JP2007126340A - Method for manufacturing deposited body of glass fine particle - Google Patents

Method for manufacturing deposited body of glass fine particle Download PDF

Info

Publication number
JP2007126340A
JP2007126340A JP2005322524A JP2005322524A JP2007126340A JP 2007126340 A JP2007126340 A JP 2007126340A JP 2005322524 A JP2005322524 A JP 2005322524A JP 2005322524 A JP2005322524 A JP 2005322524A JP 2007126340 A JP2007126340 A JP 2007126340A
Authority
JP
Japan
Prior art keywords
glass
gas
port
burner
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005322524A
Other languages
Japanese (ja)
Other versions
JP5168772B2 (en
Inventor
Shinji Nakahara
慎二 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005322524A priority Critical patent/JP5168772B2/en
Publication of JP2007126340A publication Critical patent/JP2007126340A/en
Application granted granted Critical
Publication of JP5168772B2 publication Critical patent/JP5168772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a deposited body of a glass fine particle under excellent manufacturing conditions by preventing the degradation of the tip of a burner while cutting down the expense of an inert gas or nitrogen gas to reduce the manufacturing cost of a product. <P>SOLUTION: The method for manufacturing the deposited body 19 of the glass fine particle comprises the steps of: producing a glass fine particle by using the burner 7 provided with: a port P1 arranged in the center for jetting a gaseous glass raw material; ports P2, P4 arranged outside the port P1 for jetting combustible gas; and ports P3, P5 arranged outside the port P1 for jetting a combustion supporting gas; and depositing the produced glass fine particle on a glass rod 11. When the distance between the port for the combustible gas and the adjacent port for the combustion supporting gas (the thickness of a pipe 32b, a pipe 32c or a pipe 32d) is defined as W (mm) and the flow rate of the combustible gas to be jetted from the port for the combustible gas is defined as V (m/second), the flow velocity V of the combustible gas is made to satisfy 0.3&le;V/W and kept to the extent that the burner 7 does not reach a red-hot state. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、ガラス原料ガスと可燃性ガスと支燃性ガスを噴出して酸水素火炎中でガラス微粒子を生成するガラス合成用バーナにより、出発棒にガラス微粒子を堆積させてガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法に関する。   The present invention uses a glass synthesis burner that generates glass fine particles in an oxyhydrogen flame by ejecting a glass raw material gas, a combustible gas, and a combustion-supporting gas. The present invention relates to a method for producing a glass particulate deposit to be formed.

ガラス製品の一例として光ファイバがあるが、光ファイバを得るための光ファイバ母材は、気相合成法により生成したガラス微粒子(これをススと呼ぶ)を出発棒に堆積させてガラス微粒子堆積体を形成し、これを脱水及び焼結させて透明ガラス化することにより得られる。このガラス微粒子堆積体を形成する方法としては、長尺状の出発棒を軸回りに回転させながらガラス合成用バーナによって生成したガラス微粒子を出発棒の径方向または軸方向に堆積させていく方法がある。   An example of a glass product is an optical fiber. An optical fiber preform for obtaining an optical fiber is a glass particulate deposit by depositing glass particulates (called soot) generated by a vapor phase synthesis method on a starting rod. It is obtained by dehydrating and sintering to form a transparent glass. As a method of forming this glass fine particle deposit, there is a method in which the glass fine particles generated by the glass synthesis burner are deposited in the radial direction or the axial direction of the starting rod while rotating the long starting rod around the axis. is there.

そのようなガラス合成用バーナを用いたガラス微粒子堆積体の製造方法の一例として、水素ガスに不活性ガスまたは窒素ガスを添加してなる混合ガスと酸素ガスを、バーナの互いに近接したポートからそれぞれ供給することが知られている(例えば特許文献1参照)。   As an example of a method for producing a glass particulate deposit using such a glass synthesis burner, a mixed gas obtained by adding an inert gas or nitrogen gas to hydrogen gas and an oxygen gas are respectively supplied from ports adjacent to the burner. It is known to supply (for example, refer to Patent Document 1).

特開平11−79774号公報JP 11-79774 A

ところで、ガラス合成用バーナは、噴出した可燃性ガスと支燃性ガスが反応して酸水素火炎をバーナ先端付近に発生させるものであるため、その火炎の熱によってバーナの先端が劣化してしまう。上記の特許文献1では、水素ガスに不活性ガスまたは窒素ガスを添加してなる混合ガスを供給することで、水素ガスが希釈されて酸水素火炎がバーナのノズル先端より離れた部分に形成され、バーナ先端の劣化が抑制されることが記載されているが、不活性ガスまたは窒素ガスを多く使用することで費用が嵩み、また、ガス供給設備が別途必要となる。さらに、水素ガスが希釈されることにより酸水素火炎の温度が下がって火炎が不安定になり、ガラス微粒子の生成効率が低下しやすく、また、堆積面の温度が低下して堆積条件が変化してしまう。   By the way, the burner for glass synthesis reacts the jetted combustible gas and the combustion-supporting gas to generate an oxyhydrogen flame in the vicinity of the burner tip. Therefore, the tip of the burner deteriorates due to the heat of the flame. . In the above-mentioned Patent Document 1, by supplying a mixed gas obtained by adding an inert gas or nitrogen gas to hydrogen gas, the hydrogen gas is diluted and an oxyhydrogen flame is formed in a portion away from the nozzle tip of the burner. Although it is described that deterioration of the burner tip is suppressed, the use of a large amount of inert gas or nitrogen gas increases the cost, and a separate gas supply facility is required. Furthermore, dilution of the hydrogen gas lowers the temperature of the oxyhydrogen flame and makes the flame unstable, and the glass particle generation efficiency tends to decrease, and the deposition surface temperature decreases and the deposition conditions change. End up.

そこで、本発明の目的は、不活性ガスまたは窒素ガスの使用による費用を抑えて製品の製造コストを抑えつつ、バーナ先端の劣化を防ぎ、しかもガラス微粒子堆積体を良好な製造条件で製造することが可能なガラス微粒子堆積体の製造方法を提供することである。   Accordingly, an object of the present invention is to reduce the cost of using an inert gas or nitrogen gas, to suppress the manufacturing cost of the product, to prevent deterioration of the burner tip, and to manufacture a glass particulate deposit under favorable manufacturing conditions. It is an object of the present invention to provide a method for producing a glass fine particle deposit capable of being applied.

上記課題を解決することのできる本発明に係るガラス微粒子堆積体の製造方法は、中央に配置されガラス原料ガスを噴出するガラス原料ガス用ポートと、ガラス原料ガス用ポートの外側に配置され可燃性ガスを噴出する可燃性ガス用ポートと、ガラス原料ガス用ポートの外側に配置され支燃性ガスを噴出する支燃性ガス用ポートとを備えたガラス合成用バーナによりガラス微粒子を生成し、出発棒にガラス微粒子を堆積させてガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法であって、隣接した前記可燃性ガス用ポートと前記支燃性ガス用ポートとの距離をW(mm)、前記可燃性ガス用ポートから噴出する可燃性ガスの流速をV(m/分)としたときに、前記可燃性ガスの流速Vを、0.3≦V/Wを満たす関係とし、かつ、前記ガラス合成用バーナが赤熱しない流速とすることを特徴としている。   The method for producing a glass particulate deposit according to the present invention that can solve the above-described problems is a glass raw material gas port that is disposed in the center and ejects a glass raw material gas, and is disposed outside the glass raw material gas port and is combustible. Glass fine particles are generated by a glass synthesis burner equipped with a combustible gas port for injecting gas, and a port for inflammable gas that is disposed outside the glass raw material gas port and injects inflammable gas. A method for producing a glass fine particle deposit by depositing glass fine particles on a rod to form a glass fine particle deposit, wherein the distance between the adjacent combustible gas port and the combustion-supporting gas port is W (mm) , When the flow rate of the combustible gas ejected from the combustible gas port is V (m / min), the flow rate V of the combustible gas is in a relationship satisfying 0.3 ≦ V / W, and Serial glass synthesizing burner is characterized in that the flow rate is not red hot.

本発明に係るガラス微粒子堆積体の製造方法において、前記ガラス合成用バーナの材質が石英であり、V/W≦5を満たすことが好ましい。   In the method for producing a glass fine particle deposit according to the present invention, it is preferable that the material of the burner for glass synthesis is quartz and V / W ≦ 5 is satisfied.

また、本発明に係るガラス微粒子堆積体の製造方法において、隣接した前記可燃性ガス用ポートと前記支燃性ガス用ポートとの間に空きポートを有し、前記空きポートから噴出する不活性ガスまたは窒素ガスの流量を、隣接する前記可燃性ガス用ポートから噴出する可燃性ガスの流量の5体積%以下とすることが好ましい。   Further, in the method for producing a glass particulate deposit according to the present invention, an inert gas that has a vacant port between the adjacent flammable gas port and the flammable gas port, and is ejected from the vacant port. Alternatively, the flow rate of the nitrogen gas is preferably 5% by volume or less of the flow rate of the combustible gas ejected from the adjacent combustible gas port.

本発明に係るガラス微粒子堆積体の製造方法によれば、隣接した可燃性ガス用ポートと支燃性ガス用ポートとの距離Wに対する可燃性ガス用ポートから噴出する可燃性ガスの流速Vの比を0.3以上としているため、可燃性ガス用ポートと支燃性ガス用ポートとの距離Wが広すぎずに可燃性ガスと支燃性ガスとの反応が良好に行われるとともに、酸水素火炎を安定させる程度の可燃性ガスの流速Vを確保している。そのため、酸水素火炎の温度及びガラス微粒子が堆積する堆積面の温度を維持してガラス微粒子の生成効率を良好にして、良好な製造条件でガラス微粒子堆積体を製造できる。さらに、可燃性ガスの流速Vを前記ガラス合成用バーナが赤熱しないように抑えるため、バーナ先端の劣化を抑えることができる。したがって、不活性ガスまたは窒素ガスを多く使用する必要なくバーナ先端の劣化を抑えることができ、製品の製造コストを抑えることができる。   According to the method for producing a glass particulate deposit according to the present invention, the ratio of the flow velocity V of the combustible gas ejected from the combustible gas port to the distance W between the adjacent combustible gas port and the support gas port. 0.3 or more, the distance W between the flammable gas port and the flammable gas port is not too wide, and the reaction between the flammable gas and the flammable gas is favorably performed. The flow rate V of the combustible gas is ensured so as to stabilize the flame. Therefore, the temperature of the oxyhydrogen flame and the temperature of the deposition surface on which the glass fine particles are deposited can be maintained to improve the generation efficiency of the glass fine particles, and the glass fine particle deposit can be produced under good production conditions. Furthermore, since the flow velocity V of the combustible gas is suppressed so that the glass synthesis burner does not become red hot, deterioration of the burner tip can be suppressed. Therefore, deterioration of the burner tip can be suppressed without the need to use a large amount of inert gas or nitrogen gas, and the manufacturing cost of the product can be suppressed.

以下、本発明に係るガラス微粒子堆積体の製造方法の実施の形態の例について図面を参照して説明する。なお、本実施形態では、ガラス微粒子堆積体を製造する方法として、VAD法を例にとって説明する。   Hereinafter, an example of an embodiment of a method for producing a glass fine particle deposit according to the present invention will be described with reference to the drawings. In the present embodiment, a VAD method will be described as an example of a method for manufacturing a glass fine particle deposit.

図1は、本発明に係るガラス微粒子堆積体の製造方法を実施可能な製造装置の概略図を示しており、(a)は概略正面図、(b)は底面から見た図を示している。
図1に示すように、このガラス微粒子堆積体の製造装置10は反応容器1を有しており、この反応容器1の上部には、拡縮自在の開口部5aを有する開閉板5が設けられている。反応容器1の外側上方には吊り下げ装置13が設置されており、シード棒12が吊り下げ装置13によって吊り下げられている。吊り下げられたシード棒12には、ガラスロッド11が取り付けられ、ガラスロッド11は開口部5aを通って、反応容器1の内部へ導入されている。
FIG. 1: has shown the schematic of the manufacturing apparatus which can implement the manufacturing method of the glass fine particle deposit body based on this invention, (a) is a schematic front view, (b) has shown the figure seen from the bottom face. .
As shown in FIG. 1, the glass particle deposit manufacturing apparatus 10 includes a reaction vessel 1, and an opening / closing plate 5 having an expandable / contractible opening 5 a is provided on the upper portion of the reaction vessel 1. Yes. A suspending device 13 is installed on the outer upper side of the reaction vessel 1, and the seed bar 12 is suspended by the suspending device 13. A glass rod 11 is attached to the suspended seed rod 12, and the glass rod 11 is introduced into the reaction vessel 1 through the opening 5a.

吊り下げ装置13は、シード棒12に取り付けられたガラスロッド11を、軸回転可能かつ軸方向の移動を可能にしている。また、吊り下げ装置13は、ガラスロッド11の軸方向の移動速度の変動が可能なように構成されている。
このガラスロッド11の外周にガラス微粒子を堆積させていくと、中心にガラスロッド11を有するガラス微粒子堆積体19を作製することができる。
反応容器1の下部には、ガラス微粒子を生成するバーナ(ガラス合成用バーナ)7と、反応容器1内の未堆積ガラス微粒子等を排出する排気口9とが設けられている。
The suspension device 13 allows the glass rod 11 attached to the seed rod 12 to be axially rotated and moved in the axial direction. Moreover, the suspending device 13 is configured so that the movement speed of the glass rod 11 in the axial direction can be changed.
When glass particles are deposited on the outer periphery of the glass rod 11, a glass particle deposit 19 having the glass rod 11 at the center can be produced.
At the lower part of the reaction vessel 1, a burner (glass synthesis burner) 7 for generating glass particles and an exhaust port 9 for discharging undeposited glass particles in the reaction vessel 1 are provided.

バーナ7は、ガスの吹き出し口が複数のポートを有するマルチポート構造となっており、各ポートから燃焼用ガスやガラス原料用ガスなどを吹き出し、燃焼用ガスにより生じる火炎中において、ガラス原料を酸化反応又は加水分解反応させてガラス微粒子を生成するものである。ここで、バーナ7へ供給する燃焼用ガスとは、主に可燃性ガス及び支燃性ガスとからなり、可燃性ガスとしては水素、支燃性ガスとしては酸素が一例として挙げられる。また、ガラス原料用ガスとしては、四塩化珪素(SiCl)が一例として挙げられる。 The burner 7 has a multi-port structure in which a gas outlet has a plurality of ports, and a combustion gas or a glass raw material gas is blown out from each port, and the glass raw material is oxidized in a flame generated by the combustion gas. Glass particles are produced by reaction or hydrolysis reaction. Here, the combustion gas supplied to the burner 7 mainly includes a combustible gas and a combustion-supporting gas, and examples of the combustible gas include hydrogen and examples of the combustion-supporting gas include oxygen. An example of the glass raw material gas is silicon tetrachloride (SiCl 4 ).

図2に、本実施形態に使用されるガラス合成用バーナの概略正面図を示す。
図2に示すように、バーナ7は、径の異なる複数の円筒状のパイプ32a,32b,32c,32d,32eを同心円状に配設したものである。
In FIG. 2, the schematic front view of the burner for glass synthesis used for this embodiment is shown.
As shown in FIG. 2, the burner 7 includes a plurality of cylindrical pipes 32a, 32b, 32c, 32d, and 32e having different diameters arranged concentrically.

これらのパイプ32a,32b,32c,32d,32eを備えたバーナ7は、その中心のパイプ32aの内部空間が、ガラス原料ガスを吹き出すためのポートP1として形成されており、各パイプ32a,32b,32c,32d,32eの隙間が、それぞれ内側から、ポートP2,P3,P4,P5として形成されている。なお、バーナ7を構成するパイプ32a,32b,32c,32d,32eの材質は、石英であるが、金属であっても良い。   In the burner 7 provided with these pipes 32a, 32b, 32c, 32d, and 32e, the inner space of the pipe 32a at the center is formed as a port P1 for blowing out glass raw material gas, and each pipe 32a, 32b, The gaps 32c, 32d and 32e are formed as ports P2, P3, P4 and P5 from the inside, respectively. The material of the pipes 32a, 32b, 32c, 32d, and 32e constituting the burner 7 is quartz, but may be a metal.

また、バーナ7には、ポートP1〜P5に燃焼用ガスやガラス原料用ガスを供給するための配管が接続されており、その配管の途中にはそれぞれガス流量制御器15,16,17が取り付けられ、燃焼用ガスやガラス原料用ガスをバーナ7のポートP1〜P5へ別々に供給できるようになっている。
本実施形態では、中央に配置されたポートP1は、ガラス原料ガスを噴出するガラス原料ガス用ポートであり、このポートP1の外側に配置されたポートP2,P4は可燃性ガスを噴出する可燃性ガス用ポートであり、ポートP1の外側に配置されたポートP3,P5は支燃性ガスを噴出する支燃性ガス用ポートである。
The burner 7 is connected to piping for supplying combustion gas and glass raw material gas to the ports P1 to P5, and gas flow controllers 15, 16, and 17 are attached to the middle of the piping. The combustion gas and the glass raw material gas can be separately supplied to the ports P1 to P5 of the burner 7.
In the present embodiment, the port P1 disposed at the center is a glass raw material gas port for ejecting glass raw material gas, and the ports P2 and P4 disposed outside the port P1 are combustible for ejecting combustible gas. It is a gas port, and ports P3 and P5 arranged outside the port P1 are ports for combustion-supporting gas for ejecting combustion-supporting gas.

また、反応容器1の外部には、バーナ7により形成されたガラス微粒子堆積体19の底面部に向けて、投光器2が設けられており、投光器2からの光ビーム18を受光できる位置に、受光器3が配置されている(図1(b)参照)。この投光器2及び受光器3により、ガラス微粒子堆積体19の堆積面の位置を検出する。受光器3は、ライン21を介して制御装置4へ接続されている。また、制御装置4はライン25を介して吊り下げ装置13へと接続されている。   In addition, a projector 2 is provided outside the reaction vessel 1 toward the bottom surface of the glass particulate deposit 19 formed by the burner 7, and receives light at a position where the light beam 18 from the projector 2 can be received. A container 3 is arranged (see FIG. 1B). The position of the deposition surface of the glass particulate deposit 19 is detected by the projector 2 and the light receiver 3. The light receiver 3 is connected to the control device 4 via a line 21. Further, the control device 4 is connected to the suspension device 13 via a line 25.

次に、この製造装置10を用いてガラス微粒子堆積体を製造する方法を以下に説明する。
まず、シード棒12の先端にガラスロッド11を取り付け、このシード棒12を吊り下げ装置13に吊り下げる。そして、吊り下げ装置13を作動させ、ガラスロッド11のガラス微粒子堆積開始点とバーナ7の吹き出し口との距離が所望の距離となるように、ガラスロッド11を降下させる。
一方、ガス流量制御器15,16,17により、支燃性ガス(酸素)、可燃性ガス(水素)、ガラス原料ガス(四塩化珪素)をバーナ7のポートP1〜P5へ供給する。
Next, a method for manufacturing a glass particulate deposit using this manufacturing apparatus 10 will be described below.
First, the glass rod 11 is attached to the tip of the seed rod 12, and the seed rod 12 is suspended from the suspension device 13. Then, the suspension device 13 is operated, and the glass rod 11 is lowered so that the distance between the glass particle 11 deposition start point of the glass rod 11 and the outlet of the burner 7 becomes a desired distance.
On the other hand, the gas flow controllers 15, 16, and 17 supply combustion-supporting gas (oxygen), combustible gas (hydrogen), and glass raw material gas (silicon tetrachloride) to the ports P 1 to P 5 of the burner 7.

ガラスロッド11を軸回転させ、ガラスロッド11に向かってバーナ7から酸水素火炎を放射する。この酸水素火炎中では、四塩化珪素の酸化反応又は加水分解反応によりガラス微粒子が生成する。この生成したガラス微粒子をガラスロッド11の外周に付着させながら、ガラスロッド11を所定速度で引き上げて、徐々にガラス微粒子堆積体19を形成し、成長させていく。   The glass rod 11 is rotated about its axis, and an oxyhydrogen flame is emitted from the burner 7 toward the glass rod 11. In this oxyhydrogen flame, glass fine particles are generated by an oxidation reaction or hydrolysis reaction of silicon tetrachloride. The glass rod 11 is pulled up at a predetermined speed while adhering the generated glass particles to the outer periphery of the glass rod 11, and the glass particle deposit 19 is gradually formed and grown.

そして、本実施形態では、隣接した可燃性ガス用ポートと支燃性ガス用ポートとの距離(すなわち、パイプ32b,32c,32dの厚さ)をW(mm)、可燃性ガス用ポート(ポートP2,P4)から噴出す可燃性ガスの流速をV(m/分)としたときに、可燃性ガスの流速Vを、0.3≦V/Wを満たす関係となるように調節する。これにより、可燃性ガス用ポートと支燃性ガス用ポートとの距離Wが広すぎずに可燃性ガスと支燃性ガスとの反応が良好に行われるとともに、酸水素火炎を安定させる程度の可燃性ガスの流速Vを確保している。そのため、酸水素火炎の温度を維持してガラス微粒子の生成効率を良好にでき、また、ガラス微粒子が堆積する堆積面の温度を下げないためガラス微粒子堆積体の製造条件を変化させない。   In this embodiment, the distance between adjacent flammable gas ports and the flammable gas ports (that is, the thickness of the pipes 32b, 32c, and 32d) is W (mm), and the flammable gas ports (ports). When the flow rate of the combustible gas ejected from P2, P4) is V (m / min), the flow rate V of the combustible gas is adjusted so as to satisfy the relationship of 0.3 ≦ V / W. As a result, the distance W between the combustible gas port and the combustion-supporting gas port is not excessively wide, and the reaction between the combustible gas and the combustion-supporting gas is satisfactorily performed and the oxyhydrogen flame is stabilized. The flow velocity V of combustible gas is secured. Therefore, the temperature of the oxyhydrogen flame can be maintained to improve the generation efficiency of the glass fine particles, and the temperature of the deposition surface on which the glass fine particles are deposited is not lowered, so that the manufacturing conditions of the glass fine particle deposit are not changed.

さらに、ガラス合成用バーナが赤熱しないように可燃性ガスの流速Vを抑える。本実施形態の場合、バーナ7を構成するパイプ32a,32b,32c,32d,32eの材質が石英であり、バーナ7を酸水素火炎の熱によって赤熱させないために、V/W≦5を満たすようにポートP2,P4から噴出す可燃性ガスの流速Vを抑える。なお、石英の赤熱する温度は1100℃程度である。これにより、不活性ガスを使用せずにバーナ7の先端部分の劣化を抑えてバーナ7の使用寿命を延ばすことができ、製品の製造コストを抑えることができる。   Further, the flow rate V of the combustible gas is suppressed so that the glass synthesis burner does not become red hot. In the case of the present embodiment, the material of the pipes 32a, 32b, 32c, 32d, and 32e constituting the burner 7 is quartz, and V / W ≦ 5 is satisfied so that the burner 7 is not heated red by the heat of the oxyhydrogen flame. The flow velocity V of the combustible gas ejected from the ports P2 and P4 is suppressed. Note that the temperature at which the quartz glows red is about 1100 ° C. Thereby, deterioration of the front-end | tip part of the burner 7 can be suppressed without using inert gas, the service life of the burner 7 can be extended, and the manufacturing cost of a product can be held down.

また、ガラス微粒子を堆積させていく時、投光器2及び受光器3によりガラス微粒子堆積体19の堆積面の位置を検出する。受光器3で検出された受光量のデータは制御装置4へ送られ、この受光量が一定になるように吊り下げ装置13に対してガラスロッド11の引き上げ速度の制御を行う。
このように、ガラスロッド11の引き上げ速度を調節することにより、ガラスロッド11に堆積させるガラス微粒子堆積体19の外径が、長手方向にわたって均一となるように堆積される。
Further, when the glass particles are deposited, the position of the deposition surface of the glass particle deposit 19 is detected by the projector 2 and the light receiver 3. The received light amount data detected by the light receiver 3 is sent to the control device 4, and the lifting speed of the glass rod 11 is controlled with respect to the suspension device 13 so that the received light amount becomes constant.
In this way, by adjusting the pulling speed of the glass rod 11, the outer diameter of the glass fine particle deposit 19 deposited on the glass rod 11 is deposited so as to be uniform over the longitudinal direction.

上記の実施形態では、不活性ガスまたは窒素ガスを全く使用していない例について説明したが、本発明のガラス微粒子堆積体の製造方法において、不活性ガスまたは窒素ガスを使用してもよい。その場合には、隣接した可燃性ガス用ポートと支燃性ガス用ポートとの間に空きポートを有するバーナを使用し、その空きポートから噴出する不活性ガスまたは窒素ガスの流量を、隣接する可燃性ガス用ポートから噴出する可燃性ガスの流量の5体積%以下とするとよい。   In the above embodiment, an example in which no inert gas or nitrogen gas is used has been described. However, an inert gas or nitrogen gas may be used in the method for producing a glass particulate deposit according to the present invention. In that case, the burner which has a vacant port between the port for adjacent flammable gas and the port for flammable gas is used, and the flow rate of the inert gas or nitrogen gas ejected from the vacant port is adjacent. It is good to set it as 5 volume% or less of the flow volume of the combustible gas ejected from the port for combustible gases.

例えば、図3に示すように、可燃性ガス用ポートであるポートP4と支燃性ガス用ポートであるポートP5との間のパイプ32dに空きポートP6が設けられていて、この空きポートP6から不活性ガスまたは窒素ガスを少量だけ噴出しても良い。その際、不活性ガスまたは窒素ガスの流量を、隣接するポートP4から噴出する可燃性ガスの流量の5体積%以下とする。   For example, as shown in FIG. 3, a vacant port P6 is provided in a pipe 32d between a port P4 that is a flammable gas port and a port P5 that is a flammable gas port. A small amount of inert gas or nitrogen gas may be ejected. At that time, the flow rate of the inert gas or nitrogen gas is set to 5% by volume or less of the flow rate of the combustible gas ejected from the adjacent port P4.

このように、可燃性ガスに比べて僅かな流量で不活性ガスまたは窒素ガスを流すことで、バーナ7の先端部分の温度を下げる効果が十分に得られ、なおかつ不活性ガスまたは窒素ガスにかかるコストも極めて少なく抑えられる。また、この程度の流量であれば酸水素火炎を不安定にすることもなく、ガラス微粒子が堆積する堆積面の温度も殆ど低下しない。したがって、ガラス微粒子堆積体19の製造条件を変化させず、良好な状態で製造を行うことができる。   Thus, by flowing the inert gas or nitrogen gas at a slight flow rate compared to the combustible gas, the effect of lowering the temperature of the tip portion of the burner 7 can be sufficiently obtained, and the inert gas or nitrogen gas is applied. Costs can be kept extremely low. Further, at such a flow rate, the oxyhydrogen flame does not become unstable, and the temperature of the deposition surface on which the glass particles are deposited hardly decreases. Therefore, it is possible to manufacture the glass fine particle deposit 19 in a good state without changing the manufacturing conditions.

なお、本発明に使用するガラス合成用バーナとしては、その断面が円形のものに限らず、断面矩形状であっても良い。また、その多重管構造が何重であっても良い。
さらに、本実施形態では、同心円状の多重管構造であるバーナ7を例に挙げて説明したが、本発明で使用するガラス合成用バーナは、同心円状でなくても良い。例えば、図4に示すバーナ41のように、中央に配置されたガラス原料ガス用ポートとしてのポートP7を形成するパイプ42aの周囲に、可燃性ガスを噴出する可燃性ガス用ポートとしてのポートP8を形成するパイプ42bを設け、さらに、ポートP8の中で支燃性ガスを噴出する支燃性ガス用ポートとしてのポートP9を形成するパイプ42cを複数、同一円上に配列させたものを使用しても良い。このバーナ41では、複数のパイプ42cは、その噴出する方向の焦点がバーナ41の中心軸上の1箇所に重なるように、バーナ41の中心軸に対して中央寄りに傾斜して配置されている。このような構造のバーナ41を使用すると、酸水素火炎の広がりを抑えて狙った位置に火炎のエネルギーを集中させることができる。
The glass synthesis burner used in the present invention is not limited to a circular cross section, and may be a rectangular cross section. Further, the multi-pipe structure may have any number of layers.
Furthermore, in the present embodiment, the burner 7 having a concentric multi-tube structure has been described as an example, but the glass synthesis burner used in the present invention may not be concentric. For example, like a burner 41 shown in FIG. 4, a port P8 as a combustible gas port for injecting a combustible gas around a pipe 42a forming a port P7 as a glass raw material gas port disposed in the center. In addition, a plurality of pipes 42c forming a port P9 as a port for supporting a combustion gas in the port P8 for ejecting a combustion supporting gas are arranged on the same circle. You may do it. In the burner 41, the plurality of pipes 42 c are disposed so as to be inclined toward the center with respect to the central axis of the burner 41 so that the focal point in the jetting direction overlaps one place on the central axis of the burner 41. . When the burner 41 having such a structure is used, the flame energy can be concentrated at a target position while suppressing the spread of the oxyhydrogen flame.

なお、上記実施形態では、ガラスロッド11を引き上げながらガラスロッド11の軸方向にガラス微粒子を堆積させるVAD法を例にとって説明したが、ガラスロッド11に対して径方向へ層状にガラス微粒子を堆積させるOVD法にも適用可能である。   In the above embodiment, the VAD method in which the glass particles 11 are deposited in the axial direction of the glass rod 11 while pulling up the glass rod 11 has been described as an example. However, the glass particles are deposited in a layered manner in the radial direction on the glass rod 11. It can also be applied to the OVD method.

図1及び図2に示した5重管構造のバーナ7で、ガラス微粒子を合成してガラス微粒子堆積体を製造した。ポートP1には四塩化珪素を供給し、ポートP2には水素を流速1.4m/秒で供給し、ポートP3には酸素を流速4.8m/秒で供給し、ポートP4には水素を流速5.6m/秒で供給し、ポートP5には酸素を流速5.0m/秒で供給した。また、ポートP2とP3の距離(すなわちパイプ32bの厚さ)、ポートP3とP4の距離(すなわちパイプ32cの厚さ)、ポートP4とP5の距離(すなわちパイプ32dの厚さ)をそれぞれ3mmとした。このような条件でガラス微粒子を合成したところ、バーナ7の先端部分の温度は、ポートP4とP5の間(パイプ32d)が最も高く、710℃であった。   Glass fine particle deposits were manufactured by synthesizing glass fine particles with the burner 7 having a five-pipe structure shown in FIGS. Silicon tetrachloride is supplied to port P1, hydrogen is supplied to port P2 at a flow rate of 1.4 m / sec, oxygen is supplied to port P3 at a flow rate of 4.8 m / sec, and hydrogen is supplied to port P4. The gas was supplied at 5.6 m / sec, and oxygen was supplied to port P5 at a flow rate of 5.0 m / sec. Further, the distance between the ports P2 and P3 (that is, the thickness of the pipe 32b), the distance between the ports P3 and P4 (that is, the thickness of the pipe 32c), and the distance between the ports P4 and P5 (that is, the thickness of the pipe 32d) are 3 mm, respectively. did. When the glass fine particles were synthesized under such conditions, the temperature of the tip portion of the burner 7 was the highest between the ports P4 and P5 (pipe 32d) and was 710 ° C.

また、ポートP4とP5の距離を1mmとした場合と3mmとした場合で、ポートP4の水素の流速条件を変化させ、バーナ7の先端部分の赤熱状態及び酸水素火炎の状態(安定性)を確認した。その結果を表1に示す。なお、表1において、火炎の安定性は、良好に安定した状態を○で示し、若干乱れる状態を△で示し、不安定な状態を×で示している。   Further, when the distance between the ports P4 and P5 is set to 1 mm and 3 mm, the hydrogen flow rate condition of the port P4 is changed, and the red heat state and the oxyhydrogen flame state (stability) of the tip portion of the burner 7 are changed. confirmed. The results are shown in Table 1. In Table 1, the flame stability is indicated by ◯ for a well-stabilized state, by Δ for a slightly disturbed state, and by × for an unstable state.

Figure 2007126340
Figure 2007126340

表1に示すように、0.3≦V/W≦5を満たす例2,例3,例7,例8では、バーナ先端が赤熱するほど加熱されず、なおかつ火炎が不安定になることが防がれている。これに対して、V/Wが0.3未満である例1,例5,例6では、何れも火炎の状態が不安定となった。また、V/Wが5を超えている例4,例9では、バーナ先端が赤熱した。   As shown in Table 1, in Example 2, Example 3, Example 7, and Example 8 satisfying 0.3 ≦ V / W ≦ 5, the burner tip is not heated enough to become red hot, and the flame may become unstable. It is prevented. On the other hand, in Example 1, Example 5 and Example 6 in which V / W is less than 0.3, the flame state became unstable. In Examples 4 and 9 where V / W exceeded 5, the burner tip was red hot.

また、ポートP4とP5の間のパイプ32d(厚さ3mm)に1mmの隙間のポートP6(図3参照)を設けたバーナ41を使用し、ポートP6から窒素ガスを噴出しながらガラス微粒子を合成した。そして、ポートP6の窒素流量を変化させ、バーナ7の先端部分の赤熱状態及び酸水素火炎の状態(安定性)を確認した。その結果を表2に示す。   Also, using a burner 41 provided with a port P6 (see FIG. 3) with a gap of 1 mm in the pipe 32d (thickness 3 mm) between the ports P4 and P5, glass particles are synthesized while jetting nitrogen gas from the port P6. did. And the nitrogen flow rate of port P6 was changed, and the red hot state and the state (stability) of the oxyhydrogen flame of the front-end | tip part of the burner 7 were confirmed. The results are shown in Table 2.

Figure 2007126340
Figure 2007126340

表2に示した例10と例11を比較すると、窒素流量を水素流量に対してごく微量(5%)流すだけでも、バーナ先端の温度を下げる効果は十分に得られ、しかもガラス微粒子の堆積面温度も殆ど変化しないことが確認された。また、例12のように、窒素を水素流量に対して25%の流量で流すと堆積面温度が大きく低下し、ガラス微粒子堆積体の製造条件が大きく変化してしまった。   When Example 10 and Example 11 shown in Table 2 are compared, the effect of lowering the temperature at the tip of the burner can be sufficiently obtained by flowing a very small amount (5%) of the nitrogen flow rate with respect to the hydrogen flow rate. It was confirmed that the surface temperature hardly changed. Further, as in Example 12, when nitrogen was flowed at a flow rate of 25% with respect to the hydrogen flow rate, the deposition surface temperature was greatly lowered, and the manufacturing conditions of the glass particulate deposits were greatly changed.

本発明に係るガラス微粒子堆積体の製造方法を実施可能な製造装置を示しており、(a)は概略正面図、(b)は底面から見た図である。BRIEF DESCRIPTION OF THE DRAWINGS The manufacturing apparatus which can implement the manufacturing method of the glass fine particle deposition body which concerns on this invention is shown, (a) is a schematic front view, (b) is the figure seen from the bottom face. 図1に示したバーナの正面図である。It is a front view of the burner shown in FIG. 図1に示したバーナの他の形態例を示す部分断面拡大図である。It is a fragmentary sectional enlarged view which shows the other example of a form of the burner shown in FIG. 図1に示したバーナの他の形態例を示す部分拡大図である。It is the elements on larger scale which show the other example of a form of the burner shown in FIG.

符号の説明Explanation of symbols

7 バーナ
4 制御装置
10 ガラス微粒子堆積体の製造装置
11 ガラスロッド(出発棒)
19 ガラス微粒子堆積体
P1〜P9 ポート
7 Burner 4 Control device 10 Glass particle deposit manufacturing device 11 Glass rod (starting rod)
19 Glass particulate deposit P1-P9 Port

Claims (3)

中央に配置されガラス原料ガスを噴出するガラス原料ガス用ポートと、ガラス原料ガス用ポートの外側に配置され可燃性ガスを噴出する可燃性ガス用ポートと、ガラス原料ガス用ポートの外側に配置され支燃性ガスを噴出する支燃性ガス用ポートとを備えたガラス合成用バーナによりガラス微粒子を生成し、出発棒にガラス微粒子を堆積させてガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法であって、
隣接した前記可燃性ガス用ポートと前記支燃性ガス用ポートとの距離をW(mm)、前記可燃性ガス用ポートから噴出する可燃性ガスの流速をV(m/分)としたときに、前記可燃性ガスの流速Vを、0.3≦V/Wを満たす関係とし、かつ、前記ガラス合成用バーナが赤熱しない流速とすることを特徴とするガラス微粒子堆積体の製造方法。
A glass raw material gas port for ejecting glass raw material gas disposed in the center, a combustible gas port for ejecting combustible gas disposed outside the glass raw material gas port, and a glass raw material gas port. Production of glass particulate deposits in which glass particulates are generated by a glass synthesis burner equipped with a gas for combustion supporting gas jetting and a glass particulate deposit is formed by depositing glass particulates on a starting rod. A method,
When the distance between the adjacent flammable gas port and the flammable gas port is W (mm) and the flow rate of the flammable gas ejected from the flammable gas port is V (m / min) The method for producing a glass particulate deposit, wherein the flow rate V of the combustible gas satisfies a relationship satisfying 0.3 ≦ V / W, and the flow rate is such that the glass synthesis burner does not red heat.
前記ガラス合成用バーナの材質が石英であり、V/W≦5を満たすことを特徴とする請求項1に記載のガラス微粒子堆積体の製造方法。   The method for producing a glass fine particle deposit according to claim 1, wherein the glass synthesis burner is made of quartz and satisfies V / W≤5. 隣接した前記可燃性ガス用ポートと前記支燃性ガス用ポートとの間に空きポートを有し、前記空きポートから噴出する不活性ガスまたは窒素ガスの流量を、隣接する前記可燃性ガス用ポートから噴出する可燃性ガスの流量の5体積%以下とすることを特徴とする請求項1または2に記載のガラス微粒子堆積体の製造方法。   There is a vacant port between the adjacent flammable gas port and the flammable gas port, and the flow rate of the inert gas or nitrogen gas ejected from the vacant port is changed to the adjacent flammable gas port. The method for producing a glass particulate deposit according to claim 1 or 2, wherein the flow rate is 5% by volume or less of the flow rate of the combustible gas ejected from the glass.
JP2005322524A 2005-11-07 2005-11-07 Method for producing glass particulate deposit Active JP5168772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005322524A JP5168772B2 (en) 2005-11-07 2005-11-07 Method for producing glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005322524A JP5168772B2 (en) 2005-11-07 2005-11-07 Method for producing glass particulate deposit

Publications (2)

Publication Number Publication Date
JP2007126340A true JP2007126340A (en) 2007-05-24
JP5168772B2 JP5168772B2 (en) 2013-03-27

Family

ID=38149296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322524A Active JP5168772B2 (en) 2005-11-07 2005-11-07 Method for producing glass particulate deposit

Country Status (1)

Country Link
JP (1) JP5168772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274896A (en) * 2008-05-13 2009-11-26 Shin Etsu Chem Co Ltd Method for manufacturing porous glass preform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219764A (en) * 1993-01-29 1994-08-09 Tatsuta Electric Wire & Cable Co Ltd Production of perform for dispersed shift fiber
JPH06247722A (en) * 1993-02-24 1994-09-06 Furukawa Electric Co Ltd:The Production of porous glass base material
JPH11125406A (en) * 1997-10-21 1999-05-11 Nikon Corp Burner made of quartz glass
JP2003313043A (en) * 2002-04-24 2003-11-06 Fujikura Ltd Method for manufacturing porous preform for optical fiber and burner device for manufacture of optical fiber porous preform

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219764A (en) * 1993-01-29 1994-08-09 Tatsuta Electric Wire & Cable Co Ltd Production of perform for dispersed shift fiber
JPH06247722A (en) * 1993-02-24 1994-09-06 Furukawa Electric Co Ltd:The Production of porous glass base material
JPH11125406A (en) * 1997-10-21 1999-05-11 Nikon Corp Burner made of quartz glass
JP2003313043A (en) * 2002-04-24 2003-11-06 Fujikura Ltd Method for manufacturing porous preform for optical fiber and burner device for manufacture of optical fiber porous preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274896A (en) * 2008-05-13 2009-11-26 Shin Etsu Chem Co Ltd Method for manufacturing porous glass preform

Also Published As

Publication number Publication date
JP5168772B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
US9032761B2 (en) Porous glass matrix producing burner and porous glass matrix producing method
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
CN104125933A (en) Method for manufacturing fine glass particle deposit and method for manufacturing glass base material
US9260339B2 (en) Method of fabricating an optical fiber preform and a burner therefor
JP3705169B2 (en) Method for producing porous glass body
JP2003226544A (en) Method of manufacturing optical fiber porous preform
KR101035467B1 (en) Burner for deposition of optical fiber preform
JP2014122141A (en) Burner for synthesizing glass fine particles, and production method of glass fine particle deposit
JP4498917B2 (en) Method for producing glass rod
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
JP2003226543A (en) Method of manufacturing optical fiber preform and burner apparatus for manufacturing optical fiber using the same
JP5168772B2 (en) Method for producing glass particulate deposit
JP2009274896A (en) Method for manufacturing porous glass preform
JP2010202445A (en) Method for manufacturing optical fiber preform
KR101035437B1 (en) Burner for producing porous glass preform
JP2009091194A (en) Method for producing glass particle deposit
JP2010064934A (en) Burner for producing synthetic silica glass, and apparatus for producing synthetic silica glass using the burner
US20180044221A1 (en) Method and apparatus for producing optical fiber preform
JPH09175826A (en) Burner for synthesis of porous glass base material
JP2020090427A (en) Burner for porous body synthesis and method of manufacturing porous body
JP2005029396A (en) Production method for glass fine particle deposit, and burner for forming glass fine particle
JP2012041227A (en) Method for producing porous glass preform
JP2004307290A (en) Burner and method of manufacturing glass preform
JP2005029448A (en) Method for manufacturing optical fiber preform
JP2003212555A (en) Burner for manufacturing porous preform of optical fiber and method of manufacturing porous preform of optical fiber using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5168772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250