JP2007126991A - Exhaust emission control system for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine Download PDF

Info

Publication number
JP2007126991A
JP2007126991A JP2005318501A JP2005318501A JP2007126991A JP 2007126991 A JP2007126991 A JP 2007126991A JP 2005318501 A JP2005318501 A JP 2005318501A JP 2005318501 A JP2005318501 A JP 2005318501A JP 2007126991 A JP2007126991 A JP 2007126991A
Authority
JP
Japan
Prior art keywords
fuel ratio
nox
air
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005318501A
Other languages
Japanese (ja)
Other versions
JP4654880B2 (en
Inventor
Hisashi Oki
久 大木
Kiyoshi Fujiwara
清 藤原
Tomoumi Yamada
智海 山田
Tsugufumi Aikawa
嗣史 藍川
Takashi Koyama
崇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005318501A priority Critical patent/JP4654880B2/en
Publication of JP2007126991A publication Critical patent/JP2007126991A/en
Application granted granted Critical
Publication of JP4654880B2 publication Critical patent/JP4654880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for suitably purifying NOx in exhaust gas in an exhaust emission control system for an internal combustion engine comprising a storage and reduction type NOx catalyst provided in an exhaust passage. <P>SOLUTION: When carrying out NOx reduction control by supplying a reducing agent to the storage and reduction type NOx catalyst while lowering the air-fuel ratio of exhaust gas exhausted from the internal combustion engine, a period of lowering the air-fuel ratio of exhaust gas exhausted from the internal combustion engine is set to a predetermined period shorter than a period when the temperature of the storage and reduction type NOx catalyst reaches a predetermined temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排気通路に設けられた吸蔵還元型NOx触媒を備えた内燃機関の排気浄化システムに関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine including an NOx storage reduction catalyst provided in an exhaust passage.

内燃機関の排気浄化システムにおいては、排気通路に設けられた吸蔵還元型NOx触媒(以下、単にNOx触媒と称する)を備えたものがある。NOx触媒は周囲雰囲気が酸化雰囲気のときに排気中のNOxを吸蔵し周囲雰囲気が還元雰囲気のときに吸蔵していたNOxを還元する触媒である。   Some exhaust purification systems for internal combustion engines include an NOx storage reduction catalyst (hereinafter simply referred to as a NOx catalyst) provided in an exhaust passage. The NOx catalyst is a catalyst that occludes NOx in the exhaust when the ambient atmosphere is an oxidizing atmosphere and reduces the NOx that is occluded when the ambient atmosphere is a reducing atmosphere.

特許文献1には、内燃機関から排出される排気の空燃比(以下、機関排気空燃比と称する)がリーン空燃比から理論空燃比またはリッチ空燃比に切り換わるときに、膨張行程または排気行程において燃料噴射弁から燃料を噴射することでNOx触媒に還元剤を供給する技術が開示されている。また、この特許文献1には、排気中に燃料を噴射することでNOx触媒に還元剤を供給する技術も開示されている。
特許第3424672号公報 特開2001−227325号公報
In Patent Document 1, when the air-fuel ratio of exhaust discharged from an internal combustion engine (hereinafter referred to as engine exhaust air-fuel ratio) is switched from a lean air-fuel ratio to a stoichiometric air-fuel ratio or a rich air-fuel ratio, an expansion stroke or an exhaust stroke is disclosed. A technique for supplying a reducing agent to a NOx catalyst by injecting fuel from a fuel injection valve is disclosed. Patent Document 1 also discloses a technique for supplying a reducing agent to the NOx catalyst by injecting fuel into the exhaust gas.
Japanese Patent No. 3424672 JP 2001-227325 A

排気通路に設けられたNOx触媒を備えた内燃機関の排気浄化システムにおいては、NOx触媒に吸蔵されたNOxを還元させるときに、該NOx触媒の周囲雰囲気を還元雰囲気とすべく、機関排気空燃比を低下させつつNOx触媒に還元剤を間欠的に供給する場合がある。   In an exhaust gas purification system for an internal combustion engine equipped with an NOx catalyst provided in an exhaust passage, when reducing NOx stored in the NOx catalyst, the engine exhaust air-fuel ratio is set so that the ambient atmosphere of the NOx catalyst is reduced. In some cases, the reducing agent is intermittently supplied to the NOx catalyst while lowering the NO.

この場合、NOx触媒に還元剤が供給されているときにNOxが還元されることになる。つまり、機関排気空燃比を低下させているのみであってNOx触媒に還元剤が供給されていないときは、NOxは還元されず吸蔵されることになる。   In this case, NOx is reduced when the reducing agent is supplied to the NOx catalyst. That is, when only the engine exhaust air-fuel ratio is lowered and no reducing agent is supplied to the NOx catalyst, NOx is stored without being reduced.

しかしながら、機関排気空燃比を低下させた場合、排気の温度が上昇するため、これに伴ってNOx触媒の温度も上昇することになる。そして、NOx触媒はその温度が上昇するとNOx吸蔵能力が低下する場合がある。そのため、NOx触媒に還元剤が供給されず機関排気空燃比が低下しているのみの期間が長くなることでNOx触媒の温度が過剰に上昇すると、NOx触媒でのNOx浄化率が過剰に低下する虞がある。   However, when the engine exhaust air-fuel ratio is lowered, the temperature of the exhaust gas rises, and accordingly, the temperature of the NOx catalyst also rises. Further, when the temperature of the NOx catalyst increases, the NOx occlusion capacity may decrease. Therefore, if the temperature of the NOx catalyst rises excessively because the period during which the reducing agent is not supplied to the NOx catalyst and the engine exhaust air-fuel ratio is lowered becomes longer, the NOx purification rate at the NOx catalyst is excessively lowered. There is a fear.

本発明は、上記問題に鑑みてなされたものであって、排気通路に設けられたNOx触媒を備えた内燃機関の排気浄化システムにおいて、排気中のNOxをより好適に浄化することが可能な技術を提供することを課題とする。   The present invention has been made in view of the above problems, and is a technology capable of more suitably purifying NOx in exhaust gas in an exhaust gas purification system for an internal combustion engine provided with a NOx catalyst provided in an exhaust passage. It is an issue to provide.

本発明は、内燃機関の排気通路に設けられたNOx触媒を備えた内燃機関の排気浄化システムにおいて、NOx触媒に吸蔵されたNOxを還元すべくNOx還元制御を実行するときに、機関排気空燃比を低下させる期間をNOx触媒の過剰な温度上昇を抑制することが出来る期間とするものである。   The present invention relates to an exhaust gas purification system for an internal combustion engine having a NOx catalyst provided in an exhaust passage of the internal combustion engine, and when executing NOx reduction control to reduce NOx occluded in the NOx catalyst, The period during which the temperature is reduced is a period during which an excessive increase in temperature of the NOx catalyst can be suppressed.

より詳しくは、本発明に係る内燃機関の排気浄化システムは、
内燃機関の排気通路に設けられた吸蔵還元型NOx触媒と、
前記内燃機関から排出される排気の空燃比である機関排気空燃比を制御する空燃比制御手段と、
前記吸蔵還元型NOx触媒に還元剤を供給する還元剤供給手段と、
前記空燃比制御手段によって機関排気空燃比を低下させつつ前記還元剤供給手段によって前記吸蔵還元型NOx触媒に還元剤を供給することで、前記吸蔵還元型NOx触媒に吸蔵されたNOxを還元するNOx還元制御を実行するNOx還元制御実行手段と、を備え、
前記NOx還元制御実行手段は、前記NOx還元制御を実行する場合、機関排気空燃比を低下させる期間を、前記NOx触媒の温度が所定温度に達する期間よりも短い所定期間とする。
More specifically, the exhaust gas purification system for an internal combustion engine according to the present invention is:
An NOx storage reduction catalyst provided in the exhaust passage of the internal combustion engine;
An air-fuel ratio control means for controlling an engine exhaust air-fuel ratio which is an air-fuel ratio of exhaust discharged from the internal combustion engine;
Reducing agent supply means for supplying a reducing agent to the NOx storage reduction catalyst;
NOx for reducing NOx stored in the NOx storage reduction catalyst by supplying a reducing agent to the NOx storage reduction catalyst by the reducing agent supply means while lowering the engine exhaust air fuel ratio by the air fuel ratio control means. NOx reduction control execution means for executing reduction control,
When executing the NOx reduction control, the NOx reduction control execution means sets a period during which the engine exhaust air-fuel ratio is lowered to a predetermined period shorter than a period during which the temperature of the NOx catalyst reaches a predetermined temperature.

本発明では、NOx還元制御実行時に機関排気空燃比を低下させる。このとき、排気の温度が上昇するため、これに伴ってNOx触媒の温度も徐々に上昇する。そこで、本発明では、機関排気空燃比を低下させる期間を所定期間よりも短くする。   In the present invention, the engine exhaust air-fuel ratio is lowered when the NOx reduction control is executed. At this time, since the temperature of the exhaust gas rises, the temperature of the NOx catalyst gradually rises accordingly. Therefore, in the present invention, the period during which the engine exhaust air-fuel ratio is reduced is shorter than the predetermined period.

ここで、所定期間は、機関排気空燃比を低下させることでNOx触媒の温度が徐々に上昇して所定温度にまで達する期間よりも短い期間である。また、ここでの所定温度は、NOx触媒のNOx吸蔵能力が過剰に低下すると判断出来る温度の下限値以下の温度である。   Here, the predetermined period is a period shorter than the period in which the temperature of the NOx catalyst gradually increases to reach the predetermined temperature by lowering the engine exhaust air-fuel ratio. Further, the predetermined temperature here is a temperature equal to or lower than the lower limit value of the temperature at which it can be determined that the NOx storage capacity of the NOx catalyst is excessively reduced.

本発明では、NOx還元制御実行時において、NOx触媒の温度が所定温度に達する前に機関排気空燃比を低下させる制御が停止される。これにより、NOx触媒の温度が所定温度以上となることが抑制される。   In the present invention, when the NOx reduction control is executed, the control for reducing the engine exhaust air-fuel ratio is stopped before the temperature of the NOx catalyst reaches a predetermined temperature. Thereby, it is suppressed that the temperature of a NOx catalyst becomes more than predetermined temperature.

そして、本発明においても、機関排気空燃比を低下させている間にNOx触媒に還元剤が供給される。NOx触媒に吸蔵されたNOxが還元されるのは、機関排気空燃比が低下することでNOx触媒に流入する排気の空燃比が低下しており且つNOx触媒に還元剤が供給されているときである。つまり、還元剤を供給するときにのみNO触媒に流入する排気の空燃比が低下していれば、NOx触媒に吸蔵されたNOxを還元することが出来る。   Also in the present invention, the reducing agent is supplied to the NOx catalyst while the engine exhaust air-fuel ratio is being lowered. NOx occluded in the NOx catalyst is reduced when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is lowered due to a decrease in the engine exhaust air-fuel ratio and the reducing agent is supplied to the NOx catalyst. is there. That is, if the air-fuel ratio of the exhaust gas flowing into the NO catalyst is reduced only when the reducing agent is supplied, the NOx stored in the NOx catalyst can be reduced.

従って、本発明によれば、NOx触媒のNOx吸蔵能力の低下を抑制しつつ、NOx触媒に吸蔵されたNOxを還元することが出来る。即ち、排気中のNOxをより好適に浄化することが可能となる。   Therefore, according to the present invention, NOx stored in the NOx catalyst can be reduced while suppressing a decrease in the NOx storage capacity of the NOx catalyst. That is, it becomes possible to more suitably purify NOx in the exhaust gas.

尚、NOx還元制御実行時において、機関排気空燃比を低下させるときは、還元剤を供給することによってNOx触媒に吸蔵されたNOxを還元することが可能となる空燃比にまで低下させれば良い。   When the NOx reduction control is performed, when the engine exhaust air-fuel ratio is lowered, it is only necessary to lower the air-fuel ratio so that NOx stored in the NOx catalyst can be reduced by supplying a reducing agent. .

また、内燃機関の運転状態が低負荷である場合は、排気流量が比較的少ないため、機関排気空燃比を低下させずにNOx触媒に還元剤を供給するのみでNOxを還元することが可能な場合がある。しかしながら、内燃機関の運転状態が高負荷となると、排気流量が増加するため、NOx触媒の周囲雰囲気を還元雰囲気とするためには機関排気空燃比を低下させる必要がある。また、内燃機関の運転状態が高負荷となると排気温度が高くなる。   Further, when the operating state of the internal combustion engine is a low load, since the exhaust gas flow rate is relatively small, it is possible to reduce NOx only by supplying a reducing agent to the NOx catalyst without reducing the engine exhaust air-fuel ratio. There is a case. However, when the operating state of the internal combustion engine becomes a high load, the exhaust gas flow rate increases. Therefore, to make the ambient atmosphere of the NOx catalyst a reducing atmosphere, it is necessary to lower the engine exhaust air-fuel ratio. Further, when the operating state of the internal combustion engine becomes a high load, the exhaust temperature increases.

そこで、本発明では、NOx還元制御実行手段は、NOx還元制御の実行時に内燃機関の機関負荷が所定負荷以下のときは、機関排気空燃比を低下させることなく還元剤供給手段によってNOx触媒に還元剤を供給することで該NOx還元制御を実行しても良い。ここで、所定負荷は、機関排気空燃比を低下させずにNOx触媒に還元剤を供給することでNOx触媒の周囲雰囲気を還元雰囲気とすることが可能な機関負荷の上限値以下の値であって、予め定められた値である。   Therefore, in the present invention, the NOx reduction control execution means reduces the NOx catalyst to the NOx catalyst by the reducing agent supply means without lowering the engine exhaust air-fuel ratio when the engine load of the internal combustion engine is equal to or less than a predetermined load when the NOx reduction control is executed. The NOx reduction control may be executed by supplying an agent. Here, the predetermined load is a value equal to or lower than the upper limit value of the engine load that can make the ambient atmosphere of the NOx catalyst a reducing atmosphere by supplying the reducing agent to the NOx catalyst without lowering the engine exhaust air-fuel ratio. And a predetermined value.

そして、上記の場合、NOx還元制御の実行時に内燃機関の機関負荷が所定負荷より高いときは、空燃比制御手段によって機関排気空燃比を低下させつつ還元剤供給手段によってNOx触媒に還元剤を供給することで前記NOx還元制御を実行する。このときに、機関排気空燃比を低下させる期間を所定期間とする。   In the above case, when the engine load of the internal combustion engine is higher than a predetermined load during the execution of the NOx reduction control, the reducing agent is supplied to the NOx catalyst by the reducing agent supply means while reducing the engine exhaust air-fuel ratio by the air-fuel ratio control means. Thus, the NOx reduction control is executed. At this time, the period during which the engine exhaust air-fuel ratio is reduced is set as a predetermined period.

本発明によれば、排気通路に設けられたNOx触媒を備えた内燃機関の排気浄化システムにおいて、排気中のNOxをより好適に浄化することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, in the exhaust gas purification system of the internal combustion engine provided with the NOx catalyst provided in the exhaust passage, NOx in exhaust gas can be more suitably purified.

以下、本発明に係る内燃機関の排気浄化システムの具体的な実施の形態について図面に基づいて説明する。   Hereinafter, specific embodiments of an exhaust gas purification system for an internal combustion engine according to the present invention will be described with reference to the drawings.

<内燃機関の吸排気系の概略構成>
ここでは、本発明を車両駆動用のディーゼル機関に適用した場合を例に挙げて説明する。図1は、本実施例に係る内燃機関の吸排気系の概略構成を示す図である。
<Schematic configuration of intake and exhaust system of internal combustion engine>
Here, the case where the present invention is applied to a diesel engine for driving a vehicle will be described as an example. FIG. 1 is a diagram showing a schematic configuration of an intake / exhaust system of an internal combustion engine according to the present embodiment.

内燃機関1は車両駆動用のディーゼル機関である。この内燃機関1には、吸気通路3および排気通路2が接続されている。吸気通路3には、エアフローメータ7およびスロットル弁8が設けられている。   The internal combustion engine 1 is a diesel engine for driving a vehicle. An intake passage 3 and an exhaust passage 2 are connected to the internal combustion engine 1. An air flow meter 7 and a throttle valve 8 are provided in the intake passage 3.

一方、排気通路2には、NOx触媒5が設けられている。このNOx触媒5は、周囲雰囲気が酸化雰囲気のときに排気中のNOxを吸蔵し周囲雰囲気が還元雰囲気のときに吸蔵していたNOxを還元する触媒である。さらに、NOx触媒5より上流側の排気通路2には排気中に還元剤として燃料を添加する燃料添加弁6が設けられている。 On the other hand, a NOx catalyst 5 is provided in the exhaust passage 2. The NOx catalyst 5 is a catalyst that stores NOx in the exhaust when the ambient atmosphere is an oxidizing atmosphere and reduces the NOx that is stored when the ambient atmosphere is a reducing atmosphere. Further, a fuel addition valve 6 is provided in the exhaust passage 2 upstream of the NOx catalyst 5 to add fuel as a reducing agent into the exhaust.

また、排気通路2における燃料添加弁6より下流側且つNOx触媒5より上流側には排気の空燃比を検出する空燃比センサ11が設けられている。排気通路2におけるNOx触媒5より下流側には排気の温度の温度を検出する温度センサ12が設けられている。   An air-fuel ratio sensor 11 that detects the air-fuel ratio of the exhaust gas is provided downstream of the fuel addition valve 6 and upstream of the NOx catalyst 5 in the exhaust passage 2. A temperature sensor 12 for detecting the temperature of the exhaust gas is provided downstream of the NOx catalyst 5 in the exhaust passage 2.

以上述べたように構成された内燃機関1には、この内燃機関1を制御するための電子制御ユニット(ECU)10が併設されている。ECU10には、エアフローメータ7および空燃比センサ11、温度センサ12、さらに、内燃機関1を搭載した車両のアクセル開度を検出するアクセル開度センサ13が電気的に接続されている。そして、これらの出力信号がECU10に入力される。   The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 10 for controlling the internal combustion engine 1. The ECU 10 is electrically connected to an air flow meter 7, an air-fuel ratio sensor 11, a temperature sensor 12, and an accelerator opening sensor 13 that detects the accelerator opening of a vehicle on which the internal combustion engine 1 is mounted. These output signals are input to the ECU 10.

ECU10は、アクセル開度センサ13の検出値に基づいて内燃機関1の負荷を算出する。また、ECU10は、温度センサ12の検出値に基づいてNOx触媒5の温度を推定する。   The ECU 10 calculates the load of the internal combustion engine 1 based on the detection value of the accelerator opening sensor 13. Further, the ECU 10 estimates the temperature of the NOx catalyst 5 based on the detection value of the temperature sensor 12.

また、ECU10には、スロットル弁8および燃料添加弁6が電気的に接続されている。ECU10によってこれらが制御される。   In addition, a throttle valve 8 and a fuel addition valve 6 are electrically connected to the ECU 10. These are controlled by the ECU 10.

<NOx還元制御>
本実施例においては、NOx触媒5に吸蔵されたNOxを還元すべくNOx還元制御が実行される。NOx還元制御においてはNOx触媒5の周囲雰囲気を還元雰囲気とする必要がある。
<NOx reduction control>
In this embodiment, NOx reduction control is executed to reduce NOx stored in the NOx catalyst 5. In the NOx reduction control, the atmosphere around the NOx catalyst 5 needs to be a reducing atmosphere.

内燃機関1の運転状態が低負荷であるときは排気流量が比較的少ないため、NOx還元制御を実行する場合、燃料添加弁6から燃料を添加するのみでNOx触媒5に流入する排気の空燃比(以下、単に流入排気空燃比と称する)を十分に低下させることが出来る。つまり、燃料添加弁6から燃料を添加するのみで、NOx触媒5の周囲雰囲気を還元雰囲気とすることが出来る。   When the operating state of the internal combustion engine 1 is a low load, the exhaust gas flow rate is relatively small. Therefore, when performing NOx reduction control, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 5 simply by adding fuel from the fuel addition valve 6 (Hereinafter simply referred to as inflow exhaust air-fuel ratio) can be sufficiently reduced. That is, the atmosphere around the NOx catalyst 5 can be made a reducing atmosphere only by adding fuel from the fuel addition valve 6.

しかしながら、内燃機関1の運転状態が高負荷となると排気流量が比較的多くなる。そのため、燃料添加弁6から燃料を添加するのみで流入排気空燃比を十分に低下させることが困難となる。そこで、内燃機関1の運転状態が高負荷であるときにNOx還元制御を実行する場合、機関排気空燃比を第一所定空燃比にまで低下させつつ燃料添加弁6から燃料を添加することでNOx触媒5の周囲雰囲気を還元雰囲気とする。ここで、第一所定空燃比とは、内燃機関1の運転状態が高負荷であっても、機関排気空燃比を該所定空燃比にまで低下させれば、燃料添加弁6から燃料を添加することで、流入排気空燃比を十分に低下させることが可能となる、即ち、NOx触媒5の周囲雰囲気を還元雰囲気とすることが可能となると判断出来る値である。   However, when the operating state of the internal combustion engine 1 becomes a high load, the exhaust flow rate becomes relatively large. For this reason, it is difficult to sufficiently reduce the inflow exhaust air-fuel ratio simply by adding fuel from the fuel addition valve 6. Therefore, when NOx reduction control is executed when the operating state of the internal combustion engine 1 is high, NOx is reduced by adding fuel from the fuel addition valve 6 while reducing the engine exhaust air-fuel ratio to the first predetermined air-fuel ratio. The atmosphere around the catalyst 5 is a reducing atmosphere. Here, the first predetermined air-fuel ratio is that fuel is added from the fuel addition valve 6 if the engine exhaust air-fuel ratio is lowered to the predetermined air-fuel ratio even when the operating state of the internal combustion engine 1 is high. Thus, it is a value at which it can be determined that the inflowing exhaust air-fuel ratio can be sufficiently reduced, that is, the ambient atmosphere of the NOx catalyst 5 can be made the reducing atmosphere.

尚、本実施例において、内燃機関1の運転状態が低負荷であるときとは、該内燃機関1の機関負荷が所定負荷以下のときのことであり、内燃機関1の運転状態が高負荷であるときとは、該内燃機関1の機関負荷が所定負荷より高いときのことである。また、ここでの所定負荷は、機関排気空燃比を低下させずにNOx触媒5に燃料を供給することで該NOx触媒5の周囲雰囲気を還元雰囲気とすることが可能な機関負荷の上限値である。   In this embodiment, the operation state of the internal combustion engine 1 is a low load when the engine load of the internal combustion engine 1 is a predetermined load or less, and the operation state of the internal combustion engine 1 is a high load. “Sometimes” means when the engine load of the internal combustion engine 1 is higher than a predetermined load. Further, the predetermined load here is an upper limit value of the engine load at which the ambient atmosphere of the NOx catalyst 5 can be made a reducing atmosphere by supplying fuel to the NOx catalyst 5 without reducing the engine exhaust air-fuel ratio. is there.

本実施例においては、スロットル弁8を閉弁方向に制御することで吸入空気量を減少させ、それによって、機関排気空燃比を第一所定空燃比にまで低下させる。尚、本実施例において、可変容量型ターボチャージャが設けられている場合、該ターボチャージャによる過給圧を低下させることで吸入空気量を減少させ、それによって、機関排気空燃比を第一所定空燃比にまで低下させても良い。また、本実施例において、排気の一部を吸気通路3に導入するEGR装置が設けられている場合、吸気通路3に導入される排気の流量を増加させることで吸入空気量を減少させ、それによって、機関排気空燃比を第一所定空燃比にまで低下させても良い。   In the present embodiment, the intake air amount is decreased by controlling the throttle valve 8 in the valve closing direction, thereby lowering the engine exhaust air-fuel ratio to the first predetermined air-fuel ratio. In this embodiment, when a variable displacement turbocharger is provided, the amount of intake air is reduced by lowering the supercharging pressure by the turbocharger, whereby the engine exhaust air-fuel ratio is reduced to the first predetermined air-fuel ratio. It may be lowered to the fuel ratio. Further, in the present embodiment, when an EGR device that introduces a part of the exhaust gas into the intake passage 3 is provided, the intake air amount is decreased by increasing the flow rate of the exhaust gas introduced into the intake passage 3. Thus, the engine exhaust air-fuel ratio may be lowered to the first predetermined air-fuel ratio.

<高負荷時における排気空燃比制御>
ここで、内燃機関1の運転状態が高負荷にあるときにNOx還元制御を実行する場合の流入排気空燃比の制御について図2に基づいて説明する。図2は、内燃機関1の運転状態が高負荷にあるときのNOx還元制御における流入排気空燃比とNOx触媒5の温度との関係を示す図である。図2の(a)における縦軸は流入排気空燃比を表し、図2(b)における縦軸はNOx触媒5の温度を表している。図2の(a)および(b)の横軸は時間を表している。
<Exhaust air / fuel ratio control at high load>
Here, the control of the inflow exhaust air-fuel ratio when the NOx reduction control is executed when the operating state of the internal combustion engine 1 is at a high load will be described based on FIG. FIG. 2 is a diagram showing the relationship between the inflow exhaust air-fuel ratio and the temperature of the NOx catalyst 5 in the NOx reduction control when the operating state of the internal combustion engine 1 is at a high load. 2A represents the inflow exhaust air-fuel ratio, and the vertical axis in FIG. 2B represents the temperature of the NOx catalyst 5. The horizontal axis of (a) and (b) of FIG. 2 represents time.

上述したように、本実施例では、内燃機関1の運転状態が高負荷であるときにNOx還元制御を行なう場合、機関排気空燃比を第一所定空燃比R1にまで低下させる。そして、図2に示すように、機関排気空燃比を第一所定空燃比R1にまで低下させることで流入排気空燃比が第一所定空燃比R1となっているときに、燃料添加弁6によって燃料を添加することで流入排気空燃比をさらに第二所定空燃比R2にまで低下させる。ここで、第二所定空燃比R2は、NOx触媒5の周囲雰囲気が還元雰囲気となる値である。   As described above, in this embodiment, when NOx reduction control is performed when the operating state of the internal combustion engine 1 is high, the engine exhaust air-fuel ratio is reduced to the first predetermined air-fuel ratio R1. Then, as shown in FIG. 2, when the inflow exhaust air-fuel ratio becomes the first predetermined air-fuel ratio R1 by reducing the engine exhaust air-fuel ratio to the first predetermined air-fuel ratio R1, the fuel addition valve 6 causes the fuel to Is added to further reduce the inflow exhaust air-fuel ratio to the second predetermined air-fuel ratio R2. Here, the second predetermined air-fuel ratio R2 is a value at which the ambient atmosphere of the NOx catalyst 5 becomes a reducing atmosphere.

この場合、燃料添加弁6から燃料が添加されることで流入排気空燃比が第二所定空燃比R2にまで低下しているときにNOxが還元されることになる。換言すれば、燃料添加弁6から燃料が添加されておらず、流入排気空燃比が第一所定空燃比R1であるときは、NOxは還元されず吸蔵されることになる。   In this case, NOx is reduced when the fuel is added from the fuel addition valve 6 and the inflowing exhaust air-fuel ratio is reduced to the second predetermined air-fuel ratio R2. In other words, when no fuel is added from the fuel addition valve 6 and the inflowing exhaust air-fuel ratio is the first predetermined air-fuel ratio R1, NOx is stored without being reduced.

しかしながら、機関排気空燃比を低下させた場合、排気の温度は上昇するため、これに伴ってNOx触媒5の温度も図2に示すように上昇することになる。そして、NOx触媒5はその温度が上昇するとNOx吸蔵能力が低下する場合がある。   However, when the engine exhaust air-fuel ratio is lowered, the temperature of the exhaust gas rises. Accordingly, the temperature of the NOx catalyst 5 also rises as shown in FIG. Further, when the temperature of the NOx catalyst 5 rises, the NOx storage capacity may be reduced.

そこで、本実施例では、図2に示すように、機関排気空燃比を低下させる期間を所定期間Δtd0とする。ここで、所定期間Δtd0は、機関排気空燃比を低下させることでNOx触媒5の温度が徐々に上昇して所定温度T0にまで達する期間よりも短い期間である。また、ここでの所定温度T0は、NOx触媒5のNOx吸蔵能力が過剰に低下すると判断出来る温度の下限値以下の温度である。   Therefore, in this embodiment, as shown in FIG. 2, the period during which the engine exhaust air-fuel ratio is reduced is set to a predetermined period Δtd0. Here, the predetermined period Δtd0 is a period shorter than a period in which the temperature of the NOx catalyst 5 gradually increases to reach the predetermined temperature T0 by lowering the engine exhaust air-fuel ratio. Further, the predetermined temperature T0 here is a temperature equal to or lower than the lower limit value of the temperature at which it can be determined that the NOx storage capacity of the NOx catalyst 5 is excessively reduced.

所定期間Δtd0は、機関排気空燃比を低下させるときの内燃機関1の運転状態に応じて決められても良い。また、温度センサ12の検出値に基づいて該所定期間Δtd0を補正しても良い。   The predetermined period Δtd0 may be determined according to the operating state of the internal combustion engine 1 when the engine exhaust air-fuel ratio is lowered. Further, the predetermined period Δtd0 may be corrected based on the detection value of the temperature sensor 12.

そして、所定期間Δtd0の間に燃料添加弁6による燃料添加を実行し、これにより流入排気空燃比を第二所定空燃比R2にまで低下させる。   Then, fuel addition by the fuel addition valve 6 is executed during the predetermined period Δtd0, and thereby the inflow exhaust air-fuel ratio is lowered to the second predetermined air-fuel ratio R2.

以上のように流入排気空燃比を制御することで、内燃機関1の運転状態が高負荷にあるときであっても、NOx触媒5の温度が所定温度T0以上となることを抑制しつつ、流入排気空燃比を第二所定空燃比R2まで低下させることが出来る。   By controlling the inflow exhaust air-fuel ratio as described above, the NOx catalyst 5 can be prevented from flowing to a predetermined temperature T0 or higher while the operating state of the internal combustion engine 1 is at a high load. The exhaust air / fuel ratio can be lowered to the second predetermined air / fuel ratio R2.

従って、本実施例によれば、NOx触媒5のNOx吸蔵能力の低下を抑制しつつ、NOx触媒5に吸蔵されたNOxを還元することが出来る。即ち、排気中のNOxをより好適に浄化することが可能となる。   Therefore, according to the present embodiment, the NOx stored in the NOx catalyst 5 can be reduced while suppressing a decrease in the NOx storage capacity of the NOx catalyst 5. That is, it becomes possible to more suitably purify NOx in the exhaust gas.

<NOx還元制御の制御ルーチン>
次に、本実施例に係るNOx還元制御の制御ルーチンについて図3に示すフローチャートに基づいて説明する。本ルーチンはECU20に予め記憶されており、内燃機関1の運転中、所定間隔毎に実行されるルーチンである。
<NOx reduction control control routine>
Next, a control routine for NOx reduction control according to this embodiment will be described based on the flowchart shown in FIG. This routine is stored in advance in the ECU 20 and is executed at predetermined intervals during the operation of the internal combustion engine 1.

本ルーチンでは、先ずS101において、ECU10は、NOx還元制御の実行条件が成立したか否かを判別する。ここで、NOx還元制御の実行条件としては、内燃機関1における燃料噴射量の積算値が予め定められた所定噴射量以上となった場合等が例示できる。S101において、肯定判定された場合、ECU10はS102に進み、否定判定された場合、ECU10は本ルーチンの実行を一旦終了する。   In this routine, first, in S101, the ECU 10 determines whether or not an execution condition for NOx reduction control is satisfied. Here, the execution condition of the NOx reduction control can be exemplified by the case where the integrated value of the fuel injection amount in the internal combustion engine 1 is equal to or greater than a predetermined injection amount. If an affirmative determination is made in S101, the ECU 10 proceeds to S102, and if a negative determination is made, the ECU 10 once ends the execution of this routine.

S102において、ECU10は、内燃機関1の負荷Qeが所定負荷Qe0以上であるか否かを判別する。ここで、所定負荷Qe0は、機関排気空燃比を低下させずに燃料添加弁6による燃料添加のみで流入排気空燃比を第二所定空燃比R2にまで低下させることは困難と判断出来る閾値となる負荷である。S102において、肯定判定された場合、ECU10は内燃機関1の運転状態が高負荷であると判断しS103に進み、否定判定された場合、ECU10は内燃機関1の運転状態が低負荷であると判断しS108に進む。   In S102, the ECU 10 determines whether or not the load Qe of the internal combustion engine 1 is equal to or greater than a predetermined load Qe0. Here, the predetermined load Qe0 is a threshold value that makes it difficult to reduce the inflow exhaust air-fuel ratio to the second predetermined air-fuel ratio R2 only by adding fuel by the fuel addition valve 6 without reducing the engine exhaust air-fuel ratio. It is a load. If an affirmative determination is made in S102, the ECU 10 determines that the operating state of the internal combustion engine 1 is a high load and proceeds to S103. If a negative determination is made, the ECU 10 determines that the operating state of the internal combustion engine 1 is a low load. The process proceeds to S108.

S108に進んだECU10は、燃料添加弁6による燃料添加を実行することで、流入排気空燃比Rinを第二所定空燃比R2にまで低下させる。これにより、NOx触媒5の周囲雰囲気を還元雰囲気とし該NOx触媒5に吸蔵されたNOxを還元する。その後、ECU10は、本ルーチンの実行を終了する。   The ECU 10 having proceeded to S108 executes the fuel addition by the fuel addition valve 6 to reduce the inflow exhaust air-fuel ratio Rin to the second predetermined air-fuel ratio R2. As a result, the NOx catalyst occluded in the NOx catalyst 5 is reduced using the ambient atmosphere of the NOx catalyst 5 as a reducing atmosphere. Thereafter, the ECU 10 ends the execution of this routine.

一方、S103に進んだECU10は、スロットル弁8を閉弁方向に制御することで、
機関排気空燃比を第一所定空燃比R1にまで低下させる。尚、このときのスロットル弁8の閉弁量は、エアフローメータ7によって検出される吸入空気量や、内燃機関1の運転状態に応じて決定される。
On the other hand, the ECU 10 having advanced to S103 controls the throttle valve 8 in the valve closing direction,
The engine exhaust air-fuel ratio is reduced to the first predetermined air-fuel ratio R1. Note that the closing amount of the throttle valve 8 at this time is determined according to the intake air amount detected by the air flow meter 7 and the operating state of the internal combustion engine 1.

次に、ECU10は、S104に進み、空燃比センサ11によって検出される流入排気空燃比Rinが第一所定空燃比R1にまで低下したか否かを判別する。S103において、スロットル弁8を閉弁方向に制御することで機関排気空燃比を第一所定空燃比R1にまで低下させた後、流入排気空燃比Rinが第一所定空燃比R1となるまでにはある程度時間がかかる。そこで、本実施例では、空燃比センサ11によって検出される流入排気空燃比Rinが第一所定空燃比R1となってから、後述する燃料添加弁6による燃料添加を実行する。S104において、肯定判定された場合、ECU10はS105に進み、否定判定された場合、ECU10はS103に戻る。   Next, the ECU 10 proceeds to S104 and determines whether or not the inflow exhaust air-fuel ratio Rin detected by the air-fuel ratio sensor 11 has decreased to the first predetermined air-fuel ratio R1. In S103, after the engine exhaust air-fuel ratio is reduced to the first predetermined air-fuel ratio R1 by controlling the throttle valve 8 in the valve closing direction, until the inflow exhaust air-fuel ratio Rin becomes the first predetermined air-fuel ratio R1. It takes some time. Therefore, in this embodiment, after the inflow exhaust air-fuel ratio Rin detected by the air-fuel ratio sensor 11 becomes the first predetermined air-fuel ratio R1, fuel addition by the fuel addition valve 6 described later is executed. If an affirmative determination is made in S104, the ECU 10 proceeds to S105, and if a negative determination is made, the ECU 10 returns to S103.

S105において、ECU10は、燃料添加弁6による燃料添加を実行することで、流入排気空燃比Rinを第二所定空燃比R2にまで低下させる。これにより、NOx触媒5の周囲雰囲気を還元雰囲気とし該NOx触媒5に吸蔵されたNOxを還元する。   In S105, the ECU 10 executes fuel addition by the fuel addition valve 6 to reduce the inflow exhaust air-fuel ratio Rin to the second predetermined air-fuel ratio R2. As a result, the NOx catalyst occluded in the NOx catalyst 5 is reduced using the ambient atmosphere of the NOx catalyst 5 as a reducing atmosphere.

次に、ECU10は、S106に進み、S103においてスロットル弁8を閉弁方向に制御してから、即ち、機関排気空燃比を低下させてからの経過時間Δtdが上述した所定期間Δtd0に達したか否かを判別する。このS106において、肯定判定された場合、ECU10はS107に進み、否定判定された場合、ECU10はS106を繰り返す。   Next, the ECU 10 proceeds to S106, and whether the elapsed time Δtd after controlling the throttle valve 8 in the valve closing direction in S103, that is, the engine exhaust air-fuel ratio has decreased, has reached the predetermined period Δtd0 described above. Determine whether or not. If an affirmative determination is made in S106, the ECU 10 proceeds to S107, and if a negative determination is made, the ECU 10 repeats S106.

S107に進んだECU10は、スロットル弁8を開弁方向に制御する。即ち、機関排気空燃比を第一所定空燃比R1にまで低下させる制御を停止する。その後、ECU10は、本ルーチンの実行を終了する。   In step S107, the ECU 10 controls the throttle valve 8 in the valve opening direction. That is, the control for reducing the engine exhaust air-fuel ratio to the first predetermined air-fuel ratio R1 is stopped. Thereafter, the ECU 10 ends the execution of this routine.

以上説明した制御ルーチンによれば、内燃機関1の運転状態が高負荷であるときにNOx還元制御を実行する場合であっても、機関排気空燃比を低下させる期間は所定期間Δtd0に抑えられる。これにより、NOx触媒5の温度が所定温度T0以上となることを抑制することが出来る。   According to the control routine described above, even when the NOx reduction control is executed when the operating state of the internal combustion engine 1 is a high load, the period during which the engine exhaust air-fuel ratio is reduced is suppressed to the predetermined period Δtd0. Thereby, it can suppress that the temperature of NOx catalyst 5 becomes more than predetermined temperature T0.

尚、上記制御ルーチンにおいては、空燃比センサ11によって検出される流入排気空燃比Rinが第一所定空燃比R1となってから燃料添加弁6による燃料添加を実行するが、機関排気空燃比を第一所定空燃比R1にまで低下させるべくスロットル弁8を閉弁方向に制御した後、所定経過時間が経過したときに燃料添加弁6による燃料添加を実行しても良い。   In the above control routine, the fuel addition by the fuel addition valve 6 is executed after the inflow exhaust air-fuel ratio Rin detected by the air-fuel ratio sensor 11 becomes the first predetermined air-fuel ratio R1, but the engine exhaust air-fuel ratio is changed to the first. After the throttle valve 8 is controlled in the valve closing direction so as to decrease to the predetermined air-fuel ratio R1, fuel addition by the fuel addition valve 6 may be executed when a predetermined elapsed time has elapsed.

ここで、所定経過時間は、流入排気空燃比Rinが第一所定空燃比R1にまで低下したと判断出来る時間である。この場合、該所定経過時間は、排気通路2の容量や内燃機関1の運転状態に基づいて決定されても良い。   Here, the predetermined elapsed time is a time during which it can be determined that the inflow exhaust air-fuel ratio Rin has decreased to the first predetermined air-fuel ratio R1. In this case, the predetermined elapsed time may be determined based on the capacity of the exhaust passage 2 and the operating state of the internal combustion engine 1.

また、機関排気空燃比を第一所定空燃比R1にまで低下させるべくスロットル弁8を閉弁方向に制御した後、所定の燃焼サイクル数が経過したときに燃料添加弁6による燃料添加を実行しても良い。   Further, after the throttle valve 8 is controlled in the valve closing direction to lower the engine exhaust air-fuel ratio to the first predetermined air-fuel ratio R1, fuel addition by the fuel addition valve 6 is executed when a predetermined number of combustion cycles has elapsed. May be.

スロットル弁8が閉弁方向に制御されることで機関排気空燃比が第一所定空燃比R1にまで低下された後、一燃焼サイクル毎に第一所定空燃比R1の排気がNOx触媒5に近づくことになる。上記の場合、所定の燃焼サイクル数は、流入排気空燃比Rinが第一所定空燃比R1にまで低下したと判断出来る燃焼サイクル数である。   After the throttle valve 8 is controlled in the valve closing direction, the engine exhaust air-fuel ratio is reduced to the first predetermined air-fuel ratio R1, and then the exhaust of the first predetermined air-fuel ratio R1 approaches the NOx catalyst 5 every combustion cycle. It will be. In the above case, the predetermined number of combustion cycles is the number of combustion cycles in which it can be determined that the inflowing exhaust air-fuel ratio Rin has decreased to the first predetermined air-fuel ratio R1.

本実施例において、内燃機関1の運転状態が高負荷であるときにNOx還元制御を実行する場合、燃料添加弁6から燃料を添加するときにのみ流入排気空燃比が第一所定空燃比R1になっていれば、NOx触媒5に吸蔵されたNOxを還元することが出来る。そこで、所定期間Δtd0を、燃料添加弁6によって燃料を添加することで流入排気空燃比を第二所定空燃比R2にまで低下させることが出来る範囲で可及的に短い期間としても良い。   In this embodiment, when the NOx reduction control is executed when the operating state of the internal combustion engine 1 is a high load, the inflow exhaust air-fuel ratio becomes the first predetermined air-fuel ratio R1 only when fuel is added from the fuel addition valve 6. If so, the NOx stored in the NOx catalyst 5 can be reduced. Therefore, the predetermined period Δtd0 may be set as short as possible within a range where the inflowing exhaust air-fuel ratio can be reduced to the second predetermined air-fuel ratio R2 by adding fuel by the fuel addition valve 6.

本発明の実施例に係る内燃機関の吸排気系の概略構成を示す図。The figure which shows schematic structure of the intake / exhaust system of the internal combustion engine which concerns on the Example of this invention. 内燃機関1の運転状態が高負荷にあるときのNOx還元制御における流入排気空燃比とNOx触媒の温度との関係を示す図。The figure which shows the relationship between the inflow exhaust air-fuel ratio in the NOx reduction | restoration control when the driving | running state of the internal combustion engine 1 is a high load, and the temperature of a NOx catalyst. 本発明の実施例に係るNOx還元制御の制御ルーチンを示すフローチャート。The flowchart which shows the control routine of NOx reduction control which concerns on the Example of this invention.

符号の説明Explanation of symbols

1・・・内燃機関
2・・・排気通路
3・・・吸気通路
5・・・吸蔵還元型NOx触媒
6・・・燃料添加弁
8・・・スロットル弁
10・・ECU
11・・空燃比センサ
12・・温度センサ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Exhaust passage 3 ... Intake passage 5 ... Occlusion reduction type NOx catalyst 6 ... Fuel addition valve 8 ... Throttle valve 10 ... ECU
11. Air-fuel ratio sensor 12. Temperature sensor

Claims (2)

内燃機関の排気通路に設けられた吸蔵還元型NOx触媒と、
前記内燃機関から排出される排気の空燃比である機関排気空燃比を制御する空燃比制御手段と、
前記吸蔵還元型NOx触媒に還元剤を供給する還元剤供給手段と、
前記空燃比制御手段によって機関排気空燃比を低下させつつ前記還元剤供給手段によって前記吸蔵還元型NOx触媒に還元剤を供給することで、前記吸蔵還元型NOx触媒に吸蔵されたNOxを還元するNOx還元制御を実行するNOx還元制御実行手段と、を備え、
前記NOx還元制御実行手段は、前記NOx還元制御を実行する場合、機関排気空燃比を低下させる期間を、前記NOx触媒の温度が所定温度に達する期間よりも短い所定期間とすることを特徴とする内燃機関の排気浄化システム。
An NOx storage reduction catalyst provided in the exhaust passage of the internal combustion engine;
An air-fuel ratio control means for controlling an engine exhaust air-fuel ratio which is an air-fuel ratio of exhaust discharged from the internal combustion engine;
Reducing agent supply means for supplying a reducing agent to the NOx storage reduction catalyst;
NOx for reducing NOx stored in the NOx storage reduction catalyst by supplying a reducing agent to the NOx storage reduction catalyst by the reducing agent supply means while lowering the engine exhaust air fuel ratio by the air fuel ratio control means. NOx reduction control execution means for executing reduction control,
The NOx reduction control execution means, when executing the NOx reduction control, sets a period during which the engine exhaust air-fuel ratio is lowered to a predetermined period shorter than a period when the temperature of the NOx catalyst reaches a predetermined temperature. An exhaust purification system for an internal combustion engine.
前記NOx還元制御実行手段は、前記NOx還元制御の実行時に前記内燃機関の機関負荷が所定負荷以下のときは、機関排気空燃比を低下させることなく前記還元剤供給手段によって前記吸蔵還元型NOx触媒に還元剤を供給することで該NOx還元制御を実行し、前記NOx還元制御の実行時に前記内燃機関の機関負荷が前記所定負荷より高いときは、前記空燃比制御手段によって機関排気空燃比を低下させつつ前記還元剤供給手段によって前記吸蔵還元型NOx触媒に還元剤を供給することで前記NOx還元制御を実行することを特徴とする請求項1記載の内燃機関の排気浄化システム。
If the engine load of the internal combustion engine is equal to or lower than a predetermined load when the NOx reduction control is executed, the NOx reduction control execution means performs the NOx storage reduction type NOx catalyst by the reducing agent supply means without reducing the engine exhaust air-fuel ratio. The NOx reduction control is executed by supplying a reducing agent to the engine. If the engine load of the internal combustion engine is higher than the predetermined load when the NOx reduction control is executed, the air-fuel ratio control means lowers the engine exhaust air-fuel ratio. 2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the NOx reduction control is executed by supplying a reducing agent to the NOx storage reduction catalyst by the reducing agent supply means.
JP2005318501A 2005-11-01 2005-11-01 Exhaust gas purification system for internal combustion engine Expired - Fee Related JP4654880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318501A JP4654880B2 (en) 2005-11-01 2005-11-01 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318501A JP4654880B2 (en) 2005-11-01 2005-11-01 Exhaust gas purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007126991A true JP2007126991A (en) 2007-05-24
JP4654880B2 JP4654880B2 (en) 2011-03-23

Family

ID=38149846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318501A Expired - Fee Related JP4654880B2 (en) 2005-11-01 2005-11-01 Exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4654880B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038942A (en) * 2000-07-24 2002-02-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002106332A (en) * 2000-07-24 2002-04-10 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2005291095A (en) * 2004-03-31 2005-10-20 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038942A (en) * 2000-07-24 2002-02-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002106332A (en) * 2000-07-24 2002-04-10 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2005291095A (en) * 2004-03-31 2005-10-20 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for engine

Also Published As

Publication number Publication date
JP4654880B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP2005098177A (en) Exhaust emission control system of internal combustion engine
JP5907269B2 (en) Exhaust gas purification device for internal combustion engine
JP2008255899A (en) Method of estimating amount of n2o generated in ammonia oxidation catalyst and exhaust emission control system of internal combustion engine
WO2008114878A1 (en) Exhaust purification system for internal combustion engine
JP5045339B2 (en) Exhaust gas purification system for internal combustion engine
JP4572709B2 (en) Exhaust gas purification system for internal combustion engine
JP2016079852A (en) Abnormality determination system of exhaust emission control device of internal combustion engine
JP4428361B2 (en) Exhaust gas purification system for internal combustion engine
JP4905327B2 (en) Exhaust gas purification system for internal combustion engine
JP4241784B2 (en) Exhaust gas purification system for internal combustion engine
JP6439749B2 (en) Exhaust gas purification device for internal combustion engine
JP2008025467A (en) Exhaust emission control system for internal combustion engine
JP4609299B2 (en) Exhaust gas purification device for internal combustion engine
JP2015148219A (en) Fault detecting device for exhaust emission control device
CN110878717B (en) Exhaust gas purification device for internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP4654880B2 (en) Exhaust gas purification system for internal combustion engine
JP4069043B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264203A (en) Exhaust device for internal combustion engine
JP2005240682A (en) Exhaust emission control device for internal combustion engine
JP2013019401A (en) Catalyst deterioration determination system
JP2007255209A (en) Exhaust emission control device of internal combustion engine
JP2009019520A (en) Exhaust emission control device of internal combustion engine
JP2007224750A (en) Sulfur poisoning recovery control device
JP4706645B2 (en) Exhaust gas purification system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4654880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees