JP2007125453A - Operation method of condensate treatment apparatus - Google Patents

Operation method of condensate treatment apparatus Download PDF

Info

Publication number
JP2007125453A
JP2007125453A JP2005318072A JP2005318072A JP2007125453A JP 2007125453 A JP2007125453 A JP 2007125453A JP 2005318072 A JP2005318072 A JP 2005318072A JP 2005318072 A JP2005318072 A JP 2005318072A JP 2007125453 A JP2007125453 A JP 2007125453A
Authority
JP
Japan
Prior art keywords
condensate
fluorine
based material
water
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005318072A
Other languages
Japanese (ja)
Inventor
Mitsuru Yoda
充 余田
Toshio Morita
利夫 森田
Shinichi Ohashi
伸一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2005318072A priority Critical patent/JP2007125453A/en
Publication of JP2007125453A publication Critical patent/JP2007125453A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method of a condensate treatment apparatus which reduces elution of fluorine from a filter as much as possible, and enables use of a filter made of a fluorine-based material excellent in strength properties without causing a deterioration in thermal efficiency and corrosion problems of a heat-transfer pipe in a steam generator etc. <P>SOLUTION: In a power generating plant carrying out all volatile treatment, system water is treated by a condensate filtering device 1 using the filter made of the fluorine-based material and a condensate demineralizer 4 using ion exchange resins, and installed downstream of the filtering device, and the filter made of the fluorine-based material is immersed in purified water of a secondary system during stop of supplying water to the condensate filtering device 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、復水処理装置の運転方法に関し、とくに加圧水型原子力発電所(PWR)の復水処理装置の運転に好適な方法に関する。   The present invention relates to a method for operating a condensate treatment apparatus, and more particularly to a method suitable for operation of a condensate treatment apparatus in a pressurized water nuclear power plant (PWR).

加圧水型原子力発電所(PWR)において、蒸気発生器(以下、SGと略称することもある。)への鉄流入を抑制するため、二次系機器・配管の防食を目的として、ヒドラジンを用いて系統水を脱気し、アンモニア、エタノールアミン(ETA)を用いてpHを9.2程度に制御する全揮発性薬品処理(AVT)が実施されている。   In a pressurized water nuclear power plant (PWR), hydrazine is used to prevent the inflow of iron to the steam generator (hereinafter sometimes abbreviated as SG) to prevent corrosion of secondary equipment and piping. All volatile chemical treatment (AVT) is carried out by degassing the system water and controlling the pH to about 9.2 using ammonia and ethanolamine (ETA).

一方、近年、復水系の系統水浄化の目的で、復水ろ過装置の適用が進んでいるが、復水ろ過装置のフィルタの膜材質として、化学的・機械的強度に優れたフッ素系材料を適用することが検討されている(例えば、特許文献1)。しかしながら、AVT運用下においては、系統水のpHが高く、フッ素系材料からのフッ素溶出が増加するため、実用化が困難な状況となっている。
特開2002−346346号公報
On the other hand, in recent years, condensate filtration devices have been applied for the purpose of condensate system water purification, but as a membrane material for the filters of condensate filtration devices, fluorine-based materials with excellent chemical and mechanical strength are used. Application is under consideration (for example, Patent Document 1). However, under the AVT operation, since the pH of the system water is high and the elution of fluorine from the fluorine-based material increases, it is difficult to put it into practical use.
JP 2002-346346 A

AVTを実施している発電プラントにおいて、復水ろ過装置でフッ素系材料を用いたフィルタを単独で適用した場合、pHの影響を受けて、フィルタからフッ素が溶出し、そのフッ素がSG内で濃縮され、ひいてはSG伝熱管の熱効率低下や腐食の原因となる。   In a power plant implementing AVT, when a filter using a fluorine-based material alone is applied to a condensate filtration device, fluorine is eluted from the filter due to the influence of pH, and the fluorine is concentrated in the SG. As a result, the thermal efficiency of the SG heat transfer tube is reduced and corrosion is caused.

そこで本発明の課題は、化学的・機械的強度に優れたフッ素系材料からなるフィルタを用いた復水ろ過装置を有する発電プラントの復水処理装置において、上記のようなフィルタからのフッ素の溶出を極力低減し、蒸気発生器等における伝熱管の熱効率低下や腐食の問題を発生させることなく、強度特性に優れたフッ素系材料からなるフィルタの使用を可能ならしめる、復水処理装置の運転方法を提供することにある。   Accordingly, an object of the present invention is to elute fluorine from a filter as described above in a condensate treatment device of a power plant having a condensate filtration device using a filter made of a fluorine-based material having excellent chemical and mechanical strength. Condensate treatment device operation method that makes it possible to use a filter made of a fluorine-based material with excellent strength characteristics without reducing the heat efficiency of the heat transfer tube in a steam generator, etc., or causing corrosion problems Is to provide.

上記課題を解決するために、本発明に係る復水処理装置の運転方法は、全揮発性薬品処理(AVT)を実施している発電プラントにおいて、フッ素系材料からなるフィルタを用いた復水ろ過装置とその後段に設置したイオン交換樹脂を用いた復水脱塩装置で系統水を処理するとともに、前記フッ素系材料からなるフィルタを、前記復水ろ過装置への通水停止中に純水中に浸漬することを特徴とする方法からなる。   In order to solve the above-described problems, a method for operating a condensate treatment apparatus according to the present invention is a condensate filtration method using a filter made of a fluorine-based material in a power plant that performs all volatile chemical treatment (AVT). The system water is treated with a condensate demineralizer using ion exchange resin installed in the apparatus and the subsequent stage, and the filter made of the fluorine-based material is treated with pure water while the water flow to the condensate filtration apparatus is stopped. It consists of the method characterized by immersing in.

この運転方法において、上記フッ素系材料からなるフィルタの、上記復水ろ過装置への通水停止中の純水中への浸漬は、発電プラントの定検中、復水ろ過装置のバイパス運転中のいずれの時に行ってもよく、両方の時に行ってもよい。   In this operation method, the filter made of the fluorine-based material is immersed in pure water while the flow of water to the condensate filtration device is stopped, during the power plant inspection, during the bypass operation of the condensate filtration device. It may be done at any time or at both times.

上記復水処理装置の運転方法においては、フッ素系材料を用いたフィルタとその後段に設置されたイオン交換樹脂により、系統水を浄化することができる。そして、フィルタ自体からのフッ素の溶出を低減するために、復水ろ過装置使用中以外にフィルタを純水中に浸漬させて保管する。つまり、通常、復水ろ過装置の通水を停止しただけの状態では、復水ろ過装置内に復水が充満しており、AVTを実施している発電プラントでは、フィルタは高pHの復水中に浸漬されたままの状態となる(たとえ復水を復水ろ過装置から抜いたとしても、二次側には復水が残されたままの状態となるから、結局、フィルタは高pHの復水に曝されたままの状態となる)。このような状態では、前述の如く、フィルタからのフッ素の溶出が進行し、少なくとも、発電プラントの定検後の立ち上がりに長時間を要することとなる。フィルタを完全に中性の純水中に浸漬させておくことにより、少なくとも復水ろ過装置への通水停止中のフッ素の溶出は防止されるから、定検等を含めた全期間中におけるフッ素の溶出が低減されることになる。   In the operation method of the condensate treatment apparatus, the system water can be purified by a filter using a fluorine-based material and an ion exchange resin installed in the subsequent stage. And in order to reduce the elution of fluorine from the filter itself, the filter is immersed and stored in pure water other than when the condensate filtration device is used. In other words, normally, the condensate filtration device is filled with condensate only when the condensate filtration device is stopped, and in power plants that implement AVT, the filter is (Even if the condensate is removed from the condensate filtration device, the condensate remains on the secondary side. Will remain exposed to water). In such a state, as described above, elution of fluorine from the filter proceeds, and at least it takes a long time for the power plant to start up after regular inspection. By completely immersing the filter in neutral pure water, it is possible to prevent the elution of fluorine during the stoppage of water flow to at least the condensate filtration device. Elution will be reduced.

本発明に係る復水処理装置の運転方法によれば、フッ素系材料からなるフィルタを用いた復水ろ過装置とその後段に設置したイオン交換樹脂を用いた復水脱塩装置で系統水を処理することにより系統水を適切に浄化することができるとともに、フッ素系材料からなるフィルタを、復水ろ過装置への通水停止中に純水中に浸漬しておくことで、全体としてフィルタからのフッ素の溶出を低減することができ、化学的・機械的強度に優れたフッ素系材料からなるフィルタを、とくに蒸気発生器等における伝熱管の熱効率低下や腐食の問題を発生させることなく、使用することが可能になる。   According to the operation method of the condensate treatment apparatus according to the present invention, system water is treated by a condensate filtration apparatus using a filter made of a fluorine-based material and a condensate demineralizer using an ion exchange resin installed in the subsequent stage. System water can be appropriately purified by immersing the filter made of a fluorine-based material in pure water while the water flow to the condensate filtration device is stopped. Use a filter made of a fluorine-based material that can reduce the elution of fluorine and has excellent chemical and mechanical strength, without causing problems such as a decrease in thermal efficiency and corrosion of the heat transfer tube in a steam generator. It becomes possible.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の一実施態様に係る復水処理装置の運転方法の実施に用いる、全揮発性薬品処理(AVT)を実施している発電プラント(特に、加圧水型原子力発電プラント)の復水ろ過装置周りの機器系統を示している。図1において、1は復水ろ過装置を示しており、この復水ろ過装置1では、フッ素系材料(例えば、2フッ化ビニリデン(PVDF))からなるフィルタ(例えば、中空糸フィルタ)が使用されている。復水入口2側から導入された復水は、復水出口3側から、後段に設置したイオン交換樹脂を用いた復水脱塩装置4へと送られるようになっている。但し、復水脱塩装置4へ通水することなく(つまり、復水脱塩装置4をバイパスさせて)、復水器(図示略)へ直接送るライン5も設けられている。また、復水ろ過装置1に通水することなく、復水ろ過装置1をバイパスさせるバイパスライン6も設けられている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the recovery of a power plant (especially a pressurized water nuclear power plant) that performs all volatile chemical treatment (AVT) used in the implementation of the operation method of the condensate treatment apparatus according to one embodiment of the present invention. The equipment system around the water filter is shown. In FIG. 1, reference numeral 1 denotes a condensate filtration device. In this condensate filtration device 1, a filter (for example, a hollow fiber filter) made of a fluorine-based material (for example, vinylidene difluoride (PVDF)) is used. ing. The condensate introduced from the condensate inlet 2 side is sent from the condensate outlet 3 side to a condensate demineralizer 4 using an ion exchange resin installed in the subsequent stage. However, there is also provided a line 5 that does not pass water to the condensate demineralizer 4 (that is, bypasses the condensate demineralizer 4) and directly sends it to a condenser (not shown). In addition, a bypass line 6 that bypasses the condensate filtration device 1 without passing through the condensate filtration device 1 is also provided.

このような復水処理装置において、フッ素系材料からなるフィルタの純水中への浸漬は、次のようなステップにより行うことができる。例えば定検開始時の装置停止状態では、図1に示すように、復水ろ過装置1への通水が停止され、図1の斜線部に復水(つまり、AVT処理によるアルカリ水)が溜まっている。   In such a condensate treatment apparatus, the filter made of a fluorine-based material can be immersed in pure water by the following steps. For example, when the apparatus is stopped at the start of regular inspection, as shown in FIG. 1, water flow to the condensate filtration apparatus 1 is stopped, and condensate (that is, alkaline water by AVT treatment) accumulates in the shaded area in FIG. ing.

上記状態から、図2に示すように、空気圧縮機7からの圧縮空気を、空気貯槽8を介して復水ろ過装置1のろ過塔内に導入し、復水ろ過装置1の一次側に溜まっている復水を、例えば逆洗タンクへドレンする。空気圧縮機7や空気貯槽8には、復水脱塩装置4の樹脂移送用の機器を利用することも可能である。   From the above state, as shown in FIG. 2, the compressed air from the air compressor 7 is introduced into the filtration tower of the condensate filtration device 1 through the air storage tank 8 and accumulated on the primary side of the condensate filtration device 1. For example, the condensate is drained into a backwash tank. For the air compressor 7 and the air storage tank 8, it is also possible to use a resin transfer device of the condensate demineralizer 4.

次いで、図3に示すように、復水ろ過装置1のベント弁を開いて例えば塔内を大気圧に開放し、復水ろ過装置1の二次側に溜まっている復水を塔内に落とすとともにドレン弁を開いて二次側の配管内に溜まっている復水を系外へドレンする。   Next, as shown in FIG. 3, the vent valve of the condensate filtration device 1 is opened, for example, the inside of the tower is opened to atmospheric pressure, and the condensate accumulated on the secondary side of the condensate filtration device 1 is dropped into the tower. At the same time, the drain valve is opened to drain the condensate accumulated in the secondary pipe to the outside of the system.

そして図4に示すように、ろ過塔内に再び圧縮空気を導入し、復水ろ過装置1の塔内保有水を例えば逆洗タンクへドレンする。   And as shown in FIG. 4, compressed air is again introduce | transduced in a filtration tower, and the water in the tower | column of the condensate filtration apparatus 1 is drained to a backwash tank, for example.

次に、図5に示すように、復水ろ過装置1のろ過塔下部より、二次系純水を導入し、復水ろ過装置1の一次側を純水に置換する。   Next, as shown in FIG. 5, secondary pure water is introduced from the lower part of the filtration tower of the condensate filtration device 1, and the primary side of the condensate filtration device 1 is replaced with pure water.

さらに図6に示すように、復水ろ過装置1のベント弁を開き、ろ過塔下部より導入される純水によって復水ろ過装置1の二次側を純水に置換する。   Furthermore, as shown in FIG. 6, the vent valve of the condensate filtration apparatus 1 is opened, and the secondary side of the condensate filtration apparatus 1 is replaced with pure water by pure water introduced from the lower part of the filtration tower.

以上のステップにより、ろ過塔内は完全に純水に置換された状態となり、フッ素系材料からなるフィルタは完全に純水中に浸漬される。この状態で、所定期間保管される。定検中であれば少なくともその定検中、復水ろ過装置1のバイパス運転中であれば、そのバイパス運転中の全期間あるいは一部の期間、純水中に浸漬、保管される。   Through the above steps, the inside of the filtration tower is completely replaced with pure water, and the filter made of the fluorine-based material is completely immersed in pure water. In this state, it is stored for a predetermined period. If during regular inspection, at least during regular inspection, and during bypass operation of the condensate filtration device 1, it is immersed and stored in pure water for the entire period or part of the bypass operation.

AVTを実施している発電プラントにおける高pHの復水中に浸漬されたままの状態に比べ、完全に中性の純水中にフィルタが浸漬、保管されるので、フィルタからのフッ素の溶出が防止され、結局、続く運転期間中、さらには定検等を含めた全期間中におけるフッ素の溶出が低減されることになる。フッ素溶出の低減により、化学的・機械的強度に優れたフッ素系材料からなるフィルタを、とくに蒸気発生器等における伝熱管の熱効率低下や腐食の問題を発生させることなく、使用することが可能になる。   Compared to the condition of being immersed in high pH condensate in a power plant where AVT is implemented, the filter is immersed and stored in completely neutral pure water, preventing elution of fluorine from the filter. As a result, fluorine elution is reduced during the subsequent operation period, and further throughout the entire period including the regular inspection. Reduction of fluorine elution makes it possible to use filters made of fluorine-based materials with excellent chemical and mechanical strength without causing problems such as a decrease in thermal efficiency and corrosion of heat transfer tubes in steam generators. Become.

本発明に係る方法による効果を確認するために、次のような試験を行った。
2フッ化ビニリデン(PVDF)からなるフッ素系材料を用いた中空糸膜フィルタと、この中空糸膜フィルタから溶出したフッ素を除去するため、後段にイオン交換樹脂を充填した装置を設置し、AVT処理が実施される復水を想定した5ppmN2 4 溶液を通水し、中空糸膜フィルタからのフッ素(F)の溶出濃度を測定した。
In order to confirm the effect of the method according to the present invention, the following test was performed.
A hollow fiber filter using a fluorine-based material made of vinylidene difluoride (PVDF) and a device filled with ion exchange resin in the subsequent stage to remove fluorine eluted from this hollow fiber membrane filter, and AVT treatment 5 ppm N 2 H 4 solution was passed through assuming condensate, and the elution concentration of fluorine (F) from the hollow fiber membrane filter was measured.

初期通水条件を表1に、通水試験結果を表2に示す。初期通水に使用した水には、AVTの処理が実施される復水を想定した、5ppmN2 4 溶液を用いた。表1、表2に示した結果から、フッ素系中空糸膜フィルタから溶出するフッ素は後段のイオン交換樹脂で除去できることが確認された。 The initial water flow conditions are shown in Table 1, and the water flow test results are shown in Table 2. As the water used for the initial water flow, a 5 ppm N 2 H 4 solution was used assuming condensate in which AVT treatment is performed. From the results shown in Tables 1 and 2, it was confirmed that the fluorine eluted from the fluorine-based hollow fiber membrane filter can be removed by the ion exchange resin in the subsequent stage.

また、純水中で浸漬保管する場合、および、そのまま復水想定水中で浸漬保管する場合の比較試験を行った。浸漬試験条件を表3に、浸漬試験結果を表4に示す。表3、表4に示した結果から、フッ素系中空糸膜フィルタを純水中で浸漬、保管することにより、フッ素溶出を大幅に低減できることが確認された。   Moreover, the comparison test in the case of immersing and storing in pure water and in the case of immersing and storing as it is in condensate water is performed. Table 3 shows the immersion test conditions, and Table 4 shows the results of the immersion test. From the results shown in Tables 3 and 4, it was confirmed that fluorine elution can be significantly reduced by immersing and storing the fluorine-based hollow fiber membrane filter in pure water.

Figure 2007125453
Figure 2007125453

Figure 2007125453
Figure 2007125453

Figure 2007125453
Figure 2007125453

Figure 2007125453
Figure 2007125453

本発明に係る復水処理装置の運転方法は、とくに全揮発性薬品処理(AVT)が実施されている加圧水型原子力発電所(PWR)の復水処理装置の運転に適用して好適な方法であり、本発明の適用により、蒸気発生器等における伝熱管の熱効率低下や腐食の問題を発生させることなく、強度特性に優れたフッ素系材料からなるフィルタの使用が可能になる。   The operation method of the condensate treatment apparatus according to the present invention is a method suitable for application to the operation of the condensate treatment apparatus of a pressurized water nuclear power plant (PWR) in which all volatile chemical treatment (AVT) is performed. With the application of the present invention, it is possible to use a filter made of a fluorine-based material having excellent strength characteristics without causing problems such as a decrease in thermal efficiency and corrosion of the heat transfer tube in a steam generator or the like.

本発明の一実施態様に係る復水処理装置の運転方法の実施に用いる発電プラントの復水ろ過装置周りの機器系統図であり、復水の通水停止時の状態を示す機器系統図である。It is an equipment system diagram around a condensate filtration device of a power plant used for implementation of an operation method of a condensate treatment apparatus concerning one embodiment of the present invention, and is an equipment system diagram showing a state at the time of condensate water stoppage. . 図1の装置の復水ろ過装置内を純水に置換するための、図1の次のステップを示す機器系統図である。FIG. 2 is an equipment system diagram showing the next step of FIG. 1 for replacing the inside of the condensate filtration device of the apparatus of FIG. 1 with pure water. 図1の装置の図2の次のステップを示す機器系統図である。FIG. 3 is an equipment diagram showing the next step of FIG. 2 of the apparatus of FIG. 1. 図1の装置の図3の次のステップを示す機器系統図である。FIG. 4 is a device system diagram showing the next step of FIG. 3 of the apparatus of FIG. 1. 図1の装置の図4の次のステップを示す機器系統図である。FIG. 5 is an equipment diagram showing the next step of FIG. 4 of the apparatus of FIG. 1. 図1の装置の図5の次のステップを示す機器系統図である。FIG. 6 is an equipment diagram showing the next step of FIG. 5 of the apparatus of FIG. 1.

符号の説明Explanation of symbols

1 復水ろ過装置
2 復水入口
3 復水出口
4 復水脱塩装置
5 復水器へのライン
6 バイパスライン
7 空気圧縮機
8 空気貯槽
DESCRIPTION OF SYMBOLS 1 Condensate filtration apparatus 2 Condensate inlet 3 Condensate outlet 4 Condensate demineralizer 5 Line to condenser 6 Bypass line 7 Air compressor 8 Air storage tank

Claims (2)

全揮発性薬品処理を実施している発電プラントにおいて、フッ素系材料からなるフィルタを用いた復水ろ過装置とその後段に設置したイオン交換樹脂を用いた復水脱塩装置で系統水を処理するとともに、前記フッ素系材料からなるフィルタを、前記復水ろ過装置への通水停止中に純水中に浸漬することを特徴とする、復水処理装置の運転方法。   In power plants that carry out all volatile chemical treatment, system water is treated with a condensate filtration device using a filter made of a fluorine-based material and a condensate demineralizer using an ion exchange resin installed in the subsequent stage. A method for operating the condensate treatment apparatus is characterized in that the filter made of the fluorine-based material is immersed in pure water while water flow to the condensate filtration apparatus is stopped. 前記フッ素系材料からなるフィルタの、前記復水ろ過装置への通水停止中の純水中への浸漬を、前記発電プラントの定検中または/および前記復水ろ過装置のバイパス運転中に行う、請求項1に記載の復水処理装置の運転方法。   The filter made of the fluorine-based material is immersed in pure water while water flow to the condensate filtration device is stopped during the regular inspection of the power plant and / or during the bypass operation of the condensate filtration device. The operation method of the condensate treatment apparatus of Claim 1.
JP2005318072A 2005-11-01 2005-11-01 Operation method of condensate treatment apparatus Pending JP2007125453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318072A JP2007125453A (en) 2005-11-01 2005-11-01 Operation method of condensate treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318072A JP2007125453A (en) 2005-11-01 2005-11-01 Operation method of condensate treatment apparatus

Publications (1)

Publication Number Publication Date
JP2007125453A true JP2007125453A (en) 2007-05-24

Family

ID=38148565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318072A Pending JP2007125453A (en) 2005-11-01 2005-11-01 Operation method of condensate treatment apparatus

Country Status (1)

Country Link
JP (1) JP2007125453A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294904A (en) * 1987-05-26 1988-12-01 Nippon Atom Ind Group Co Ltd Method for preserving hollow yarn membrane filter
JP2002346346A (en) * 2001-01-31 2002-12-03 Toshiba Corp Filter, method for cleaning filter, filtration apparatus and power generation plant
JP2003053161A (en) * 2001-06-05 2003-02-25 Japan Organo Co Ltd Method for cleaning hollow fiber membrane module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294904A (en) * 1987-05-26 1988-12-01 Nippon Atom Ind Group Co Ltd Method for preserving hollow yarn membrane filter
JP2002346346A (en) * 2001-01-31 2002-12-03 Toshiba Corp Filter, method for cleaning filter, filtration apparatus and power generation plant
JP2003053161A (en) * 2001-06-05 2003-02-25 Japan Organo Co Ltd Method for cleaning hollow fiber membrane module

Similar Documents

Publication Publication Date Title
US7309424B2 (en) Filtering apparatus, back wash method therefor, filtering device and power plant
JP5651580B2 (en) Water quality management method and system for power plant
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
EP1960128B1 (en) Method and device for cleaning components of a power station by injection of a medium and measuring device for measuring the degree of purity of the medium
JP2008025922A (en) Turbine facility, and water treatment method of heater drain water from turbine facility
JP3667525B2 (en) Steam generator-attached nuclear power generation turbine facility
JP2007125453A (en) Operation method of condensate treatment apparatus
WO2016063581A1 (en) Treatment method and treatment apparatus for ammonia-containing wastewater
JP3871567B2 (en) Filter, filter backwash method and power plant
JP4180019B2 (en) Reverse osmosis membrane cleaning method and wastewater recovery method using this method
JP2019098206A (en) Ammonia concentration method and device
JP5357943B2 (en) Method for removing iron components from heater drain water in power plants
KR20160047548A (en) Method for the recovery of process wastewaters of a fossil-fueled steam power plant and fossil-fueled steam power plant
JPH11304993A (en) Turbine equipment for power generation
JP4599326B2 (en) Filtration equipment and power plant
WO2014102978A1 (en) Method for removing iron components from heater drain water in power-generating plant
JP4926924B2 (en) Water purification device in the suppression chamber
JP2023035084A (en) Start-up method of water treatment apparatus
JP4202277B2 (en) Filter and power plant using the same
TW202200257A (en) Cleaning method of separation membrane
JPH10197686A (en) Reactor power plant and its operation method
JP2020085276A (en) Condensate processing device
JP2015021850A (en) Corrosion suppression method and corrosion suppression device for reactor structure
JP2005283515A (en) Back washing water processing system and condensate processing system for atomic power plant
JP2020051886A (en) Water treatment method and water treatment preparation method for nuclear power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120302