JP2007125475A - Fuel activator and combustion method of fuel - Google Patents

Fuel activator and combustion method of fuel Download PDF

Info

Publication number
JP2007125475A
JP2007125475A JP2005318856A JP2005318856A JP2007125475A JP 2007125475 A JP2007125475 A JP 2007125475A JP 2005318856 A JP2005318856 A JP 2005318856A JP 2005318856 A JP2005318856 A JP 2005318856A JP 2007125475 A JP2007125475 A JP 2007125475A
Authority
JP
Japan
Prior art keywords
fuel
activator
combustion
fine particles
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005318856A
Other languages
Japanese (ja)
Other versions
JP4436308B2 (en
Inventor
Kazunari Hashimoto
一成 橋本
Yoshimi Igawa
佳巳 井川
Teiichi Kitamura
禎一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEMPER CORP
Original Assignee
TEMPER CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEMPER CORP filed Critical TEMPER CORP
Priority to JP2005318856A priority Critical patent/JP4436308B2/en
Publication of JP2007125475A publication Critical patent/JP2007125475A/en
Application granted granted Critical
Publication of JP4436308B2 publication Critical patent/JP4436308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel activator excellent in environmental preservation which is capable of enhancing the combustion efficiency by increasing emissivity of flame, increasing the cost saving of fuel consumption and lessening the discharge amount of carbon dioxide by producing the ideal combustion state to reduce the fuel comsumption amount, suppressing the generation of the nitrogen oxide in the exhaust gas by promoting the reduction of a nitrogen oxide and accelerating the oxygenation of a hydrocarbon in the fuel functioning as a reducing agent and of reducing the discharge amount of graphite and the uncombustion gas by accelerating the oxygenation of the uncombustion gas such as graphite, carbon monoxide and the like which were conventionally discharged as uncombusted, when it is added to and combusted together with the fuel. <P>SOLUTION: The fuel activator has a constitution where fine particles of silver and/or silver oxide are dispersed. The fuel combustion method of a fuel burns the fine particles of silver and/or silver oxide together with the fuel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料に添加して燃料を活性化させる燃料活性剤及び燃料の燃焼方法に関するものである。   The present invention relates to a fuel activator that is added to a fuel to activate the fuel and a fuel combustion method.

近年、大気の汚染や温暖化等の生活環境への影響に鑑み、加熱炉,熱処理炉,溶解炉等の工業用加熱炉、ボイラ、ディーゼルエンジン、ガソリンエンジン等の燃焼装置の燃焼効率の改善や、排気ガス中の環境汚染物質を減少させるために種々の試みがなされている。例えば、燃焼装置内の燃料の燃焼を促したり、燃料の燃焼によって発生する排気ガス中の一酸化炭素(CO),ハイドロカーボン,窒素酸化物(NOx)等の環境汚染物質を低減させたりするため、種々の添加剤や技術が開発されている。
このような従来の技術としては、(特許文献1)に「リチウム,ナトリウム,カルシウム,カリウム,チタン,マグネシウム,銅,アルミニウム,シリコン,マンガン,鉄,コバルト,ニッケルの電子番号が30以下の金属或いは化合物の一種又は二種以上を1000Å以下の微細粒子とし、この微細粒子の表面を不飽和脂肪酸で処理したものを燃料とともに燃焼させるようにした有害物質の抑制方法」が開示されている。
(特許文献2)には、「タングステン又はその化合物を界面活性剤とともに燃焼雰囲気若しくは燃料に添加することを特徴とする燃焼方法」が開示されている。
(特許文献3)には、「白金,ルテニウム,ロジウム,パラジウム,オスミウム,イリジウム等の白金族の2〜3nmの微粒子を分散させた貴金属コロイドを燃料に添加して、燃費を向上させる技術」が開示されている。
特公昭58−28319号公報 特公平1−23681号公報 特開2004−11632号公報
In recent years, in view of the impact on the living environment such as air pollution and global warming, improvement of combustion efficiency of combustion furnaces such as industrial heating furnaces such as heating furnaces, heat treatment furnaces, melting furnaces, boilers, diesel engines, gasoline engines, etc. Various attempts have been made to reduce environmental pollutants in exhaust gas. For example, in order to promote combustion of fuel in the combustion apparatus or to reduce environmental pollutants such as carbon monoxide (CO), hydrocarbon, nitrogen oxide (NOx) in exhaust gas generated by the combustion of fuel. Various additives and techniques have been developed.
As such a conventional technique, (patent document 1) states that “a metal having an electronic number of 30 or less, such as lithium, sodium, calcium, potassium, titanium, magnesium, copper, aluminum, silicon, manganese, iron, cobalt, and nickel; There is disclosed a method for suppressing harmful substances in which one or more compounds are made into fine particles of 1000 Å or less and the surface of these fine particles treated with unsaturated fatty acids is combusted together with fuel.
(Patent Document 2) discloses a “combustion method characterized by adding tungsten or a compound thereof together with a surfactant to a combustion atmosphere or fuel”.
(Patent Document 3) describes “a technology for improving fuel efficiency by adding a precious metal colloid in which fine particles of 2 to 3 nm in platinum group such as platinum, ruthenium, rhodium, palladium, osmium, and iridium are dispersed to fuel.” It is disclosed.
Japanese Patent Publication No. 58-28319 Japanese Patent Publication No. 1-223681 JP 2004-11632 A

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)に開示の技術は、電子番号が30以下の金属等の微細粒子が火炎中で活性酸素と反応するため、活性窒素と活性酸素との反応が抑制され窒素酸化物の生成が抑制されるとともに、燃焼効率を高め煤煙の発生を抑制できるというものであるが、窒素酸化物や煤煙の抑制効果はそれほど大きなものではなく、またディーゼルエンジン、ガソリンエンジン等の燃費については検証されておらず改善効果は不明であり、このため汎用性に欠けるという課題を有していた。
(2)(特許文献2)に開示の技術は、燃焼雰囲気や燃料に添加されたタングステン又はその化合物が炉内で酸化され、発生した三酸化タングステンが炉内雰囲気中に飛散して熱輻射を高めるため炉内の熱効率が向上するものであり、軽質油、ガス燃料の他、B重油やC重油等の重質油に適用できるものであるが、ディーゼルエンジン、ガソリンエンジン等の燃費については検証されておらず、改善効果は不明であり汎用性に欠けるという課題を有していた。
(3)(特許文献3)に開示の技術は、白金族の微粒子を用いているので資源の枯渇のおそれがあり、また地金が高価でコスト性に欠けるという課題を有していた。
However, the above conventional techniques have the following problems.
(1) The technology disclosed in (Patent Document 1) is based on the fact that fine particles such as metals having an electronic number of 30 or less react with active oxygen in a flame, so that the reaction between active nitrogen and active oxygen is suppressed. The production efficiency is suppressed and the generation of soot and smoke can be suppressed, but the effect of suppressing nitrogen oxides and soot is not so great, and the fuel efficiency of diesel engines, gasoline engines, etc. It has not been verified, and the improvement effect is unclear, and therefore has the problem of lacking versatility.
(2) In the technology disclosed in (Patent Document 2), tungsten added to a combustion atmosphere or fuel or a compound thereof is oxidized in the furnace, and the generated tungsten trioxide is scattered in the furnace atmosphere to generate heat radiation. In order to increase the heat efficiency in the furnace, it can be applied to light oil and gas fuel, as well as heavy oil such as B heavy oil and C heavy oil. However, the fuel efficiency of diesel engines, gasoline engines, etc. is verified. However, the improvement effect is unknown and has a problem of lacking versatility.
(3) The technique disclosed in (Patent Document 3) has the problem that the use of platinum group fine particles may cause resource depletion, and bullion is expensive and lacks cost.

本発明は上記従来の課題を解決するもので、燃料に添加して一緒に燃焼させると、火炎の輻射能を向上させ燃焼効率を高めることができ、理想的な燃焼状態に近づけて燃料消費量を少なくさせ燃費を安定性良く向上させられるとともに二酸化炭素の排出量を減らすことができ、さらに窒素酸化物の還元を促し排ガス中の窒素酸化物の発生を抑制させることができ、また従来は燃焼しきれずに排出されていた黒鉛の燃焼や一酸化炭素等の未燃焼ガスの酸素化を促進し、黒鉛や未燃焼ガスの排出量も低減させることができる環境保全性に優れた燃料活性剤を提供することを目的とする。
また、本発明は、火炎の輻射能を向上させ燃焼効率を高めることができ、理想的な燃焼状態に近づけて燃料消費量を少なくさせ燃費を向上させられるとともに、二酸化炭素の排出量を減らすことができ、さらに窒素酸化物の還元を促し排ガス中の窒素酸化物の発生を抑制させることができ、また従来は燃焼しきれずに排出されていた黒鉛の燃焼や一酸化炭素等の未燃焼ガスの酸素化を促進し、黒鉛や未燃焼ガスの排出量も低減させることができる環境保全性に優れる燃料の燃焼方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and when added to fuel and burned together, it can improve the radiation efficiency of the flame and increase the combustion efficiency, and it can be brought close to the ideal combustion state and fuel consumption. The fuel consumption can be improved with good stability and carbon dioxide emissions can be reduced, and the reduction of nitrogen oxides can be promoted to suppress the generation of nitrogen oxides in the exhaust gas. A fuel activator with excellent environmental conservation that can accelerate combustion of graphite that has been exhausted without being exhausted and oxygenation of unburned gas such as carbon monoxide, and can also reduce emissions of graphite and unburned gas. The purpose is to provide.
Further, the present invention can improve the radiation efficiency of the flame and increase the combustion efficiency, reduce the fuel consumption by approaching the ideal combustion state and improve the fuel consumption, and reduce the emission amount of carbon dioxide. In addition, the reduction of nitrogen oxides can be promoted and the generation of nitrogen oxides in exhaust gas can be suppressed, and the combustion of unburned gases such as graphite and carbon monoxide, which has been exhausted without conventional combustion. It is an object of the present invention to provide a fuel combustion method excellent in environmental conservation, which can promote oxygenation and reduce emissions of graphite and unburned gas.

上記従来の課題を解決するために本発明の燃料活性剤及び燃料の燃焼方法は、以下の構成を有している。
本発明の請求項1に記載の燃料活性剤は、銀及び/又は酸化銀の微粒子が分散された構成を有している。
この構成により、以下のような作用が得られる。
(1)銀や酸化銀の微粒子が分散されているので、燃料に添加して一緒に燃焼させると、微粒子が火炎中に微細な固体として存在するので、火炎の輻射能を向上させ燃焼効率を高めることができる。このため、燃料消費量を少なくすることができ、燃費を向上させることができるとともに二酸化炭素の排出量を減らすことができる。
(2)酸化された微粒子の触媒作用により、燃焼装置内の温度や圧力が低い条件下でも、還元剤として機能する燃料中の炭化水素(HC)の酸素化を促進させるので、NOx+HC+O→N+CO+HOのように、窒素酸化物(NOx)の還元を促し排ガス中の窒素酸化物の発生を抑制させることができ、また従来は燃焼しきれずに排出されていた黒鉛の燃焼や一酸化炭素(CO)等の未燃焼ガスの酸素化を促進し、黒鉛や未燃焼ガスの排出量も低減させることができる。
In order to solve the above conventional problems, the fuel activator and the fuel combustion method of the present invention have the following configurations.
The fuel activator according to claim 1 of the present invention has a configuration in which fine particles of silver and / or silver oxide are dispersed.
With this configuration, the following effects can be obtained.
(1) Since fine particles of silver and silver oxide are dispersed, when added to fuel and burned together, the fine particles are present as fine solids in the flame, improving the flame radiation and improving combustion efficiency. Can be increased. For this reason, fuel consumption can be reduced, fuel consumption can be improved, and carbon dioxide emissions can be reduced.
(2) The catalytic action of oxidized fine particles promotes oxygenation of hydrocarbons (HC) in the fuel functioning as a reducing agent even under conditions where the temperature and pressure in the combustion apparatus are low, so NOx + HC + O 2 → N as 2 + CO 2 + H 2 O , nitrogen oxides can be suppressed the occurrence of nitrogen oxides in the exhaust gas prompts the reduction of (NOx), also conventionally Ya combustion of graphite that has been discharged without being completely burned Oxygenation of unburned gas such as carbon monoxide (CO) can be promoted, and the discharge amount of graphite and unburned gas can be reduced.

ここで、銀や酸化銀としては、Ag、AgO、AgO、Ag等が用いられる。燃料との濡れ性を高めるため、微粒子の表面を不飽和脂肪酸等で表面処理してもよい。 Here, Ag, Ag 2 O, AgO, Ag 2 O 3 or the like is used as silver or silver oxide. In order to improve the wettability with the fuel, the surface of the fine particles may be surface-treated with an unsaturated fatty acid or the like.

銀や酸化銀の微粒子の平均粒子径としては、200nm以下、入手できるものとして0.05〜200nm好ましくは0.1〜100nmが好適に用いられるが、小さければ小さいほど良い。微粒子の平均粒子径が100nmより大きくなるにつれ酸化された微粒子による触媒作用が低下し、排ガス中の黒鉛や窒素酸化物の排出量の抑制効果が低下する傾向がみられ、特に200nmより大きくなると、この傾向が著しくなる。また、微粒子の平均粒子径が0.1nmより小さくなるにつれ微粒子の製造コストが増加する傾向がみられ、0.05nmより小さくなると、この傾向が著しくなる。   The average particle diameter of the silver or silver oxide fine particles is 200 nm or less, and 0.05 to 200 nm, preferably 0.1 to 100 nm is suitably used as an available material. The smaller the better, the better. As the average particle diameter of the fine particles becomes larger than 100 nm, the catalytic action due to the oxidized fine particles decreases, and the effect of suppressing the emission amount of graphite and nitrogen oxide in the exhaust gas tends to be reduced. This tendency becomes remarkable. Further, as the average particle diameter of the fine particles becomes smaller than 0.1 nm, the production cost of the fine particles tends to increase. When the average particle diameter becomes smaller than 0.05 nm, this tendency becomes remarkable.

本発明の請求項2に記載の発明は、請求項1に記載の燃料活性剤であって、前記微粒子がコロイド状態で含有されている構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)微粒子がコロイド状態で含有されているので、微粒子を凝集させることなくほぼ一次粒子の状態で燃料活性剤中に分散させることができ、燃焼効率の向上効果や窒素酸化物、黒鉛等の排出量低減効果のばらつきを少なくすることができる。
(2)コロイド状態の微粒子は銀や酸化銀の微粒子を核に媒質が取り巻いていており界面活性効果を有しているので、燃料を微細化し噴霧性及び拡散性を高めることができエネルギー転換率を向上させる。
Invention of Claim 2 of this invention is a fuel activator of Claim 1, Comprising: The said microparticles | fine-particles are contained in the colloidal state.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Since the fine particles are contained in a colloidal state, the fine particles can be dispersed in the fuel activator in a substantially primary state without agglomerating the fine particles. Variations in the emission reduction effect can be reduced.
(2) Colloidal fine particles are surrounded by silver or silver oxide fine particles as a medium and have a surface-active effect. Therefore, fuel can be refined to improve sprayability and diffusivity, and energy conversion rate To improve.

ここで、微粒子がコロイド状態で分散されたコロイド状溶液の媒質としては、精製水,蒸留水等の水、メタノール,エタノール,n−プロパノール,2−プロパノール,t−ブチルアルコール,グリセリン,ジプロピレングリコール,エチレングリコール,ポリエチレングリコール等のアルコール、アセトン,メチルエチルケトン等のケトン、エチレングリコールモノメチルエーテル,エチレングリコールモノエチルエーテル,エチレングリコールモノブチルエーテル,ジエチレングリコールモノメチルエーテル,ジエチレングリコールモノエチルエーテル,ジエチレングリコールモノブチルエーテル,ジエチレングリコールジメチルエーテル,ジエチレングリコールジエチルエーテル,トリエチレングリコールモノブチルエーテル,ジプロピレングリコールモノメチルエーテル,ジプロピレングリコールモノエチルエーテル,トリプロピレングリコールモノメチルエーテル等のグリコールエーテル、2−ピロリドン,N−メチルピロリドン等の水溶性の含窒素有機化合物、酢酸エチル等が用いられる。また、ミネラルスピリット、トリデカン、ドデシルベンゼン若しくはそれらの混合物等も用いることができる。
なかでも、媒質として精製水,蒸留水等の水が好適に用いられる。水を燃料中に分散させることにより燃料の引火点を上げることができ、自動車用ガソリンエンジン等のような火花点火機関に用いる燃料の場合には、ミスファイアを防止できるからである。また、OH基を有するアルコール類等の分散媒と水が結合し、燃料内に銀等の微粒子を安定して分散させることができるからである。
Here, the medium of the colloidal solution in which the fine particles are dispersed in a colloidal state includes water such as purified water and distilled water, methanol, ethanol, n-propanol, 2-propanol, t-butyl alcohol, glycerin, and dipropylene glycol. , Alcohols such as ethylene glycol and polyethylene glycol, ketones such as acetone and methyl ethyl ketone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol Diethyl ether, triethylene glycol monobutyl ether, dipro Glycol monomethyl ether, dipropylene glycol monoethyl ether, glycol ethers such as tripropylene glycol monomethyl ether, 2-pyrrolidone, N- methylpyrrolidone soluble nitrogen-containing organic compound such as pyrrolidone, ethyl acetate or the like is used. Further, mineral spirit, tridecane, dodecylbenzene or a mixture thereof can be used.
Of these, water such as purified water or distilled water is preferably used as the medium. This is because the flash point of the fuel can be increased by dispersing water in the fuel, and misfire can be prevented in the case of fuel used in a spark ignition engine such as an automobile gasoline engine. Further, this is because a dispersion medium such as an alcohol having an OH group is combined with water, so that fine particles such as silver can be stably dispersed in the fuel.

コロイド状溶液における微粒子の濃度としては、5〜2000ppm好ましくは10〜200ppmが好適に用いられる。濃度が10ppmより低くなるにつれ燃焼効率の向上効果や窒素酸化物,黒鉛,未燃焼ガスの排出抑制効果が低下する傾向がみられ、200ppmより高くなってもコロイド状溶液のコスト増に見合うだけの効果が得られ難くなる傾向がみられる。特に、5ppmより低くなるか2000ppmより高くなると、これらの傾向が著しいためいずれも好ましくない。   The concentration of fine particles in the colloidal solution is preferably 5 to 2000 ppm, preferably 10 to 200 ppm. As the concentration becomes lower than 10ppm, the improvement effect of combustion efficiency and the emission control effect of nitrogen oxide, graphite, and unburned gas tend to decrease. Even if the concentration is higher than 200ppm, it is just enough to increase the cost of the colloidal solution. There is a tendency that it is difficult to obtain the effect. In particular, when the content is lower than 5 ppm or higher than 2000 ppm, these tendencies are remarkable and none of them is preferable.

コロイド状溶液の製造方法としては、水や有機溶媒の媒質中に複数の銀製の電極を間隔をあけて浸漬した後、電極間に電圧を印加して、銀製の電極から銀を微粒子化させて媒質中に分散させて製造することができる。
また、硝酸銀,メタンスルホン酸銀等の銀化合物を水や有機溶媒に溶解し、銀の微粒子と親和性の高い親和基を有する分散剤を加えた後、水素化ホウ素ナトリウム等のアルカリ金属水素化ホウ素塩、ヒドラジン化合物、クエン酸又はその塩、コハク酸又はその塩、アミン等の還元剤を加える等の手段によって還元し銀の微粒子を析出させる液相還元法によって製造することもできる。
また、気相中で成長過程の銀微粒子にミネラルスピリット、トリデカン、ドデシルベンゼン若しくはそれらの混合物等の高沸点の有機溶媒の蒸気を接触させて、銀の微粒子を冷却し回収することで、有機溶媒の媒質中に微粒子を分散させたコロイド状溶液を製造することもできる。
以上のように、媒質中に浸漬した銀製電極から微粒子を製造する方法、媒質中に微粒子を析出させる方法によってコロイド状溶液を製造することにより、微粒子が凝集するのを防ぎ分散性を高め、さらに微粒子の粒度分布のばらつきを小さくして燃焼効率にばらつきが生じる問題を防止することができる。
As a method for producing a colloidal solution, after immersing a plurality of silver electrodes in a medium of water or an organic solvent at intervals, a voltage is applied between the electrodes to make silver fine particles from the silver electrodes. It can be produced by being dispersed in a medium.
In addition, silver compounds such as silver nitrate and silver methanesulfonate are dissolved in water and organic solvents, and after adding a dispersing agent having an affinity group with high affinity to silver fine particles, alkali metal hydrogenation such as sodium borohydride It can also be produced by a liquid phase reduction method in which silver fine particles are precipitated by reduction by adding a reducing agent such as a boron salt, a hydrazine compound, citric acid or a salt thereof, succinic acid or a salt thereof, or an amine.
In addition, the silver fine particles grown in the gas phase are brought into contact with vapors of a high boiling organic solvent such as mineral spirit, tridecane, dodecylbenzene or a mixture thereof, and the silver fine particles are cooled and collected, thereby recovering the organic solvent. It is also possible to produce a colloidal solution in which fine particles are dispersed in the above medium.
As described above, by producing a colloidal solution by a method of producing fine particles from a silver electrode immersed in a medium and a method of precipitating fine particles in a medium, the fine particles are prevented from agglomerating and dispersibility is improved. Variations in the particle size distribution of the fine particles can be reduced to prevent the problem of variations in combustion efficiency.

本発明の燃料活性剤は、燃料100容量部に対して、コロイド状溶液の添加量が0.0001〜0.1容量部好ましくは0.0003〜0.01容量部になるように添加されるのが好適である。
燃料100容量部に対するコロイド状溶液の添加量が0.0003容量部より少なくなるにつれ燃焼効率の向上効果や窒素酸化物等の抑制効果が現れにくくなる傾向がみられ、0.01容量部より多くなるにつれコロイド状溶液の添加量の増加に見合った燃焼効率等の向上効果が現れ難くなる傾向がみられる。特に、0.0001容量部より少なくなるか0.1容量部より多くなると、これらの傾向が著しいためいずれも好ましくない。
The fuel activator of the present invention is added so that the amount of colloidal solution added is 0.0001 to 0.1 parts by volume, preferably 0.0003 to 0.01 parts by volume with respect to 100 parts by volume of fuel. Is preferred.
As the amount of colloidal solution added to 100 parts by volume of fuel is less than 0.0003 part by volume, the effect of improving combustion efficiency and the effect of suppressing nitrogen oxides tend to be less likely to appear, and more than 0.01 part by volume. As a result, there is a tendency that an improvement effect such as combustion efficiency commensurate with an increase in the amount of colloidal solution added is less likely to appear. In particular, when the amount is less than 0.0001 capacity part or more than 0.1 capacity part, these tendencies are remarkable, which is not preferable.

本発明の請求項3に記載の発明は、請求項2に記載の燃料活性剤であって、前記微粒子が分散されたコロイド状溶液10容量部に対し、分散媒450〜4750容量部好ましくは500〜3200容量部を含有した構成を有している。
この構成により、請求項2で得られる作用に加え、以下のような作用が得られる。
(1)分散媒を含有しているので、コロイド状溶液を燃料中に均一に分散させ燃料の完全燃焼を図ることができる。
(2)コロイド状溶液と分散媒との界面活性効果によって燃料の動粘度を低下させ、燃料パイプの内面等に燃料が付着するのを防止できる。
The invention according to claim 3 of the present invention is the fuel activator according to claim 2, wherein 450 to 4750 parts by volume of a dispersion medium, preferably 500 parts by volume, with respect to 10 parts by volume of the colloidal solution in which the fine particles are dispersed. It has a structure containing ~ 3200 volume parts.
With this configuration, in addition to the operation obtained in the second aspect, the following operation can be obtained.
(1) Since the dispersion medium is contained, the colloidal solution can be uniformly dispersed in the fuel to achieve complete combustion of the fuel.
(2) It is possible to reduce the kinematic viscosity of the fuel by the surface active effect between the colloidal solution and the dispersion medium, and to prevent the fuel from adhering to the inner surface of the fuel pipe.

ここで、分散媒としては、エタノール,プロパノール,ブタノール等のアルコール類、メチル−t−ブチルエーテル等のエーテル類、アセトン等のケトン類、アルデヒド類、グリコール類等の水溶解性が高く、燃料への油溶性に優れた有機化合物等が用いられる。   Here, as the dispersion medium, alcohols such as ethanol, propanol and butanol, ethers such as methyl-t-butyl ether, ketones such as acetone, aldehydes, glycols and the like are highly soluble in water, An organic compound having excellent oil solubility is used.

分散媒の含有量が、500容量部より少なくなるにつれコロイド状溶液の分散性が悪く噴霧性等が低下し燃焼効率が低下する傾向がみられ、3200容量部より多くなるにつれ燃料の引火性を低下させてミスファイアが発生し易くなる傾向がみられる。特に、450容量部より少なくなるか4750容量部より多くなると、これらの傾向が著しいためいずれも好ましくない。   As the content of the dispersion medium is less than 500 parts by volume, the dispersibility of the colloidal solution is poor and the sprayability tends to decrease, and the combustion efficiency tends to be reduced. There is a tendency that misfires are likely to occur. In particular, when the amount is less than 450 capacity parts or more than 4750 capacity parts, these tendencies are remarkable, which is not preferable.

分散媒の他、コロイド状溶液10容量部に対し、別途、界面活性剤20〜500容量部好ましくは22〜340容量部を含有させることもできる。
これにより、以下のような作用が得られる。
(1)分散媒やコロイド状溶液を、より均一に燃料中に分散させ流動性を均一にして噴霧性を向上させ、燃焼効率をより安定化させることができる。
(2)界面活性剤が燃料活性剤に含まれる水分を燃料中に分散させて微粒子化させるので、燃料タンク等の金属部に錆が発生したり気化器やフィルタ等が水分によって凍結するのを防止することができる。
In addition to the dispersion medium, 20 to 500 parts by volume of a surfactant, preferably 22 to 340 parts by volume, may be separately added to 10 parts by volume of the colloidal solution.
Thereby, the following actions are obtained.
(1) A dispersion medium or a colloidal solution can be more uniformly dispersed in the fuel, the fluidity can be made uniform, the sprayability can be improved, and the combustion efficiency can be further stabilized.
(2) Since the surfactant disperses the water contained in the fuel activator into fine particles, the metal parts such as the fuel tank are rusted and the vaporizers and filters are frozen by the water. Can be prevented.

ここで、界面活性剤としては、クロム,コバルト,銅等のナフテン酸塩やスルホン酸塩を含有する金属化合物、アルコールの硫酸エステル等が用いられる。   Here, as the surfactant, a metal compound containing a naphthenate or a sulfonate such as chromium, cobalt, or copper, a sulfate of alcohol, or the like is used.

分散媒の他、コロイド状溶液10容量部に対し、別途、エマルジョン破壊剤20〜500容量部好ましくは22〜340容量部を含有させることもできる。
これにより、以下のような作用が得られる。
(1)エマルジョン破壊剤を含有させることで、燃料中の水分が原因で生成されるエマルジョンを破壊して、エマルジョンによって燃料の流動性が低下したりフィルタを詰まらせたりするのを防止することができる。
In addition to the dispersion medium, 20 to 500 parts by volume of an emulsion breaking agent, preferably 22 to 340 parts by volume, may be separately added to 10 parts by volume of the colloidal solution.
Thereby, the following actions are obtained.
(1) By containing an emulsion breaker, it is possible to break the emulsion produced due to moisture in the fuel and prevent the fluidity of the fuel from being lowered or clogging the filter by the emulsion. it can.

エマルジョン破壊剤としては、ポリプロピレングリコールと酸化エチレンの共重合体、ヒドロキシアミン重合物、アルキルナフタリンスルホン酸のアミン塩等が用いられる。
なお、エマルジョン破壊剤と界面活性剤を一緒に含有させてもよい。
As the emulsion breaking agent, a copolymer of polypropylene glycol and ethylene oxide, a hydroxyamine polymer, an amine salt of alkylnaphthalene sulfonic acid, or the like is used.
An emulsion breaker and a surfactant may be included together.

コロイド状溶液10容量部に対する界面活性剤やエマルジョン破壊剤の含有量が22容量部より少なくなるにつれ、コロイド状溶液等の分散性が乏しく燃焼効率にばらつきが生じる傾向がみられ、340容量部より多くなるにつれ、分散効果はほとんど変わらないが燃料の引火点が高くなり燃焼し難くなる傾向がみられる。特に、20容量部より少なくなるか500容量部より多くなると、これらの傾向が著しいためいずれも好ましくない。   As the content of the surfactant and the emulsion breaking agent with respect to 10 parts by volume of the colloidal solution is less than 22 parts by volume, the dispersibility of the colloidal solution and the like tends to vary and the combustion efficiency tends to vary. From 340 parts by volume As the number increases, the dispersion effect hardly changes, but the flash point of the fuel tends to increase and it becomes difficult to burn. In particular, if the amount is less than 20 parts by volume or more than 500 parts by volume, these tendencies tend to be remarkable, which is not preferable.

また、コロイド状溶液10容量部に対し、金属腐食防止剤5〜100容量部好ましくは8〜70容量部を含有させることもできる。
これにより、以下のような作用が得られる。
(1)燃料中に存在する微量水分のために燃料に接触する金属に錆が発生するのを防止することができる。
Further, the metal corrosion inhibitor may be contained in an amount of 5 to 100 parts by volume, preferably 8 to 70 parts by volume with respect to 10 parts by volume of the colloidal solution.
Thereby, the following actions are obtained.
(1) It is possible to prevent rust from being generated in the metal that comes into contact with the fuel due to the trace amount of water present in the fuel.

ここで、金属腐食防止剤としては、セチルアミン等の脂肪酸アミン類、石油スルホン酸バリウム等の石油又は合成スルホン酸の金属塩、フェニールステアリン酸等のナフテン酸のエステル類、リン酸アルキルアミン等の有機リン化合物、スルホン酸アンモニウム等の窒素化合物、金属石鹸等の極性基を有する有機化合物等が用いられる。   Here, examples of the metal corrosion inhibitor include fatty acid amines such as cetylamine, petroleum or synthetic sulfonic acid metal salts such as barium petroleum sulfonate, esters of naphthenic acid such as phenyl stearic acid, and organic compounds such as alkylamine phosphate. A phosphorus compound, a nitrogen compound such as ammonium sulfonate, an organic compound having a polar group such as a metal soap, or the like is used.

コロイド状溶液10容量部に対する金属腐食防止剤の含有量が8重量部より少なくなるにつれ燃料中に存在する微量水分のために燃料に接触する金属に錆が発生する傾向がみられ、70容量部より多くなるにつれ燃料タンク等の金属部分の劣化が早くなるとともに金属が燃料に溶け込み燃焼の妨げとなる傾向がみられる。特に、5容量部より少なくなるか100容量部より多くなると、これらの傾向が著しくなるためいずれも好ましくない。   As the content of the metal corrosion inhibitor with respect to 10 parts by volume of the colloidal solution is less than 8 parts by weight, rust tends to be generated in the metal in contact with the fuel due to the trace amount of water present in the fuel, and 70 parts by volume. As the amount increases, the deterioration of metal parts such as fuel tanks is accelerated, and the metal tends to melt into the fuel and hinder combustion. In particular, if the amount is less than 5 parts by volume or more than 100 parts by volume, these tendencies become remarkable, which is not preferable.

本発明の請求項4に記載の発明は、請求項2又は3に記載の燃料活性剤であって、前記微粒子が分散されたコロイド状溶液が、1kV〜5000kV好ましくは500kV〜1000kVの高電圧が印加された構成を有している。
この構成により、請求項2又は3で得られる作用に加え、以下のような作用が得られる。
(1)コロイド状溶液に高電圧を印加すると、発明者らが行った実験の結果、燃焼装置の燃費を向上させられることがわかった。この理由は、高電圧を印加することでコロイド状溶液の溶媒和を促進させ安定化させられることと関係しているのではないかと推察している。
The invention according to claim 4 of the present invention is the fuel activator according to claim 2 or 3, wherein the colloidal solution in which the fine particles are dispersed has a high voltage of 1 kV to 5000 kV, preferably 500 kV to 1000 kV. It has an applied configuration.
With this configuration, in addition to the operation obtained in the second or third aspect, the following operation can be obtained.
(1) When a high voltage is applied to the colloidal solution, as a result of experiments conducted by the inventors, it has been found that the fuel efficiency of the combustion apparatus can be improved. This reason is presumed to be related to the fact that application of a high voltage promotes and stabilizes the solvation of the colloidal solution.

ここで、コロイド状溶液に印加する電圧が500kVより低くなるにつれ燃費の向上効果が小さくなる傾向がみられ、1000kVより高くなるにつれ電圧印加装置が大型化するばかりで印加電圧増に見合うだけの効果が得られ難くなる傾向がみられる。特に1kVより低くなるか5000kVより大きくなると、これらの傾向が著しくなるため好ましくない。   Here, as the voltage applied to the colloidal solution becomes lower than 500 kV, the effect of improving the fuel consumption tends to be reduced. As the voltage becomes higher than 1000 kV, the voltage applying device is only increased in size and the effect corresponding to the increase in the applied voltage. Tends to be difficult to obtain. In particular, if it is lower than 1 kV or higher than 5000 kV, these tendencies become remarkable, which is not preferable.

本発明の請求項5に記載の燃料の燃焼方法は、銀及び/又は酸化銀の微粒子を燃料とともに燃焼させる構成を有している。
この構成により、以下のような作用が得られる。
(1)銀や酸化銀の微粒子を燃料とともに燃焼させると、微粒子が火炎中に微細な固体として存在するので、火炎の輻射能を向上させ燃焼効率を高めることができる。このため、燃料消費量を少なくすることができ、燃費を向上させることができるとともに二酸化炭素の排出量を減らすことができる。
(2)酸化された微粒子の触媒作用により、温度や圧力が低い条件下でも、還元剤として機能する燃料中の炭化水素(HC)の酸素化を促進させるので、NOx+HC+O→N+CO+HOのように、窒素酸化物(NOx)の還元を促し排ガス中の窒素酸化物の発生を抑制させることができ、また従来は燃焼しきれずに排出されていた黒鉛の燃焼や一酸化炭素(CO)等の未燃焼ガスの酸素化を促進し、黒鉛や未燃焼ガスの排出量も低減させることができる。
The fuel combustion method according to claim 5 of the present invention has a configuration in which fine particles of silver and / or silver oxide are burned together with the fuel.
With this configuration, the following effects can be obtained.
(1) When fine particles of silver or silver oxide are burned together with fuel, the fine particles are present as fine solids in the flame, so that the radiation efficiency of the flame can be improved and the combustion efficiency can be increased. For this reason, fuel consumption can be reduced, fuel consumption can be improved, and carbon dioxide emissions can be reduced.
(2) The catalytic action of oxidized fine particles promotes oxygenation of hydrocarbons (HC) in the fuel that functions as a reducing agent even under low temperature and pressure conditions. Therefore, NOx + HC + O 2 → N 2 + CO 2 + H Like 2 O, it can promote the reduction of nitrogen oxides (NOx) and suppress the generation of nitrogen oxides in the exhaust gas, and the combustion of graphite and carbon monoxide ( The oxygenation of unburned gas such as CO) can be promoted, and the discharge amount of graphite and unburned gas can be reduced.

ここで、燃料としては、自動車ガソリン、航空ガソリン、ジェット燃料油(航空タービン燃料油)、ディーゼル燃料油、自動車や産業機械等の小型高速ディーゼル機関に使用される軽油、小型の中速ディーゼル機関,船舶用の大型低速機関,工業炉用燃料等に使用される重油、ストーブ,給湯器,ボイラ等の小型燃焼器に使用される灯油、ナフサ、合成油、廃油等の炭化水素液体燃料が用いられる。   Here, as fuel, automobile gasoline, aviation gasoline, jet fuel oil (aviation turbine fuel oil), diesel fuel oil, light oil used in small high speed diesel engines such as automobiles and industrial machinery, small medium speed diesel engines, Hydrocarbon liquid fuels such as kerosene, naphtha, synthetic oil, and waste oil used in small combustors such as heavy-duty low-speed engines for ships and industrial furnaces, stoves, water heaters, and boilers are used. .

銀や酸化銀の微粒子は、燃料とは別にして燃焼装置の火炎内に直接投入することができる。工業用加熱炉、ボイラ等のような燃焼装置の場合に適している。
また、重油等の粘性のある燃料の場合には、濡れ性を改善するため微粒子の表面を不飽和脂肪酸等で表面処理したり、あるいは表面処理しないで燃料に強制的に分散させ、燃料とともに燃焼装置に供給することができる。
また、微粒子を有機溶剤や界面活性剤等を用いて燃料中に分散させたり、本発明の燃料活性剤に分散させて、燃料とともに燃焼装置に供給することができる。
The fine particles of silver or silver oxide can be put directly into the flame of the combustion apparatus separately from the fuel. It is suitable for a combustion apparatus such as an industrial heating furnace or boiler.
In the case of a viscous fuel such as heavy oil, the surface of the fine particles may be surface-treated with unsaturated fatty acids to improve wettability, or may be forcibly dispersed in the fuel without surface treatment and burned with the fuel. Can be supplied to the device.
Further, the fine particles can be dispersed in the fuel using an organic solvent, a surfactant, or the like, or can be dispersed in the fuel activator of the present invention and supplied to the combustion apparatus together with the fuel.

以上のように、本発明の燃料活性剤及び燃料の燃焼方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)燃料に添加して一緒に燃焼させると、微粒子が火炎中に微細な固体として存在するので、火炎の輻射能を向上させ燃焼効率を高めることができ、理想的な燃焼状態に近づけて燃料消費量を少なくさせ燃費を向上させられるとともに、二酸化炭素の排出量を減らすことができる環境保全性に優れた燃料活性剤を提供することができる。
(2)温度や圧力が低い条件下でも、還元剤として機能する燃料中の炭化水素(HC)の酸素化を促進させるので、窒素酸化物(NOx)の還元を促し排ガス中の窒素酸化物の発生を抑制させることができ、また従来は燃焼しきれずに排出されていた黒鉛の燃焼や一酸化炭素(CO)等の未燃焼ガスの酸素化を促進し、黒鉛や未燃焼ガスの排出量も低減させることができる環境保全性に優れた燃料活性剤を提供することができる。
As described above, according to the fuel activator and the fuel combustion method of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) When added to the fuel and burned together, the fine particles are present as fine solids in the flame, so that the radiation efficiency of the flame can be improved and the combustion efficiency can be improved, approaching the ideal combustion state. It is possible to provide a fuel activator excellent in environmental conservation that can reduce fuel consumption and improve fuel efficiency and reduce carbon dioxide emissions.
(2) It promotes oxygenation of hydrocarbons (HC) in the fuel that functions as a reducing agent even under conditions of low temperature and pressure, thus promoting reduction of nitrogen oxides (NOx) and It is possible to suppress the generation, promote the combustion of graphite that has been exhausted without being combusted in the past and the oxygenation of unburned gas such as carbon monoxide (CO), and also the amount of graphite and unburned gas emitted It is possible to provide a fuel activator excellent in environmental conservation that can be reduced.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)微粒子を凝集させることなくほぼ一次粒子の状態で燃料活性剤中に分散させることができ、燃焼効率の向上効果や窒素酸化物、黒鉛等の排出量低減効果のばらつきの少ない燃料活性剤を提供することができる。
(2)燃料を微細化し噴霧性及び拡散性を高めることができエネルギー転換率を向上させる燃料活性剤を提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) A fuel activator that can be dispersed in the fuel activator in the form of primary particles without agglomerating fine particles, and has little variation in combustion efficiency improvement effect and emission reduction effect of nitrogen oxide, graphite, etc. Can be provided.
(2) It is possible to provide a fuel activator that can refine the fuel to improve sprayability and diffusibility and improve the energy conversion rate.

請求項3に記載の発明によれば、請求項2の効果に加え、
(1)コロイド状溶液を燃料中に均一に分散させ燃料の完全燃焼を図ることができ、理想的な燃焼状態に近づけて燃料消費量を少なくさせ燃費を向上効果の高い燃料活性剤を提供することができる。
(2)コロイド状溶液と分散媒との界面活性効果によって燃料の動粘度を低下させ、燃料パイプの内面等に燃料が付着するのを防止できる燃料活性剤を提供することができる。
According to invention of Claim 3, in addition to the effect of Claim 2,
(1) To provide a fuel activator that can disperse the colloidal solution uniformly in the fuel and achieve complete combustion of the fuel, reduce the fuel consumption by approaching the ideal combustion state, and improve the fuel efficiency. be able to.
(2) It is possible to provide a fuel activator capable of reducing the kinematic viscosity of the fuel by the surface active effect between the colloidal solution and the dispersion medium and preventing the fuel from adhering to the inner surface of the fuel pipe.

請求項4に記載の発明によれば、請求項2又は3の効果に加え、
(1)コロイド状溶液に高電圧を印加することによって、燃焼装置の燃費をばらつきなく向上させられることができ安定性に優れた燃料活性剤を提供することができる。
According to invention of Claim 4, in addition to the effect of Claim 2 or 3,
(1) By applying a high voltage to the colloidal solution, the fuel efficiency of the combustion apparatus can be improved without variation, and a fuel activator having excellent stability can be provided.

請求項5に記載の発明によれば、
(1)微粒子が火炎中に微細な固体として存在するので、火炎の輻射能を向上させ燃焼効率を高めることができ、理想的な燃焼状態に近づけて燃料消費量を少なくさせ燃費を向上させられるとともに、二酸化炭素の排出量を減らすことができる環境保全性に優れた燃料の燃焼方法を提供することができる。
(2)温度や圧力が低い条件下でも、還元剤として機能する燃料中の炭化水素(HC)の酸素化を促進させるので、窒素酸化物(NOx)の還元を促し排ガス中の窒素酸化物の発生を抑制させることができ、また従来は燃焼しきれずに排出されていた黒鉛や一酸化炭素(CO)等の未燃焼ガスの酸素化を促進し、黒鉛や未燃焼ガスの排出量も低減させることができる環境保全性に優れた燃料の燃焼方法を提供することができる。
According to the invention of claim 5,
(1) Since the fine particles are present as fine solids in the flame, the radiation efficiency of the flame can be improved and the combustion efficiency can be improved, and the fuel consumption can be reduced and the fuel consumption can be improved by approaching the ideal combustion state. At the same time, it is possible to provide a fuel combustion method excellent in environmental conservation that can reduce carbon dioxide emissions.
(2) It promotes oxygenation of hydrocarbons (HC) in the fuel that functions as a reducing agent even under conditions of low temperature and pressure, thus promoting reduction of nitrogen oxides (NOx) and Generation can be suppressed, and oxygenation of unburned gas such as graphite and carbon monoxide (CO), which has been discharged without being burned in the past, is promoted, and the emission of graphite and unburned gas is also reduced. It is possible to provide a fuel combustion method excellent in environmental conservation.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実験例1)
銀(純度99.99%)の微粒子(平均粒径0.1nm)を精製水に分散させたコロイド状溶液0.5vol%(濃度20ppm、商品名:コロイドシルバー)、分散媒としてのイソプロピルアルコール98.0vol%、金属腐食防止剤としての石油スルホン酸バリウム1.5vol%を混合して、実験例1の燃料活性剤を得た。
(実験例2)
1kVの直流電圧を2秒間印加したコロイド状溶液を用いた以外は、実験例1と同様に配合して実験例2の燃料活性剤を得た。
(実験例3)
10kVの直流電圧を2秒間印加したコロイド状溶液を用いた以外は、実験例1と同様に配合して実験例3の燃料活性剤を得た。
(実験例4)
50kVの直流電圧を2秒間印加したコロイド状溶液を用いた以外は、実験例1と同様に配合して実験例4の燃料活性剤を得た。
(実験例5)
150kVの直流電圧を2秒間印加したコロイド状溶液を用いた以外は、実験例1と同様に配合して実験例5の燃料活性剤を得た。
(実験例6)
300kVの直流電圧を2秒間印加したコロイド状溶液を用いた以外は、実験例1と同様に配合して実験例6の燃料活性剤を得た。
(実験例7)
600kVの直流電圧を2秒間印加したコロイド状溶液を用いた以外は、実験例1と同様に配合して実験例7の燃料活性剤を得た。
(実験例8)
900kVの直流電圧を2秒間印加したコロイド状溶液を用いた以外は、実験例1と同様に配合して実験例8の燃料活性剤を得た。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
(Experimental example 1)
A colloidal solution in which fine particles (average particle size 0.1 nm) of silver (purity 99.99%) are dispersed in purified water 0.5 vol% (concentration 20 ppm, trade name: colloidal silver), isopropyl alcohol 98 as a dispersion medium The fuel activator of Experimental Example 1 was obtained by mixing 0.0 vol% and 1.5 vol% petroleum barium sulfonate as a metal corrosion inhibitor.
(Experimental example 2)
A fuel activator of Experimental Example 2 was obtained by blending in the same manner as in Experimental Example 1 except that a colloidal solution to which a DC voltage of 1 kV was applied for 2 seconds was used.
(Experimental example 3)
A fuel activator of Experimental Example 3 was obtained by blending in the same manner as in Experimental Example 1 except that a colloidal solution to which a DC voltage of 10 kV was applied for 2 seconds was used.
(Experimental example 4)
A fuel activator of Experimental Example 4 was obtained by blending in the same manner as in Experimental Example 1 except that a colloidal solution to which a direct current voltage of 50 kV was applied for 2 seconds was used.
(Experimental example 5)
A fuel activator of Experimental Example 5 was obtained by blending in the same manner as in Experimental Example 1 except that a colloidal solution to which a DC voltage of 150 kV was applied for 2 seconds was used.
(Experimental example 6)
A fuel activator of Experimental Example 6 was obtained by blending in the same manner as in Experimental Example 1 except that a colloidal solution to which a DC voltage of 300 kV was applied for 2 seconds was used.
(Experimental example 7)
A fuel activator of Experimental Example 7 was obtained by blending in the same manner as in Experimental Example 1 except that a colloidal solution to which a DC voltage of 600 kV was applied for 2 seconds was used.
(Experimental example 8)
A fuel activator of Experimental Example 8 was obtained by blending in the same manner as in Experimental Example 1 except that a colloidal solution to which a DC voltage of 900 kV was applied for 2 seconds was used.

(試験例1)
排気量660cc、車両重量820kgの軽自動車(スズキ・エブリィ)の燃料タンクを燃料(ガソリン)で満タンにした後、高速道路を走行して片道44kmの距離を90kmの平均時速で一日一回一往復した。これを三日間行い平均の燃費を計算したところ10.8km/Lであった。
次に、燃料タンクを満タンにして実験例1の燃料活性剤を0.2L添加した後、同様に一日一回一往復、三日間走行し平均の燃費を計算した。実験例2〜8の燃料活性剤も同様にして、各々を添加したときの平均の燃費を計算した。なお、燃料活性剤の種類を変えるときは、燃料をドレン抜きし燃料フィルタを交換した後、新しい燃料を充填し、燃料活性剤を添加した。
図1は実験例1〜8の燃料活性剤についてコロイド状溶液に印加した電圧と燃費の関係を示す図である。燃費は、三日間の走行の最小値、最大値及び平均値を示している。
以上の結果、本実験例の燃料活性剤を燃料に添加することによって、燃費が6%以上向上することが明らかになった。また、1kV以上の高電圧を印加したコロイド状溶液を配合した実験例2〜8の燃料活性剤を燃料に添加することによって、さらに燃費を向上させられることが明らかになった。特に、500kV以上の電圧を印加したコロイド状溶液を配合した燃料活性剤(実験例7,8)は燃費が12%以上高くなり、900kVの電圧を印加したコロイド状溶液を配合した燃料活性剤(実験例8)では平均燃費は12.8km/Lになり、燃料活性剤を添加していない場合と比べ、燃費が20%近く高くなることが明らかになった。
(Test Example 1)
After filling the fuel tank of a light car (Suzuki Every) with a displacement of 660cc and a vehicle weight of 820kg with fuel (gasoline), drive on the highway once a day at a distance of 44km one way at an average speed of 90km One round trip. This was carried out for 3 days and the average fuel consumption was calculated to be 10.8 km / L.
Next, the fuel tank was filled up and 0.2 L of the fuel activator of Experimental Example 1 was added, and after that, the fuel cell was run once a day for 3 days, and the average fuel consumption was calculated. In the same manner, the fuel activators of Experimental Examples 2 to 8 were also used to calculate the average fuel consumption when each was added. In addition, when changing the kind of fuel activator, after draining the fuel and replacing the fuel filter, new fuel was filled and the fuel activator was added.
FIG. 1 is a diagram showing the relationship between the voltage applied to the colloidal solution and fuel consumption for the fuel activators of Experimental Examples 1-8. The fuel consumption indicates a minimum value, a maximum value, and an average value of traveling for three days.
As a result, it has been clarified that the fuel efficiency is improved by 6% or more by adding the fuel activator of this experimental example to the fuel. It has also been clarified that the fuel efficiency can be further improved by adding the fuel activators of Experimental Examples 2 to 8 containing a colloidal solution to which a high voltage of 1 kV or more is applied to the fuel. In particular, the fuel activator blended with a colloidal solution to which a voltage of 500 kV or more was applied (Experimental Examples 7 and 8) has a fuel efficiency of 12% or more, and the fuel activator blended with a colloidal solution to which a voltage of 900 kV was applied ( In Experimental Example 8), the average fuel consumption was 12.8 km / L, and it became clear that the fuel consumption was nearly 20% higher than when no fuel activator was added.

(実験例9)
実験例1と同じコロイド状溶液に900kVの直流電圧を2秒間印加したコロイド状溶液0.4vol%、分散媒としてのイソプロピルアルコール94.4vol%、界面活性剤としての第2高級アルコール硫酸エステル塩4.0vol%、金属腐食防止剤としての石油スルホン酸バリウム1.2vol%を混合して実験例9の燃料活性剤を得た。
(試験例2)
シャシダイナモメータを使って排気量1809cc、車両重量1230kgの自動車(日産製、ローレルE−FC33、手動5速)を定速走行させ、走行時速40km(4速)、60km(5速)、80km(5速)、100km(5速)のときの燃費を測定した。測定は、ガソリンを満タンにした場合(燃料活性剤無添加)、満タンのガソリン(50L)に実験例9の燃料活性剤を0.2L添加した場合について各々行った。なお、燃料活性剤を添加した場合は、慣らし運転を約3時間(250km走行)行った後の燃費を測定した。
表1は燃料活性剤を添加していないガソリンの場合(無添加)、満タンのガソリン(50L)に実験例9の燃料活性剤を0.2L添加した場合(添加)の、走行時速毎の燃費(km/L)の一覧表である。
(Experimental example 9)
0.4 vol% of colloidal solution obtained by applying a DC voltage of 900 kV to the same colloidal solution as in Experimental Example 1 for 2 seconds, 94.4 vol% of isopropyl alcohol as a dispersion medium, second higher alcohol sulfate 4 as a surfactant 4 The fuel activator of Experimental Example 9 was obtained by mixing 0.0 vol% and 1.2 vol% petroleum barium sulfonate as a metal corrosion inhibitor.
(Test Example 2)
Using a chassis dynamometer, an automobile with a displacement of 1809 cc and a vehicle weight of 1230 kg (Nissan, Laurel E-FC33, manual 5-speed) is driven at a constant speed, and the traveling speed is 40 km (4th speed), 60 km (5th speed), 80 km ( The fuel consumption was measured at 5th speed) and 100 km (5th speed). The measurement was performed when the gasoline was full (no fuel activator added), and when 0.2 L of the fuel activator of Experimental Example 9 was added to a full tank of gasoline (50 L). When the fuel activator was added, the fuel consumption after running-in for about 3 hours (running 250 km) was measured.
Table 1 shows the case where gasoline without fuel activator is added (no addition), and when 0.2 L of fuel activator of Experimental Example 9 is added (addition) to full tank gasoline (50 L). It is a list of fuel consumption (km / L).

表1から、全ての走行速度において、燃料活性剤を添加した場合は無添加の場合よりも燃費を向上させられることが確認された。なお、燃料活性剤を添加した状態で、シャシダイナモメータ上で約10時間、約600km走行したが、エンジンや車両に不具合は全くみられなかった。   From Table 1, it was confirmed that the fuel efficiency was improved when the fuel activator was added at all traveling speeds compared with the case where no fuel activator was added. In addition, although it drive | worked about 600 km on the chassis dynamometer for about 10 hours in the state which added the fuel activator, the engine and the vehicle did not have any trouble.

(試験例3)
シャシダイナモメータを使って排気量1970cc、車両重量1410kgの自動車(トヨタ製、タウンエースKB−CR51V)を定速走行させ、走行時速20km、40km、60km、80kmのときの2分間の燃料消費量(単位:cc)、排ガス中の黒鉛量を測定した。なお、測定は、軽油を満タンにした場合(燃料活性剤無添加)、満タンの軽油55Lに実験例9の燃料活性剤を0.2L添加した場合について各々行った。
表2は燃料活性剤を添加していない軽油の場合(無添加)、満タンの軽油に実験例9の燃料活性剤を0.2L添加した場合(添加)の、走行時速毎の2分間の燃料消費量(cc)、黒鉛量(%)の一覧表である。
(Test Example 3)
Use a chassis dynamometer to drive an automobile (Toyota, Town Ace KB-CR51V) with a displacement of 1970 cc and a vehicle weight of 1410 kg at a constant speed, and fuel consumption for 2 minutes at a speed of 20 km, 40 km, 60 km, and 80 km : Cc), the amount of graphite in the exhaust gas was measured. Note that the measurement was performed when the gas oil was filled up (no addition of fuel activator) and when the fuel activator of Experimental Example 9 was added to 55 L of full tank of light oil.
Table 2 shows the case of light oil to which fuel activator is not added (no addition), and the case where 0.2 L of fuel activator of Experimental Example 9 is added to full tank of light oil (addition) for 2 minutes per driving speed. It is a list of fuel consumption (cc) and graphite amount (%).

表2から、燃料が軽油のディーゼルエンジンの場合も、全ての走行速度において、燃料活性剤を添加した場合は燃料消費量を無添加の場合より減少できることが確認された。また、排ガス中の黒鉛量も大幅に減少できることが確認された。なお、燃料活性剤を添加した状態で、シャシダイナモメータ上で約5時間、約230km走行したが、エンジンや車両に不具合は全くみられなかったことも確認された。   From Table 2, it was confirmed that the fuel consumption can be reduced when the fuel activator is added at all traveling speeds as compared with the case where the fuel additive is not added even when the fuel is a diesel engine with light oil. It was also confirmed that the amount of graphite in the exhaust gas can be significantly reduced. In addition, while running on the chassis dynamometer for about 5 hours with the fuel activator added, it was also confirmed that no problems were found in the engine or vehicle.

(試験例4)
排気量5240cc、車両重量3520kgの自動車(三菱製、ローザ、エンジン型式KK−BE63EE)の燃料タンクを燃料(軽油)で満タン100Lにした後、アイドリング状態における排ガスの一酸化炭素(CO),ハイドロカーボン(HC),二酸化炭素(CO)、窒素酸化物(NOx)を測定した。
次に、燃料(軽油)を満タンにした後、実験例9の燃料活性剤を0.2L添加し、2881km走行した後、走行後のアイドリング状態における排ガスの一酸化炭素(CO),ハイドロカーボン(HC),二酸化炭素(CO)、窒素酸化物(NOx)を測定した。なお、給油は燃料タンク内の燃料の残量が10%以下になる前に随時行ったが、燃料活性剤を添加したのは本試験期間では最初の1回だけである。
表3は燃料活性剤を添加していない軽油の場合(無添加)、燃料活性剤を添加した場合(添加)の排ガスの一酸化炭素(CO),ハイドロカーボン(HC),二酸化炭素(CO)、窒素酸化物(NOx)の排出量の一覧表である。
(Test Example 4)
The fuel tank of an automobile (Mitsubishi, Rosa, engine model KK-BE63EE) with a displacement of 5240 cc and a vehicle weight of 3520 kg is filled with 100 L of fuel (light oil), then carbon monoxide (CO), Carbon (HC), carbon dioxide (CO 2 ), and nitrogen oxide (NOx) were measured.
Next, after filling up the fuel (light oil), 0.2 L of the fuel activator of Experimental Example 9 was added, and after running 2881 km, the exhaust gas carbon monoxide (CO) and hydrocarbons in the idling state after running (HC), carbon dioxide (CO 2 ), and nitrogen oxide (NOx) were measured. Refueling was performed as needed before the remaining amount of fuel in the fuel tank became 10% or less, but the fuel activator was added only once during the test period.
Table 3 shows carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO 2 ) in the case of light oil to which no fuel activator is added (no addition) and in the case of addition of fuel activator (addition). ) And nitrogen oxide (NOx) emissions.

表3から、燃料活性剤を添加した場合は、無添加の場合よりも排ガスの一酸化炭素(CO),ハイドロカーボン(HC),二酸化炭素(CO)、窒素酸化物(NOx)の排出量を削減できることが明らかになった。
また、燃料タンク内に残量がある間に燃料を補給すれば、燃料活性剤を添加したのが最初の1回だけであっても、燃料活性剤の効果が持続することも明らかになった。これは燃料フィルタやシリンダ等に燃料活性剤に含まれる銀や酸化銀が固定化されているからであると推察している。
From Table 3, emissions of carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO 2 ), and nitrogen oxides (NOx) in the exhaust gas when the fuel activator is added are greater than when no fuel activator is added. It became clear that can be reduced.
In addition, it became clear that if the fuel was replenished while there was a remaining amount in the fuel tank, the effect of the fuel activator would continue even if the fuel activator was added only once. . This is presumed to be because silver or silver oxide contained in the fuel activator is fixed to the fuel filter or cylinder.

(試験例5)
500kW自家製発電装置(コマツ製)の燃料タンク内のC重油5000Lに、実験例9の燃料活性剤を2週間に1回の頻度で18L添加した。燃料活性剤を添加する前後の1ヶ月間の単位燃料当たりの発電量(kW/L)を測定した。
表4は燃料活性剤を添加する前後の総発電量(kW)、燃料消費量(L)、単位燃料当たりの発電量(kW/L)の一覧表である。
(Test Example 5)
18 L of the fuel activator of Experimental Example 9 was added once every two weeks to 5000 L of C heavy oil in a fuel tank of a 500 kW homemade power generation device (manufactured by Komatsu). The power generation amount (kW / L) per unit fuel for one month before and after adding the fuel activator was measured.
Table 4 is a list of total power generation amount (kW), fuel consumption amount (L), and power generation amount per unit fuel (kW / L) before and after adding the fuel activator.

表4から、燃料がC重油の発電装置の場合も、燃料活性剤を添加した場合は無添加の場合と比較して、単位燃料当たりの発電量を20%以上向上できることが明らかになった。なお、燃料活性剤を添加する前は、排気管から黒い排ガスが排出されていたことが視認されたが、燃料活性剤を添加して約1週間経過した時点で、排ガスが清浄化されたことが視認された。また、排ガス中の黒鉛が目にしみることもなくなった。   From Table 4, it was found that the power generation amount per unit fuel can be improved by 20% or more when the fuel activator is added as compared with the case where the fuel activator is not added. Before the addition of the fuel activator, it was visually confirmed that black exhaust gas was discharged from the exhaust pipe. However, after about one week had passed since the fuel activator was added, the exhaust gas was cleaned. Was visible. Moreover, the graphite in the exhaust gas is no longer visible.

(試験例6)
次に、燃料活性剤を添加することによって、ディーゼル機関内で燃料の燃焼状態がどのように変化するのかを調べた。
図2はディーゼル機関内で燃料が燃焼するパターンと、圧力、熱発生率、噴射率、クランク角との関係を示す図である。図2に示すように、ディーゼル機関の燃焼パターンには、(1)圧縮された空気中に燃料が噴射されてから爆発するまでの期間(着火遅れ期間)、(2)燃料が爆発し燃焼する期間(爆発燃焼期間)、(3)燃焼が制御される期間(制御燃焼期間)、(4)燃焼ガスが排気される期間(後燃え期間)の4つの期間が存在する。
燃料活性剤を添加していない燃料と実験例9の燃料活性剤を添加した燃料を、内部を透視できるように一部に耐熱ガラスを配設したシリンダ内で燃焼させ、火炎の様子を高速度カメラで撮影し比較することによって、燃焼状態にどのような差が生じているのかを調べた。
図3は燃料活性剤を添加していない燃料と実験例9の燃料活性剤を添加した燃料について、シリンダ内に噴射された燃料及び燃料の燃焼による火炎を経過時間毎に撮影した写真である。数値は経過時間(単位はms)を示しており、矢印で示した範囲は、図2で説明した(1)〜(4)の期間である。
図3に示すように、燃料活性剤を添加した燃料(以下、添加燃料という)は、燃料活性剤を添加していない燃料(以下、無添加燃料という)と比較して、爆発燃焼期間(2)における火炎が大きなことから、燃焼が激しく大きな圧力が得られエネルギー変換効率が向上されていると推察される。また、添加燃料は、爆発燃焼期間の後、無添加燃料よりも火炎が早く小さくなっており制御燃焼期間(3)が短縮されていることから、燃料の噴射量が抑制されていると推察される。また、添加燃料は、制御燃焼期間の後、無添加燃料よりも火炎が長時間維持されており後燃え期間(4)が長期化していることから、制御燃焼期間が終わるまでに燃焼し尽されなかった燃料が燃焼されていると推察される。一方、無添加燃料は、後燃え期間が短いため、燃焼し尽されなかった燃料が黒鉛や未燃焼ガスとして排出されていると推察される。
以上のことから、添加燃料は、微粒子が火炎中に微細な固体として存在するので、火炎の輻射能を向上させ燃焼効率を高めることができ、このため、燃料消費量を少なくすることができ燃費を向上させ、さらに二酸化炭素の排出量を減らすことができたと推察される。また、燃焼装置内の温度や圧力が低い後燃え期間の条件下でも、従来は燃焼しきれずに排出されていた黒鉛の燃焼や一酸化炭素(CO)等の未燃焼ガスの酸素化と、窒素酸化物(NOx)の還元を促し排ガス中の窒素酸化物の発生を抑制させることができたと推察される。また、燃料の噴霧性・拡散性・流動性を改善し微細化できたので、燃料の着火性が向上し多くの酸素と結合するため、燃費の向上と未燃焼ガスの発生を抑制できたと推察される。
(Test Example 6)
Next, it was investigated how the combustion state of the fuel changes in the diesel engine by adding the fuel activator.
FIG. 2 is a diagram showing the relationship between the pattern of fuel combustion in a diesel engine and the pressure, heat generation rate, injection rate, and crank angle. As shown in FIG. 2, the combustion pattern of a diesel engine includes (1) a period from when fuel is injected into compressed air until it explodes (ignition delay period), and (2) fuel explodes and burns. There are four periods: a period (explosion combustion period), (3) a period during which combustion is controlled (control combustion period), and (4) a period during which combustion gas is exhausted (post-combustion period).
The fuel with no added fuel activator and the fuel with the fuel activator of Experimental Example 9 burned in a cylinder with heat-resistant glass in part so that the inside can be seen through. The difference in the combustion state was examined by photographing and comparing with a camera.
FIG. 3 is a photograph of the fuel not added with the fuel activator and the fuel added with the fuel activator of Experimental Example 9 taken for each elapsed time of the fuel injected into the cylinder and the flame caused by the combustion of the fuel. The numerical value indicates the elapsed time (unit: ms), and the range indicated by the arrow is the period (1) to (4) described in FIG.
As shown in FIG. 3, the fuel to which the fuel activator is added (hereinafter referred to as added fuel) is compared with the fuel to which the fuel activator is not added (hereinafter referred to as non-added fuel). ) Is large, it is presumed that the combustion is intense and a large pressure is obtained and the energy conversion efficiency is improved. In addition, it is surmised that after the explosion combustion period, the added fuel has a smaller flame than the non-added fuel, and the controlled combustion period (3) is shortened. The In addition, since the flame is maintained for a longer time than the non-added fuel after the controlled combustion period and the post-combustion period (4) is prolonged, the added fuel is burned out by the end of the controlled combustion period. It is assumed that the fuel that did not exist is burned. On the other hand, since the additive-free fuel has a short afterburn period, it is assumed that the fuel that was not burned out was discharged as graphite or unburned gas.
From the above, the additive fuel has fine particles present as a fine solid in the flame, so it can improve the radiation efficiency of the flame and increase the combustion efficiency, and therefore can reduce fuel consumption and fuel consumption. It is surmised that CO2 emissions were further reduced. In addition, under the conditions of the afterburning period when the temperature and pressure in the combustion apparatus are low, the combustion of graphite, which was conventionally exhausted without being burned, the oxygenation of unburned gas such as carbon monoxide (CO), and nitrogen It is presumed that reduction of oxide (NOx) was promoted and generation of nitrogen oxides in exhaust gas could be suppressed. In addition, the fuel sprayability, diffusivity, and fluidity were improved and refined, so the ignitability of the fuel was improved and it was combined with a large amount of oxygen. Is done.

本発明は、燃料に添加して燃料を活性化させる燃料活性剤及び燃料の燃焼方法に関し、火炎の輻射能を向上させ燃焼効率を高めることができ、理想的な燃焼状態に近づけて燃料消費量を少なくさせ燃費を向上させられるとともに二酸化炭素の排出量を減らすことができ、さらに窒素酸化物の還元を促し排ガス中の窒素酸化物の発生を抑制させることができ、また従来は燃焼しきれずに排出されていた黒鉛の燃焼や一酸化炭素等の未燃焼ガスの酸素化を促進し、黒鉛や未燃焼ガスの排出量も低減させることができる環境保全性に優れた燃料活性剤及び燃料の燃焼方法を提供することができる。   The present invention relates to a fuel activator that is added to fuel and activates the fuel, and a fuel combustion method, which can improve the radiation efficiency of the flame and increase the combustion efficiency, and bring the fuel consumption close to the ideal combustion state. Can reduce fuel consumption and reduce carbon dioxide emissions, and further promote the reduction of nitrogen oxides to suppress the generation of nitrogen oxides in the exhaust gas. Combustion of fuel activator and fuel with excellent environmental conservation that can promote combustion of the discharged graphite and oxygenation of unburned gas such as carbon monoxide and reduce the emission of graphite and unburned gas A method can be provided.

コロイド状溶液に印加した電圧と燃費の関係を示す図Diagram showing the relationship between the voltage applied to the colloidal solution and fuel consumption ディーゼル機関内で燃料が燃焼するパターンと、圧力、熱発生率、噴射率、クランク角との関係を示す図Diagram showing the relationship between the pattern of fuel combustion in a diesel engine and the pressure, heat generation rate, injection rate, and crank angle 燃料活性剤を添加していない燃料と燃料活性剤を添加した燃料について、シリンダ内に噴射された燃料及び燃料の燃焼による火炎を経過時間毎に撮影した写真Photographs of fuel injected with no fuel activator and fuel added with fuel activator, taken in cylinders, and flames of fuel combustion taken at each elapsed time

Claims (5)

銀及び/又は酸化銀の微粒子が分散されていることを特徴とする燃料活性剤。   A fuel activator wherein fine particles of silver and / or silver oxide are dispersed. 前記微粒子がコロイド状態で含有されていることを特徴とする請求項1に記載の燃料活性剤。   The fuel activator according to claim 1, wherein the fine particles are contained in a colloidal state. 前記微粒子が分散されたコロイド状溶液10容量部に対し、分散媒450〜4750容量部を含有していることを特徴とする請求項2に記載の燃料活性剤。   3. The fuel activator according to claim 2, wherein the fuel activator contains 450 to 4750 parts by volume of a dispersion medium with respect to 10 parts by volume of the colloidal solution in which the fine particles are dispersed. 前記微粒子が分散されたコロイド状溶液が、1kV〜5000kVの高電圧印加されていることを特徴とする請求項2又は3に記載の燃料活性剤。 The fuel activator according to claim 2 or 3, wherein a high voltage of 1 kV to 5000 kV is applied to the colloidal solution in which the fine particles are dispersed. 銀及び/又は酸化銀の微粒子を燃料とともに燃焼させることを特徴とする燃料の燃焼方法。   A fuel combustion method comprising burning fine particles of silver and / or silver oxide together with a fuel.
JP2005318856A 2005-11-01 2005-11-01 Fuel activator and fuel combustion method Expired - Fee Related JP4436308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318856A JP4436308B2 (en) 2005-11-01 2005-11-01 Fuel activator and fuel combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318856A JP4436308B2 (en) 2005-11-01 2005-11-01 Fuel activator and fuel combustion method

Publications (2)

Publication Number Publication Date
JP2007125475A true JP2007125475A (en) 2007-05-24
JP4436308B2 JP4436308B2 (en) 2010-03-24

Family

ID=38148584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318856A Expired - Fee Related JP4436308B2 (en) 2005-11-01 2005-11-01 Fuel activator and fuel combustion method

Country Status (1)

Country Link
JP (1) JP4436308B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297433A (en) * 2006-04-28 2007-11-15 Temper Corp Diesel-alternate oil and method for producing the same
JP2010121000A (en) * 2008-11-18 2010-06-03 Yoshio Ichikawa Fuel oil-modifying additive and method for modifying fuel oil
WO2012039429A1 (en) * 2010-09-24 2012-03-29 株式会社マリネックス Water-mixed fuel and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297433A (en) * 2006-04-28 2007-11-15 Temper Corp Diesel-alternate oil and method for producing the same
JP4598714B2 (en) * 2006-04-28 2010-12-15 株式会社テンパ Diesel alternative oil and method for producing the same
JP2010121000A (en) * 2008-11-18 2010-06-03 Yoshio Ichikawa Fuel oil-modifying additive and method for modifying fuel oil
WO2012039429A1 (en) * 2010-09-24 2012-03-29 株式会社マリネックス Water-mixed fuel and method for producing same
JP2012067188A (en) * 2010-09-24 2012-04-05 Marinekkus:Kk Water-mixed fuel and method for producing the same

Also Published As

Publication number Publication date
JP4436308B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP2968589B2 (en) Aqueous fuel for internal combustion engine and method for producing the same
CN104059703B (en) A kind of compression ignition engine automobile tail gas purification agent and preparation and application thereof
CN101886003B (en) Vehicle fuel oil environmentally-friendly and energy-saving agent
WO2009090980A1 (en) Fuel additive
JP4436308B2 (en) Fuel activator and fuel combustion method
CN102329660B (en) Combined diesel oil and preparation method thereof
US8323362B2 (en) Combustion modifier and method for improving fuel combustion
CN108251172A (en) A kind of efficient emission-reducing state IV diesel quality elevators
JP5137283B2 (en) Additive for reducing dust in exhaust gas caused by combustion of diesel oil and fuel composition containing the same
CN105886158B (en) A kind of carbon on engine burning cleaning agent and preparation method thereof
CN106350136A (en) Multifunctional automotive fuel additive
CN102559336A (en) Automobile exhaust PM2.5 pollutant treatment agent
CN113293039A (en) Anti-haze treatment agent for reducing soot emission of internal combustion engine and preparation method thereof
CN103642553B (en) Combustion improver for boiler and preparation method and application thereof
CN106190363A (en) Liquid fuel additive
US20130185990A1 (en) Combustion Modifier and Method for Improving Fuel Combustion
CN101191086A (en) Petroleum combustion accelerating additive and preparation method thereof
KR102517046B1 (en) Fuel additive for combustion promotion of liquid fuel and manufacturing process thereof
JP2003138278A (en) Fuel activator and fuel activation method using the same
CN102250657B (en) Energy-efficient and environment-friendly vehicle comprehensive maintaining agent and preparation method thereof
Patil et al. The Effects of Cerium Oxide Nano-particle as Fuel Additives in Diesel and Biodiesel Blends: A Review
JP2010121000A (en) Fuel oil-modifying additive and method for modifying fuel oil
CN1109497A (en) Combustion-supporting agent for fuel and its preparing method
CN1223657C (en) Metal welding-cutting gas and preparing method thereof
CN108384589A (en) One kind containing lower alcohol diesel oil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees