) will be described in detail.
  • the surface area of the corrugated fin is necessarily larger than the surface area of the flat fin (unbent fin).
  • the surface area of the corrugated fin (V-shaped corrugated fin) in which the number of bendings is limited to one is the corrugated fin (M-shaped corrugated fin) having two or more times of bending. It is wider than the surface area. This reason can be understood by comparing the cross section of the fin 31 of this embodiment with the cross section of the conventional fin 10.
  • the length of the cross-sectional contour shown in FIG. 2B is equal to the length of the cross-sectional contour shown in FIG. 9B. Since the cross section shown in FIG. 2C corresponds to the cross section shown in FIG. 9C, the lengths of both contours are equal. On the other hand, as can be understood by comparing FIG. 2D and FIG. 9D, the length of the cross-sectional contour shown in FIG. 2D exceeds the length of the cross-sectional contour shown in FIG. 9D. This is because according to the fin 31 of the present embodiment, the second inclined portion 38 having the second inclination angle ⁇ 2 is included in the cross section shown in FIG. 2D.
  • the inclined portion 8 is not included in the cross section shown in FIG. 9D, and only the flat portion 5 and the valley portion 6 are included. Due to the increase of the surface area based on the second inclined portion 38, the surface area of the fin 31 of the present embodiment exceeds the surface area of the conventional two-folded fin 10.
  • the surface area of the fin increases as the second inclination angle ⁇ 2 increases, regardless of the number of bendings.
  • the increase rate of the surface area of the V-shaped corrugated fin with respect to the second inclination angle ⁇ 2 exceeds that of the M-shaped corrugated fin.
  • the surface area of the V-shaped corrugated fin substantially matches the surface area of the M-shaped corrugated fin. That is, the surface area ratio is about 100%. The larger the second tilt angle ⁇ 2, the greater the difference in surface area.
  • the threshold angle ⁇ 2L corresponding to the point A is an angle at which the second inclined portions 38 adjacent to each other in the step direction come into contact with each other in the V-shaped corrugated fin.
  • the erosion of the adjacent second inclined portions 38 proceeds, so the reduction in the surface area ratio is accelerated.
  • the threshold angle ⁇ 2L is expressed by the following formula (2) using the length S1 of the fin 31, the center-to-center distance S2 of the heat transfer tube 21, the diameter D1 of the flat portion 35, the first inclination angle ⁇ 1, and the distance ⁇ .
  • ⁇ 2L tan -1 ⁇ (S1 ⁇ tan ⁇ 1 ⁇ 2 ⁇ ) / (S2-D1) ⁇ (2)
  • the second inclination angle ⁇ 2 when the second inclination angle ⁇ 2 is less than the threshold angle ⁇ 2L, the adjacent second inclined portions 38 are eroded and the mountain portions 34 disappear, and the contact portions between the second inclined portions 38 are substantially parallel to each other. It becomes. When passing over a horizontal plane at the contact portion, the air is decelerated, causing a decrease in heat transfer coefficient. For this reason, when the second inclination angle ⁇ 2 is less than the threshold angle ⁇ 2L, a decrease in heat exchange capability due to a decrease in heat transfer coefficient is added to a decrease in heat exchange capability due to a rapid decrease in surface area. As a result, the heat exchange capacity of the finned tube heat exchanger is significantly reduced.
  • the second inclination angle ⁇ 2 is equal to or greater than the threshold angle ⁇ 2L.
  • FIG. 5A shows the results obtained by numerical analysis for a V-shaped corrugated fin having only one peak.
  • FIG. 5B shows the results obtained by numerical analysis for an M-shaped corrugated fin having two peaks.
  • a portion having a high heat flux (heat exchange amount) is indicated by a thick line.
  • the heat flux in the front edge 30a and the peak part 34 is very high.
  • the heat flux at the leading edge 9 and the peak 4 is extremely high.
  • the total length of the thick line shown in FIG. 5A exceeds the total length of the thick line shown in FIG. 5B. That is, the V-shaped corrugated fin can ensure a longer region of high heat flux. Therefore, the fin 31 of this embodiment is advantageous to the conventional fin 10 also in terms of heat transfer coefficient.
  • the vortex flow in the separation region not only causes a significant increase in ventilation resistance, but also reduces the effective heat transfer area. That is, if the meander angle ( ⁇ 1 + ⁇ 2) is too large, an increase in heat exchange amount due to an increase in surface area may be offset. Therefore, the meandering angle ( ⁇ 1 + ⁇ 2) is desirably in a range that does not cause a significant increase in ventilation resistance.
  • the first inclination angle ⁇ 1 is not particularly limited, but is preferably less than 40 °.
  • the bending angle of the peak part 34 will be 80 degrees or more. In this case, a thick separation region is generated in the peak portion 34, and there is a possibility that a vortex flow including a vector in the opposite direction to the main flow is generated. Therefore, the first inclination angle ⁇ 1 is preferably less than 40 °.
  • the lower limit of the first inclination angle ⁇ 1 is not particularly limited. In the corrugated fin, the first inclination angle ⁇ 1 is larger than 0 °.
  • FIG. 7 is a graph showing the relationship between the second inclination angle ⁇ 2 and the performance (heat exchange amount and pressure loss) of the finned tube heat exchanger.
  • the rate of change of the heat exchange amount greatly changes with the threshold angle ⁇ 2L as a boundary. That is, when the second inclination angle ⁇ 2 is equal to or greater than the threshold angle ⁇ 2L, a sufficient heat exchange amount can be ensured.
  • the value of ⁇ at the distance (S1 / 2) tan ⁇ 1 + ⁇ from the flat portion 35 to the ridge line of the mountain portion 34 gradually increases.
  • the threshold angle ⁇ 2L increases as the value of ⁇ increases.
  • a new step does not appear due to the fin structure. Accordingly, the value of ⁇ is not limited as long as it is within a range where no significant vortex flow is generated in the separation region ( ⁇ 2 ⁇ 80 ° ⁇ 1 or ⁇ 2 ⁇ 70 ° ⁇ 1).
  • the fin 41 of the present embodiment has the same structure as the fin 31 of the first embodiment, except that the flat portion 35 is not provided around the fin collar 37.
  • Elements common to the fins 41 of the present embodiment and the fins 31 of the first embodiment are assigned the same reference numerals, and descriptions thereof are omitted.
  • the fin 41 has a fin collar 37, a first inclined portion 36, and a second inclined portion 38.
  • the fin collar 37 is a cylindrical portion that is in close contact with the heat transfer tube 21 around the through hole 37h.
  • the second inclined portion 38 is a portion connecting the fin collar 37 and the first inclined portion 36.
  • the position of the lower end of the fin collar 37 coincides with the position of the reference plane H1, and does not vary like the flat portion 35 of the first embodiment.
  • the height of the peak portion 34 is represented by (S1 ⁇ tan ⁇ 1) / 2.
  • the fin 41 does not have the flat portion 35, when the second inclined portions 38 adjacent to each other in the step direction come into contact with each other, the length of the second inclined portion 38 in the step direction is (S2-D2) / 2. It is represented by Furthermore, as estimated from the results of the airflow analysis shown in FIGS. 6A to 6F, the presence or absence of the flat portion 35 is considered not to have a large effect on the increase or decrease in the ventilation resistance.
  • the finned tube heat exchanger 100 including the fins 41 has a low ventilation resistance and a high heat exchange capacity.
  • the second inclination angle ⁇ 2 is preferably less than (70 ° ⁇ 1).
  • the finned tube heat exchanger of the present invention is useful for a heat pump used in an air conditioner, a hot water supply device, a heating device, or the like.
  • it is useful for an evaporator for evaporating a refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This finned tube heat exchanger (100) is provided with a fin (31) and a heat transfer tube (21). The fin (31) has a flat section (35), a first inclined section (36), and a second inclined section (38). The length of the fin (31) in the direction of airflow is defined as S1, the distance between heat transfer tube (21) centers in the direction of levels as S2, the diameter of the flat section (35) as D1, the plane passing through the upstream end and downstream end of the fin (31) in the direction of airflow as a reference plane (H1), the angle formed by the reference plane (H1) and the first inclined section (36) as θ1, the angle formed by the reference plane (H1) and the second inclined section (38) as θ2, and the distance from the reference plane (H1) to the flat section (35) as α. The finned tube heat exchanger (100) satisfies the relationship tan-1{(S1·tanθ1±2α)/(S2-D1)} ≤ θ2 < 80°-θ1.

Description

フィンチューブ熱交換器Finned tube heat exchanger
 本発明は、フィンチューブ熱交換器に関する。 The present invention relates to a finned tube heat exchanger.
 フィンチューブ熱交換器は、所定間隔で並べられた複数のフィンと、複数のフィンを貫通する伝熱管とによって構成されている。空気は、フィンとフィンとの間を流れて伝熱管の中の流体と熱交換する。 The finned tube heat exchanger is composed of a plurality of fins arranged at predetermined intervals and a heat transfer tube penetrating the plurality of fins. The air flows between the fins and exchanges heat with the fluid in the heat transfer tubes.
 図9A~図9Dは、それぞれ、従来のフィンチューブ熱交換器に使用されたフィンの平面図、IXB-IXB線に沿った断面図、IXC-IXC線に沿った断面図及びIXD-IXD線に沿った断面図である。フィン10は、気流方向において山部4と谷部6とが交互に現れるように成形されている。このようなフィンは、一般に「コルゲートフィン(corrugated fin)」と呼ばれている。コルゲートフィンによれば、伝熱面積を増やす効果だけでなく、気流3を蛇行させることによって温度境界層を薄くする効果が得られる。 9A to 9D are respectively a plan view of fins used in a conventional fin tube heat exchanger, a sectional view taken along line IXB-IXB, a sectional view taken along line IXC-IXC, and a line taken along line IXD-IXD. FIG. The fin 10 is formed so that the peaks 4 and the valleys 6 appear alternately in the airflow direction. Such fins are commonly referred to as “corrugated fins”. According to the corrugated fin, not only the effect of increasing the heat transfer area but also the effect of thinning the temperature boundary layer by meandering the air flow 3 can be obtained.
 また、図10A~図10Cに示すように、コルゲートフィンに切り起こしを設けることによって伝熱性能を改善する技術も知られている(特許文献1)。フィン1のフィン傾斜面42a,42b,42c及び42dには、切り起こし41a,41b,41c及び41dが設けられている。切り起こし41a,41b,41c及び41dの高さH1,H2,H3及びH4は、隣接するフィン1の距離をFpとしたとき、1/5・Fp≦(H1,H2,H3,H4)≦1/3・Fpの関係を満足する。 Also, as shown in FIGS. 10A to 10C, a technique for improving heat transfer performance by providing a corrugated fin with a cut and raised is also known (Patent Document 1). Cut and raised portions 41a, 41b, 41c and 41d are provided on the fin inclined surfaces 42a, 42b, 42c and 42d of the fin 1. The heights H1, H2, H3, and H4 of the cut-and-raised portions 41a, 41b, 41c, and 41d are 1/5 · Fp ≦ (H1, H2, H3, H4) ≦ 1 when the distance between adjacent fins 1 is Fp. / 3 · Fp is satisfied.
 特許文献1には、着霜運転時の通風抵抗を極力低減するように構成された別のフィンも記載されている。図11A~図11Cに示すように、フィン1のフィン傾斜面12a及び12bには、上記した関係を満足する切り起こし11a及び11bが設けられている。フィン1の曲げ回数が少ないので、フィン傾斜面12a及び12bの傾斜角度は、比較的緩やかである。 Patent Document 1 also describes another fin configured to reduce the ventilation resistance during the frosting operation as much as possible. As shown in FIGS. 11A to 11C, the fin inclined surfaces 12a and 12b of the fin 1 are provided with cut-and-raised portions 11a and 11b that satisfy the above-described relationship. Since the number of times of bending of the fin 1 is small, the inclination angles of the fin inclined surfaces 12a and 12b are relatively gentle.
特開平11-125495号公報Japanese Patent Laid-Open No. 11-125495
 しかし、切り起こしが十分に低かったとしても、着霜運転時には流路の断面積が20%以上、局所的に減少する。そのため、切り起こしを設けた場合には、曲げ回数を1回に制限して傾斜角度を緩やかにしたとしても、通風抵抗の大幅な増加は避けられない。図11A~図11Cに示すフィン1の通風抵抗を図9A~図9Dに示すフィン10と同等のレベルまで下げるためには、フィン1の傾斜角度を限りなく0°に近づける必要が生じる。 However, even if the cut-up is sufficiently low, the cross-sectional area of the flow path is locally reduced by 20% or more during the frosting operation. For this reason, when the cut-and-raise is provided, even if the number of bendings is limited to one and the inclination angle is made gentle, a significant increase in ventilation resistance is inevitable. In order to reduce the ventilation resistance of the fin 1 shown in FIGS. 11A to 11C to a level equivalent to that of the fin 10 shown in FIGS. 9A to 9D, it is necessary to make the inclination angle of the fin 1 as close as possible to 0 °.
 本発明は、着霜運転時及び非着霜運転時を問わず、優れた基本性能を有するフィンチューブ熱交換器を提供することを目的とする。 This invention aims at providing the finned-tube heat exchanger which has the outstanding basic performance irrespective of the time of frost operation and non-frost operation.
 すなわち、本開示は、
 気体の流路を形成するために平行に並べられた複数のフィンと、
 前記複数のフィンを貫通しており、前記気体と熱交換する媒体が内部を流れるように構成された伝熱管とを備え、
 前記フィンは、気流方向において山部が1箇所にのみ現れるように成形されたコルゲートフィンであって、前記伝熱管が嵌められた複数の貫通孔と、前記貫通孔の周囲に形成された平坦部と、前記山部を形成するように前記気流方向に対して傾いている第1傾斜部と、前記平坦部と前記第1傾斜部とを接続している第2傾斜部とを有し、
 前記複数の貫通孔は、前記複数のフィンの並び方向と前記気流方向との両方向に垂直な段方向に沿って形成されており、
 前記気流方向における前記フィンの長さをS1、前記段方向における前記伝熱管の中心間距離をS2、前記平坦部の直径をD1、前記気流方向における前記フィンの上流端と下流端とを通る平面を基準平面、前記基準平面と前記第1傾斜部とのなす角度をθ1、前記基準平面と前記第2傾斜部とのなす角度をθ2、前記基準平面から前記平坦部までの距離をαと定義したとき、
 tan-1{(S1・tanθ1±2α)/(S2-D1)}≦θ2<80°-θ1の関係を満足する、フィンチューブ熱交換器を提供する。
That is, this disclosure
A plurality of fins arranged in parallel to form a gas flow path;
A heat transfer tube configured to pass through the plurality of fins and to have a medium that exchanges heat with the gas flow therein;
The fin is a corrugated fin formed so that a peak portion appears only at one place in the airflow direction, and a plurality of through holes in which the heat transfer tubes are fitted, and a flat portion formed around the through holes And a first inclined part that is inclined with respect to the airflow direction so as to form the mountain part, and a second inclined part that connects the flat part and the first inclined part,
The plurality of through holes are formed along a step direction perpendicular to both the direction of arrangement of the plurality of fins and the airflow direction,
The length of the fin in the airflow direction is S1, the distance between the centers of the heat transfer tubes in the step direction is S2, the diameter of the flat portion is D1, and a plane passing through the upstream end and the downstream end of the fin in the airflow direction Is defined as a reference plane, an angle formed by the reference plane and the first inclined portion is defined as θ1, an angle formed between the reference plane and the second inclined portion is defined as θ2, and a distance from the reference plane to the flat portion is defined as α. When
Provided is a finned tube heat exchanger that satisfies the relationship of tan −1 {(S1 · tan θ1 ± 2α) / (S2-D1)} ≦ θ2 <80 ° -θ1.
 上記の構成によれば、通風抵抗が十分に抑制され、かつ高い熱交換量(熱交換能力)を有するフィンチューブ熱交換器を提供できる。 According to the above configuration, it is possible to provide a finned tube heat exchanger in which the ventilation resistance is sufficiently suppressed and the heat exchange amount (heat exchange capability) is high.
本発明の一実施形態に係るフィンチューブ熱交換器の斜視図The perspective view of the finned-tube heat exchanger which concerns on one Embodiment of this invention. 図1のフィンチューブ熱交換器に用いられたフィンの平面図The top view of the fin used for the fin tube heat exchanger of FIG. 図2Aに示すフィンのIIB-IIB線に沿った断面図Sectional drawing along the IIB-IIB line of the fin shown in FIG. 2A 図2Aに示すフィンのIIC-IIC線に沿った断面図Sectional drawing along the IIC-IIC line of the fin shown in FIG. 2A 図2Aに示すフィンのIID-IID線に沿った断面図Sectional view along the IID-IID line of the fin shown in Fig. 2A 第2傾斜角度θ2とフィンの表面積との関係を示すグラフGraph showing the relationship between the second inclination angle θ2 and the surface area of the fin 第2傾斜角度θ2と表面積比(V形コルゲートフィンの表面積/M形コルゲートフィンの表面積)との関係を示すグラフGraph showing the relationship between the second inclination angle θ2 and the surface area ratio (surface area of V-shaped corrugated fin / surface area of M-shaped corrugated fin) 隣り合う第2傾斜部が接触した状態を示す概略図Schematic which shows the state which the adjacent 2nd inclination part contacted. 閾値角度θ2Lの算出方法を示す概略図Schematic showing the calculation method of the threshold angle θ2L 距離αの最大値αmaxの算出方法を示す概略図Schematic showing how to calculate the maximum value αmax of distance α 図2Aに示すフィンにおいて高い熱伝達率を有する部分を示す平面図The top view which shows the part which has a high heat transfer rate in the fin shown to FIG. 2A 従来のフィンにおいて高い熱伝達率を有する部分を示す平面図The top view which shows the part which has a high heat transfer rate in the conventional fin 空気の流れの解析領域を示す断面図Sectional view showing the analysis area of air flow 第1傾斜角度θ1と第2傾斜角度θ2との和が36°のときの空気の流れを示す概略図Schematic showing the air flow when the sum of the first inclination angle θ1 and the second inclination angle θ2 is 36 ° 第1傾斜角度θ1と第2傾斜角度θ2との和が66°のときの空気の流れを示す概略図Schematic showing the air flow when the sum of the first inclination angle θ1 and the second inclination angle θ2 is 66 ° 第1傾斜角度θ1と第2傾斜角度θ2との和が76°のときの空気の流れを示す概略図Schematic showing the air flow when the sum of the first inclination angle θ1 and the second inclination angle θ2 is 76 ° 第1傾斜角度θ1と第2傾斜角度θ2との和が86°のときの空気の流れを示す概略図Schematic showing the air flow when the sum of the first inclination angle θ1 and the second inclination angle θ2 is 86 ° 第1傾斜角度θ1と第2傾斜角度θ2との和が96°のときの空気の流れを示す概略図Schematic showing the flow of air when the sum of the first inclination angle θ1 and the second inclination angle θ2 is 96 ° 第2傾斜角度θ2とフィンチューブ熱交換器の性能(熱交換量及び圧力損失)との関係を示すグラフThe graph which shows the relationship between 2nd inclination | tilt angle (theta) 2 and the performance (heat exchange amount and pressure loss) of a finned-tube heat exchanger. 第2実施形態に係るフィンの平面図The top view of the fin concerning a 2nd embodiment 図8Aに示すフィンのVIIIB-VIIIB線に沿った断面図Sectional drawing along the VIIIB-VIIIB line of the fin shown in FIG. 8A 図8Aに示すフィンのVIIIC-VIIIC線に沿った断面図Sectional drawing along the VIIIC-VIIIC line of the fin shown in FIG. 8A 図8Aに示すフィンのVIIID-VIIID線に沿った断面図Sectional drawing along the VIIID-VIIID line of the fin shown in FIG. 8A 閾値角度θ2Lの算出方法を示す概略図Schematic showing the calculation method of the threshold angle θ2L 従来のフィンチューブ熱交換器に使用されたフィンの平面図Top view of fins used in conventional fin tube heat exchanger 図9Aに示すフィンのIXB-IXB線に沿った断面図Sectional drawing along the IXB-IXB line of the fin shown in FIG. 9A 図9Aに示すフィンのIXC-IXC線に沿った断面図Sectional drawing along the IXC-IXC line of the fin shown in FIG. 9A 図9Aに示すフィンのIXD-IXD線に沿った断面図Sectional drawing along the IXD-IXD line of the fin shown in FIG. 9A 従来のフィンチューブ熱交換器に使用された別のフィンの平面図Top view of another fin used in a conventional fin tube heat exchanger 図10Aに示すフィンのXB-XB線に沿った断面図Sectional drawing along the XB-XB line of the fin shown in FIG. 10A 図10Aに示すフィンのXC-XC線に沿った断面図Sectional drawing along the XC-XC line of the fin shown in FIG. 10A 従来のフィンチューブ熱交換器に使用されたさらに別のフィンの平面図Top view of yet another fin used in a conventional fin tube heat exchanger 図11Aに示すフィンのXIB-XIB線に沿った断面図Sectional drawing along the XIB-XIB line of the fin shown in FIG. 11A 図11Aに示すフィンのXIC-XIC線に沿った断面図Sectional drawing along the XIC-XIC line of the fin shown in FIG. 11A
 本開示の第1態様は、
 気体の流路を形成するために平行に並べられた複数のフィンと、
 前記複数のフィンを貫通しており、前記気体と熱交換する媒体が内部を流れるように構成された伝熱管とを備え、
 前記フィンは、気流方向において山部が1箇所にのみ現れるように成形されたコルゲートフィンであって、前記伝熱管が嵌められた複数の貫通孔と、前記貫通孔の周囲に形成された平坦部と、前記山部を形成するように前記気流方向に対して傾いている第1傾斜部と、前記平坦部と前記第1傾斜部とを接続している第2傾斜部とを有し、
 前記複数の貫通孔は、前記複数のフィンの並び方向と前記気流方向との両方向に垂直な段方向に沿って形成されており、
 前記気流方向における前記フィンの長さをS1、前記段方向における前記伝熱管の中心間距離をS2、前記平坦部の直径をD1、前記気流方向における前記フィンの上流端と下流端とを通る平面を基準平面、前記基準平面と前記第1傾斜部とのなす角度をθ1、前記基準平面と前記第2傾斜部とのなす角度をθ2、前記基準平面から前記平坦部までの距離をαと定義したとき、
 tan-1{(S1・tanθ1±2α)/(S2-D1)}≦θ2<80°-θ1の関係を満足する、フィンチューブ熱交換器を提供する。
The first aspect of the present disclosure is:
A plurality of fins arranged in parallel to form a gas flow path;
A heat transfer tube configured to pass through the plurality of fins and to have a medium that exchanges heat with the gas flow therein;
The fin is a corrugated fin formed so that a peak portion appears only at one place in the airflow direction, and a plurality of through holes in which the heat transfer tubes are fitted, and a flat portion formed around the through holes And a first inclined part that is inclined with respect to the airflow direction so as to form the mountain part, and a second inclined part that connects the flat part and the first inclined part,
The plurality of through holes are formed along a step direction perpendicular to both the direction of the plurality of fins and the airflow direction,
The length of the fin in the airflow direction is S1, the distance between the centers of the heat transfer tubes in the step direction is S2, the diameter of the flat portion is D1, and the plane passing through the upstream end and the downstream end of the fin in the airflow direction Is defined as a reference plane, an angle between the reference plane and the first inclined portion is defined as θ1, an angle formed between the reference plane and the second inclined portion is defined as θ2, and a distance from the reference plane to the flat portion is defined as α. When
Provided is a finned tube heat exchanger that satisfies the relationship of tan −1 {(S1 · tan θ1 ± 2α) / (S2-D1)} ≦ θ2 <80 ° −θ1.
 本開示の第2態様は、第1態様に加え、前記角度θ2が、tan-1{(S1・tanθ1±2α)/(S2-D1)}≦θ2<70°-θ1の関係を満足する、フィンチューブ熱交換器を提供する。 In the second aspect of the present disclosure, in addition to the first aspect, the angle θ2 satisfies a relationship of tan −1 {(S1 · tan θ1 ± 2α) / (S2-D1)} ≦ θ2 <70 ° −θ1. A finned tube heat exchanger is provided.
 本開示の第3態様は、第1又は第2態様に加え、前記フィンは、前記複数の貫通孔を除いたその他の領域において当該フィンの表側から裏側への前記気体の流れを禁止するように構成されている、フィンチューブ熱交換器を提供する。 In a third aspect of the present disclosure, in addition to the first or second aspect, the fin is configured to prohibit the flow of the gas from the front side to the back side of the fin in other regions excluding the plurality of through holes. Provided is a finned tube heat exchanger.
 本開示の第4態様は、
 気体の流路を形成するために平行に並べられた複数のフィンと、
 前記複数のフィンを貫通しており、前記気体と熱交換する媒体が内部を流れるように構成された伝熱管とを備え、
 前記フィンは、気流方向において山部が1箇所にのみ現れるように成形されたコルゲートフィンであって、前記伝熱管が嵌められた複数の貫通孔と、前記貫通孔の周囲において前記伝熱管に密着している円筒状のフィンカラーと、前記山部を形成するように前記気流方向に対して傾いている第1傾斜部と、前記フィンカラーと前記第1傾斜部とを接続している第2傾斜部とを有し、
 前記複数の貫通孔は、前記複数のフィンの並び方向と前記気流方向との両方向に垂直な段方向に沿って形成されており、
 前記気流方向における前記フィンの長さをS1、前記段方向における前記伝熱管の中心間距離をS2、前記フィンカラーの外径をD2、前記気流方向における前記フィンの上流端と下流端とを通る平面を基準平面、前記基準平面と前記第1傾斜部とのなす角度をθ1、前記基準平面と前記第2傾斜部とのなす角度をθ2と定義したとき、
 tan-1{(S1・tanθ1)/(S2-D2)}≦θ2<80°-θ1の関係を満足する、フィンチューブ熱交換器を提供する。
The fourth aspect of the present disclosure is:
A plurality of fins arranged in parallel to form a gas flow path;
A heat transfer tube configured to pass through the plurality of fins and to have a medium that exchanges heat with the gas flow therein;
The fin is a corrugated fin formed so that a peak portion appears only at one place in the airflow direction, and is closely attached to the heat transfer tube around the through hole in which the heat transfer tube is fitted. A cylindrical fin collar, a first inclined portion that is inclined with respect to the air flow direction so as to form the peak portion, and a second connecting the fin collar and the first inclined portion. An inclined portion,
The plurality of through holes are formed along a step direction perpendicular to both the direction of arrangement of the plurality of fins and the airflow direction,
The length of the fin in the airflow direction is S1, the distance between the centers of the heat transfer tubes in the step direction is S2, the outer diameter of the fin collar is D2, and the upstream end and the downstream end of the fin in the airflow direction are passed. When a plane is defined as a reference plane, an angle formed between the reference plane and the first inclined portion is defined as θ1, and an angle formed between the reference plane and the second inclined portion is defined as θ2.
Provided is a finned tube heat exchanger that satisfies the relationship of tan −1 {(S1 · tanθ1) / (S2-D2)} ≦ θ2 <80 ° −θ1.
 本開示の第5態様は、第4態様に加え、前記角度θ2が、tan-1{(S1・tanθ1)/(S2-D2)}≦θ2<70°-θ1の関係を満足する、フィンチューブ熱交換器を提供する。 In the fifth aspect of the present disclosure, in addition to the fourth aspect, the angle θ2 satisfies the relationship of tan −1 {(S1 · tanθ1) / (S2-D2)} ≦ θ2 <70 ° −θ1. Provide heat exchanger.
 本開示の第6態様は、第4又は第5態様に加え、前記フィンは、前記複数の貫通孔を除いたその他の領域において当該フィンの表側から裏側への前記気体の流れを禁止するように構成されている、フィンチューブ熱交換器を提供する。 In a sixth aspect of the present disclosure, in addition to the fourth or fifth aspect, the fins prohibit the flow of the gas from the front side to the back side of the fins in other regions excluding the plurality of through holes. Provided is a finned tube heat exchanger.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の実施形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by the following embodiment.
(第1実施形態)
 図1に示すように、本実施形態のフィンチューブ熱交換器100は、空気A(気体)の流路を形成するために平行に並べられた複数のフィン31と、これらのフィン31を貫通する伝熱管21とを備えている。フィンチューブ熱交換器100は、伝熱管21の内部を流れる媒体Bと、フィン31の表面に沿って流れる空気Aとを熱交換させるように構成されている。媒体Bは、例えば、二酸化炭素、ハイドロフルオロカーボンなどの冷媒である。伝熱管21は、1本につながっていてもよいし、複数本に分かれていてもよい。
(First embodiment)
As shown in FIG. 1, the finned tube heat exchanger 100 of the present embodiment passes through a plurality of fins 31 arranged in parallel to form a flow path of air A (gas) and these fins 31. And a heat transfer tube 21. The finned tube heat exchanger 100 is configured to exchange heat between the medium B flowing inside the heat transfer tube 21 and the air A flowing along the surface of the fin 31. The medium B is a refrigerant such as carbon dioxide or hydrofluorocarbon. The heat transfer tube 21 may be connected to one or may be divided into a plurality.
 フィン31は、前縁30a及び後縁30bを有する。前縁30a及び後縁30bは、それぞれ、直線状である。本実施形態では、伝熱管21の中心に関してフィン31が左右対称の構造を有している。従って、熱交換器100を組み立てるときに、フィン31の方向を考慮する必要がない。 The fin 31 has a front edge 30a and a rear edge 30b. The front edge 30a and the rear edge 30b are each linear. In the present embodiment, the fins 31 have a symmetrical structure with respect to the center of the heat transfer tube 21. Therefore, it is not necessary to consider the direction of the fins 31 when assembling the heat exchanger 100.
 本明細書では、フィン31の並び方向を高さ方向、前縁30aに平行な方向を段方向、高さ方向及び段方向に垂直な方向を気流方向(空気Aの流れ方向)と定義する。言い換えれば、段方向は、高さ方向と気流方向との両方向に垂直な方向である。気流方向はフィン31の長手方向に垂直である。気流方向、高さ方向及び段方向は、それぞれ、X方向、Y方向及びZ方向に対応している。 In this specification, the arrangement direction of the fins 31 is defined as the height direction, the direction parallel to the front edge 30a is defined as the step direction, and the height direction and the direction perpendicular to the step direction are defined as the airflow direction (the flow direction of the air A). In other words, the step direction is a direction perpendicular to both the height direction and the airflow direction. The airflow direction is perpendicular to the longitudinal direction of the fins 31. The airflow direction, the height direction, and the step direction correspond to the X direction, the Y direction, and the Z direction, respectively.
 図2A~図2Dに示すように、フィン31は、典型的には、長方形かつ平板の形状を有する。フィン31の長手方向は段方向に一致している。本実施形態において、フィン31は一定の間隔(フィンピッチFP)で並べられている。ただし、高さ方向に関して互いに隣り合う2つのフィン31の間隔は必ずしも一定である必要はなく、異なっていてもよい。フィンピッチFPは、例えば、1.0~1.5mmの範囲に調整されている。図2Bに示すように、フィンピッチFPは、隣り合う2つのフィン31の距離で表される。 As shown in FIGS. 2A to 2D, the fin 31 typically has a rectangular and flat plate shape. The longitudinal direction of the fin 31 coincides with the step direction. In the present embodiment, the fins 31 are arranged at a constant interval (fin pitch FP). However, the interval between the two fins 31 adjacent to each other in the height direction is not necessarily constant, and may be different. The fin pitch FP is adjusted to a range of 1.0 to 1.5 mm, for example. As shown in FIG. 2B, the fin pitch FP is represented by the distance between two adjacent fins 31.
 前縁30aを含む一定幅の部分及び後縁30bを含む一定幅の部分は、気流方向に平行である。ただし、これらの部分は、成形時にフィン31を金型に固定するために使用される部分であり、フィン31の性能に大きな影響を及ぼさない。 The constant width portion including the front edge 30a and the constant width portion including the rear edge 30b are parallel to the airflow direction. However, these portions are portions used for fixing the fins 31 to the mold during molding, and do not greatly affect the performance of the fins 31.
 フィン31の材料として、打ち抜き加工された肉厚0.05~0.8mmのアルミニウム製の平板を好適に使用できる。フィン31の表面にベーマイト処理、親水性塗料の塗布などの親水性処理が施されていてもよい。親水性処理に代えて、撥水処理を行うことも可能である。 As the material of the fin 31, a flat plate made of aluminum having a thickness of 0.05 to 0.8 mm that has been punched can be suitably used. The surface of the fin 31 may be subjected to hydrophilic treatment such as boehmite treatment or application of a hydrophilic paint. It is also possible to perform a water repellent treatment instead of the hydrophilic treatment.
 フィン31には、複数の貫通孔37hが段方向に沿って一列かつ等間隔で形成されている。複数の貫通孔37hの各中心を通る直線は段方向に平行である。複数の貫通孔37hのそれぞれに伝熱管21が嵌められている。貫通孔37hの周りには円筒状のフィンカラー37がフィン31の一部によって形成されており、このフィンカラー37と伝熱管21とが密着している。貫通孔37hの直径は、例えば1~20mmであり、4mm以下であってもよい。貫通孔37hの直径は、伝熱管21の外径に一致している。段方向に互いに隣り合う2つの貫通孔37hの中心間距離(管ピッチ)は、例えば、貫通孔37hの直径の2~3倍である。また、気流方向におけるフィン31の長さは、例えば15~25mmである。 In the fin 31, a plurality of through holes 37h are formed in a row and at equal intervals along the step direction. Straight lines passing through the centers of the plurality of through holes 37h are parallel to the step direction. The heat transfer tube 21 is fitted in each of the plurality of through holes 37h. A cylindrical fin collar 37 is formed by a part of the fin 31 around the through hole 37h, and the fin collar 37 and the heat transfer tube 21 are in close contact with each other. The diameter of the through hole 37h is, for example, 1 to 20 mm, and may be 4 mm or less. The diameter of the through-hole 37 h matches the outer diameter of the heat transfer tube 21. The center distance (pipe pitch) between two through holes 37h adjacent to each other in the step direction is, for example, 2 to 3 times the diameter of the through hole 37h. The length of the fin 31 in the airflow direction is, for example, 15 to 25 mm.
 図2A及び図2Bに示すように、フィン31は、気流方向において山部34が1箇所にのみ現れるように成形されている。山部34の稜線は段方向に平行である。すなわち、フィン31は、コルゲートフィンと呼ばれるフィンである。フィンカラー37の突出方向と同じ方向に突出している部分を「山部34」と定義すると、本実施形態において、フィン31は、気流方向において1つの山部34のみを有する。前縁30a及び後縁30bが谷部に対応している。気流方向において、山部34の位置は伝熱管21の中心の位置に一致している。 As shown in FIGS. 2A and 2B, the fin 31 is formed so that the mountain portion 34 appears only in one place in the airflow direction. The ridge line of the mountain portion 34 is parallel to the step direction. That is, the fin 31 is a fin called a corrugated fin. If a portion projecting in the same direction as the projecting direction of the fin collar 37 is defined as a “mountain portion 34”, in the present embodiment, the fin 31 has only one mountain portion 34 in the airflow direction. The front edge 30a and the rear edge 30b correspond to the valleys. In the airflow direction, the position of the mountain portion 34 coincides with the center position of the heat transfer tube 21.
 本実施形態において、フィン31は、複数の貫通孔37hを除いたその他の領域において当該フィン31の表側(上面側)から裏側(下面側)への空気Aの流れを禁止するように構成されている。このように、貫通孔37h以外の開口部がフィン31に設けられていないことが望ましい。開口部が存在しなければ、着霜による目詰まりの問題も生じないので、圧力損失の観点で有利である。なお、「開口部が設けられていない」とは、スリット、ルーバーなどが設けられていないこと、すなわち、フィンを貫通する孔が設けられていないことを意味する。 In the present embodiment, the fin 31 is configured to prohibit the flow of air A from the front side (upper surface side) to the back side (lower surface side) of the fin 31 in other regions excluding the plurality of through holes 37h. Yes. Thus, it is desirable that no opening other than the through hole 37h is provided in the fin 31. If there is no opening, there is no problem of clogging due to frost formation, which is advantageous in terms of pressure loss. Note that “no opening is provided” means that no slit, louver or the like is provided, that is, no hole penetrating the fin is provided.
 フィン31は、さらに、平坦部35、第1傾斜部36及び第2傾斜部38を有する。平坦部35は、フィンカラー37に隣接している部分であって、貫通孔37hの周囲に形成された円環状の部分である。平坦部35の表面は、気流方向に平行で高さ方向に垂直である。第1傾斜部36は、山部34を形成するように気流方向に対して傾いた部分である。第1傾斜部36は、フィン31において最も広い面積を占有している。第1傾斜部38の表面は平坦である。第1傾斜部36は、段方向に平行かつ伝熱管21の中心を通る基準線の左右に位置している。つまり、風上側の第1傾斜部36と風下側の第1傾斜部36とによって山部34が形成されている。第2傾斜部38は、平坦部35と第1傾斜部36との間の高さの違いを解消するように、平坦部35と第1傾斜部36とを滑らかに接続している部分である。第2傾斜部38の表面は緩やかな曲面で構成されている。平坦部35及び第2傾斜部39は、フィンカラー37及び貫通孔37hの周りに凹状の部分を形成している。 The fin 31 further includes a flat portion 35, a first inclined portion 36, and a second inclined portion 38. The flat portion 35 is a portion adjacent to the fin collar 37 and an annular portion formed around the through hole 37h. The surface of the flat part 35 is parallel to the airflow direction and perpendicular to the height direction. The first inclined portion 36 is a portion inclined with respect to the airflow direction so as to form the mountain portion 34. The first inclined portion 36 occupies the widest area in the fin 31. The surface of the first inclined portion 38 is flat. The first inclined portions 36 are located on the left and right sides of a reference line that is parallel to the step direction and passes through the center of the heat transfer tube 21. That is, the peak portion 34 is formed by the first slope portion 36 on the windward side and the first slope portion 36 on the leeward side. The second inclined portion 38 is a portion that smoothly connects the flat portion 35 and the first inclined portion 36 so as to eliminate the difference in height between the flat portion 35 and the first inclined portion 36. . The surface of the second inclined portion 38 is a gently curved surface. The flat portion 35 and the second inclined portion 39 form a concave portion around the fin collar 37 and the through hole 37h.
 なお、第1傾斜部36と第2傾斜部38との境界部分に適度なアール(例えば、R0.5mm~R2.0mm)が付与されていてもよい。同様に、山部34と第2傾斜部38との境界部分に適度なアール(例えば、R0.5mm~R2.0mm)が付与されていてもよい。そのようなアールは、フィン31の排水性を改善する。 Note that an appropriate radius (for example, R0.5 mm to R2.0 mm) may be given to the boundary portion between the first inclined portion 36 and the second inclined portion 38. Similarly, an appropriate radius (for example, R0.5 mm to R2.0 mm) may be applied to the boundary portion between the peak portion 34 and the second inclined portion 38. Such a round improves the drainage of the fin 31.
 図2A~図2Dに示すように、気流方向におけるフィン31の長さをS1と定義する。段方向における伝熱管21の中心間距離(管ピッチ)をS2と定義する。平坦部35の直径をD1と定義する。気流方向におけるフィン31の上流端と下流端とを通る平面を基準平面H1と定義する。フィン31の上流端及び下流端は、それぞれ、前縁30a及び30bに対応する。基準平面H1と第1傾斜部36とのなす角度をθ1と定義する。基準平面H1と第2傾斜部38とのなす角度をθ2と定義する。角度θ1は、基準平面H1と第1傾斜部36とのなす角度のうち、鋭角側の角度である。同様に、角度θ2は、基準平面H1と第2傾斜部38とのなす角度のうち、鋭角側の角度である。本明細書では、角度θ1及び角度θ2をそれぞれ「第1傾斜角度θ1」及び「第2傾斜角度θ2」と称する。また、基準平面H1から平坦部35までの距離をαと定義する。図2A~図2Dに示す実施形態では、距離αがゼロである。すなわち、高さ方向において、平坦部35の位置、前縁30aの位置及び後縁30bの位置が一致している。このとき、基準平面H1は、平坦部35の表面を含む平面に一致する。 As shown in FIGS. 2A to 2D, the length of the fin 31 in the airflow direction is defined as S1. The center-to-center distance (tube pitch) of the heat transfer tubes 21 in the step direction is defined as S2. The diameter of the flat part 35 is defined as D1. A plane passing through the upstream end and the downstream end of the fin 31 in the airflow direction is defined as a reference plane H1. The upstream end and the downstream end of the fin 31 correspond to the leading edges 30a and 30b, respectively. An angle formed by the reference plane H1 and the first inclined portion 36 is defined as θ1. An angle formed by the reference plane H1 and the second inclined portion 38 is defined as θ2. The angle θ <b> 1 is an acute angle side among the angles formed by the reference plane H <b> 1 and the first inclined portion 36. Similarly, the angle θ <b> 2 is an acute angle side angle among the angles formed by the reference plane H <b> 1 and the second inclined portion 38. In this specification, the angle θ1 and the angle θ2 are respectively referred to as “first inclination angle θ1” and “second inclination angle θ2”. Further, the distance from the reference plane H1 to the flat portion 35 is defined as α. In the embodiment shown in FIGS. 2A-2D, the distance α is zero. That is, in the height direction, the position of the flat portion 35, the position of the front edge 30a, and the position of the rear edge 30b coincide. At this time, the reference plane H1 coincides with a plane including the surface of the flat portion 35.
 上記のように、S1、S2、D1、θ1、θ2及びαを定義したとき、フィンチューブ熱交換器100は、下記式(1)を満足する。 As described above, when S1, S2, D1, θ1, θ2, and α are defined, the finned tube heat exchanger 100 satisfies the following formula (1).
 tan-1{(S1・tanθ1±2α)/(S2-D1)}≦θ2<80°-θ1・・・(1) tan -1 {(S1 ・ tanθ1 ± 2α) / (S2-D1)} ≦ θ2 <80 ° -θ1 (1)
 高さ方向において、平坦部35の位置が、前縁30aの位置及び後縁30bの位置と異なっていてもよい。具体的に、平坦部35が基準平面H1よりも山部34の稜線の近くに位置しているとき、式(1)の左辺は、tan-1{(S1・tanθ1-2α)/(S2-D1)}である。平坦部35が基準平面H1よりも山部34の稜線の近くに位置していると、第1傾斜部36と第2傾斜部38とのなす角度が大きくなるので、フィン31の表面積が減少するものの、圧力損失が低減する。つまり、圧力損失の低いフィン31が得られる。 In the height direction, the position of the flat portion 35 may be different from the position of the front edge 30a and the position of the rear edge 30b. Specifically, when the flat portion 35 is located closer to the ridgeline of the peak portion 34 than the reference plane H1, the left side of the equation (1) is expressed as tan −1 {(S1 · tanθ1-2α) / (S2− D1)}. If the flat portion 35 is located closer to the ridgeline of the mountain portion 34 than the reference plane H1, the angle formed by the first inclined portion 36 and the second inclined portion 38 is increased, so that the surface area of the fin 31 is reduced. However, pressure loss is reduced. That is, the fin 31 with a low pressure loss is obtained.
 他方、平坦部35が基準平面H1よりも山部34の稜線から離れているとき、式(1)の左辺は、tan-1{(S1・tanθ1+2α)/(S2-D1)}である。平坦部35が基準平面H1よりも山部34の稜線から離れているとき、第1傾斜部36と第2傾斜部38とのなす角度が小さくなるので、圧力損失が増加するものの、フィン31の表面積が増加する。また、第2傾斜部38の角度θ2が増えることによって、伝熱管21の後ろに発生する死水領域を減らす効果も期待できる。つまり、熱交換能力の高いフィン31が得られる。 On the other hand, when the flat part 35 is farther from the ridgeline of the peak part 34 than the reference plane H1, the left side of the expression (1) is tan −1 {(S1 · tanθ1 + 2α) / (S2-D1)}. . When the flat portion 35 is farther from the ridge line of the peak portion 34 than the reference plane H1, the angle formed by the first inclined portion 36 and the second inclined portion 38 is reduced, so that the pressure loss increases, but the fin 31 Increases surface area. Moreover, the effect of reducing the dead water area | region which generate | occur | produces behind the heat exchanger tube 21 can also be anticipated by the angle (theta) 2 of the 2nd inclination part 38 increasing. That is, the fin 31 with high heat exchange capability is obtained.
 なお、第2傾斜部38は全体として曲面であるが、図2C又は図2Dに示す断面において、第2傾斜角度θ2を特定することができる。図2Cの断面は、段方向に垂直かつ伝熱管21の中心を通る平面でフィン31を切断したときに観察される断面である。図2Dの断面は、流れ方向に垂直かつ伝熱管の中心を通る平面でフィン31を切断したときに観察される断面である。 In addition, although the 2nd inclination part 38 is a curved surface as a whole, 2nd inclination angle (theta) 2 can be specified in the cross section shown to FIG. 2C or FIG. 2D. The cross section of FIG. 2C is a cross section observed when the fins 31 are cut along a plane perpendicular to the step direction and passing through the center of the heat transfer tube 21. 2D is a cross section observed when the fins 31 are cut along a plane perpendicular to the flow direction and passing through the center of the heat transfer tube.
 以下、式(1)の技術的意義を詳細に説明する。 Hereinafter, the technical significance of Equation (1) will be described in detail.
(第2傾斜角度θ2の下限値について)
 気流方向の長さが一定であると仮定すれば、コルゲートフィンの表面積は、フラットフィン(曲げられていないフィン)の表面積よりも必ず広い。さらに、第1傾斜角度θ1が一定のとき、曲げ回数を1回に制限したコルゲートフィン(V形コルゲートフィン)の表面積は、2回又はそれ以上の曲げ回数を有するコルゲートフィン(M形コルゲートフィン)の表面積よりも広い。この理由は、本実施形態のフィン31の断面を従来のフィン10の断面と比較することによって理解できる。
(About the lower limit value of the second inclination angle θ2)
Assuming that the length in the airflow direction is constant, the surface area of the corrugated fin is necessarily larger than the surface area of the flat fin (unbent fin). Further, when the first inclination angle θ1 is constant, the surface area of the corrugated fin (V-shaped corrugated fin) in which the number of bendings is limited to one is the corrugated fin (M-shaped corrugated fin) having two or more times of bending. It is wider than the surface area. This reason can be understood by comparing the cross section of the fin 31 of this embodiment with the cross section of the conventional fin 10.
 図2Bと図9Bとを比較すると理解できるように、図2Bに示された断面の輪郭の長さは、図9Bに示された断面の輪郭の長さに等しい。図2Cに示された断面は、図9Cに示された断面に一致しているので、両者の輪郭の長さは等しい。これに対し、図2Dと図9Dとを比較すると理解できるように、図2Dに示された断面の輪郭の長さは、図9Dに示された断面の輪郭の長さを上回っている。なぜなら、本実施形態のフィン31によれば、図2Dに示された断面に第2傾斜角度θ2を持った第2傾斜部38が含まれているからである。従来のフィン10によれば、図9Dに示された断面に傾斜部8が含まれておらず、平坦部5及び谷部6のみが含まれている。第2傾斜部38に基づく表面積の増加によって、本実施形態のフィン31の表面積は、従来の2回曲げのフィン10の表面積を上回る。 As can be understood by comparing FIG. 2B and FIG. 9B, the length of the cross-sectional contour shown in FIG. 2B is equal to the length of the cross-sectional contour shown in FIG. 9B. Since the cross section shown in FIG. 2C corresponds to the cross section shown in FIG. 9C, the lengths of both contours are equal. On the other hand, as can be understood by comparing FIG. 2D and FIG. 9D, the length of the cross-sectional contour shown in FIG. 2D exceeds the length of the cross-sectional contour shown in FIG. 9D. This is because according to the fin 31 of the present embodiment, the second inclined portion 38 having the second inclination angle θ2 is included in the cross section shown in FIG. 2D. According to the conventional fin 10, the inclined portion 8 is not included in the cross section shown in FIG. 9D, and only the flat portion 5 and the valley portion 6 are included. Due to the increase of the surface area based on the second inclined portion 38, the surface area of the fin 31 of the present embodiment exceeds the surface area of the conventional two-folded fin 10.
 上記の事実を証明するために、第2傾斜角度θ2を変化させながら、V形コルゲートフィンの表面積、及び、M形コルゲートフィンの表面積をそれぞれ計算した。結果を図3A及び図3Bに示す。計算に使用した他の条件は以下の通りである。 In order to prove the above fact, the surface area of the V-shaped corrugated fin and the surface area of the M-shaped corrugated fin were respectively calculated while changing the second inclination angle θ2. The results are shown in FIGS. 3A and 3B. Other conditions used for the calculation are as follows.
・フィンの長さS1=18.9mm
・伝熱管の中心間距離S2=18.3mm
・平坦部の直径D1=11mm
・第1傾斜角度θ1=16°
・フィンピッチFP=1.3mm
・ Fin length S1 = 18.9mm
・ Distance between heat transfer tube centers S2 = 18.3mm
-Diameter of flat part D1 = 11 mm
・ First tilt angle θ1 = 16 °
・ Fin pitch FP = 1.3mm
 図3Aに示すように、曲げ回数に依らず、第2傾斜角度θ2の増加に伴って、フィンの表面積は増加する。ただし、第2傾斜角度θ2に対するV形コルゲートフィンの表面積の増加率は、M形コルゲートフィンのそれを上回る。図3Bに示すように、第2傾斜角度θ2が0°に近いとき、V形コルゲートフィンの表面積は、M形コルゲートフィンの表面積に概ね一致する。つまり、表面積の比率は約100%である。第2傾斜角度θ2が大きければ大きいほど、表面積の差は拡大する。 As shown in FIG. 3A, the surface area of the fin increases as the second inclination angle θ2 increases, regardless of the number of bendings. However, the increase rate of the surface area of the V-shaped corrugated fin with respect to the second inclination angle θ2 exceeds that of the M-shaped corrugated fin. As shown in FIG. 3B, when the second inclination angle θ2 is close to 0 °, the surface area of the V-shaped corrugated fin substantially matches the surface area of the M-shaped corrugated fin. That is, the surface area ratio is about 100%. The larger the second tilt angle θ2, the greater the difference in surface area.
 詳細に分析すると、第2傾斜角度θ2が80°から40°へと減少するとき、表面積の比率を表す曲線の勾配は徐々に緩やかになる。しかし、図3Bに示す点Aの近くで曲線の勾配が急に大きくなる。この点Aに対応する閾値角度θ2Lは、図4Aに示すように、V形コルゲートフィンにおいて、段方向で互いに隣り合う第2傾斜部38が接触する角度である。第2傾斜角度θ2が閾値角度θ2Lよりも小さい領域では、隣り合う第2傾斜部38同士の侵食が進行するので、表面積の比率の減少が加速されることとなる。ここで、閾値角度θ2Lは、フィン31の長さS1、伝熱管21の中心間距離S2、平坦部35の直径D1及び第1傾斜角度θ1及び距離αを用いて下記式(2)で表される。 Analyzing in detail, when the second inclination angle θ2 decreases from 80 ° to 40 °, the slope of the curve representing the surface area ratio gradually becomes gentle. However, the slope of the curve suddenly increases near the point A shown in FIG. 3B. As shown in FIG. 4A, the threshold angle θ2L corresponding to the point A is an angle at which the second inclined portions 38 adjacent to each other in the step direction come into contact with each other in the V-shaped corrugated fin. In the region where the second inclination angle θ2 is smaller than the threshold angle θ2L, the erosion of the adjacent second inclined portions 38 proceeds, so the reduction in the surface area ratio is accelerated. Here, the threshold angle θ2L is expressed by the following formula (2) using the length S1 of the fin 31, the center-to-center distance S2 of the heat transfer tube 21, the diameter D1 of the flat portion 35, the first inclination angle θ1, and the distance α. The
 θ2L=tan-1{(S1・tanθ1±2α)/(S2-D1)}・・・(2) θ2L = tan -1 {(S1 ・ tanθ1 ± 2α) / (S2-D1)} (2)
 閾値角度θ2Lは、以下の方法で算出される角度である。図4Bに示すように、山部34の高さは、(S1/2)・tanθ1±αで表される。隣り合う第2傾斜部38が丁度接触したときの第2傾斜角度θ2(=閾値角度θ2L)の正接は、{(S1/2)・tanθ1±α}/{(S2-D1)/2}で表される。従って、閾値角度θ2Lは式(2)で表すことができる。 The threshold angle θ2L is an angle calculated by the following method. As shown in FIG. 4B, the height of the peak portion 34 is represented by (S1 / 2) · tan θ1 ± α. The tangent of the second inclination angle θ2 (= threshold angle θ2L) when the adjacent second inclined portions 38 just contact each other is {(S1 / 2) · tanθ1 ± α} / {(S2-D1) / 2}. expressed. Therefore, the threshold angle θ2L can be expressed by Expression (2).
 また、第2傾斜角度θ2が閾値角度θ2Lを下回ると、隣り合う第2傾斜部38同士が侵食し合うことによって山部34が消滅し、第2傾斜部38同士の接触部は水平に概ね平行となる。接触部における水平面上を通過するとき、空気は減速され、熱伝達率の低下を引き起こす。そのため、第2傾斜角度θ2が閾値角度θ2Lを下回ると、表面積の急激な減少による熱交換能力の低下に、熱伝達率の低下による熱交換能力の低下が上乗せされる。結果として、フィンチューブ熱交換器の熱交換能力は著しく低下する。 Further, when the second inclination angle θ2 is less than the threshold angle θ2L, the adjacent second inclined portions 38 are eroded and the mountain portions 34 disappear, and the contact portions between the second inclined portions 38 are substantially parallel to each other. It becomes. When passing over a horizontal plane at the contact portion, the air is decelerated, causing a decrease in heat transfer coefficient. For this reason, when the second inclination angle θ2 is less than the threshold angle θ2L, a decrease in heat exchange capability due to a decrease in heat transfer coefficient is added to a decrease in heat exchange capability due to a rapid decrease in surface area. As a result, the heat exchange capacity of the finned tube heat exchanger is significantly reduced.
 故に、フィンチューブ熱交換器の熱交換能力を高めるためには、第2傾斜角度θ2が閾値角度θ2L以上であることが重要である。 Therefore, in order to increase the heat exchange capability of the finned tube heat exchanger, it is important that the second inclination angle θ2 is equal to or greater than the threshold angle θ2L.
 なお、山部34を1つのみ有するフィン31を使用することによって熱交換能力の改善を期待できる別の理由として、平均熱伝達率の向上が挙げられる。図5Aは、山部を1つのみ有するV形コルゲートフィンに関する数値解析で得られた結果を示している。図5Bは、2つの山部を有するM形コルゲートフィンに関する数値解析で得られた結果を示している。高い熱流束(熱交換量)を有する部分が太線で示されている。図5Aに示すように、前縁30a及び山部34での熱流束が極めて高い。同様に、図5Bに示すように、前縁9及び山部4での熱流束が極めて高い。ただし、太線の全長を比較すると、図5Aに示された太線の全長は、図5Bに示された太線の全長を上回っている。つまり、V形コルゲートフィンは、高熱流束の領域をより長く確保できる。従って、熱伝達率の側面においても、本実施形態のフィン31は、従来のフィン10に対して有利である。 In addition, the improvement of an average heat transfer rate is mentioned as another reason which can expect improvement of a heat exchange capability by using the fin 31 which has only one peak part 34. FIG. FIG. 5A shows the results obtained by numerical analysis for a V-shaped corrugated fin having only one peak. FIG. 5B shows the results obtained by numerical analysis for an M-shaped corrugated fin having two peaks. A portion having a high heat flux (heat exchange amount) is indicated by a thick line. As shown to FIG. 5A, the heat flux in the front edge 30a and the peak part 34 is very high. Similarly, as shown in FIG. 5B, the heat flux at the leading edge 9 and the peak 4 is extremely high. However, when the total length of the thick line is compared, the total length of the thick line shown in FIG. 5A exceeds the total length of the thick line shown in FIG. 5B. That is, the V-shaped corrugated fin can ensure a longer region of high heat flux. Therefore, the fin 31 of this embodiment is advantageous to the conventional fin 10 also in terms of heat transfer coefficient.
(第2傾斜角度θ2の上限値について)
 第2傾斜角度θ2の増加に伴うデメリットとして、「流れの剥離」が挙げられる。図6Aに破線Dで示すように、フィンチューブ熱交換器100において、空気Aの蛇行角度が最も大きい区間は、第1傾斜部36と第2傾斜部38との境界近傍に存在する。破線Dで示された区間における気流の蛇行角度は、第1傾斜角度θ1と第2傾斜角度θ2との和(θ1+θ2)で表すことができる。
(About the upper limit value of the second inclination angle θ2)
As a disadvantage associated with the increase in the second inclination angle θ2, “flow separation” can be cited. As shown by the broken line D in FIG. 6A, in the finned tube heat exchanger 100, the section where the meandering angle of the air A is the largest exists near the boundary between the first inclined portion 36 and the second inclined portion 38. The meandering angle of the airflow in the section indicated by the broken line D can be represented by the sum (θ1 + θ2) of the first inclination angle θ1 and the second inclination angle θ2.
 蛇行角度(θ1+θ2)が気流に与える影響を調べるために、表面積の計算で使用した条件を有するコルゲートフィンのモデルを用いて気流解析を実施した。具体的には、蛇行角度(θ1+θ2)を変化させながら、蛇行部分における剥離領域の大きさと、剥離領域内の気流方向とを調べた。前面風速は1.3m/秒であった。代表的な結果を図6B~図6Fに示す。 In order to investigate the influence of the meander angle (θ1 + θ2) on the airflow, an airflow analysis was performed using a corrugated fin model having the conditions used in the calculation of the surface area. Specifically, while changing the meandering angle (θ1 + θ2), the size of the peeling area in the meandering portion and the airflow direction in the peeling area were examined. The front wind speed was 1.3 m / sec. Representative results are shown in FIGS. 6B-6F.
 図6Bに示すように、蛇行角度(θ1+θ2)が36°のとき、蛇行部分の外周壁の近傍に剥離領域が発生した。しかし、その厚さは非常に薄く、内部の流れも主流に沿って順方向に流れていた。図6Cに示すように、蛇行角度(θ1+θ2)が66°のとき、蛇行部分の外周壁の近傍に剥離領域が発生した。剥離領域は比較的厚かったが、剥離領域における流れは基本的には順方向であった。主流と異なるベクトルを示す流れも僅かに存在していた。蛇行角度(θ1+θ2)が76°のとき、蛇行角度(θ1+θ2)が66°のときと同様、主流と異なるベクトルを示す流れは僅かに存在していた。蛇行角度(θ1+θ2)が86°のとき、主流と異なるベクトルを示す流れが明確に増加した。蛇行角度(θ1+θ2)が96°のとき、蛇行部分の外周壁の近傍は、広い範囲かつ非常に厚い剥離領域で覆われていた。また、剥離領域内の流れの大半が、主流に対して逆方向のベクトルを含む渦流れとなっていた。剥離領域における渦流れは、通風抵抗を大幅に増加させる原因となるだけでなく、有効伝熱面積の減少も招く。すなわち、蛇行角度(θ1+θ2)が大きすぎると、表面積の増加による熱交換量の増加が相殺される可能性がある。従って、蛇行角度(θ1+θ2)は、通風抵抗の大幅な増加を招くことが無い範囲にあることが望ましい。 As shown in FIG. 6B, when the meandering angle (θ1 + θ2) was 36 °, a peeling region was generated in the vicinity of the outer peripheral wall of the meandering portion. However, the thickness was very thin, and the internal flow was flowing forward along the main stream. As shown in FIG. 6C, when the meandering angle (θ1 + θ2) was 66 °, a peeling region was generated in the vicinity of the outer peripheral wall of the meandering portion. The exfoliation region was relatively thick, but the flow in the exfoliation region was basically forward. There was also a slight flow showing a vector different from the mainstream. When the meandering angle (θ1 + θ2) was 76 °, there was a slight flow showing a vector different from the mainstream, similar to when the meandering angle (θ1 + θ2) was 66 °. When the meander angle (θ1 + θ2) was 86 °, the flow showing a vector different from the main flow increased clearly. When the meandering angle (θ1 + θ2) was 96 °, the vicinity of the outer peripheral wall of the meandering portion was covered with a wide range and a very thick peeling region. Further, most of the flow in the separation region is a vortex flow including a vector in the opposite direction to the main flow. The vortex flow in the separation region not only causes a significant increase in ventilation resistance, but also reduces the effective heat transfer area. That is, if the meander angle (θ1 + θ2) is too large, an increase in heat exchange amount due to an increase in surface area may be offset. Therefore, the meandering angle (θ1 + θ2) is desirably in a range that does not cause a significant increase in ventilation resistance.
 上記解析結果では、蛇行角度(θ1+θ2)が76°のとき、主流と異なるベクトルを示す流れが僅かに存在していた。これに対し、蛇行角度(θ1+θ2)が86°のとき、主流と異なるベクトルを示す流れが明確に増加した。このことから、蛇行角度(θ1+θ2)を80°未満、好ましくは70°未満に制限することで、剥離領域における渦流れの発生を抑制することができ、ひいては、通風抵抗を抑制することができる。 In the above analysis results, when the meander angle (θ1 + θ2) was 76 °, there was a slight flow showing a vector different from the mainstream. On the other hand, when the meander angle (θ1 + θ2) is 86 °, the flow showing a vector different from the main flow clearly increased. Therefore, by limiting the meandering angle (θ1 + θ2) to less than 80 °, preferably less than 70 °, generation of vortex flow in the separation region can be suppressed, and consequently, ventilation resistance can be suppressed.
 以上の結果から、第2傾斜角度θ2の好適な範囲が前述の式(1)で表される。 From the above results, a suitable range of the second inclination angle θ2 is expressed by the above-described formula (1).
 第1傾斜角度θ1は特に限定されないが、好ましくは40°未満である。第1傾斜角度θ1が40°以上の場合、山部34の曲り角度が80°以上となる。この場合、山部34に厚い剥離領域が生じ、主流に対して逆方向のベクトルを含む渦流れが生じる可能性がある。従って、第1傾斜角度θ1は40°未満であることが好ましい。第1傾斜角度θ1の下限は特に限定されない。コルゲートフィンにおいて、第1傾斜角度θ1は0°よりも大きい。 The first inclination angle θ1 is not particularly limited, but is preferably less than 40 °. When 1st inclination-angle (theta) 1 is 40 degrees or more, the bending angle of the peak part 34 will be 80 degrees or more. In this case, a thick separation region is generated in the peak portion 34, and there is a possibility that a vortex flow including a vector in the opposite direction to the main flow is generated. Therefore, the first inclination angle θ1 is preferably less than 40 °. The lower limit of the first inclination angle θ1 is not particularly limited. In the corrugated fin, the first inclination angle θ1 is larger than 0 °.
 図7は、第2傾斜角度θ2とフィンチューブ熱交換器の性能(熱交換量及び圧力損失)との関係を示すグラフである。熱交換量の変化率は、閾値角度θ2Lを境界として大きく変化する。すなわち、第2傾斜角度θ2が閾値角度θ2L以上のとき、十分な熱交換量を確保することができる。他方、通風抵抗の変化率は、角度θ2H(=80°-θ1又は70°-θ1)を境界として大きく変化する。すなわち、第2傾斜角度θ2が角度θ2Hよりも小さいとき、通風抵抗を十分に抑制することができる。 FIG. 7 is a graph showing the relationship between the second inclination angle θ2 and the performance (heat exchange amount and pressure loss) of the finned tube heat exchanger. The rate of change of the heat exchange amount greatly changes with the threshold angle θ2L as a boundary. That is, when the second inclination angle θ2 is equal to or greater than the threshold angle θ2L, a sufficient heat exchange amount can be ensured. On the other hand, the rate of change in ventilation resistance varies greatly with the angle θ2H (= 80 ° −θ1 or 70 ° −θ1) as a boundary. That is, when the second inclination angle θ2 is smaller than the angle θ2H, the ventilation resistance can be sufficiently suppressed.
 式(1)中の距離αの上限値及び下限値を検討する。図4Bから理解できるように、平坦部35が山部34の稜線に徐々に近づくと、平坦部35から山部34の稜線までの距離(S1/2)・tanθ1-αにおけるαの値が徐々に増える。平坦部35を山部34の稜線にさらに近づけるためには、ある時点で平坦部35と第1傾斜部36との間に段差を設ける必要が生じる。このような段差は、平坦部35の周囲における空気の流れを著しく阻害し、通風抵抗を大幅に増加させる。そのような段差を生じさせないαの最大値αmaxは、図4Cから理解できるように、tanθ1・(S1-D1)/2で表される。 Investigate the upper and lower limits of the distance α in equation (1). As can be understood from FIG. 4B, when the flat portion 35 gradually approaches the ridgeline of the peak portion 34, the distance (S1 / 2) from the flat portion 35 to the ridgeline of the peak portion 34, and the value of α in tan θ1-α gradually increases. It increases to. In order to bring the flat portion 35 closer to the ridgeline of the mountain portion 34, it is necessary to provide a step between the flat portion 35 and the first inclined portion 36 at a certain time. Such a step significantly hinders the air flow around the flat portion 35 and greatly increases the ventilation resistance. The maximum value αmax of α that does not cause such a step is represented by tan θ1 · (S1-D1) / 2 as can be understood from FIG. 4C.
 他方、平坦部35が山部34の稜線から徐々に遠ざかると、平坦部35から山部34の稜線までの距離(S1/2)・tanθ1+αにおけるαの値が徐々に増える。この場合、式(2)から理解できるように、αの値が大きくなればなるほど閾値角度θ2Lが大きくなる。しかし、フィンの構造上、新たな段差が出現することはない。従って、剥離領域に顕著な渦流れが発生しない範囲内(θ2<80°-θ1又はθ2<70°-θ1)であれば、αの値に制限はない。 On the other hand, when the flat portion 35 gradually moves away from the ridge line of the mountain portion 34, the value of α at the distance (S1 / 2) tan θ1 + α from the flat portion 35 to the ridge line of the mountain portion 34 gradually increases. In this case, as can be understood from Expression (2), the threshold angle θ2L increases as the value of α increases. However, a new step does not appear due to the fin structure. Accordingly, the value of α is not limited as long as it is within a range where no significant vortex flow is generated in the separation region (θ2 <80 ° −θ1 or θ2 <70 ° −θ1).
(第2実施形態)
 図8A~図8Dに示すように、本実施形態のフィン41は、フィンカラー37の周囲に平坦部35を有していない点を除き、第1実施形態のフィン31と同じ構造を有する。本実施形態のフィン41と第1実施形態のフィン31とで共通の要素には同一の参照符号を付与し、その説明を省略する。
(Second Embodiment)
As shown in FIGS. 8A to 8D, the fin 41 of the present embodiment has the same structure as the fin 31 of the first embodiment, except that the flat portion 35 is not provided around the fin collar 37. Elements common to the fins 41 of the present embodiment and the fins 31 of the first embodiment are assigned the same reference numerals, and descriptions thereof are omitted.
 フィン41は、フィンカラー37、第1傾斜部36及び第2傾斜部38を有する。フィンカラー37は、貫通孔37hの周囲において伝熱管21に密着している円筒状の部分である。第2傾斜部38は、フィンカラー37と第1傾斜部36とを接続している部分である。フィンカラー37の外径をD2と定義したとき、フィン41(詳細には、フィンチューブ熱交換器100)は、下記式(3)を満足する。 The fin 41 has a fin collar 37, a first inclined portion 36, and a second inclined portion 38. The fin collar 37 is a cylindrical portion that is in close contact with the heat transfer tube 21 around the through hole 37h. The second inclined portion 38 is a portion connecting the fin collar 37 and the first inclined portion 36. When the outer diameter of the fin collar 37 is defined as D2, the fin 41 (specifically, the fin tube heat exchanger 100) satisfies the following formula (3).
 tan-1{(S1・tanθ1)/(S2-D2)}≦θ2<80°-θ1・・・(3) tan -1 {(S1 ・ tanθ1) / (S2-D2)} ≦ θ2 <80 ° -θ1 (3)
 本実施形態において、フィンカラー37の下端の位置は基準平面H1の位置に一致しており、第1実施形態の平坦部35のように変動しない。図8Eに示すように、山部34の高さは、(S1・tanθ1)/2で表される。また、フィン41は平坦部35を有していないので、段方向で互いに隣り合う第2傾斜部38が接触するとき、第2傾斜部38の段方向の長さは(S2-D2)/2で表される。さらに、図6A~図6Fに示す気流解析の結果から推測されるように、平坦部35の有無は、通風抵抗の増減に大きな影響を与えないと考えられる。以上の理由により、式(1)に関する全ての説明は、式(3)にも援用できる。式(3)を満足するとき、フィン41を備えたフィンチューブ熱交換器100は、低い通風抵抗及び高い熱交換能力を有する。また、第1実施形態と同様に、第2傾斜角度θ2は、(70°-θ1)未満であることが望ましい。 In the present embodiment, the position of the lower end of the fin collar 37 coincides with the position of the reference plane H1, and does not vary like the flat portion 35 of the first embodiment. As shown in FIG. 8E, the height of the peak portion 34 is represented by (S1 · tan θ1) / 2. Further, since the fin 41 does not have the flat portion 35, when the second inclined portions 38 adjacent to each other in the step direction come into contact with each other, the length of the second inclined portion 38 in the step direction is (S2-D2) / 2. It is represented by Furthermore, as estimated from the results of the airflow analysis shown in FIGS. 6A to 6F, the presence or absence of the flat portion 35 is considered not to have a large effect on the increase or decrease in the ventilation resistance. For the above reason, all the explanations regarding the formula (1) can be applied to the formula (3). When the expression (3) is satisfied, the finned tube heat exchanger 100 including the fins 41 has a low ventilation resistance and a high heat exchange capacity. As in the first embodiment, the second inclination angle θ2 is preferably less than (70 ° −θ1).
 本発明のフィンチューブ熱交換器は、空気調和装置、給湯装置、暖房装置などに用いられるヒートポンプに有用である。特に、冷媒を蒸発させるための蒸発器に有用である。 The finned tube heat exchanger of the present invention is useful for a heat pump used in an air conditioner, a hot water supply device, a heating device, or the like. In particular, it is useful for an evaporator for evaporating a refrigerant.

Claims (6)

  1.  気体の流路を形成するために平行に並べられた複数のフィンと、
     前記複数のフィンを貫通しており、前記気体と熱交換する媒体が内部を流れるように構成された伝熱管とを備え、
     前記フィンは、気流方向において山部が1箇所にのみ現れるように成形されたコルゲートフィンであって、前記伝熱管が嵌められた複数の貫通孔と、前記貫通孔の周囲に形成された平坦部と、前記山部を形成するように前記気流方向に対して傾いている第1傾斜部と、前記平坦部と前記第1傾斜部とを接続している第2傾斜部とを有し、
     前記複数の貫通孔は、前記複数のフィンの並び方向と前記気流方向との両方向に垂直な段方向に沿って形成されており、
     前記気流方向における前記フィンの長さをS1、前記段方向における前記伝熱管の中心間距離をS2、前記平坦部の直径をD1、前記気流方向における前記フィンの上流端と下流端とを通る平面を基準平面、前記基準平面と前記第1傾斜部とのなす角度をθ1、前記基準平面と前記第2傾斜部とのなす角度をθ2、前記基準平面から前記平坦部までの距離をαと定義したとき、
     tan-1{(S1・tanθ1±2α)/(S2-D1)}≦θ2<80°-θ1の関係を満足する、フィンチューブ熱交換器。
    A plurality of fins arranged in parallel to form a gas flow path;
    A heat transfer tube configured to pass through the plurality of fins and to have a medium that exchanges heat with the gas flow therein;
    The fin is a corrugated fin formed so that a peak portion appears only at one place in the airflow direction, and a plurality of through holes in which the heat transfer tubes are fitted, and a flat portion formed around the through holes And a first inclined part that is inclined with respect to the airflow direction so as to form the mountain part, and a second inclined part that connects the flat part and the first inclined part,
    The plurality of through holes are formed along a step direction perpendicular to both the direction of arrangement of the plurality of fins and the airflow direction,
    The length of the fin in the airflow direction is S1, the distance between the centers of the heat transfer tubes in the step direction is S2, the diameter of the flat portion is D1, and a plane passing through the upstream end and the downstream end of the fin in the airflow direction Is defined as a reference plane, an angle formed by the reference plane and the first inclined portion is defined as θ1, an angle formed between the reference plane and the second inclined portion is defined as θ2, and a distance from the reference plane to the flat portion is defined as α. When
    A finned tube heat exchanger that satisfies the relationship of tan −1 {(S1 · tan θ1 ± 2α) / (S2-D1)} ≦ θ2 <80 ° -θ1.
  2.  前記角度θ2が、tan-1{(S1・tanθ1±2α)/(S2-D1)}≦θ2<70°-θ1の関係を満足する、請求項1に記載のフィンチューブ熱交換器。 The fin tube heat exchanger according to claim 1, wherein the angle θ2 satisfies a relationship of tan −1 {(S1 · tan θ1 ± 2α) / (S2-D1)} ≦ θ2 <70 ° −θ1.
  3.  前記フィンは、前記複数の貫通孔を除いたその他の領域において当該フィンの表側から裏側への前記気体の流れを禁止するように構成されている、請求項1に記載のフィンチューブ熱交換器。 The fin tube heat exchanger according to claim 1, wherein the fin is configured to prohibit the flow of the gas from the front side to the back side of the fin in the other region excluding the plurality of through holes.
  4.  気体の流路を形成するために平行に並べられた複数のフィンと、
     前記複数のフィンを貫通しており、前記気体と熱交換する媒体が内部を流れるように構成された伝熱管とを備え、
     前記フィンは、気流方向において山部が1箇所にのみ現れるように成形されたコルゲートフィンであって、前記伝熱管が嵌められた複数の貫通孔と、前記貫通孔の周囲において前記伝熱管に密着している円筒状のフィンカラーと、前記山部を形成するように前記気流方向に対して傾いている第1傾斜部と、前記フィンカラーと前記第1傾斜部とを接続している第2傾斜部とを有し、
     前記複数の貫通孔は、前記複数のフィンの並び方向と前記気流方向との両方向に垂直な段方向に沿って形成されており、
     前記気流方向における前記フィンの長さをS1、前記段方向における前記伝熱管の中心間距離をS2、前記フィンカラーの外径をD2、前記気流方向における前記フィンの上流端と下流端とを通る平面を基準平面、前記基準平面と前記第1傾斜部とのなす角度をθ1、前記基準平面と前記第2傾斜部とのなす角度をθ2と定義したとき、
     tan-1{(S1・tanθ1)/(S2-D2)}≦θ2<80°-θ1の関係を満足する、フィンチューブ熱交換器。
    A plurality of fins arranged in parallel to form a gas flow path;
    A heat transfer tube configured to pass through the plurality of fins and to have a medium that exchanges heat with the gas flow therein;
    The fin is a corrugated fin formed so that a peak portion appears only at one place in the airflow direction, and is closely attached to the heat transfer tube around the through hole in which the heat transfer tube is fitted. A cylindrical fin collar, a first inclined portion that is inclined with respect to the air flow direction so as to form the peak portion, and a second connecting the fin collar and the first inclined portion. An inclined portion,
    The plurality of through holes are formed along a step direction perpendicular to both the direction of arrangement of the plurality of fins and the airflow direction,
    The length of the fin in the airflow direction is S1, the distance between the centers of the heat transfer tubes in the step direction is S2, the outer diameter of the fin collar is D2, and the upstream end and the downstream end of the fin in the airflow direction are passed. When a plane is defined as a reference plane, an angle formed between the reference plane and the first inclined portion is defined as θ1, and an angle formed between the reference plane and the second inclined portion is defined as θ2.
    A finned tube heat exchanger that satisfies the relationship of tan -1 {(S1 · tanθ1) / (S2-D2)} ≦ θ2 <80 ° -θ1.
  5.  前記角度θ2が、tan-1{(S1・tanθ1)/(S2-D2)}≦θ2<70°-θ1の関係を満足する、請求項4に記載のフィンチューブ熱交換器。 The fin tube heat exchanger according to claim 4, wherein the angle θ2 satisfies a relationship of tan −1 {(S1 · tan θ1) / (S2-D2)} ≦ θ2 <70 ° −θ1.
  6.  前記フィンは、前記複数の貫通孔を除いたその他の領域において当該フィンの表側から裏側への前記気体の流れを禁止するように構成されている、請求項4に記載のフィンチューブ熱交換器。 The fin tube heat exchanger according to claim 4, wherein the fin is configured to prohibit the flow of the gas from the front side to the back side of the fin in other regions excluding the plurality of through holes.
PCT/JP2012/006469 2011-10-11 2012-10-10 Finned tube heat exchanger WO2013054508A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013538435A JP5958771B2 (en) 2011-10-11 2012-10-10 Finned tube heat exchanger
CN201280050084.9A CN103890527B (en) 2011-10-11 2012-10-10 Fin-tube heat exchanger
EP12840153.6A EP2767791B1 (en) 2011-10-11 2012-10-10 Fin tube heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-223922 2011-10-11
JP2011223922 2011-10-11

Publications (1)

Publication Number Publication Date
WO2013054508A1 true WO2013054508A1 (en) 2013-04-18

Family

ID=48081576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006469 WO2013054508A1 (en) 2011-10-11 2012-10-10 Finned tube heat exchanger

Country Status (4)

Country Link
EP (1) EP2767791B1 (en)
JP (1) JP5958771B2 (en)
CN (1) CN103890527B (en)
WO (1) WO2013054508A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090122A (en) * 2014-11-04 2016-05-23 パナソニックIpマネジメント株式会社 Fin tube heat exchanger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359341B (en) * 2014-11-14 2017-02-01 上海交通大学 Fin structure and heat exchanger applying fin structure
CN109029015A (en) * 2018-06-28 2018-12-18 苏州爱尔玛特环保节能科技有限公司 A kind of derotation is to formula Laser Welding finned tube
JP2020063883A (en) * 2018-10-18 2020-04-23 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner
CN111536822B (en) * 2020-05-20 2022-02-22 广东美的白色家电技术创新中心有限公司 Fin, heat exchanger and air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787979U (en) * 1980-11-13 1982-05-31
JPH10141880A (en) * 1996-11-12 1998-05-29 Matsushita Electric Ind Co Ltd Heat exchanger with fin
JPH10213386A (en) * 1997-01-30 1998-08-11 Hitachi Ltd Heat exchanger and air conditioner
JPH11125495A (en) 1997-10-22 1999-05-11 Matsushita Electric Ind Co Ltd Finned heat exchanger
JP2004011989A (en) * 2002-06-05 2004-01-15 Sharp Corp Heat exchanger
JP2005077083A (en) * 2003-09-02 2005-03-24 Lg Electronics Inc Heat exchanger
JP2005090939A (en) * 2003-09-15 2005-04-07 Lg Electronics Inc Heat exchanger
JP2009162406A (en) * 2007-12-28 2009-07-23 Mitsubishi Heavy Ind Ltd Fin and tube type heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691768A (en) * 1985-12-27 1987-09-08 Heil-Quaker Corporation Lanced fin condenser for central air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787979U (en) * 1980-11-13 1982-05-31
JPH10141880A (en) * 1996-11-12 1998-05-29 Matsushita Electric Ind Co Ltd Heat exchanger with fin
JPH10213386A (en) * 1997-01-30 1998-08-11 Hitachi Ltd Heat exchanger and air conditioner
JPH11125495A (en) 1997-10-22 1999-05-11 Matsushita Electric Ind Co Ltd Finned heat exchanger
JP2004011989A (en) * 2002-06-05 2004-01-15 Sharp Corp Heat exchanger
JP2005077083A (en) * 2003-09-02 2005-03-24 Lg Electronics Inc Heat exchanger
JP2005090939A (en) * 2003-09-15 2005-04-07 Lg Electronics Inc Heat exchanger
JP2009162406A (en) * 2007-12-28 2009-07-23 Mitsubishi Heavy Ind Ltd Fin and tube type heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090122A (en) * 2014-11-04 2016-05-23 パナソニックIpマネジメント株式会社 Fin tube heat exchanger

Also Published As

Publication number Publication date
CN103890527A (en) 2014-06-25
EP2767791A4 (en) 2014-10-01
EP2767791A1 (en) 2014-08-20
JP5958771B2 (en) 2016-08-02
JPWO2013054508A1 (en) 2015-03-30
EP2767791B1 (en) 2019-05-15
CN103890527B (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6186430B2 (en) Finned tube heat exchanger and refrigeration cycle apparatus
JP5518083B2 (en) Finned tube heat exchanger
EP2236972B1 (en) Fin for heat exchanger and heat exchanger using the fin
EP3018439B1 (en) Fin tube heat exchanger
JP4028591B2 (en) Heat transfer fin and fin tube heat exchanger
US6401809B1 (en) Continuous combination fin for a heat exchanger
JP5958771B2 (en) Finned tube heat exchanger
US6170566B1 (en) High performance louvered fin for a heat exchanger
WO2006028253A1 (en) Heat exchanger
WO2009144909A1 (en) Fin-tube heat exchanger
US20060266503A1 (en) Heat transfer fin, heat exchanger, evaporator and condenser for use in car air-conditioner
JP2009204277A (en) Heat exchanger
JP2013221682A (en) Fin tube heat exchanger
JP5921053B2 (en) Louver type corrugated insert for heat exchanger
JP2005121348A (en) Heat exchanger and heat transfer member
JP2013019578A (en) Finned tube heat exchanger
JP2015001307A (en) Fin tube heat exchanger
JP2010210188A (en) Fin tube heat exchanger
JP2014126212A (en) Fin tube heat exchanger
JP2013224788A (en) Finned tube heat exchanger
JP5753725B2 (en) Corrugated fin heat exchanger
KR200397472Y1 (en) Fin and tube integral type heat exchanger
JPH04369394A (en) Fin tube type heat exchanger
JPH07260382A (en) Heat exchanger
JP2006317117A (en) Heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280050084.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012840153

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013538435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE