JP2007126696A - METHOD FOR MANUFACTURING IRON POWDER HAVING SURFACE COATED WITH HIGH-Si LAYER - Google Patents

METHOD FOR MANUFACTURING IRON POWDER HAVING SURFACE COATED WITH HIGH-Si LAYER Download PDF

Info

Publication number
JP2007126696A
JP2007126696A JP2005319248A JP2005319248A JP2007126696A JP 2007126696 A JP2007126696 A JP 2007126696A JP 2005319248 A JP2005319248 A JP 2005319248A JP 2005319248 A JP2005319248 A JP 2005319248A JP 2007126696 A JP2007126696 A JP 2007126696A
Authority
JP
Japan
Prior art keywords
powder
iron powder
layer
core
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005319248A
Other languages
Japanese (ja)
Other versions
JP4430607B2 (en
Inventor
Muneaki Watanabe
宗明 渡辺
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2005319248A priority Critical patent/JP4430607B2/en
Publication of JP2007126696A publication Critical patent/JP2007126696A/en
Application granted granted Critical
Publication of JP4430607B2 publication Critical patent/JP4430607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide iron powder having a surface coated with high-Si layer in which a high-concentration Si diffusion layer is formed on the surface of iron powder and which is used for the production of various electromagnetic circuit components requiring high specific resistance. <P>SOLUTION: Iron powder is held at >900 to 1,250°C in a nonoxidizing atmosphere to undergo preliminary heat treatment, followed by pulverization. Then Si powder or ferrosilicon powder is added to the resultant pulverized iron powder and these are mixed. The resultant powder mixture is heated at 920 to 1,100°C in a hydrogen atmosphere to undergo heat treatment, followed by pulverization. By this method, the iron powder having a surface coated with high-Si layer can be manufactured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、鉄粉末の表面にSiの熱拡散層を有する表面高Si層被覆鉄粉末およびその製造方法に関するものであり、この表面高Si層被覆鉄粉末を用いて作製した軟磁性材は低鉄損を必要とする各種電磁気回路部品、例えば、モータ、アクチュエータ、ヨーク、コア、リアクトルなどの各種電磁気部品の素材として使用される。   The present invention relates to a surface high Si layer coated iron powder having a Si thermal diffusion layer on the surface of the iron powder and a method for producing the same, and a soft magnetic material produced using the surface high Si layer coated iron powder has a low It is used as a material for various electromagnetic circuit components that require iron loss, for example, various electromagnetic components such as motors, actuators, yokes, cores, and reactors.

一般に、各種電磁気回路部品に使用される軟磁性材は、鉄損が小さいことが要求されるため、電気抵抗を高くして渦電流損を低減させ、保磁力を小さくしてヒステリシス損を低減させることは知られている。さらに、近年、電磁気回路の小型化、高応答化が求められているところから、磁束密度がより高いことも重要視されている。   In general, soft magnetic materials used in various electromagnetic circuit components are required to have low iron loss. Therefore, electrical resistance is increased to reduce eddy current loss, and coercive force is reduced to reduce hysteresis loss. It is known. Furthermore, in recent years, since the miniaturization and high response of the electromagnetic circuit have been demanded, higher magnetic flux density is also regarded as important.

かかる高比抵抗を有する軟磁性材料を製造するための原料粉末の一例として鉄粉末の表面にSiを拡散させて鉄粉末の表面に鉄粉末に含まれるSiよりも高濃度のSiを含む高Si濃度被覆層を形成した平均粒径:1〜200μmの表面高Si層被覆鉄粉末が提供されており、この表面高Si層被覆鉄粉末は、アトマイズ法により得られた鉄粉末を温度:500〜900℃、Ar雰囲気中に保持する予備熱処理を施したのち、温度:800〜900℃、10〜50Vol%SiCl+Ar雰囲気中に保持する浸珪処理を施し、さらに温度:500〜900℃、Ar雰囲気中に保持する熱拡散処理を施すことにより製造することが知られている(特許文献1参照)。
特開平11−87123号公報
As an example of a raw material powder for producing such a soft magnetic material having a high specific resistance, Si is diffused on the surface of the iron powder, and the surface of the iron powder contains high Si containing a higher concentration of Si than Si contained in the iron powder. A surface high Si layer-coated iron powder having an average particle diameter of 1 to 200 μm formed with a concentration coating layer is provided. The surface high Si layer coated iron powder is obtained by converting the iron powder obtained by the atomization method to a temperature of 500 to After performing a pre-heat treatment to be held in an Ar atmosphere at 900 ° C., temperature: 800 to 900 ° C., a silicidation treatment to be held in an atmosphere of 10 to 50 Vol% SiCl 4 + Ar, and further to a temperature of 500 to 900 ° C., Ar It is known to manufacture by performing a thermal diffusion treatment held in an atmosphere (see Patent Document 1).
Japanese Patent Laid-Open No. 11-87123

しかし、前記従来の表面高Si層被覆鉄粉末の製造方法は、SiClガスを使用するために得られた表面高Si層被覆鉄粉末には塩素が含まれており、この塩素を含んだ表面高Si層被覆鉄粉末は腐食し易く、また、SiClガス自体の取扱いが難しく、さらに前記従来の表面高Si層被覆鉄粉末の製造方法により得られた表面高Si層被覆鉄粉末の保磁力を十分に下げることができないなど軟磁性材料を製造するための原料粉末として満足な特性が得られなかった。 However, in the conventional method for producing a surface high Si layer-coated iron powder, the surface high Si layer-coated iron powder obtained by using SiCl 4 gas contains chlorine, and this surface containing chlorine The high Si layer-coated iron powder is easily corroded, and it is difficult to handle the SiCl 4 gas itself. Further, the coercive force of the surface high Si layer-coated iron powder obtained by the conventional method for producing a surface high Si layer-coated iron powder is as follows. As a raw material powder for producing a soft magnetic material, for example, it was not possible to sufficiently lower the temperature, satisfactory characteristics could not be obtained.

そこで、本発明者らは、SiClガスなどの取扱いの難しい気体を使用することなく軟磁性材料を製造するための原料粉末として一層磁気特性に優れた表面高Si層被覆鉄粉末を製造すべく研究を行った。
その結果、鉄粉末の予備熱処理を真空、水素、アルゴン等の非酸化雰囲気中で従来よりも高温の温度:900越え〜1250℃で行ったのち粉砕すると、鉄粉末の結晶粒径が成長して結晶粒径の大きな鉄粉砕粉末が得られ、この結晶粒径の大きな鉄粉砕粉末にSi粉末またはフェロシリコン粉末を添加し混合して得られた混合粉末を水素雰囲気中、温度:920〜1100℃で加熱したのち粉砕すると、軟磁性材料を製造するための原料粉末として一層磁気特性に優れた表面高Si層被覆鉄粉末が得られる、という研究結果が得られたのである。
この発明は、これら研究結果に基づいてなされたものであって、
(1)鉄粉末を非酸化雰囲気中で温度:900越え〜1250℃に保持することにより予備熱処理したのち粉砕することにより鉄粉砕粉末を作製し、この鉄粉砕粉末にSi粉末またはフェロシリコン粉末を添加し混合したのち水素雰囲気中、温度:920〜1100℃で加熱する熱処理を施し、次いで粉砕する表面高Si層被覆鉄粉末の製造方法、に特徴を有するものである。
Therefore, the inventors of the present invention are to manufacture a surface high Si layer-coated iron powder having a further excellent magnetic property as a raw material powder for producing a soft magnetic material without using a difficult gas such as SiCl 4 gas. I did research.
As a result, when the pre-heat treatment of the iron powder is performed in a non-oxidizing atmosphere such as vacuum, hydrogen, argon, etc. at a temperature higher than the conventional temperature: over 900 to 1250 ° C., the grain size of the iron powder grows. An iron pulverized powder having a large crystal grain size is obtained, and a mixed powder obtained by adding and mixing Si powder or ferrosilicon powder to the iron pulverized powder having a large crystal grain size is heated in a hydrogen atmosphere at a temperature of 920 to 1100 ° C. The result of the study was that the surface high Si layer-coated iron powder, which was further excellent in magnetic properties, was obtained as a raw material powder for producing a soft magnetic material when heated and ground.
This invention was made based on these research results,
(1) The iron powder is preheated by holding the iron powder in a non-oxidizing atmosphere at a temperature of over 900 to 1250 ° C. and then pulverized to produce an iron pulverized powder. The iron pulverized powder is mixed with Si powder or ferrosilicon powder. It is characterized by a method for producing a surface-high Si layer-coated iron powder that is added and mixed, then subjected to heat treatment at a temperature of 920 to 1100 ° C. in a hydrogen atmosphere, and then pulverized.

この発明の表面高Si層被覆鉄粉末の製造方法で行う予備熱処理を900越え〜1250℃で行うのは、鉄粉末を900℃以下で予備熱処理を行っても予備熱処理中に結晶粒の十分な成長が成されず、結晶粒の微細な予備熱処理した粉末を使用して作製した表面高Si層被覆鉄粉末は保磁力を下げることができないので好ましくなく、一方、1250℃を越える温度で予備熱処理すると、焼結が進みすぎてその後の粉砕が困難になり、粉砕できたとしても困難な粉砕により歪残留量が多くなって結晶粒が再び微細化し、得られた表面高Si層被覆鉄粉末の磁気特性が所望の値にならなくなるので好ましくない、という理由によるものである。   The preliminary heat treatment performed in the method for producing the surface high Si layer-coated iron powder of the present invention is performed at a temperature exceeding 900 to 1250 ° C., even if the iron powder is subjected to the preliminary heat treatment at 900 ° C. or less, sufficient crystal grains are obtained during the preliminary heat treatment. The surface high Si layer coated iron powder produced by using the preheat-treated powder with no crystal growth and fine grain is not preferable because the coercive force cannot be lowered, while preheat treatment at a temperature exceeding 1250 ° C. Then, the sintering progressed too much and subsequent pulverization became difficult. Even if pulverization was possible, the residual amount of strain increased due to difficult pulverization, and the crystal grains were refined again. This is because the magnetic characteristics are not desirable because they are not desired.

また、この発明の表面高Si層被覆鉄粉末の製造方法で行う熱処理を水素雰囲気中で920〜1100℃で行う理由は、非酸化雰囲気中の内でも水素雰囲気で熱処理することにより最も短時間で効率よく鉄粉砕粉末の表面に高濃度のSi拡散層を形成することができるからであり、その温度が920℃未満では通常の遅い拡散速度しか得られないので好ましくなく、一方、1100℃を越えた温度で熱処理すると、鉄粉砕粉末の焼結が進行し過ぎて粉砕が困難になり、粉砕することができたとしても鉄粉末の表面に高Si濃度被覆層を有する表面高Si層被覆鉄粉末が得られなくなるので好ましくないことによるものである。   The reason why the heat treatment performed in the method for producing the surface high Si layer-coated iron powder of the present invention is performed at 920 to 1100 ° C. in a hydrogen atmosphere is the shortest in the non-oxidizing atmosphere by performing the heat treatment in the hydrogen atmosphere. This is because a high-concentration Si diffusion layer can be efficiently formed on the surface of the iron pulverized powder. If the temperature is less than 920 ° C., it is not preferable because only a normal slow diffusion rate can be obtained, while exceeding 1100 ° C. When the heat treatment is performed at a high temperature, sintering of the iron pulverized powder proceeds excessively, making pulverization difficult, and even if pulverized, the surface has a high Si concentration coating layer on the surface of the iron powder. This is because it is not preferable since the above cannot be obtained.

この発明の表面高Si層被覆鉄粉末の製造方法で使用する鉄粉末は、純鉄粉末が好ましいが、純度:98.5質量%以上あれば十分であり、炭素鋼粉末なども使用することが出来る。そして前記鉄粉末の粒径は特に限定されるものではないが、平均粒径:50〜150μmの範囲内にあることが好ましい。したがって、この発明は、
(2)前記鉄粉末は、純度:98.5質量%以上の鉄粉末である前記(1)記載の表面高Si層被覆鉄粉末の製造方法、に特長を有するものである。
この発明の表面高Si層被覆鉄粉末の製造方法で使用する鉄粉末に添加し混合するSi粉末またはフェロシリコン(Si:50%以上含有のフェロシリコン)粉末は粒径:10μm以下の微細粉末であることが好ましい。その理由は、Si粉末またはフェロシリコン粉末の粒径が10μmを越えるようになると、原料粉末の鉄粉末に比べて大きく、混合時に鉄粉末の周囲に不均一に分散しなくなるので高Si層被覆層が鉄粉末の表面に均一な厚さで被覆しなくなるので好ましくないからである。したがって、この発明は、
(3)前記Si粉末またはフェロシリコン粉末は、粒径:10μm以下の微細粉末である前記(1)記載の表面高Si層被覆鉄粉末の製造方法、に特長を有するものである。
The iron powder used in the method for producing the surface high Si layer-coated iron powder of the present invention is preferably pure iron powder, but it is sufficient if the purity is 98.5% by mass or more, and carbon steel powder or the like may be used. I can do it. The particle size of the iron powder is not particularly limited, but it is preferable that the average particle size is in the range of 50 to 150 μm. Therefore, the present invention
(2) The iron powder has a feature in the method for producing a surface high Si layer-coated iron powder according to (1), which is an iron powder having a purity of 98.5% by mass or more.
The Si powder or ferrosilicon (Si: ferrosilicon containing 50% or more) powder added to and mixed with the iron powder used in the method for producing the surface high Si layer-coated iron powder of the present invention is a fine powder having a particle size of 10 μm or less. Preferably there is. The reason is that when the particle size of the Si powder or ferrosilicon powder exceeds 10 μm, it is larger than the iron powder of the raw material powder and does not disperse unevenly around the iron powder during mixing. Is not preferable because the surface of the iron powder is not coated with a uniform thickness. Therefore, the present invention
(3) The Si powder or ferrosilicon powder has a feature in the method for producing a surface high Si layer-coated iron powder according to (1), which is a fine powder having a particle size of 10 μm or less.

この発明の表面高Si層被覆鉄粉末にバインダーとしての有機絶縁材料や無機絶縁材料、あるいは有機絶縁材料と無機絶縁材料との混合材料を混合して比抵抗および強度のさらに向上した軟磁性材を作製することができる。この場合、有機絶縁材料では、エポキシ樹脂、フッ素樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、フェノキシ樹脂、ユリア樹脂、イソシアネート樹脂、アクリル樹脂、ポリイミド樹脂、PPS樹脂,等を用いることができる。また無機絶縁材料では、リン酸鉄などのリン酸塩、各種ガラス状絶縁物、珪酸ソーダを主成分とする水ガラス、絶縁性酸化物、等を用いることができる。そして、表面高Si層被覆鉄粉末に添加するバインダー量は0.2〜3質量%の範囲内にあることが好ましい。この添加量は一般に知られている範囲内である。
この発明の表面高Si層被覆鉄粉末に前記バインダーを添加し混合した混合粉末を圧粉成形し、得られた圧粉成形体を温度:500〜900℃で燒結することにより軟磁性材を作製することができる。この焼結温度は一般に知られている温度である。
この発明の表面高Si層被覆鉄粉末を用いて作製した軟磁性材は高密度、高強度、高比抵抗、高磁束密度および低保磁力を有し、この軟磁性材は、高磁束密度で高周波低鉄損の特徴を有する事からこの特徴を生かした各種電磁気回路部品の材料として使用できる。前記電磁気回路部品は、磁心、電動機コア,発電機コア、ソレノイドコア、イグニッションコア、リアクトル、トランス、チョークコイルコアまたは磁気センサコアなどがある。そして、この発明の酸化膜被覆Fe−Si系鉄基軟磁性粉末を用いた軟磁性材からなる電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、電気機器の高効率高性能化や小型軽量化を行うことができる。
A soft magnetic material having further improved specific resistance and strength by mixing an organic insulating material or inorganic insulating material as a binder or a mixed material of an organic insulating material and an inorganic insulating material with the surface high Si layer-coated iron powder of the present invention. Can be produced. In this case, as the organic insulating material, epoxy resin, fluorine resin, phenol resin, urethane resin, silicone resin, polyester resin, phenoxy resin, urea resin, isocyanate resin, acrylic resin, polyimide resin, PPS resin, or the like can be used. . As the inorganic insulating material, phosphates such as iron phosphate, various glassy insulators, water glass mainly composed of sodium silicate, insulating oxides, and the like can be used. And it is preferable that the amount of binders added to surface high Si layer coating iron powder exists in the range of 0.2-3 mass%. The amount added is within a generally known range.
The mixed powder obtained by adding and mixing the binder to the surface high Si layer-coated iron powder of this invention is compacted, and the resulting compacted body is sintered at a temperature of 500 to 900 ° C. to produce a soft magnetic material. can do. This sintering temperature is a generally known temperature.
The soft magnetic material produced using the surface high Si layer coated iron powder of the present invention has high density, high strength, high specific resistance, high magnetic flux density and low coercive force, and this soft magnetic material has high magnetic flux density. Since it has the characteristics of high-frequency and low iron loss, it can be used as a material for various electromagnetic circuit components utilizing this characteristic. Examples of the electromagnetic circuit component include a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor, a transformer, a choke coil core, and a magnetic sensor core. In addition, an electric device incorporating an electromagnetic circuit component made of a soft magnetic material using the oxide film-coated Fe-Si iron-based soft magnetic powder of the present invention includes an electric motor, a generator, a solenoid, an injector, an electromagnetically driven valve, an inverter There are converters, transformers, relays, magnetic sensor systems, etc., which can improve the efficiency, performance, size and weight of electrical equipment.

この発明の表面高Si層被覆鉄粉末を使用して軟磁性材を製造すると、高比抵抗を有することから低渦電流損失を有し、さらに保磁力が低いことから低ヒステリシス損失を有する軟磁性材を低コスト安定して作製することができ、電気・電子産業上優れた効果をもたらすものである。   When a soft magnetic material is manufactured using the surface high Si layer coated iron powder of this invention, it has a low specific eddy current loss due to its high specific resistance, and also has a low hysteresis loss due to its low coercive force. The material can be produced stably at a low cost, and has an excellent effect in the electric and electronic industries.

原料粉末としてアトマイズして得られた平均粒径:80μmを有する純鉄粉末およびアトマイズして得られた平均粒径:80μmを有する炭素鋼粉末(成分組成、質量%で、C:0.01%、Si:0.1%、Mn:0.35%、P:0.01%、S:0.02%を含有し、残部がFeおよび不可避不純物)を用意し、さらに平均粒径:5μmを有するSi粉末、平均粒径:5μmを有しSi:75%を含有する市販のフェロシリコン粉末を用意した。
実施例1
まず、純鉄粉末を真空、水素、アルゴン雰囲気中、表1に示される条件で予備熱処理したのち粉砕して純鉄粉砕粉末を作製し、これら純鉄粉砕粉末に純Si粉末を、純鉄粉砕粉末:純Si粉末=97質量%:3%質量となるように配合し、混合して混合粉末を作製し、得られた混合粉末を表1に示される条件で熱処理したのち粉砕する本発明法1〜8および比較法1〜5を実施することにより純鉄粉末の表面に高濃度Si拡散層が形成された粒径:150以下の表面高Si層被覆鉄粉末を作製した。
Pure iron powder having an average particle size of 80 μm obtained by atomization as a raw material powder and carbon steel powder having an average particle size of 80 μm obtained by atomization (component composition, mass%, C: 0.01% Si: 0.1%, Mn: 0.35%, P: 0.01%, S: 0.02%, the balance being Fe and inevitable impurities), and an average particle size of 5 μm A commercially available ferrosilicon powder having an Si powder having an average particle size of 5 μm and containing Si: 75% was prepared.
Example 1
First, pure iron powder is preheated in a vacuum, hydrogen, and argon atmosphere under the conditions shown in Table 1, and then pulverized to produce pure iron pulverized powder. Pure iron powder is then pulverized with pure Si powder. Powder: Pure Si powder = 97% by mass: 3% by mass, mixed to prepare a mixed powder, and the obtained mixed powder is heat-treated under the conditions shown in Table 1 and then pulverized. By carrying out 1 to 8 and Comparative Methods 1 to 5, the surface high Si layer-coated iron powder having a particle size of 150 or less with a high-concentration Si diffusion layer formed on the surface of the pure iron powder was produced.

本発明法1〜8および比較法1〜5で得られた表面高Si層被覆鉄粉末にシランカップリング処理を施したのちバインダーとしてシリコーン樹脂:1.5質量%を添加し混合したのち金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空雰囲気中、温度:800℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる軟磁性材を作製し、この板状焼成体からなる軟磁性材の比抵抗を測定してその結果を表2に示し、さらにリング状焼成体からなる軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1T、周波数1kHzの時の鉄損および磁束密度0.1T、周波数10kHzの時の鉄損などの磁気特性を測定し、それらの結果を表2に示した。
従来例1
先に用意した純鉄粉末を真空、水素、Ar雰囲気中、温度:800℃、0.5時間保持の予備熱処理をおこなったのち、温度:800℃、15Vol.%SiCl+Ar雰囲気中、0.5時間保持の浸珪処理を施し、さらにAr雰囲気中、温度:800℃、0.5時間保持することにより従来法1を実施することにより純鉄粉末の表面に高濃度Si拡散層が形成された表面高Si層被覆鉄粉末を作製した。
After applying silane coupling treatment to the surface high Si layer-coated iron powder obtained by the present invention methods 1-8 and comparative methods 1-5, a silicone resin: 1.5% by mass is added as a binder, and then mixed. And pressed into a plate-shaped green compact having a length of 55 mm, a width of 10 mm, and a thickness of 5 mm, and a ring-shaped powder having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm. The body was molded, and the obtained green compact was fired in a vacuum atmosphere at a temperature of 800 ° C. and held for 30 minutes to produce a soft magnetic material composed of a plate-like and ring-like fired body. The specific resistance of the soft magnetic material made of the fired body was measured and the results are shown in Table 2. Further, the soft magnetic material made of the ring-like fired body was wound, and the magnetic flux density, coercive force, magnetic flux density 1T, frequency Iron loss and magnetic flux density at 1 kHz 0.1 T, the magnetic properties such as iron loss at a frequency 10kHz were measured. The results are shown in Table 2.
Conventional Example 1
The pre-prepared pure iron powder was preliminarily heat-treated in a vacuum, hydrogen and Ar atmosphere at a temperature of 800 ° C. for 0.5 hours, and then the temperature was 800 ° C. and 15 Vol. The surface of the pure iron powder is obtained by performing the conventional method 1 by performing a siliconizing treatment for 0.5 hours in an atmosphere of% SiCl 4 + Ar, and further maintaining in an Ar atmosphere at a temperature of 800 ° C. for 0.5 hours. The surface high Si layer coating iron powder in which the high concentration Si diffusion layer was formed was prepared.

得られた表面高Si層被覆鉄粉末にシランカップリング処理を施したのちバインダーとしてシリコーン樹脂:1.5質量%を添加し混合したのち金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる軟磁性材を作製し、この板状焼成体からなる軟磁性材の比抵抗を測定してその結果を表2に示し、さらにリング状焼成体からなる軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1T、周波数1kHzの時の鉄損および磁束密度0.1T、周波数1kHzの時の鉄損などの磁気特性を測定し、それらの結果を表2に示した。   The obtained surface high Si layer-coated iron powder is subjected to a silane coupling treatment, and then added and mixed with a silicone resin: 1.5% by mass as a binder, and then put into a mold, press-molded, and length: 55 mm, width: A plate-shaped green compact having dimensions of 10 mm, thickness: 5 mm, and a ring-shaped green compact having dimensions of outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm, and forming the green compact into nitrogen Firing is performed in an atmosphere at a temperature of 500 ° C. for 30 minutes to produce a soft magnetic material made of a plate-like and ring-like fired body, and the specific resistance of the soft magnetic material made of the plate-like fired body is measured. The results are shown in Table 2, and a soft magnetic material made of a ring-shaped fired body is wound, and magnetic flux density, coercive force, magnetic flux density 1T, iron loss and magnetic flux density 0.1T at a frequency of 1 kHz, Iron at a frequency of 1 kHz The magnetic characteristics such as measured, The results are shown in Table 2.

Figure 2007126696
Figure 2007126696

Figure 2007126696
Figure 2007126696

表1〜2に示される結果から、実施例1の本発明法1〜8で作製した表面高Si層被覆鉄粉末を用いた軟磁性材は、従来例1の従来法1で作製した表面高Si層被覆鉄粉末を用いた軟磁性材と比べて、密度については大差は無いが、実施例1の本発明法1〜8で作製した表面高Si層被覆鉄粉末を用いた軟磁性材は、従来例1の従来法1で作製した表面高Si層被覆鉄粉末を用いた軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が高く、そのため鉄損、特に1kHz以上の高周波域での鉄損が小さくなるなどの特性を有することが分かる。しかし、この発明の条件から外れた条件の比較法1〜5で作製した表面高Si層被覆鉄粉末を用いた軟磁性材は一部好ましくない特性があることが分かる。
実施例2
次に、先に用意した炭素鋼粉末を真空、水素、アルゴン雰囲気中、表3に示される条件で予備熱処理したのち粉砕して炭素鋼粉砕粉末を作製し、これら炭素鋼粉砕粉末に先に用意したフェロシリコン粉末を、炭素鋼粉砕粉末:フェロシリコン粉末=98質量%:2%質量となるように配合し、混合して混合粉末を作製し、得られた混合粉末を表3に示される条件で熱処理したのち粉砕する本発明法9〜16および比較法6〜10を実施することにより炭素鋼粉末の表面に高濃度Si拡散層が形成された表面高Si層被覆鉄粉末を作製した。
From the results shown in Tables 1 and 2, the soft magnetic material using the surface-high Si layer-coated iron powder produced in the inventive methods 1 to 8 of Example 1 is the surface height produced in the conventional method 1 of Conventional Example 1. Compared with the soft magnetic material using the Si layer-coated iron powder, there is no significant difference in density, but the soft magnetic material using the surface high Si layer-coated iron powder produced by the inventive methods 1 to 8 of Example 1 is Compared with the soft magnetic material using the surface high Si layer-coated iron powder produced by the conventional method 1 of the conventional example 1, the magnetic flux density is high, the coercive force is small, and the specific resistance is high, so that the iron loss, particularly 1 kHz. It turns out that it has the characteristic that the iron loss in the above high frequency region becomes small. However, it can be seen that the soft magnetic material using the surface high Si layer-coated iron powder produced by Comparative Methods 1 to 5 under conditions deviating from the conditions of the present invention has some undesirable characteristics.
Example 2
Next, the prepared carbon steel powder is preheated in a vacuum, hydrogen, argon atmosphere under the conditions shown in Table 3 and then pulverized to produce a pulverized carbon steel powder. The obtained ferrosilicon powder was blended so that the pulverized carbon steel powder: ferrosilicon powder = 98% by mass: 2% by mass and mixed to prepare a mixed powder. The obtained mixed powder was subjected to the conditions shown in Table 3. By carrying out the present invention methods 9 to 16 and comparative methods 6 to 10 which were heat-treated and then ground, a high-Si surface-coated iron powder having a high-concentration Si diffusion layer formed on the surface of the carbon steel powder was produced.

本発明法9〜16および比較法6〜10で得られた表面高Si層被覆鉄粉末にシランカップリング処理を施したのちバインダーとしてシリコーン樹脂:1.5質量%を添加し混合したのち金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる軟磁性材を作製し、この板状焼成体からなる軟磁性材の比抵抗を測定してその結果を表4に示し、さらにリング状焼成体からなる軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1T、周波数1kHzの時の鉄損および磁束密度0.1T、周波数10kHzの時の鉄損などの磁気特性を測定し、それらの結果を表4に示した。
従来例2
先に用意した炭素鋼粉末をAr雰囲気中、温度:800℃、0.5時間保持の予備熱処理をおこなったのち、温度:800℃、15Vol.%SiCl+Ar雰囲気中、0.5時間保持の浸珪処理を施し、さらにAr雰囲気中、温度:800℃、0.5時間保持することにより従来法2を実施することにより炭素鋼粉末の表面に高濃度Si拡散層が形成された表面高Si層被覆鉄粉末を作製した。
After applying silane coupling treatment to the surface high Si layer-coated iron powder obtained by the present invention methods 9 to 16 and comparative methods 6 to 10, a silicone resin: 1.5% by mass is added as a binder, and then mixed. And pressed into a plate-shaped green compact having a length of 55 mm, a width of 10 mm, and a thickness of 5 mm, and a ring-shaped powder having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm. The body was molded, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 500 ° C. for 30 minutes to produce a soft magnetic material comprising a plate-like and ring-like fired body. The specific resistance of the soft magnetic material made of the fired body was measured and the results are shown in Table 4. Further, the soft magnetic material made of the ring-like fired body was wound, and the magnetic flux density, coercive force, magnetic flux density 1T, frequency Iron loss and magnetism at 1 kHz Density 0.1 T, the magnetic properties such as iron loss at a frequency 10kHz were measured. The results are shown in Table 4.
Conventional example 2
The previously prepared carbon steel powder was pre-heated in an Ar atmosphere at a temperature of 800 ° C. and held for 0.5 hours, and then the temperature was 800 ° C. and 15 Vol. The surface of the carbon steel powder is obtained by performing the conventional method 2 by performing a siliconization treatment for 0.5 hours in a% SiCl 4 + Ar atmosphere, and further maintaining the temperature in the Ar atmosphere at 800 ° C. for 0.5 hours. The surface high Si layer coating iron powder in which the high concentration Si diffusion layer was formed was prepared.

得られた表面高Si層被覆鉄粉末にバインダーとしてエポキシ樹脂:1質量%を添加し混合したのち金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる軟磁性材を作製し、この板状焼成体からなる軟磁性材の比抵抗を測定してその結果を表4に示し、さらにリング状焼成体からなる軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1T、周波数10kHzの時の鉄損および磁束密度0.1T、周波数10kHzの時の鉄損などの磁気特性を測定し、それらの結果を表4に示した。   Epoxy resin as a binder is added to the obtained surface high Si layer-coated iron powder, mixed in 1% by mass, put into a mold, and press-molded to have dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness. A plate-shaped green compact and a ring-shaped green compact having dimensions of an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm were formed, and the obtained green compact was placed in a nitrogen atmosphere at a temperature of 500 ° C. for 30 minutes. Firing is performed under the holding conditions to produce a soft magnetic material made of a plate-like and ring-like fired body, the specific resistance of the soft magnetic material made of this plate-like fired body is measured, and the results are shown in Table 4, Winding is applied to a soft magnetic material made of a ring-shaped fired body, and magnetic flux density, coercive force, and magnetic loss such as iron loss at a magnetic flux density of 1T and a magnetic flux density of 0.1T and a magnetic flux density of 0.1T and a frequency of 10 kHz. Measure the properties and It is shown in Table 4.

Figure 2007126696
Figure 2007126696

Figure 2007126696
Figure 2007126696

表3〜4に示される結果から、実施例2の本発明法9〜16で作製した表面高Si層被覆鉄粉末を用いた軟磁性材は、従来例2の従来法2で作製した表面高Si層被覆鉄粉末を用いた軟磁性材と比べて、密度については大差は無いが、実施例2の本発明法9〜16で作製した表面高Si層被覆鉄粉末を用いた軟磁性材は、従来例2の従来法2で作製した表面高Si層被覆鉄粉末を用いた軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が高く、そのため鉄損、特に1kHz以上の高周波域での鉄損がが小さくなるなどの特性を有することが分かる。しかし、この発明の条件から外れた条件の比較法6〜10で作製した表面高Si層被覆鉄粉末を用いた軟磁性材は一部好ましくない特性があることが分かる。
From the results shown in Tables 3 to 4, the soft magnetic material using the surface high Si layer-coated iron powder produced by the inventive methods 9 to 16 of Example 2 is the surface height produced by the conventional method 2 of Conventional Example 2. Compared with the soft magnetic material using the Si layer-coated iron powder, the density is not much different, but the soft magnetic material using the surface high Si layer-coated iron powder produced by the inventive methods 9 to 16 of Example 2 is Compared with the soft magnetic material using the surface high Si layer-coated iron powder prepared by the conventional method 2 of the conventional example 2, the magnetic flux density is high, the coercive force is small, and the specific resistance is high, so that the iron loss, particularly 1 kHz. It turns out that it has the characteristic that the iron loss in the above high frequency region becomes small. However, it can be seen that the soft magnetic material using the surface high Si layer-coated iron powder produced by Comparative Methods 6 to 10 under conditions other than the conditions of the present invention has some undesirable characteristics.

Claims (8)

鉄粉末を非酸化雰囲気中で温度:900越え〜1250℃に保持することにより予備熱処理したのち粉砕することにより鉄粉砕粉末を作製し、この鉄粉砕粉末にSi粉末またはフェロシリコン粉末を添加し混合したのち水素雰囲気中、温度:920〜1100℃で加熱し、次いで粉砕することを特徴とする表面高Si層被覆鉄粉末の製造方法。 The iron powder is preheated by holding the iron powder in a non-oxidizing atmosphere at a temperature exceeding 900 to 1250 ° C. and then pulverized to produce an iron pulverized powder. The iron pulverized powder is mixed with Si powder or ferrosilicon powder. After that, a method for producing a surface high Si layer-coated iron powder characterized by heating in a hydrogen atmosphere at a temperature of 920 to 1100 ° C. and then pulverizing. 前記鉄粉末は、純度:98.5質量%以上の鉄粉末であることを特徴とする請求項1記載の表面高Si層被覆鉄粉末の製造方法。 The method for producing a surface high Si layer-coated iron powder according to claim 1, wherein the iron powder is an iron powder having a purity of 98.5% by mass or more. 前記Si粉末またはフェロシリコン粉末は、粒径:10μm以下の微細粉末であることを特徴とする請求項1記載の表面高Si層被覆鉄粉末の製造方法。 2. The method for producing a surface high Si layer-coated iron powder according to claim 1, wherein the Si powder or ferrosilicon powder is a fine powder having a particle size of 10 [mu] m or less. 請求項1、2または3記載の方法で作製した表面高Si層被覆鉄粉末にバインダーを0.2〜3質量%添加したのち圧粉成形し、この圧粉成形体を500〜900℃で焼成することを特徴とする複合軟磁性材の製造方法。 The surface high Si layer-coated iron powder produced by the method according to claim 1, 2 or 3 is added with 0.2 to 3 mass% of binder and then compacted, and the compact is fired at 500 to 900 ° C. A method for producing a composite soft magnetic material, comprising: 請求項4記載のバインダーは、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミド樹脂、フェノール樹脂などの有機樹脂、リン酸塩、ガラス状絶縁物、珪酸ソーダを主成分とする水ガラス、または絶縁性酸化物であることを特徴とする複合軟磁性材の製造方法。 The binder according to claim 4 is an epoxy resin, a fluororesin, a silicone resin, a polyimide resin, a polyester resin, a polyamide resin, an organic resin such as a phenol resin, a phosphate, a glassy insulator, or water mainly composed of sodium silicate. A method for producing a composite soft magnetic material, characterized by being made of glass or an insulating oxide. 請求項4または5記載の方法で作製した複合軟磁性材からなる電磁気回路部品。 An electromagnetic circuit component comprising a composite soft magnetic material produced by the method according to claim 4. 請求項6記載の電磁気回路部品は、磁心、電動機コア,発電機コア,ソレノイドコア,イグニッションコア,トランスコア,チョークコイルコアまたは磁気センサコアであることを特徴とする電磁気回路部品。 The electromagnetic circuit component according to claim 6, wherein the electromagnetic circuit component is a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a transformer core, a choke coil core, or a magnetic sensor core. 請求項7記載の前記電磁気回路部品を組み込んだ電気機器。 An electric device incorporating the electromagnetic circuit component according to claim 7.
JP2005319248A 2005-11-02 2005-11-02 Method for producing surface high Si layer coated iron powder Expired - Fee Related JP4430607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319248A JP4430607B2 (en) 2005-11-02 2005-11-02 Method for producing surface high Si layer coated iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319248A JP4430607B2 (en) 2005-11-02 2005-11-02 Method for producing surface high Si layer coated iron powder

Publications (2)

Publication Number Publication Date
JP2007126696A true JP2007126696A (en) 2007-05-24
JP4430607B2 JP4430607B2 (en) 2010-03-10

Family

ID=38149579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319248A Expired - Fee Related JP4430607B2 (en) 2005-11-02 2005-11-02 Method for producing surface high Si layer coated iron powder

Country Status (1)

Country Link
JP (1) JP4430607B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149825A1 (en) * 2007-05-31 2008-12-11 Jfe Steel Corporation Metallic powder for powder magnetic core and process for producing powder magnetic core
WO2009063316A1 (en) * 2007-11-12 2009-05-22 Toyota Jidosha Kabushiki Kaisha Powder for magnetic core, method for manufacturing powder for magnetic core, and dust core
WO2009128524A1 (en) * 2008-04-18 2009-10-22 トヨタ自動車株式会社 Powder for dust core and process for producing the same
JP2009259939A (en) * 2008-04-15 2009-11-05 Toyota Central R&D Labs Inc Powder magnetic core and its manufacturing method
JP2010258344A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp Method of manufacturing magnetic powder
JP2011063824A (en) * 2009-09-15 2011-03-31 Toyota Motor Corp Method for producing powder for dust core
WO2014000916A1 (en) * 2012-06-27 2014-01-03 Robert Bosch Gmbh Soft-magnetic component and method for the production thereof
CN105268964A (en) * 2015-11-13 2016-01-27 兰州飞行控制有限责任公司 FeCo23Ni9 magnetic powder and preparing method thereof
JP2016086124A (en) * 2014-10-28 2016-05-19 アイシン精機株式会社 Method for manufacturing soft magnetic material
US9704627B2 (en) 2012-01-18 2017-07-11 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
CN111168078A (en) * 2020-03-06 2020-05-19 无锡市东杨新材料股份有限公司 Preparation method of iron-coated silicon core-shell composite powder
CN113145843A (en) * 2021-04-28 2021-07-23 武汉科技大学 Gradient alloying powder material prepared by high-temperature thermal diffusion method and preparation method thereof
CN114535591A (en) * 2022-02-25 2022-05-27 安徽工业大学 Method for preparing alloy powder based on surface nanocrystallization treatment

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2153921A4 (en) * 2007-05-31 2011-08-03 Jfe Steel Corp Metallic powder for powder magnetic core and process for producing powder magnetic core
EP2153921A1 (en) * 2007-05-31 2010-02-17 JFE Steel Corporation Metallic powder for powder magnetic core and process for producing powder magnetic core
US20100150768A1 (en) * 2007-05-31 2010-06-17 Jfe Steel Corporation Method for producing metal powder for dust core and method for manufacturing dust core
WO2008149825A1 (en) * 2007-05-31 2008-12-11 Jfe Steel Corporation Metallic powder for powder magnetic core and process for producing powder magnetic core
WO2009063316A1 (en) * 2007-11-12 2009-05-22 Toyota Jidosha Kabushiki Kaisha Powder for magnetic core, method for manufacturing powder for magnetic core, and dust core
US8414984B2 (en) 2007-11-12 2013-04-09 Toyota Jidosha Kabushiki Kaisha Powder for magnetic core, method for manufacturing powder for magnetic core, and dust core
JP2009259939A (en) * 2008-04-15 2009-11-05 Toyota Central R&D Labs Inc Powder magnetic core and its manufacturing method
WO2009128524A1 (en) * 2008-04-18 2009-10-22 トヨタ自動車株式会社 Powder for dust core and process for producing the same
DE112009000958T5 (en) 2008-04-18 2011-02-10 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Powder core powder and process for its preparation
DE112009000958B8 (en) * 2008-04-18 2014-01-30 Fine Sinter Co., Ltd. Powder core powder and process for its preparation
DE112009000958B4 (en) * 2008-04-18 2013-11-21 Fine Sinter Co., Ltd. Powder core powder and process for its preparation
US8337638B2 (en) 2008-04-18 2012-12-25 Toyota Jidosha Kabushiki Kaisha Powder for dust core and method for producing the same
CN102006953B (en) * 2008-04-18 2013-03-27 丰田自动车株式会社 Powder for dust core and method for producing the same
JP2010258344A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp Method of manufacturing magnetic powder
JP2011063824A (en) * 2009-09-15 2011-03-31 Toyota Motor Corp Method for producing powder for dust core
US9704627B2 (en) 2012-01-18 2017-07-11 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
KR101805348B1 (en) * 2012-01-18 2017-12-06 히타치 긴조쿠 가부시키가이샤 Dust core, coil component, and method for producing dust core
US10312004B2 (en) 2012-01-18 2019-06-04 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
WO2014000916A1 (en) * 2012-06-27 2014-01-03 Robert Bosch Gmbh Soft-magnetic component and method for the production thereof
JP2016086124A (en) * 2014-10-28 2016-05-19 アイシン精機株式会社 Method for manufacturing soft magnetic material
CN105268964A (en) * 2015-11-13 2016-01-27 兰州飞行控制有限责任公司 FeCo23Ni9 magnetic powder and preparing method thereof
CN111168078A (en) * 2020-03-06 2020-05-19 无锡市东杨新材料股份有限公司 Preparation method of iron-coated silicon core-shell composite powder
CN113145843A (en) * 2021-04-28 2021-07-23 武汉科技大学 Gradient alloying powder material prepared by high-temperature thermal diffusion method and preparation method thereof
CN114535591A (en) * 2022-02-25 2022-05-27 安徽工业大学 Method for preparing alloy powder based on surface nanocrystallization treatment
CN114535591B (en) * 2022-02-25 2024-03-12 安徽工业大学 Method for preparing alloy powder based on surface nanocrystallization treatment

Also Published As

Publication number Publication date
JP4430607B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4430607B2 (en) Method for producing surface high Si layer coated iron powder
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
WO2006028100A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP2008195986A (en) Powder of soft magnetic metal, green compact thereof, and method for manufacturing powder of soft magnetic metal
JPWO2011077601A1 (en) Powder magnetic core and manufacturing method thereof
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
WO2011148826A1 (en) Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for producing dust core
WO2006080121A1 (en) Mg-CONTAINING OXIDE COATED IRON POWDER
WO2007077689A1 (en) Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core
CN102473501A (en) Composite magnetic body and method for producing the same
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2008277775A (en) Dust core and its manufacturing method
JP2007013069A (en) METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2007146254A (en) METHOD FOR PRODUCING IRON POWDER HAVING Si CONCENTRATION GRADIENT AT THE INSIDE
JP2007231330A (en) Methods for manufacturing metal powder for dust core and the dust core
JP4480015B2 (en) Laminated oxide film coated iron powder
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP2011216571A (en) High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
JP2007113094A (en) METHOD FOR PRODUCING Si CONCENTRATION GRADIENT LAYER-COATED IRON POWDER
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2006241504A (en) Stacked oxide film-coated iron powder
JP4761835B2 (en) Mg-containing iron oxide coated iron powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees