JP2009259939A - Powder magnetic core and its manufacturing method - Google Patents

Powder magnetic core and its manufacturing method Download PDF

Info

Publication number
JP2009259939A
JP2009259939A JP2008105571A JP2008105571A JP2009259939A JP 2009259939 A JP2009259939 A JP 2009259939A JP 2008105571 A JP2008105571 A JP 2008105571A JP 2008105571 A JP2008105571 A JP 2008105571A JP 2009259939 A JP2009259939 A JP 2009259939A
Authority
JP
Japan
Prior art keywords
powder
magnetic core
silicone resin
core
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008105571A
Other languages
Japanese (ja)
Other versions
JP4837700B2 (en
Inventor
Junghwan Hwang
ファンジョンハン
Masaaki Tani
昌明 谷
Takeshi Hattori
毅 服部
Eisuke Hoshina
栄介 保科
Satoshi Okochi
智 大河内
Yusuke Oishi
雄介 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2008105571A priority Critical patent/JP4837700B2/en
Publication of JP2009259939A publication Critical patent/JP2009259939A/en
Application granted granted Critical
Publication of JP4837700B2 publication Critical patent/JP4837700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder magnetic core superior not only in high density but also in strength. <P>SOLUTION: The powder magnetic core is obtained by heating green compact obtained by pressurizing and forming mixed powder where a powder magnetic core in which a coupling layer formed of silane coupling agent is installed on a particle surface of soft magnetic powder coated with an insulated coat, and silicone resin powder are mixed in a warm state where resin powder is softened. Since a gap formed between particles of magnetic core powder is filled with a small amount of silicone resin and is thermally cured in the powder magnetic core. Thus, higher density and higher strength are realized compared to a conventional one. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高密度、高比抵抗であるのみならず、強度に優れる圧粉磁心およびその製造方法に関するものである。   The present invention relates to a dust core not only having high density and high specific resistance but also excellent in strength and a method for producing the same.

変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等、我々の周囲には電磁気を利用した製品が多々ある。これらの製品は交番磁界を利用したものが多く、局所的に大きな交番磁界を効率的に得るために、通常、磁心(軟磁石)をその交番磁界中に設けている。   There are many products that use electromagnetism around us, such as transformers, motors, generators, speakers, induction heaters, and various actuators. Many of these products use an alternating magnetic field. In order to efficiently obtain a large alternating magnetic field locally, a magnetic core (soft magnet) is usually provided in the alternating magnetic field.

この磁心は、交番磁界中で大きな磁束密度が得られ、また、交番磁界中で使用したときの高周波損失(以下、磁心の材質に拘らず、単に「鉄損」という。)が少ないことが求められる。この高磁束密度(磁気的特性)と低損失(電気的特性)の両立を図るために、粒子表面を絶縁皮膜で被覆した軟磁性粉末(磁心用粉末)を加圧成形した圧粉磁心が用いられる。   This magnetic core is required to have a high magnetic flux density in an alternating magnetic field and to have low high-frequency loss (hereinafter simply referred to as “iron loss” regardless of the material of the magnetic core) when used in an alternating magnetic field. It is done. In order to achieve both high magnetic flux density (magnetic characteristics) and low loss (electrical characteristics), a powder magnetic core is used that is formed by press-molding soft magnetic powder (magnetic core powder) with an insulating coating on the particle surface. It is done.

もっとも最近では、単なる圧粉磁心の性能向上のみならず、圧粉磁心の実用強度など機械的特性の向上も重要な課題となっている。そこで例えば、下記の特許文献1では、シリカからなる絶縁皮膜で粒子表面が被覆された純鉄粉を、さらにシリコーン樹脂層で被覆し、それを加熱して強化向上を図った圧粉磁心を提案している。また、下記の特許文献2では、磁性粉末の粒子間の結合強化を図ったものではないが、絶縁皮膜した磁性粉末にカップリング剤を添加して、絶縁皮膜の保護を狙った圧粉磁心を提案している。
特開2006−233295号公報 特開2006−134958号公報
Most recently, not only improving the performance of a dust core, but also improving mechanical properties such as the practical strength of the dust core has become an important issue. Therefore, for example, the following Patent Document 1 proposes a powder magnetic core in which pure iron powder whose particle surface is coated with an insulating film made of silica is further coated with a silicone resin layer and heated to improve the strength. is doing. Further, in Patent Document 2 below, although not intended to strengthen the bond between the particles of the magnetic powder, a coupling agent is added to the magnetic powder coated with an insulating film, and a dust core that aims to protect the insulating film is formed. is suggesting.
JP 2006-233295 A JP 2006-134958 A

もっとも、上記の特許文献などで提案されている圧粉磁心はいずれも片面的であり、圧粉磁心に要求される磁気的特性、電気的特性および機械的特性のすべてを高次元で満足させ得るようなものではない。   However, the dust cores proposed in the above-mentioned patent documents are all single-sided, and can satisfy all of the magnetic characteristics, electrical characteristics, and mechanical characteristics required for the dust core at a high level. Not like that.

本発明は、このような事情に鑑みて為されたものであり、高密度化による磁気的特性および体積比抵抗値(以下、単に「比抵抗」という。)の確保による電気的特性の向上を図りつつも、高強度化による機械的特性の向上をより一層図れる圧粉磁心およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to improve the magnetic characteristics by increasing the density and the electrical characteristics by securing the volume specific resistance value (hereinafter simply referred to as “specific resistance”). An object of the present invention is to provide a dust core and a method for manufacturing the same, which can further improve mechanical properties by increasing strength.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、磁心用粉末を予めシランカップリング剤で処理した後に、その磁心用粉末と樹脂粉末との混合粉末を温間加圧成形して得た圧粉体を加熱処理した圧粉磁心は、密度を向上させつつも、さらに強度が著しく向上することを知見した。そしてこの成果を発展させることで、本発明者は以降に述べる種々の発明を完成させるに至った。   As a result of extensive research and trial and error, the present inventor has conducted a trial and error process, and after pre-processing the magnetic core powder with a silane coupling agent, the mixed powder of the magnetic core powder and the resin powder is warmed. It has been found that a powder magnetic core obtained by heat-treating a green compact obtained by pressure forming has a significantly improved strength while improving the density. And by developing this result, the present inventor has completed various inventions described below.

〈圧粉磁心〉 <Dust core>

(1)本発明の圧粉磁心は、絶縁皮膜で粒子表面が被覆された軟磁性粉末からなる磁心用粉末と加熱硬化型のシリコーン樹脂からなる樹脂粉末とを混合した混合粉末を加圧成形した圧粉体を、該シリコーン樹脂が硬化する高温状態で加熱して得られた圧粉磁心であって、
前記磁心用粉末は、前記絶縁皮膜で被覆された粒子表面上にさらにシランカップリング剤からなるカップリング層を有し、前記圧粉体は、前記混合粉末を前記樹脂粉末の軟化する温間状態で加圧成形して得られ、高密度、高比抵抗および高強度であることを特徴とする。
(1) The powder magnetic core of the present invention is formed by pressure-molding a mixed powder obtained by mixing a magnetic core powder made of a soft magnetic powder whose particle surface is coated with an insulating film and a resin powder made of a thermosetting silicone resin. A powder magnetic core obtained by heating the powder compact in a high temperature state where the silicone resin is cured,
The magnetic core powder further has a coupling layer made of a silane coupling agent on the particle surface coated with the insulating film, and the green compact is a warm state in which the mixed powder is softened by the resin powder. It is obtained by pressure molding and is characterized by high density, high specific resistance and high strength.

(2)本発明の圧粉磁心は、磁束密度などの磁気的特性や比抵抗などの電気的特性に優れるのみならず、強度などの機械的特性にも優れる。本発明の圧粉磁心が、高磁束密度や低比抵抗のみならず高強度を発現し得る詳細なメカニズムは必ずしも定かではない。現状では一応次のように考えられる。 (2) The dust core of the present invention is excellent not only in magnetic characteristics such as magnetic flux density and electrical characteristics such as specific resistance, but also in mechanical characteristics such as strength. The detailed mechanism by which the dust core of the present invention can express not only high magnetic flux density and low specific resistance but also high strength is not necessarily clear. At present, it is considered as follows.

本発明の圧粉磁心を構成する磁心用粉末は、先ず、軟磁性粉末の粒子表面が絶縁皮膜で被覆されているのみならず、さらにその粒子表面上にシランカップリング剤からなるカップリング層を有している。次に、この磁心用粉末と少量のシリコーン樹脂からなる樹脂粉末とを混合した混合粉末が、その樹脂粉末が軟化する状態(つまり温間状態)で加圧成形されて圧粉体となる。   The magnetic core powder constituting the dust core of the present invention is not only the surface of the soft magnetic powder particles coated with an insulating film, but also a coupling layer made of a silane coupling agent on the particle surface. Have. Next, a mixed powder obtained by mixing the magnetic core powder and a resin powder made of a small amount of silicone resin is pressed and formed into a green compact in a state where the resin powder is softened (that is, in a warm state).

この温間状態で磁心用粉末が加圧成形(以下適宜、「温間加圧成形」という。)される際、軟化したシリコーン樹脂は塑性流動し易くなり、磁心用粉末の粒子間の隙間(三重点など)に侵入または流入可能となる。ここで本発明の磁心用粉末の粒子表面にはシランカップリング剤からなるカップリング層がある。このため、その軟化したシリコーン樹脂は磁心用粉末の粒子と非常に濡れ易くなっており、従来よりも遙かに磁心用粉末の粒子間の隙間に侵入または流入し易くなる。この結果、磁心用粉末を高圧成形してできた粒子間の僅かな隙間にも、シリコーン樹脂が高充填されるようになる。この圧粉体を加熱処理すると、圧粉体の密度を損うことなく、磁心用粉末の粒子は粒子間に存在する極少量のシリコーン樹脂が熱硬化して、(準)化学的に強固に結合されるようになると考えられる。   When the magnetic core powder is pressure-molded in this warm state (hereinafter referred to as “warm pressure molding” as appropriate), the softened silicone resin tends to plastically flow, and the gaps between the particles of the magnetic core powder ( It is possible to invade or enter the triple point. Here, there is a coupling layer made of a silane coupling agent on the particle surface of the magnetic core powder of the present invention. For this reason, the softened silicone resin is very easily wetted with the magnetic core powder particles, and is much easier to enter or flow into the gaps between the magnetic core powder particles than before. As a result, even a small gap between particles formed by high-pressure molding of the magnetic core powder is highly filled with the silicone resin. When this green compact is heat-treated, the magnetic core powder particles are thermally cured by a very small amount of silicone resin existing between the particles without impairing the density of the green compact, and become (quasi) chemically strong. It is thought that it will become united.

このような詳細なメカニズムは兎も角として、要するに、本発明の圧粉磁心は、その構成粒子が加圧成形された際に塑性変形して絡み合い機械的に結合することに加えて、加熱硬化したシリコーン樹脂によっても、ほぼ均一にさらに強く結合されるようになり、両者が相乗的に作用することで、非常に高強度になったと考えられる。
本発明の圧粉磁心の強度の絶対値自体は、磁心用粉末の成形圧力、配合する樹脂粉末量さらには圧粉体の加熱処理の程度等によって変化し得るが、例えば、強度を代表的に指標する圧環強度が70MPa以上、80MPa以上さらには100MPa以上ともなり得る。
Such a detailed mechanism is basically a corner. In short, the powder magnetic core of the present invention is not only thermally deformed when its constituent particles are pressure-molded, but also entangled and mechanically coupled. It is considered that the silicone resin is bonded evenly and strongly evenly, and the strength of the two is synergistic and the strength is increased.
The absolute value of the strength of the powder magnetic core of the present invention itself may vary depending on the molding pressure of the magnetic core powder, the amount of resin powder to be blended, the degree of heat treatment of the green compact, etc. The crushing strength to be indexed can be 70 MPa or more, 80 MPa or more, or even 100 MPa or more.

(3)ところで、前記の樹脂粉末は、基本的に、軟磁性粉末の粒子表面を絶縁被覆するために磁心用粉末に混合されるものではない。勿論、結果的に軟磁性粉末の粒子表面を絶縁被覆することがあるとしても、軟磁性粉末は別途、予め絶縁被覆されているわけだから、そのような絶縁被覆は本発明が本来意図するところではない。
このように樹脂粉末は、軟磁性粉末の絶縁皮膜を形成するためではなく、粒子間の結合強化を図るために添加されるから、その配合量は少量でよい。特に、軟磁性粉末の真密度に近い程度にまで高密度成形されると、圧粉体中または圧粉磁心中に残存するシリコーン樹脂量は極僅かである。そして、このように樹脂粉末が少量であるからこそ、圧粉体の密度も高くなり、高磁束密度の圧粉磁心が得られる。
(3) By the way, the resin powder is not basically mixed with the magnetic core powder in order to insulate the particle surface of the soft magnetic powder. Of course, even if the particle surface of the soft magnetic powder may be insulated as a result, the soft magnetic powder is separately pre-insulated. Therefore, such an insulating coating is originally intended by the present invention. Absent.
Thus, since the resin powder is added not for forming an insulating film of soft magnetic powder but for strengthening the bond between particles, the blending amount thereof may be small. In particular, when high-density molding is performed to a level close to the true density of the soft magnetic powder, the amount of silicone resin remaining in the green compact or the dust core is very small. And since the resin powder is small in this way, the density of the green compact becomes high and a dust core with a high magnetic flux density can be obtained.

勿論、最終的に残存するシリコーン樹脂量や圧粉磁心の(嵩)密度は、配合する樹脂粉末量や成形時の加圧力によって多少は変動し得る。しかし、通常は、軟磁性粉末の粒子表面を絶縁被膜するために、樹脂粉末量が多く、さらに、加圧成形時の皮膜の割れを防ぐため皮膜を硬くすることにより、高圧成形しても構成粒子間の空隙は存在する。これに対して本発明によれば、構成粒子間の空隙へ添加されたシリコーン樹脂によって前述した結合強化を図りつつも、併せて、圧粉磁心の高密度化、高磁束密度化を達成できる。   Of course, the amount of the silicone resin finally remaining and the (bulk) density of the powder magnetic core may vary somewhat depending on the amount of the resin powder to be blended and the pressure applied during molding. However, in general, the amount of resin powder is large in order to insulate the particle surface of the soft magnetic powder, and the coating is hardened to prevent cracking of the film during pressure molding. There are voids between the particles. On the other hand, according to the present invention, it is possible to achieve high density and high magnetic flux density of the dust core while achieving the above-described bond reinforcement by the silicone resin added to the gaps between the constituent particles.

これらのことを踏まえて、例えば、樹脂粉末の配合量(添加量)は、前記圧粉体全体を100質量%としたときに、0.05〜0.5質量%であると好ましい。その下限は0.1質量%でもよい。その上限は0.4質量%、0.3質量%さらには0.2質量%でもよい。その配合量が過少であると、磁心用粉末の粒子間の隙間がシリコーン樹脂によって必ずしも十分に充填されず、高強度化が望めない。その配合量が過多であると、圧粉磁心の密度が低下して高い磁束密度が望めない。   Based on these matters, for example, the blending amount (addition amount) of the resin powder is preferably 0.05 to 0.5% by mass when the entire green compact is 100% by mass. The lower limit may be 0.1% by mass. The upper limit may be 0.4 mass%, 0.3 mass% or even 0.2 mass%. If the blending amount is too small, the gaps between the particles of the magnetic core powder are not always sufficiently filled with the silicone resin, and high strength cannot be expected. If the blending amount is excessive, the density of the powder magnetic core is lowered and a high magnetic flux density cannot be expected.

また、圧粉磁心は、例えば、軟磁性粉末の真密度(ρ0)に対する前記圧粉磁心の嵩密度(ρ)の比である密度比(ρ/ρ0:%)が98%以上、99%以上さらには99.5質量%となると好ましい。この密度比が過小であると、磁束密度の低下を招き好ましくない。圧粉磁心の緻密度は、この密度比以外の手法で評価可能であるが、比較的容易な評価として、上記のような密度比を用いた。   Further, in the dust core, for example, a density ratio (ρ / ρ0:%) which is a ratio of a bulk density (ρ) of the dust core to a true density (ρ0) of the soft magnetic powder is 98% or more, 99% or more. Furthermore, it is preferable when it becomes 99.5 mass%. If the density ratio is too small, the magnetic flux density is lowered, which is not preferable. The density of the dust core can be evaluated by methods other than this density ratio, but as a relatively easy evaluation, the density ratio as described above was used.

(4)ところで、磁心用粉末の粒子表面を被覆する絶縁皮膜は、ケイ素(Si)を含む絶縁皮膜であると好適である。換言すれば、磁心用粉末は、そのような絶縁皮膜で被覆された軟磁性粉末からなると好適である。この具体例として、シリコーン樹脂が縮重合したシリコーン樹脂皮膜、Si酸化物(シリカ:SiO2)皮膜などがある。シリカ皮膜は、絶縁皮膜を形成するためのシリコーン樹脂が変態したものでもよい。また、軟磁性粉末がFe−Si粉末の場合、その粉末を水素還元処理して粒子表面に形成されたものでもよい。 (4) By the way, it is preferable that the insulating film covering the particle surface of the magnetic core powder is an insulating film containing silicon (Si). In other words, the magnetic core powder is preferably made of a soft magnetic powder coated with such an insulating film. Specific examples thereof include a silicone resin film obtained by condensation polymerization of a silicone resin, and a Si oxide (silica: SiO2) film. The silica film may be one obtained by transforming a silicone resin for forming an insulating film. When the soft magnetic powder is Fe-Si powder, the powder may be formed on the particle surface by hydrogen reduction treatment.

いずれにしても、このようなSi系皮膜はシランカップリング剤からなるカップリング層と相性がよいため、そのカップリング層を解して、軟化したシリコーン樹脂は、Si系皮膜で粒子表面が被覆された磁心用粉末とより高い濡れ性を発揮するようになる。
このような濡れ性の向上によって、上述したように、軟化したシリコーン樹脂が磁心用粉末の粒子間の隙間を緻密に充填し、各構成粒子が強固に結合された高強度な圧粉磁心が得られるようになる。
In any case, since such a Si-based film is compatible with a coupling layer made of a silane coupling agent, the softened silicone resin is coated on the particle surface with the Si-based film. It exhibits higher wettability with the magnetic core powder.
By improving the wettability as described above, as described above, the softened silicone resin densely fills the gaps between the particles of the magnetic core powder, and a high-strength powder magnetic core in which the constituent particles are firmly bonded is obtained. Be able to.

もっとも、磁心用粉末に対する軟化したシリコーン樹脂の濡れ性の向上は、圧粉磁心の強度向上に寄与するだけではない。すなわち、この濡れ性の向上により、軟化したシリコーン樹脂が磁心用粉末の各粒子間の滑りをも促進させ、加圧成形時の絶縁皮膜の破壊を抑制する効果もあると思われる。   However, the improvement of the wettability of the softened silicone resin with respect to the magnetic core powder does not only contribute to the improvement of the strength of the powder magnetic core. That is, it is considered that the improvement in wettability has the effect that the softened silicone resin also promotes the slip between the particles of the magnetic core powder and suppresses the breakdown of the insulating film during pressure molding.

〈圧粉磁心の製造方法〉
本発明は、上記のような圧粉磁心としてのみならず、圧粉磁心の製造方法としても把握できる。
(1)すなわち、本発明は、絶縁皮膜で粒子表面が被覆された軟磁性粉末からなる磁心用粉末の粒子表面にシランカップリング剤を接触させる接触工程と、該接触工程後の磁心用粉末と加熱硬化型のシリコーン樹脂からなる樹脂粉末とを混合する混合工程と、該混合工程後の混合粉末を該樹脂粉末の軟化する温間状態で加圧成形する成形工程と、該成形工程後の圧粉体を該シリコーン樹脂が硬化する高温状態で加熱する加熱工程とからなり、高密度で比抵抗および強度に優れた圧粉磁心が得られることを特徴とする圧粉磁心の製造方法としてもよい。
<Method of manufacturing a dust core>
The present invention can be grasped not only as a powder magnetic core as described above but also as a method for manufacturing a powder magnetic core.
(1) That is, the present invention provides a contact step of bringing a silane coupling agent into contact with a particle surface of a magnetic core powder made of a soft magnetic powder whose particle surface is coated with an insulating film, and a magnetic core powder after the contact step. A mixing step of mixing a resin powder comprising a thermosetting silicone resin, a molding step of pressure-molding the mixed powder after the mixing step in a warm state in which the resin powder is softened, and a pressure after the molding step The method may be a method for producing a powder magnetic core, characterized in that it comprises a heating step of heating the powder in a high temperature state where the silicone resin is cured, and a powder magnetic core having high density and excellent specific resistance and strength is obtained. .

(2)さらに前記成形工程は、金型に充填した前記混合粉末を加熱して前記温間状態とする温間加熱工程と、該温間加熱工程により前記樹脂粉末を軟化させた状態で前記磁心用粉末を加圧成形する加圧工程とからなってもよい。この温間加熱工程と加圧工程とは、別個独立に進行してもよいし、両工程が並行しながら進行してもよい。 (2) Further, the molding step includes a warm heating step in which the mixed powder filled in a mold is heated to the warm state, and the resin core is softened by the warm heating step. It may consist of the pressurization process which press-molds the powder for use. The warm heating process and the pressurizing process may proceed independently and both processes may proceed in parallel.

(3)また、前記加熱工程は、基本的には、磁心用粉末の粒子間の隙間を充填するシリコーン樹脂を硬化させるものである。もっとも、この加熱工程が、成形工程後の磁心用粉末の粒子内に生じた残留歪みまたは残留応力を除去する焼鈍工程を兼ねると好ましい。これにより、圧粉磁心の高強度化とヒステリシス損の低減を効率的に達成できる。 (3) The heating step basically cures the silicone resin that fills the gaps between the particles of the magnetic core powder. However, it is preferable that this heating step also serves as an annealing step for removing residual strain or residual stress generated in the particles of the magnetic core powder after the forming step. Thereby, the high intensity | strength of a powder magnetic core and the reduction of a hysteresis loss can be achieved efficiently.

ちなみに、焼鈍温度は400℃、600℃さらには750℃もの高温になり得るが、本発明に係る加熱硬化型のシリコーン樹脂はもともと耐熱温度が高く、そのような高温の焼鈍を行っても、磁心用粉末の粒子間の結合が劣化することは少ない。   Incidentally, although the annealing temperature can be as high as 400 ° C., 600 ° C., and even 750 ° C., the heat-curable silicone resin according to the present invention originally has a high heat resistance temperature, and even if such high temperature annealing is performed, the magnetic core The bonding between the particles of the powder for use is less likely to deteriorate.

〈その他〉
(1)本明細書でいう「圧粉磁心」はその形態を問わない。つまり、圧粉磁心は、機械加工等が適宜なされる素材またはバルク状であっても良いし、最終的な形状またはそれに近い構造部材自体であっても良い。
また、本発明では、軟磁性粉末の粒子表面に絶縁皮膜が被覆され、さらにその表面にカップリング層が設けられることを特徴としている。この様子を図1に模式的に示した。
<Others>
(1) The form of the “dust core” as used in this specification is not limited. That is, the powder magnetic core may be a material or a bulk shape that is appropriately subjected to machining or the like, or may be a final shape or a structural member close thereto.
Further, the present invention is characterized in that the surface of the soft magnetic powder particles is coated with an insulating film, and a coupling layer is further provided on the surface. This is schematically shown in FIG.

もっとも当然ながら、現実の絶縁皮膜やカップリング層がそのような均一なものとなっているとは限らない。そして加熱処理して得られた圧粉磁心では、カップリング層が絶縁皮膜やシリコーン樹脂と融合して分析困難こともあり得る。さらにいえば、絶縁皮膜と加熱硬化したシリコーン樹脂との区別も分析し難いことも十分にあり得る。従って、上述した本発明に係る表現内容は、あくまでも、本発明の圧粉磁心を理解し易くするために、プロダクト・バイ・プロセス的に構造を特定したものに過ぎない。   Of course, an actual insulating film or coupling layer is not always uniform. In the dust core obtained by the heat treatment, the coupling layer may be fused with the insulating film or the silicone resin, which may make it difficult to analyze. Furthermore, the distinction between an insulating film and a heat-cured silicone resin may be difficult to analyze. Therefore, the above-described expression according to the present invention is merely a product-by-process structure specification to facilitate understanding of the dust core of the present invention.

従って、現実の分析により、絶縁皮膜、カップリング層または加熱硬化したシリコーン樹脂等の区別が明確でない圧粉磁心であっても、本発明と同趣旨の圧粉磁心である限り、本発明に含まれることを断っておく。   Therefore, it is included in the present invention as long as it is a dust core having the same meaning as the present invention even if it is a dust core whose distinction is not clear such as an insulating film, a coupling layer, or a heat-cured silicone resin by actual analysis. I refuse to be.

(2)磁心用粉末は、軟磁性粉末とその粒子表面に形成された絶縁皮膜とからなる。この軟磁性粉末の組成は特に問わないが、純鉄粉、Fe−Si粉末などが代表的である。例えば、軟磁性粉末は、全体を100質量%としたときに、0.5〜3質量%のSiと、残部がFeと改質元素および/または不可避不純物とからなると好適である。 (2) The magnetic core powder is composed of soft magnetic powder and an insulating film formed on the particle surface. The composition of the soft magnetic powder is not particularly limited, but pure iron powder, Fe-Si powder, and the like are typical. For example, when the total amount of the soft magnetic powder is 100% by mass, it is preferable that 0.5 to 3% by mass of Si, with the balance being Fe and modifying elements and / or inevitable impurities.

ここで「改質元素」は、磁気的特性、電気的特性または機械的特性などにおいて、圧粉磁心の特性改善に有効な元素である。改善される特性の種類は問わないし、元素の種類も組合わせも問わない。このような元素として、Si以外ではAl、Ni、Coなどがある。ちなみに、このような改質元素の含有量は、通常、磁気的特性の低下を招来しないように、比較的少量とされる。   Here, the “modified element” is an element effective for improving the characteristics of the dust core in terms of magnetic characteristics, electrical characteristics, mechanical characteristics, and the like. The type of property to be improved is not limited, and the type and combination of elements are not limited. Examples of such elements include Al, Ni, Co and the like other than Si. Incidentally, the content of such a modifying element is usually a relatively small amount so as not to cause a decrease in magnetic properties.

「不可避不純物」は、軟磁性粉末の原料(溶湯など)に含まれる不純物、粉末形成時に混入等する不純物などがあり、コスト的または技術的な理由等により除去することが困難な元素である。本発明に係る軟磁性粉末の場合であれば、例えば、C、S、Cr、P、Mn等がある。なお当然ながら、軟磁性粉末は基本元素(Fe、CoおよびNi、Siなど)の種類および組成が重要であるため、改質元素や不可避不純物の割合は特に限定されない。   “Inevitable impurities” include impurities contained in the raw material of soft magnetic powder (such as molten metal), impurities mixed in during powder formation, and the like, and are elements that are difficult to remove due to cost or technical reasons. Examples of the soft magnetic powder according to the present invention include C, S, Cr, P, and Mn. Naturally, since the kind and composition of the basic elements (Fe, Co, Ni, Si, etc.) are important in the soft magnetic powder, the ratio of the modifying elements and inevitable impurities is not particularly limited.

(3)特に断らない限り、本明細書でいう「x〜y」は、下限xおよび上限yを含む。また、本明細書に記載した下限および上限は任意に組合わせて「a〜b」のような範囲を構成し得る。 (3) Unless otherwise specified, “x to y” in this specification includes the lower limit x and the upper limit y. Further, the lower limit and the upper limit described in the present specification can be arbitrarily combined to constitute a range such as “ab”.

発明の実施形態を挙げて本発明をより詳しく説明する。
なお、以下の実施形態を含め、本明細書で説明する内容は、本発明に係る圧粉磁心のみならずその製造方法にも適宜適用できる。また、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
The present invention will be described in more detail with reference to embodiments of the invention.
In addition, the content demonstrated by this specification including the following embodiment is applicable not only to the powder magnetic core which concerns on this invention but its manufacturing method suitably. Which embodiment is the best depends on the target, required performance, and the like.

〈磁心用粉末〉
(1)軟磁性粉末
<Magnetic core powder>
(1) Soft magnetic powder

磁心用粉末は、粒子表面が絶縁皮膜で被覆された軟磁性粉末からなる。先ず、この軟磁性粉末は、通常、8属遷移元素(Fe、Co、Ni等)などの強磁性元素を主成分とする。中でも、取扱性、入手性、コスト等から、Feをベースとするものが好ましい。   The magnetic core powder is composed of a soft magnetic powder whose particle surface is coated with an insulating film. First, this soft magnetic powder usually contains a ferromagnetic element such as a group 8 transition element (Fe, Co, Ni, etc.) as a main component. Among them, those based on Fe are preferable from the viewpoint of handleability, availability, cost, and the like.

主成分であるFeに、Siを含有させたFe−Si合金粉末が圧粉磁心の原料粉末によく用いられる。Siは粉末粒子の電気抵抗率を高め、圧粉磁心の比抵抗を向上させ、渦電流損失を低減させるからである。   An Fe—Si alloy powder containing Si as a main component is often used as a raw material powder for a dust core. This is because Si increases the electrical resistivity of the powder particles, improves the specific resistance of the dust core, and reduces eddy current loss.

例えば、軟磁性粉末全体を100質量%としたときに、Siの下限を0.2質量%さらには0.8質量%として、Siの上限を4質量%さらには3質量%とすると好ましい。Siが過少では効果がなく、Siが過多になると、圧粉磁心の磁気的特性(磁束密度)の低下、軟磁性粉末の成形性の低下を生じ得る。なお、軟磁性粉末の粒子中にSiが含まれると、その粒子を被覆するシリコーン樹脂皮膜との結合性が向上し、剥離し難い絶縁皮膜が形成され易くなる。   For example, when the entire soft magnetic powder is 100% by mass, the lower limit of Si is preferably 0.2% by mass, further 0.8% by mass, and the upper limit of Si is preferably 4% by mass, further 3% by mass. If there is too little Si, there is no effect, and if there is too much Si, the magnetic properties (magnetic flux density) of the dust core may be lowered, and the moldability of the soft magnetic powder may be lowered. In addition, when Si is contained in the particles of the soft magnetic powder, the bondability with the silicone resin film covering the particles is improved, and an insulating film that is difficult to peel is easily formed.

勿論、圧粉磁心の用途に応じて、磁気的特性や成形性の向上を図る観点から、軟磁性粉末は純度99.5%以上、99.7%以上さらには99.8%以上の純鉄粉でもよい。さらに、鉄系の軟磁性粉末は、上述のSi以外に、軟磁性粉末全体を100質量%としたときに、Coを5〜30質量%、SiやAlを0.3〜4質量%程度含んでも良い。   Of course, the soft magnetic powder has a purity of 99.5% or more, 99.7% or more, and 99.8% or more of pure iron from the viewpoint of improving magnetic properties and moldability according to the use of the dust core. Powder may be used. Furthermore, the iron-based soft magnetic powder contains 5-30% by mass of Co and 0.3-4% by mass of Si or Al when the total soft magnetic powder is 100% by mass in addition to the above-described Si. But it ’s okay.

軟磁性粉末は、複数の粉末を混合した混合粉末でも良い。例えば、純鉄粉とFe−49Co−2V(パーメンジュール)粉、純鉄粉とFe−3Si粉、センダスト(Fe−9Si−6Al)粉と純鉄粉等の混合粉末であっても良い。   The soft magnetic powder may be a mixed powder obtained by mixing a plurality of powders. For example, a mixed powder of pure iron powder and Fe-49Co-2V (permendur) powder, pure iron powder and Fe-3Si powder, sendust (Fe-9Si-6Al) powder and pure iron powder, or the like may be used.

圧粉磁心の高密度化のためには、軟磁性粉末の粒径が20〜300μm、45〜250μmさらには80〜150μmであると好適である。軟磁性粉末の粒径が過大では渦電流損失の低減が図り難く、その粒径が過小ではヒステリシス損失の低減が図り難い。なお、軟磁性粉末の分級は、篩い分法等により容易に行える。   In order to increase the density of the dust core, it is preferable that the soft magnetic powder has a particle size of 20 to 300 μm, 45 to 250 μm, or 80 to 150 μm. If the particle size of the soft magnetic powder is excessive, it is difficult to reduce the eddy current loss, and if the particle size is excessively small, it is difficult to reduce the hysteresis loss. The soft magnetic powder can be easily classified by a sieving method or the like.

軟磁性粉末の製造方法は問わない。粉砕粉でもアトマイズ粉でも良い。アトマイズ粉は、水アトマイズ粉、ガスアトマイズ粉、ガス水アトマイズ粉のいずれでも良い。水アトマイズ粉は、現状、もっとも入手性が良く低コストである。水アトマイズ粉は、その粒子形状がいびつであるので、それを加圧成形した圧粉体の機械的強度を向上させ易い。   The method for producing the soft magnetic powder is not limited. Either pulverized powder or atomized powder may be used. The atomized powder may be any of water atomized powder, gas atomized powder, and gas water atomized powder. Currently, water atomized powder is the most available and low cost. Since the water atomized powder has an irregular particle shape, it is easy to improve the mechanical strength of the green compact obtained by pressure molding.

一方、ガスアトマイズ粉の粒子が略球状をしている擬球状粉である。各粒子の形状が略球状をしているため、軟磁性粉末を加圧成形した際に、各粉末粒子間の攻撃性が低くなり、絶縁皮膜の破壊等が抑制され、比抵抗の高い圧粉磁心が安定して得られ易い。   On the other hand, the gas atomized powder is a pseudo-spherical powder in which the particles are substantially spherical. Since the shape of each particle is substantially spherical, when soft magnetic powder is pressed, the aggressiveness between the powder particles is reduced, the destruction of the insulating film is suppressed, and the powder with high specific resistance A magnetic core is easily obtained stably.

また、ガスアトマイズ粉は略球状粒子からなるため、粒子形状の歪な水アトマイズ粉等に比べてその表面積は小さい。このため、絶縁皮膜の全量が同じであっても、ガスアトマイズ粉を用いる方がより厚い絶縁皮膜の形成が可能となり、渦電流損失をより低減し易い。逆に、同じ膜厚の絶縁皮膜を設けるのであれば、絶縁皮膜の全量を低減することができ、圧粉磁心の磁束密度を高めることが可能となる。さらに、ガスアトマイズ粉は、粉末粒子内の結晶粒径が大きいため、保磁力が小さくなりヒステリシス損失の低減を図り易い。従って、ガスアトマイズ粉のような擬球状粉を使用することで、磁気的特性の向上と鉄損の低減との両立を図り易い。勿論、軟磁性粉末は、アトマイズ粉以外の粉末でもよく、例えば、合金インゴットをボールミル等で粉砕した粉砕粉でもよい。このような粉砕粉は、熱処理(例えば、不活性雰囲気中で800℃以上に加熱)によって結晶粒径を大きくすることも可能である。   Moreover, since the gas atomized powder consists of substantially spherical particles, its surface area is smaller than that of a water atomized powder having a distorted particle shape. For this reason, even if the total amount of the insulating film is the same, a thicker insulating film can be formed by using gas atomized powder, and eddy current loss can be more easily reduced. On the contrary, if an insulating film having the same film thickness is provided, the total amount of the insulating film can be reduced, and the magnetic flux density of the dust core can be increased. Furthermore, since the gas atomized powder has a large crystal grain size in the powder particles, the coercive force is reduced and it is easy to reduce the hysteresis loss. Therefore, by using a pseudo-spherical powder such as a gas atomized powder, it is easy to achieve both improvement in magnetic characteristics and reduction in iron loss. Of course, the soft magnetic powder may be powder other than atomized powder, for example, pulverized powder obtained by pulverizing an alloy ingot with a ball mill or the like. Such a pulverized powder can be increased in crystal grain size by heat treatment (for example, heated to 800 ° C. or higher in an inert atmosphere).

(2)絶縁皮膜
絶縁皮膜の膜厚は、10〜200nmさらには10〜100nmであると好ましい。
絶縁皮膜の膜厚が過小では、圧粉磁心の比抵抗が小さくなり鉄損を十分に低減できない。一方、絶縁皮膜の膜厚等が過大では、圧粉磁心の磁気的特性の低下を招く。なお、絶縁皮膜は本来、粉末粒子の一粒一粒毎に形成されていることが理想的である。しかし、実際には、数個の粒子が固まった状態でその周りに絶縁皮膜が形成されていることもあり、このような状態であっても本発明の想定範囲内である。
(2) Insulating film The film thickness of the insulating film is preferably 10 to 200 nm, more preferably 10 to 100 nm.
When the film thickness of the insulating film is too small, the specific resistance of the dust core becomes small and the iron loss cannot be reduced sufficiently. On the other hand, if the film thickness of the insulating film is excessive, the magnetic characteristics of the dust core are deteriorated. In addition, it is ideal that the insulating film is originally formed for each powder particle. However, in practice, an insulating film may be formed around several particles in a hardened state, and even such a state is within the assumed range of the present invention.

(3)シリコーン樹脂
本発明のシリコーン樹脂は加熱硬化型である。これは、構成粒子の表面を被覆する絶縁皮膜として機能することもあるが、主に、構成粒子を結合する強固なバインダとして機能する。
このシリコーン樹脂の軟化温度や硬化温度は、シリコーン樹脂の種類により異なるため、一概に特定することはできない。一例を挙げると、シリコーン樹脂の軟化は、75〜150℃位から始まり、シリコーン樹脂の硬化は200〜300℃程度から始まる。硬化温度に加熱することで、軟磁性粉末の粒子表面に接触したシリコーン樹脂は硬質なシリコーン樹脂皮膜となる。この加熱硬化型のシリコーン樹脂は、温度の上昇に伴い、当初は軟化するものの、シロキサン結合が進行するにつれて、ゾルからゲルに変態する。さらに、焼鈍等の高温加熱処理を行うと、部分的な架橋から全体的な架橋となり、強く硬化する。
(3) Silicone resin The silicone resin of the present invention is a thermosetting type. This may function as an insulating film that covers the surface of the constituent particles, but mainly functions as a strong binder that binds the constituent particles.
Since the softening temperature and curing temperature of the silicone resin vary depending on the type of the silicone resin, it cannot be generally specified. For example, the softening of the silicone resin starts from about 75 to 150 ° C., and the curing of the silicone resin starts from about 200 to 300 ° C. By heating to the curing temperature, the silicone resin in contact with the surface of the soft magnetic powder particles becomes a hard silicone resin film. This thermosetting silicone resin softens initially as the temperature rises, but transforms from sol to gel as the siloxane bond progresses. Furthermore, when high-temperature heat treatment such as annealing is performed, the partial cross-linking is changed to the overall cross-linking, and the resin is strongly cured.

ちなみにシリコーン樹脂は一般的に、熱によって縮合・硬化する加熱硬化型と、室温で硬化する室温硬化型に大別される。前者は熱を加えることで官能基が反応しシロキサン結合が起こることで架橋が進行し、縮合・硬化が生じる。一方、後者は加水分解反応により室温で官能基が反応し、シロキサン結合が起こることで架橋が進行し、縮合・硬化する。本発明で用いるシリコーン樹脂は前者の加熱硬化型である。   Incidentally, silicone resins are generally roughly classified into a heat curable type that condenses and cures by heat and a room temperature curable type that cures at room temperature. In the former, functional groups react by applying heat and siloxane bonds occur to cause cross-linking and condensation / curing occurs. On the other hand, in the latter, functional groups react at room temperature by a hydrolysis reaction, and a siloxane bond occurs, so that crosslinking proceeds and condensation / curing occurs. The silicone resin used in the present invention is the former thermosetting type.

シリコーン樹脂のシラン化合物の官能基数は、1から最大で4つまである。本発明で用いるシリコーン樹脂の官能基数に制限はない。もっとも、3または4の官能性シラン化合物を有するシリコーン樹脂を用いると、架橋密度が高くなり好ましい。
シリコーン樹脂には、レジン系をはじめ、シラン化合物系、ゴム系シリコーン、シリコーンパウダー、有機変性シリコーンオイル、またはそれら複合物など、用途によって種々の形態のものが存在する。本発明では、主に粉末状のシリコーン樹脂を用いるが、他のシリコーン樹脂と組み合わせることも可能である。なお、本発明では、磁心用粉末に混合するシリコーン樹脂は粉末状としているが、予め溶媒にシリコーン樹脂を溶解または分散させたシリコーン樹脂溶液を磁心用粉末と接触させて、磁心用粉末の粒子表面にシリコーン樹脂を付着させてよい。
The number of functional groups of the silane compound of the silicone resin is 1 to a maximum of four. There is no restriction | limiting in the functional group number of the silicone resin used by this invention. However, it is preferable to use a silicone resin having 3 or 4 functional silane compounds because the crosslinking density is increased.
There are various types of silicone resins depending on applications such as resin-based, silane compound-based, rubber-based silicone, silicone powder, organically modified silicone oil, or composites thereof. In the present invention, a powdery silicone resin is mainly used, but it can also be combined with other silicone resins. In the present invention, the silicone resin mixed with the magnetic core powder is in the form of a powder. However, a silicone resin solution in which a silicone resin is dissolved or dispersed in advance in a solvent is brought into contact with the magnetic core powder to obtain a particle surface of the magnetic core powder. A silicone resin may be adhered to the substrate.

本発明で用いるシリコーン樹脂の具体例として、例えば、モメンティブ・パフォーマンス・マテリアルズ社製のYR3370などが挙げられる。
また、信越化学工業(株)社製のKR220Lなどが挙げられる。勿論、これらの銘柄以外のシリコーン樹脂であっても良い。さらに本発明では、種類、分子量、官能基が異なる2種類以上のシリコーン樹脂を、適当な割合で混合したシリコーン樹脂を使用しても良い。
Specific examples of the silicone resin used in the present invention include YR3370 manufactured by Momentive Performance Materials.
Further, KR220L manufactured by Shin-Etsu Chemical Co., Ltd. can be mentioned. Of course, silicone resins other than these brands may be used. Furthermore, in this invention, you may use the silicone resin which mixed the 2 or more types of silicone resin from which a kind, molecular weight, and a functional group differ in a suitable ratio.

(4)シランカップリング剤
本発明では、シリコーン樹脂を磁心用粉末の粒子同士を結合するバインダーとして用いているため、シリコーン樹脂とそれら粒子との密着性を図る上で、両者間に介在するシランカップリング剤からなるカップリング層の存在が重要となる。
(4) Silane Coupling Agent In the present invention, since the silicone resin is used as a binder for bonding the particles of the magnetic core powder, the silane interposed between the silicone resin and the particles in order to achieve adhesion between the particles. The presence of a coupling layer made of a coupling agent is important.

本発明で用いるカップリング剤として、例えば、KBM−303、KBM−403、KBE−402、KBE−403、KBM−602、KBM−603、KBM−903、KBE−903(信越化学工業社製)がある。溶媒にそのようなシランカップリング剤を溶解または分散させた溶液を用いて磁心用粉末を処理することで、用意に磁心用粉末の表面にカップリング層を形成することが可能となる。溶媒としては、水、有機溶媒等を用いることができる。その溶液は、例えば、水溶液全体に対して5〜15(質量%)さらには8〜12(質量%)であると好ましい。   Examples of the coupling agent used in the present invention include KBM-303, KBM-403, KBE-402, KBE-403, KBM-602, KBM-603, KBM-903, and KBE-903 (manufactured by Shin-Etsu Chemical Co., Ltd.). is there. By processing the magnetic core powder using a solution in which such a silane coupling agent is dissolved or dispersed in a solvent, a coupling layer can be formed on the surface of the magnetic core powder in advance. As the solvent, water, an organic solvent, or the like can be used. The solution is preferably, for example, 5 to 15 (% by mass), further 8 to 12 (% by mass) with respect to the entire aqueous solution.

本発明者が種々のシランカップリング剤を用いて圧粉磁心の強度を調査したところ、強い塩基性を示すシランカップリング剤(例えば、アミノ基を備えるシランカップリング剤)を用いると、より高強度の圧粉磁心を得ることができた。これは、アミノ基シランカップリング剤が、シリコーン樹脂のゾル−ゲル反応の触媒として作用し、シリコーン樹脂の硬化を促進するためと考えられる。   When the inventor investigated the strength of the powder magnetic core using various silane coupling agents, the use of a silane coupling agent exhibiting strong basicity (for example, a silane coupling agent having an amino group) is higher. A strong dust core could be obtained. This is presumably because the amino group silane coupling agent acts as a catalyst for the sol-gel reaction of the silicone resin and accelerates the curing of the silicone resin.

〈圧粉磁心〉
本発明の圧粉磁心は、上記の磁心用粉末と少量のシリコーン樹脂とを所望形状に加圧成形した圧粉体を加熱処理してなる。
(1)加圧成形方法
圧粉体は、通常、磁心用粉末を成形用金型(単に「金型」という。)に充填する充填工程と、金型内の磁心用粉末を加圧成形する成形工程とによって成形される。本発明では、磁心用粉末の加圧成形方法を問わないが、高密度で高磁束密度の圧粉体を得るためには、超高圧成形が可能な金型潤滑温間高圧成形法を用いると好ましい。この金型潤滑温間高圧成形法は、高級脂肪酸系潤滑剤を内面に塗布した金型へ前記磁心用粉末を充填する充填工程と、磁心用粉末と金型の内面との間に高級脂肪酸系潤滑剤とは別の金属石鹸皮膜が生成される成形温度と成形圧力で加圧成形する温間高圧成形工程とからなる。この金型潤滑温間高圧成形法の詳細については、日本特許公報特許3309970号公報、日本特許4024705号公報など多の公報に詳細が記載されている。この金型潤滑温間高圧成形法によれば、金型寿命を延しつつ、高密度な圧粉体を容易に得ることが可能となる。なお、圧粉体の成形工程は磁場中成形でも非磁場中成形でも良い。
<Dust core>
The powder magnetic core of the present invention is obtained by heat-treating a powder compact obtained by press-molding the above-mentioned powder for magnetic core and a small amount of silicone resin into a desired shape.
(1) Pressure molding method The green compact is usually a filling step in which a magnetic core powder is filled in a molding die (simply referred to as “mold”), and the magnetic core powder in the die is pressure molded. The molding step is performed. In the present invention, the pressure molding method of the magnetic core powder is not limited, but in order to obtain a compact with a high density and a high magnetic flux density, a mold lubrication warm high pressure molding method capable of ultra-high pressure molding is used. preferable. This mold lubrication warm high pressure molding method includes a filling step of filling a mold in which a higher fatty acid-based lubricant is coated on the inner surface with the magnetic core powder, and a higher fatty acid system between the magnetic core powder and the inner surface of the mold. It consists of a molding temperature at which a metal soap film separate from the lubricant is formed and a warm high-pressure molding process in which the metal soap film is pressure-molded at the molding pressure. Details of the mold lubrication warm high pressure molding method are described in many publications such as Japanese Patent Publication No. 3309970 and Japanese Patent No. 4024705. According to this mold lubrication warm high-pressure molding method, it is possible to easily obtain a high-density green compact while extending the mold life. The compacting process may be performed in a magnetic field or in a non-magnetic field.

ここで、金型潤滑温間高圧成形法における「温間」と、シリコーン樹脂粉末を軟化させるための「温間」とは、本来の意図するところが異なる。前者は、高級脂肪酸系潤滑剤とは別の金属石鹸皮膜の生成のためであり、後者は、シリコーン樹脂粉末を軟化させるためである。もっとも、両者の「温間」状態を共通させることで、高密度で高強度な圧粉磁心を効率的に製造することができる。具体的には、温間状態を70℃以上、200℃以下、100〜180℃、110〜150℃さらには120〜140℃にするとより好適である。   Here, the original intention is different between “warm” in the mold lubrication warm high-pressure molding method and “warm” for softening the silicone resin powder. The former is for the production of a metal soap film different from the higher fatty acid-based lubricant, and the latter is for softening the silicone resin powder. However, by making both “warm” states common, a high-density and high-strength powder magnetic core can be efficiently produced. Specifically, it is more preferable that the warm state is 70 ° C. or higher, 200 ° C. or lower, 100 to 180 ° C., 110 to 150 ° C., or 120 to 140 ° C.

(2)加熱処理(加熱工程)
本発明の加熱処理により、温間加圧成形で軟化したシリコーン樹脂は、ゾルゲル反応し、さらには縮重合反応をして熱硬化する。これにより、磁心用粉末の粒子間に充填されていたシリコーン樹脂は、磁心用粉末の各粒子を強固に結合し、高強度の圧粉磁心が得られるようになる。このようなシリコーン樹脂の熱硬化が進行する範囲であれば、加熱温度、加熱時間、加熱雰囲気は問わない。
(2) Heat treatment (heating process)
The silicone resin softened by warm pressure molding by the heat treatment of the present invention undergoes a sol-gel reaction, and further undergoes a condensation polymerization reaction to be thermally cured. Thereby, the silicone resin filled between the particles of the magnetic core powder firmly binds the particles of the magnetic core powder, and a high-strength powder magnetic core can be obtained. The heating temperature, the heating time, and the heating atmosphere are not limited as long as the thermosetting of the silicone resin proceeds.

もっとも、前述したように、圧粉磁心の保磁力やヒステリシス損失を低減するために、圧粉体中の残留歪みや残留応力の除去を目的として、圧粉体を焼鈍させることが好ましい。そこで上記の加熱工程が焼鈍工程を兼用すると好ましい。この加熱温度は、軟磁性粉末の組成にも依るが、400〜800℃さらには500〜800℃程度である。軟磁性粉末がFe系粉末であれば、加熱温度を500〜700℃程度にするとよい。加熱時間は、0.2〜3時間さらには0.5〜1.0時間程度が好ましい。焼鈍工程は比較的高温で加熱するため、その雰囲気は不活性雰囲気が好ましい。   However, as described above, in order to reduce the coercive force and hysteresis loss of the powder magnetic core, it is preferable to anneal the powder compact for the purpose of removing residual strain and residual stress in the powder compact. Therefore, it is preferable that the heating process also serves as an annealing process. This heating temperature depends on the composition of the soft magnetic powder, but is about 400 to 800 ° C., further about 500 to 800 ° C. If the soft magnetic powder is Fe-based powder, the heating temperature is preferably about 500 to 700 ° C. The heating time is preferably about 0.2 to 3 hours, more preferably about 0.5 to 1.0 hours. Since the annealing process is heated at a relatively high temperature, the atmosphere is preferably an inert atmosphere.

なお、ゲル化したシリコーン樹脂皮膜をその耐熱温度を超えて高温で加熱すると、シリコーン樹脂皮膜が多少変質し得る。もっとも、このような場合でも、シリカ等からなる絶縁皮膜やシリコーン樹脂は耐熱性が高いため、圧粉磁心の比抵抗が急激に低下することは少ない。   When the gelled silicone resin film is heated at a high temperature exceeding its heat resistance temperature, the silicone resin film can be somewhat altered. However, even in such a case, since the insulating film made of silica or the like and the silicone resin have high heat resistance, the specific resistance of the powder magnetic core is rarely lowered.

(3)圧粉磁心の比抵抗
本発明の圧粉磁心は、絶対値としての密度、比抵抗、強度などは問わないが、当然ながら、高密度、高比抵抗、高強度であると好ましい。密度および強度については前述した通りであるので、ここでは比抵抗について付言しておく。
(3) Specific resistance of the powder magnetic core The powder magnetic core of the present invention may have any density, specific resistance, strength, etc. as absolute values, but it is naturally preferable that it has a high density, high specific resistance, and high strength. Since the density and strength are as described above, the specific resistance is added here.

比抵抗は、基本的に形状に依存しない圧粉磁心ごとの固有値である。同形状の圧粉磁心であれば比抵抗が大きいほど、渦電流損失の低減を図れる。この比抵抗は、絶縁皮膜の種類、絶縁皮膜の量(膜厚)、焼鈍の有無等により影響されるが、比抵抗が100μΩm以上、500μΩm以上、1000μΩm、5000μΩm以上、以上さらには10000μΩm以上であると好ましい。   The specific resistance is an eigenvalue for each dust core that is basically independent of the shape. If the powder magnetic core has the same shape, the eddy current loss can be reduced as the specific resistance increases. This specific resistance is affected by the type of insulating film, the amount of insulating film (film thickness), the presence or absence of annealing, etc., but the specific resistance is 100 μΩm or more, 500 μΩm or more, 1000 μΩm, 5000 μΩm or more, or even 10,000 μΩm or more. And preferred.

(4)圧粉磁心の用途
本発明の圧粉磁心は、各種の電磁機器、例えば、モータ、アクチュエータ、トランス、誘導加熱器(IH)、スピーカ、リアクトル等に利用できる。具体的には、電動機または発電機の界磁または電機子を構成する鉄心(ステ一夕コアやロータコア)に用いられると好ましい。中でも、低損失で高出力(高磁束密度)が要求される駆動用モータ用の鉄心として本発明の圧粉磁心は好適である。ちなみに、このような駆動用モータは、例えば、自動車等に用いられる。
(4) Use of dust core The dust core of the present invention can be used for various electromagnetic devices such as motors, actuators, transformers, induction heaters (IH), speakers, reactors, and the like. Specifically, it is preferably used for an iron core (steering core or rotor core) constituting a field or armature of an electric motor or generator. Among these, the dust core of the present invention is suitable as an iron core for a drive motor that requires low loss and high output (high magnetic flux density). Incidentally, such a drive motor is used in, for example, an automobile.

実施例を挙げて、本発明をより具体的に説明する。
〈圧粉磁心の製造〉
(1)磁心用粉末の製造
原料粉末(軟磁性粉末)として、Fe−1%Si(質量%)の組成をもつ市販のアトマイズ粉(粒径212〜150μm)を用意した。
The present invention will be described more specifically with reference to examples.
<Manufacture of dust core>
(1) Manufacture of magnetic core powder Commercially available atomized powder (particle size: 212 to 150 μm) having a composition of Fe-1% Si (mass%) was prepared as a raw material powder (soft magnetic powder).

この軟磁性粉末に、900〜950℃の濃度で水素還元処理をして、粒子表面がシリカ膜からなる絶縁皮膜で被覆された磁心用粉を得た(絶縁被覆工程)。   This soft magnetic powder was subjected to hydrogen reduction treatment at a concentration of 900 to 950 ° C. to obtain a powder for a magnetic core whose particle surface was coated with an insulating film made of a silica film (insulating coating step).

この磁心用粉末に水と混合したアミノ基シランカップリング剤(チッソ社製S−330)を接触させた後、乾燥させて磁心用粉末の粒子表面にカップリング層(カップリング層)を形成した(接触工程)。ここで用いたシランカップリング剤の水溶液は、水とアミノ基シランカップリング剤とを10:1の割合で混合したものである。   The magnetic core powder was contacted with an amino group silane coupling agent (S-330 manufactured by Chisso Corporation) mixed with water and then dried to form a coupling layer (coupling layer) on the particle surface of the magnetic core powder. (Contact process). The aqueous solution of the silane coupling agent used here is a mixture of water and an amino group silane coupling agent in a ratio of 10: 1.

(2)加圧成形
このカップリング層を設けた磁心用粉末とシリコーン樹脂粉末(モメンティブ・パフォーマンス・マテリアルズ社製、「YR3370」:樹脂粉末)とを混合して混合粉末を得た(混合工程)。このときのシリコーン樹脂粉末の配合量は、混合粉末全体に対して0.2質量%とした。
(2) Press forming Magnetic core powder provided with this coupling layer and silicone resin powder (Momentive Performance Materials, "YR3370": resin powder) were mixed to obtain a mixed powder (mixing step) ). The compounding quantity of the silicone resin powder at this time was 0.2 mass% with respect to the whole mixed powder.

この混合粉末を金型のキャビティへ充填した(充填工程)。このとき、金型を120〜130℃x0.5分間に保持した(温間加熱工程)。この温間状態のまま1568MPaで加圧成形した(加圧工程)。なお、この加圧成形の際に、余分な軟化したシリコーン樹脂は金型の隙間から外部へ排出され得るが、本実施例では、そのような排出はほとんど生じなかった。こうして、リング状(外径:φ39mm×内径φ30mm×厚さ5mm)の試験片(圧粉体)を製作した(成形工程)。   This mixed powder was filled into the mold cavity (filling step). At this time, the mold was held at 120 to 130 ° C. for 0.5 minutes (warm heating step). It pressure-molded at 1568 MPa with this warm state (pressurization process). In addition, during this pressure molding, excess softened silicone resin can be discharged to the outside through the gaps in the mold, but in this example, such discharge hardly occurred. Thus, a test piece (compact) having a ring shape (outer diameter: φ39 mm × inner diameter φ30 mm × thickness 5 mm) was manufactured (molding step).

ちなみに、この加圧成形は、上記の樹脂粉末以外には内部潤滑剤やバインダー等を一切使用しない前述した金型潤滑温間高圧成形法を用いた。この金型潤滑温間高圧成形法は、具体的には次のようにして行った。   Incidentally, this pressure molding used the above-described mold lubrication warm high pressure molding method in which no internal lubricant, binder or the like other than the above resin powder was used. Specifically, this mold lubrication warm high pressure molding method was performed as follows.

(i)各試験片形状に応じたキャビティを有する超硬製の金型を用意した。この金型をバンドヒータで予め130℃に加熱しておいた。また、この金型の内周面には、予めTiNコート処理を施し、その表面粗さを0.4Zとした。
加熱した金型の内周面に、水溶液に分散させたステアリン酸リチウム(1%)をスプレーガンにて10cm3/分程度の割合で均一に塗布した。ここで用いた水溶液は、水に界面活性剤と消泡剤とを添加したものである。界面活性剤には、ポリオキシエチレンノニルフェニルエーテル(EO)6、(EO)10及びホウ酸エステルエマルボンT−80を用い、それぞれを水溶液全体(100体積%)に対して1体積%づつ添加した。また、消泡剤には、FSアンチフォーム80を用い、水溶液全体(100体積%)に対して0.2体積%添加した。また、ステアリン酸リチウムには、融点が約225℃で、粒径が20μmのものを用いた。その分散量は、上記水溶液100cm3に対して25gとした。そして、これをさらにボールミル式粉砕装置で微細化処理(テフロンコート鋼球:100時間)し、得られた原液を20倍に希釈して最終濃度1%の水溶液として、上記の塗布に供した。
(I) A cemented carbide mold having a cavity corresponding to each test piece shape was prepared. This mold was previously heated to 130 ° C. with a band heater. Further, the inner peripheral surface of this mold was previously subjected to TiN coating treatment, and the surface roughness was set to 0.4Z.
Lithium stearate (1%) dispersed in an aqueous solution was uniformly applied to the inner peripheral surface of the heated mold with a spray gun at a rate of about 10 cm 3 / min. The aqueous solution used here is obtained by adding a surfactant and an antifoaming agent to water. As the surfactant, polyoxyethylene nonylphenyl ether (EO) 6, (EO) 10 and boric acid ester Emulbon T-80 were used, and each was added by 1% by volume with respect to the entire aqueous solution (100% by volume). did. As the antifoaming agent, FS Antifoam 80 was used and 0.2% by volume was added to the entire aqueous solution (100% by volume). Further, lithium stearate having a melting point of about 225 ° C. and a particle size of 20 μm was used. The dispersion amount was 25 g with respect to 100 cm 3 of the aqueous solution. This was further refined with a ball mill type pulverizer (Teflon-coated steel balls: 100 hours), and the obtained stock solution was diluted 20 times to give an aqueous solution having a final concentration of 1%, which was used for the above application.

(ii)このステアリン酸リチウムが内面に塗布されたその金型のキャビティへ上記の磁心用粉末を充填した(充填工程)。   (Ii) The above-described magnetic core powder was filled into the mold cavity in which the lithium stearate was coated on the inner surface (filling step).

(iii)金型を120〜130℃に保持したまま、基本的に1568MPaの成形圧力で、その金型内に充填された磁心用粉末を温間加圧成形した(加圧工程、成形工程)。なお、この温間高圧成形に際して、いずれの磁心用粉末も金型とかじり等を生じることがなく低い抜圧で圧粉体をその金型から取出すことができた。   (Iii) While maintaining the mold at 120 to 130 ° C., the core powder filled in the mold was warm-pressed basically at a molding pressure of 1568 MPa (pressurization process, molding process). . In this warm high pressure molding, none of the powders for magnetic cores were galling with the mold, and the green compact could be taken out from the mold with a low pressure.

(3)加熱処理
この圧粉体を可変雰囲気焼結炉を用いて流量8リットル/分の窒素雰囲気中で750℃x1時間の加熱処理を施して試験片A1(圧粉磁心)を得た(加熱工程または焼鈍工程)。
(3) Heat treatment This compact was subjected to a heat treatment at 750 ° C. for 1 hour in a nitrogen atmosphere at a flow rate of 8 liters / minute using a variable atmosphere sintering furnace to obtain a test piece A1 (dust core) ( Heating process or annealing process).

〈他の試験片の製造〉
上記の試験片以外にも、条件を変更して次のような試験片を製造した。
(1)樹脂粉末またはシランカップリング剤の有無
(i)シランカップリング剤を磁心用粉末に接触させなかった圧粉磁心(試験片C1〜
C3)、(ii)樹脂粉末の混合もシランカップリング剤の接触もなかった圧粉磁心(試験片D1およびD2)、(iii)軟磁性粉末のみからなる圧粉磁心(試験片E1)を、適宜、成形圧力を調整して製造した。
<Manufacture of other test pieces>
In addition to the above test pieces, the following test pieces were produced by changing the conditions.
(1) Presence or absence of resin powder or silane coupling agent (i) Powder magnetic core (test pieces C1 to C1) in which the silane coupling agent was not brought into contact with the magnetic core powder
C3), (ii) a powder magnetic core (test piece D1 and D2) in which neither the resin powder was mixed nor contacted with the silane coupling agent, and (iii) a powder magnetic core (test piece E1) made of only soft magnetic powder, It was produced by adjusting the molding pressure as appropriate.

(2)シランカップリング剤の種類
(i)上記のアミノ基シランカップリング剤を用いた圧粉磁心(試験片A1〜A5)、
(ii)このシランカップリング剤に替えて、エポキシ基シランカップリング剤(信越化学工業社製KBM403)を用いた圧粉磁心(試験片B1〜B5)を、適宜、成形圧力を調整して製造した。なお、これらの試験片の製造に関して、特記していない条件は、前述した試験片A1の製造条件と基本的に同じである。
(2) Types of silane coupling agents
(i) a powder magnetic core (test pieces A1 to A5) using the amino group silane coupling agent,
(ii) A powder magnetic core (test pieces B1 to B5) using an epoxy group silane coupling agent (KBM403 manufactured by Shin-Etsu Chemical Co., Ltd.) instead of this silane coupling agent is produced by appropriately adjusting the molding pressure. did. In addition, regarding the manufacture of these test pieces, the conditions that are not specified are basically the same as the manufacturing conditions of the test piece A1 described above.

〈試験片の測定〉
上記の各リング状試験片を用いて、JISZ 2507に準ずる方法により圧環強度をそれぞれ測定した。比抵抗は、デジタルマルチメータ(メーカ:(株)エーディーシー、型番:R6581)を用いて4端子法により測定した。各試験片の密度(圧粉磁心の嵩密度)はアルキメデス法により測定した。密度比の算出に用いた軟磁性粉末の真密度は、7.68g/cm3であった。
<Measurement of test piece>
Using each ring-shaped test piece, the crushing strength was measured by a method according to JISZ 2507. The specific resistance was measured by a 4-terminal method using a digital multimeter (manufacturer: ADC, Inc., model number: R6581). The density of each test piece (bulk density of the dust core) was measured by the Archimedes method. The true density of the soft magnetic powder used for calculating the density ratio was 7.68 g / cm 3.

これら各試験片の測定結果を表1に示す。さらに、この表1に示した結果に基づいて、試験片A1、C1〜C3、D1、D2およびE1に関する密度と圧環強度との相関を図2に示した。また、試験片A1〜A5およびB1〜B5に関する密度と圧環強度との相関を図3に示した。   Table 1 shows the measurement results of these test pieces. Furthermore, based on the results shown in Table 1, the correlation between the density and the crushing strength regarding the test pieces A1, C1 to C3, D1, D2, and E1 is shown in FIG. Moreover, the correlation with the density and crushing strength regarding test piece A1-A5 and B1-B5 was shown in FIG.

〈各種試験片の評価〉
(1)先ず、表1および図2から、本発明に係る試験片A1は、シランカップリング剤で処理しなかった他の試験片と比較して、密度およぼ圧環強度のいずれも向上することが解った。これにより本発明に係る圧粉磁心は、磁気的特性のみならず機械的特性にも優れることが確認された。
<Evaluation of various test pieces>
(1) First, from Table 1 and FIG. 2, the test piece A1 according to the present invention is improved in both density and crushing strength compared to other test pieces that were not treated with the silane coupling agent. I understand. Thereby, it was confirmed that the dust core according to the present invention is excellent not only in magnetic properties but also in mechanical properties.

(2)アミノ基シランカップリング剤とエポキシ基シランカップリング剤のいずれを用いた圧粉磁心でも、シランカップリング剤を用いなかった圧粉磁心に比較して密度および圧環強度が向上している。特に、全体的な傾向を観ると、エポキシ基シランカップリング剤よりもアミノ基シランカップリング剤を用いた圧粉磁心の方が、より高強度で高密度となり易いことが確認された。 (2) In the dust core using any of the amino group silane coupling agent and the epoxy group silane coupling agent, the density and the crushing strength are improved as compared with the dust core not using the silane coupling agent. . In particular, looking at the overall trend, it was confirmed that a dust core using an amino group silane coupling agent was more likely to have higher strength and higher density than an epoxy group silane coupling agent.

Figure 2009259939
Figure 2009259939

本発明の圧粉磁心を構成する磁心用粉末の粒子を概念的に示した模式図である。It is the schematic diagram which showed notionally the particle | grains of the powder for magnetic cores which comprises the powder magnetic core of this invention. 各試験片の密度と圧環強度との相関図である。It is a correlation diagram of the density and crushing strength of each test piece. 使用したシランカップリング剤の異なる試験片の密度と圧環強度との相関図である。It is a correlation diagram of the density and crushing strength of the test piece from which the used silane coupling agent differs.

Claims (8)

絶縁皮膜で粒子表面が被覆された軟磁性粉末からなる磁心用粉末と加熱硬化型のシリコーン樹脂からなる樹脂粉末とを混合した混合粉末を加圧成形した圧粉体を、該シリコーン樹脂が硬化する高温状態で加熱して得られた圧粉磁心であって、
前記磁心用粉末は、前記絶縁皮膜で被覆された粒子表面上にさらにシランカップリング剤からなるカップリング層を有し、
前記圧粉体は、前記混合粉末を前記樹脂粉末の軟化する温間状態で加圧成形して得られ、
高密度、高比抵抗および高強度であることを特徴とする圧粉磁心。
The silicone resin cures the green compact obtained by press-molding a mixed powder obtained by mixing a magnetic core powder composed of a soft magnetic powder whose particle surface is coated with an insulating film and a resin powder composed of a thermosetting silicone resin. A dust core obtained by heating in a high temperature state,
The magnetic core powder further has a coupling layer made of a silane coupling agent on the particle surface covered with the insulating film,
The green compact is obtained by pressure-molding the mixed powder in a warm state where the resin powder is softened,
A dust core characterized by high density, high specific resistance and high strength.
前記絶縁皮膜は、ケイ素(Si)を含む絶縁皮膜である請求項1に記載の圧粉磁心。   The dust core according to claim 1, wherein the insulating film is an insulating film containing silicon (Si). 前記シリコーン樹脂は、前記圧粉体全体を100質量%としたときに0.05〜0.5質量%である請求項1または2に記載の圧粉磁心。   The powder magnetic core according to claim 1 or 2, wherein the silicone resin is 0.05 to 0.5 mass% when the entire green compact is 100 mass%. 前記軟磁性粉末の真密度(ρ0)に対する前記圧粉磁心の嵩密度(ρ)の比である密度比(ρ/ρ0:%)が98%以上である請求項1または3に記載の圧粉磁心。   The powder dust according to claim 1 or 3, wherein a density ratio (ρ / ρ0:%), which is a ratio of a bulk density (ρ) of the dust core to a true density (ρ0) of the soft magnetic powder, is 98% or more. core. 圧環強度が70MPa以上である請求項1または4に記載の圧粉磁心。   The dust core according to claim 1 or 4, wherein the green ring strength is 70 MPa or more. 絶縁皮膜で粒子表面が被覆された軟磁性粉末からなる磁心用粉末の粒子表面にシランカップリング剤を接触させる接触工程と、
該接触工程後の磁心用粉末と加熱硬化型のシリコーン樹脂からなる樹脂粉末とを混合する混合工程と、
該混合工程後の混合粉末を該樹脂粉末の軟化する温間状態で加圧成形する成形工程と、
該成形工程後の圧粉体を該シリコーン樹脂が硬化する高温状態で加熱する加熱工程とからなり、
高密度で比抵抗および強度に優れた圧粉磁心が得られることを特徴とする圧粉磁心の製造方法。
A contact step in which a silane coupling agent is brought into contact with the particle surface of the magnetic core powder composed of a soft magnetic powder whose particle surface is coated with an insulating film;
A mixing step of mixing the magnetic core powder after the contact step and a resin powder comprising a thermosetting silicone resin;
A molding step of pressure-molding the mixed powder after the mixing step in a warm state in which the resin powder is softened;
A heating step of heating the green compact after the molding step in a high temperature state where the silicone resin is cured,
A method for producing a dust core, wherein a dust core having high density and excellent specific resistance and strength is obtained.
前記成形工程は、金型に充填した前記混合粉末を加熱して前記温間状態とする温間加熱工程と、
該温間加熱工程により前記樹脂粉末を軟化させた状態で前記磁心用粉末を加圧成形する加圧工程とからなる請求項6に記載の圧粉磁心の製造方法。
The molding step is a warm heating step of heating the mixed powder filled in a mold to the warm state;
The method for producing a powder magnetic core according to claim 6, further comprising a pressing step of pressing the magnetic core powder in a state where the resin powder is softened by the warm heating step.
前記加熱工程は、前記成形工程後の磁心用粉末の粒子内に生じた残留歪みまたは残留応力を除去するために焼鈍する焼鈍工程である請求項6または7に記載の圧粉磁心の製造方法。   The method of manufacturing a dust core according to claim 6 or 7, wherein the heating step is an annealing step for annealing to remove residual strain or residual stress generated in the particles of the magnetic core powder after the forming step.
JP2008105571A 2008-04-15 2008-04-15 Powder magnetic core and method for producing the same Expired - Fee Related JP4837700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105571A JP4837700B2 (en) 2008-04-15 2008-04-15 Powder magnetic core and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105571A JP4837700B2 (en) 2008-04-15 2008-04-15 Powder magnetic core and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009259939A true JP2009259939A (en) 2009-11-05
JP4837700B2 JP4837700B2 (en) 2011-12-14

Family

ID=41387018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105571A Expired - Fee Related JP4837700B2 (en) 2008-04-15 2008-04-15 Powder magnetic core and method for producing the same

Country Status (1)

Country Link
JP (1) JP4837700B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010958A2 (en) 2010-07-23 2012-01-26 Toyota Jidosha Kabushiki Kaisha Method of producing powder magnetic core and method of producing magnetic core powder
JP2015095570A (en) * 2013-11-12 2015-05-18 株式会社タムラ製作所 Low-noise reactor, powder-compact magnetic core, and manufacturing method thereof
KR20190093636A (en) 2017-01-12 2019-08-09 가부시키가이샤 무라타 세이사쿠쇼 Magnetic particles, green powder magnetic core, and coil components
JP2019195068A (en) * 2019-05-31 2019-11-07 株式会社タムラ製作所 Low noise reactor, dust core and method of manufacturing the same
CN113012891A (en) * 2017-04-19 2021-06-22 株式会社村田制作所 Coil component
US11915847B2 (en) * 2017-03-09 2024-02-27 Tdk Corporation Dust core

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075720A (en) * 2000-08-29 2002-03-15 Daido Steel Co Ltd Dust core
JP2002184616A (en) * 2000-12-18 2002-06-28 Alps Electric Co Ltd Dust core
JP2005146315A (en) * 2003-11-12 2005-06-09 Toyota Central Res & Dev Lab Inc Powder for magnetic core, powder-compacted magnetic core, and their production method
JP2005307291A (en) * 2004-04-22 2005-11-04 Alps Electric Co Ltd Amorphous soft-magnetic alloy powder, and powder magnetic core and electromagnetic wave absorber using it
JP2006332328A (en) * 2005-05-26 2006-12-07 Toyota Central Res & Dev Lab Inc Low magnetostrictive element and powder magnetic core using the same
JP2007126696A (en) * 2005-11-02 2007-05-24 Mitsubishi Materials Pmg Corp METHOD FOR MANUFACTURING IRON POWDER HAVING SURFACE COATED WITH HIGH-Si LAYER
JP2009246256A (en) * 2008-03-31 2009-10-22 Mitsubishi Materials Corp High-strength high-resistivity low loss composite soft magnetic material, its method for manufacturing, and electromagnetic circuit component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075720A (en) * 2000-08-29 2002-03-15 Daido Steel Co Ltd Dust core
JP2002184616A (en) * 2000-12-18 2002-06-28 Alps Electric Co Ltd Dust core
JP2005146315A (en) * 2003-11-12 2005-06-09 Toyota Central Res & Dev Lab Inc Powder for magnetic core, powder-compacted magnetic core, and their production method
JP2005307291A (en) * 2004-04-22 2005-11-04 Alps Electric Co Ltd Amorphous soft-magnetic alloy powder, and powder magnetic core and electromagnetic wave absorber using it
JP2006332328A (en) * 2005-05-26 2006-12-07 Toyota Central Res & Dev Lab Inc Low magnetostrictive element and powder magnetic core using the same
JP2007126696A (en) * 2005-11-02 2007-05-24 Mitsubishi Materials Pmg Corp METHOD FOR MANUFACTURING IRON POWDER HAVING SURFACE COATED WITH HIGH-Si LAYER
JP2009246256A (en) * 2008-03-31 2009-10-22 Mitsubishi Materials Corp High-strength high-resistivity low loss composite soft magnetic material, its method for manufacturing, and electromagnetic circuit component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010958A2 (en) 2010-07-23 2012-01-26 Toyota Jidosha Kabushiki Kaisha Method of producing powder magnetic core and method of producing magnetic core powder
JP2012044156A (en) * 2010-07-23 2012-03-01 Toyota Central R&D Labs Inc Manufacturing method of dust core and manufacturing method of powder for core
US9159489B2 (en) 2010-07-23 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method of producing powder magnetic core and method of producing magnetic core powder
JP2015095570A (en) * 2013-11-12 2015-05-18 株式会社タムラ製作所 Low-noise reactor, powder-compact magnetic core, and manufacturing method thereof
KR20190093636A (en) 2017-01-12 2019-08-09 가부시키가이샤 무라타 세이사쿠쇼 Magnetic particles, green powder magnetic core, and coil components
US11495387B2 (en) 2017-01-12 2022-11-08 Murata Manufacturing Co, , Ltd. Magnetic particles, dust core, and coil component
US11915847B2 (en) * 2017-03-09 2024-02-27 Tdk Corporation Dust core
CN113012891A (en) * 2017-04-19 2021-06-22 株式会社村田制作所 Coil component
CN113012891B (en) * 2017-04-19 2023-09-05 株式会社村田制作所 Coil component
JP2019195068A (en) * 2019-05-31 2019-11-07 株式会社タムラ製作所 Low noise reactor, dust core and method of manufacturing the same

Also Published As

Publication number Publication date
JP4837700B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4044591B1 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
JP6560091B2 (en) Dust core material, dust core, and manufacturing method thereof
JP2008270539A (en) Dust core, manufacturing method thereof, motor, and reactor
TWI406305B (en) Iron-based soft magnetic powder and dust core for powder core
JP4837700B2 (en) Powder magnetic core and method for producing the same
JP5976284B2 (en) Method for producing dust core and method for producing powder for magnetic core
TWI585787B (en) Powder core
JP2008169439A (en) Magnetic powder, dust core, electric motor and reactor
JP5140042B2 (en) Powder magnetic core and manufacturing method thereof
JP2009302420A (en) Dust core and manufacturing method thereof
JP3861288B2 (en) Method for producing soft magnetic material
WO2011016207A1 (en) Composite magnetic body and method for producing the same
JPWO2007077689A1 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP2008297606A (en) Method for manufacturing metal powder for dust core and dust core
JP2014086672A (en) Powder magnetic core and manufacturing method therefor, powder for magnetic core and production method therefor
JP4847977B2 (en) Powder for magnetic core, powder magnetic core and method for producing them
JP2010183056A (en) Method for producing soft magnetic material, soft magnetic material, and powder magnetic core
JP6615850B2 (en) Composite magnetic material and core manufacturing method
JP6117504B2 (en) Manufacturing method of magnetic core
JP2005136164A (en) Coil component and electronic device using it
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2009235517A (en) Metal powder for dust core and method for producing dust core
JP2004214418A (en) Dust core and its alloy powder and method for manufacturing the same
JP2008013827A (en) Composite soft magnetic power and dust core using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4837700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees