JP2007124835A - Method of estimating rotating angle of synchronous machine having saliency - Google Patents

Method of estimating rotating angle of synchronous machine having saliency Download PDF

Info

Publication number
JP2007124835A
JP2007124835A JP2005315180A JP2005315180A JP2007124835A JP 2007124835 A JP2007124835 A JP 2007124835A JP 2005315180 A JP2005315180 A JP 2005315180A JP 2005315180 A JP2005315180 A JP 2005315180A JP 2007124835 A JP2007124835 A JP 2007124835A
Authority
JP
Japan
Prior art keywords
magnetic pole
frequency
current
synchronous machine
frequency voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005315180A
Other languages
Japanese (ja)
Inventor
Kenji Iguma
賢二 猪熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005315180A priority Critical patent/JP2007124835A/en
Publication of JP2007124835A publication Critical patent/JP2007124835A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce magnetic noise and vibration and reduce power loss while securing the accuracy in judgement of a magnetic pole and reducing errors in the estimation of a rotor position. <P>SOLUTION: A high frequency current controller 209 for judgement of magnetic poles calculates the difference between the maximum amplitude value of a high frequency current at the position of a magnetic pole in specified polarity and the maximum amplitude value of a high frequency current at the position of a magnetic pole in opposite polarity, and adjusts the amplitude of high frequency voltage so that this difference may be within a suitable range. Hereby, it can reduce magnetic noise and power loss while securing the accuracy in judgement of magnetic polarity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電機子コイルに高周波電圧を重畳させて磁気突極性を有する同期機の回転子位置を検出する突極性を有する同期機の回転角推定方法に関する。   The present invention relates to a method for estimating a rotation angle of a synchronous machine having a saliency that detects a rotor position of a synchronous machine having a magnetic saliency by superimposing a high-frequency voltage on an armature coil.

たとえばブラシレスDCモータでは回転子位置(磁極位置又は回転角度又はロータ位置又はロータ角度とも呼ばれている)を検出するために、電機子コイルの電流や電圧を用いて回転子位置を推定するセンサレス回転角推定方法が提案されている。   For example, in a brushless DC motor, in order to detect a rotor position (also referred to as a magnetic pole position or a rotation angle, or a rotor position or a rotor angle), sensorless rotation is used to estimate the rotor position using an armature coil current or voltage. An angle estimation method has been proposed.

しかし、このセンサレス回転角推定方法において、電機子コイルの電流や電圧を用いる場合にはロータが停止している場合や低速回転している場合において、回転子位置検出精度が低下してしまう。このため、駆動電圧にその周波数(駆動周波数とも言う)より高周波の回転角推定用高周波電圧を重畳させて回転子位置推定を行うことがたとえば下記の特許文献1〜3などに提案されている。以下、この方式を高周波電圧重畳方式と称する。この高周波電圧重畳方式による回転子位置推定では、回転子位置検出を必要とする同期機において回転子位置検出器を省略できるとともに、静止状態や低速回転状態でも回転子位置検出精度を良好に確保することができる。なお、この高周波電圧重畳方式は、電機子コイルに重畳した高周波電圧により電機子コイルに流れる高周波電流が、ロータ回転による突極型同期機の電機子コイルインダクタンスの周期変化により周期変化する現象を利用している。   However, in this sensorless rotation angle estimation method, when the current or voltage of the armature coil is used, the rotor position detection accuracy decreases when the rotor is stopped or when the rotor is rotating at a low speed. For this reason, for example, the following Patent Documents 1 to 3 propose that the rotor position is estimated by superimposing a high-frequency voltage for estimating a rotation angle higher than the frequency (also referred to as drive frequency) on the drive voltage. Hereinafter, this method is referred to as a high frequency voltage superposition method. In the rotor position estimation by this high-frequency voltage superposition method, the rotor position detector can be omitted in a synchronous machine that needs to detect the rotor position, and the rotor position detection accuracy is ensured well even in a stationary state or a low-speed rotation state. be able to. This high-frequency voltage superposition method utilizes the phenomenon that the high-frequency current flowing in the armature coil due to the high-frequency voltage superimposed on the armature coil changes periodically due to the period change of the armature coil inductance of the salient pole type synchronous machine due to the rotor rotation. is doing.

従来の高周波電圧重畳方式について更に具体的に説明する。   The conventional high frequency voltage superposition method will be described more specifically.

突極型同期機では、電機子コイルのインダクタンスが回転直交座標(dq軸座標)系上のd軸方向にて最小となる。従って、一定振幅で所定周波数にて回転する高周波電圧を電機子コイルに印加すると、その時の静止直交座標(αβ軸座標)系上の高周波電流の軌跡は楕円形状となる。以下、この楕円を電流楕円軌跡とも言う。高周波電流の頂点は、この電流楕円軌跡上を高周波電圧(及び高周波電流)の周波数にて回転する。また、電流楕円軌跡は、駆動周波数で静止直交座標系上を回転する。電流楕円軌跡の長径軸はd軸方向となるので、静止直交座標系のα軸と長径軸との位相を演算することによりα軸を基準とする回転子位置θを推定することができる。   In the salient pole type synchronous machine, the inductance of the armature coil is minimized in the d-axis direction on the rotation orthogonal coordinate (dq axis coordinate) system. Therefore, when a high-frequency voltage rotating at a predetermined frequency with a constant amplitude is applied to the armature coil, the locus of the high-frequency current on the stationary orthogonal coordinate (αβ-axis coordinate) system at that time becomes an elliptical shape. Hereinafter, this ellipse is also referred to as a current ellipse locus. The apex of the high frequency current rotates on the current ellipse locus at the frequency of the high frequency voltage (and high frequency current). Further, the current elliptical locus rotates on the stationary orthogonal coordinate system at the driving frequency. Since the major axis of the current elliptical locus is the d-axis direction, the rotor position θ with reference to the α axis can be estimated by calculating the phase between the α axis and the major axis of the stationary orthogonal coordinate system.

静止直交座標系上における高周波電圧Vhの軌跡と、高周波電流Ihの軌跡とを図3に示す。高周波電圧Vhの軌跡は円形、高周波電流Ihの軌跡は楕円形となる。図3において、回転子位置は、α軸に対するd軸の回転子位置θとして決定される。ただし、以下の説明では、d軸とはロータ回転軸中心から見てN極磁石中心の方向を言うものとする。高周波電圧1周期の電流楕円軌跡における高周波電流Ihの振幅の最大値Imaxのα軸成分をImaxα、高周波電流の最大値Imaxのβ軸成分をImaxβとすれば、tanθ=Imaxβ/Imaxαの式が成立するから、検出したImaxα及びImaxβから回転子位置θを算出することができる。   FIG. 3 shows the locus of the high-frequency voltage Vh and the locus of the high-frequency current Ih on the stationary orthogonal coordinate system. The locus of the high frequency voltage Vh is circular, and the locus of the high frequency current Ih is elliptic. In FIG. 3, the rotor position is determined as the d-axis rotor position θ with respect to the α-axis. However, in the following description, the d-axis refers to the direction of the N-pole magnet center as viewed from the rotor rotation axis center. If the α-axis component of the maximum value Imax of the amplitude of the high-frequency current Ih in the current elliptical locus of one cycle of the high-frequency voltage is Imaxα and the β-axis component of the maximum value Imax of the high-frequency current is Imaxβ, the formula tanθ = Imaxβ / Imaxα is established. Therefore, the rotor position θ can be calculated from the detected Imaxα and Imaxβ.

ただし、電流楕円軌跡が図3のように対称形状をもつ場合には、高周波電圧の1周期において、電流楕円軌跡1周期分の長径軸方向に二つの高周波電流Ihの最大振幅値(単に最大値とも言う)Imax、Imax’が存在する。Imaxは長径軸方向の正側の最大値であり、Imax’は負側の最大値である。つまり、高周波電流Ihの最大値は電流楕円軌跡1周期分から二つ抽出される。   However, when the current elliptical locus has a symmetric shape as shown in FIG. 3, in one cycle of the high frequency voltage, the maximum amplitude value (simply the maximum value) of the two high frequency currents Ih in the major axis direction for one cycle of the current elliptical locus. Also called Imax and Imax ′. Imax is the maximum value on the positive side in the major axis direction, and Imax 'is the maximum value on the negative side. That is, two maximum values of the high-frequency current Ih are extracted from one cycle of the current elliptical locus.

ただ、通常においては回転子位置として磁石のN極方向とα軸との間の角度を採用するため、電流楕円軌跡の長径軸方向N極向きの高周波電流Ihの最大値Imaxの値のみが、回転子位置θ演算のために利用される。この場合、電流楕円軌跡の長径軸方向S極向きの高周波電流の最大値Imax’が、電流楕円軌跡の長径軸方向N極向きの高周波電流の最大値Imaxよりも常に小さければ、長径軸方向N極向きの高周波電流の最大値Imaxを弁別して回転子位置θの算出に確実に利用することができるはずである。   However, since the angle between the N-pole direction of the magnet and the α axis is normally adopted as the rotor position, only the value of the maximum value Imax of the high-frequency current Ih in the major axis direction N-pole direction of the current elliptical locus is Used for the rotor position θ calculation. In this case, if the maximum value Imax ′ of the high-frequency current in the major axis direction S pole of the current elliptical locus is always smaller than the maximum value Imax of the high-frequency current in the major axis direction N pole of the current elliptical locus, the major axis direction N It should be possible to discriminate the maximum value Imax of the pole-oriented high-frequency current and use it reliably in the calculation of the rotor position θ.

都合がよいことに、PM型同期機(磁石ロータ式同期機)では、高周波電流に対して磁気回路が磁気飽和傾向をもつ場合に、高周波電流による磁束(電流楕円軌跡磁束とも言う)の方向とロータの磁石磁束の方向とが一致する場合に、これらの方向が逆となる場合に比べて磁気飽和の影響により電機子コイルのインダクタンスが減少し、その分だけ電流楕円軌跡の長径が増加する。すなわち、図4に示すように、電流楕円軌跡は磁気飽和により長径軸方向N極向きに伸びたいびつな形となるので、電流楕円軌跡1周期分の高周波電流Ihの各データからその最大値を選択すれば、長径軸方向S極向きの最大値Imax’は長径軸方向N極向きの最大値Imaxより小さいため、簡単に排除することができる。   Conveniently, in the PM type synchronous machine (magnet rotor type synchronous machine), when the magnetic circuit has a magnetic saturation tendency with respect to the high frequency current, the direction of the magnetic flux due to the high frequency current (also referred to as current elliptical locus magnetic flux) and When the directions of the magnetic fluxes of the rotor coincide with each other, the armature coil inductance decreases due to the influence of magnetic saturation as compared with the case where these directions are reversed, and the major axis of the current elliptical locus increases accordingly. That is, as shown in FIG. 4, the current ellipse trajectory has a distorted shape extending in the major axis direction N-pole direction due to magnetic saturation. Therefore, the maximum value is obtained from each data of the high-frequency current Ih for one period of the current ellipse trajectory. If selected, the maximum value Imax ′ in the major axis direction S pole is smaller than the maximum value Imax in the major axis direction N pole, and therefore can be easily eliminated.

上記した高周波電圧重畳方式による回転子位置θの推定や磁気飽和を利用した長径軸方向一方側(N極側)の弁別自体は既に周知事項となっているため、これ以上の説明は省略するものとする。
特開平8−205578号公報 特開2004−129430号公報 特開2005−237172号公報
The estimation of the rotor position θ by the above-described high-frequency voltage superposition method and the discrimination on one side in the major axis direction (N pole side) using magnetic saturation are already well-known matters, so further explanation will be omitted. And
JP-A-8-205578 JP 2004-129430 A JP 2005-237172 A

上記した従来の突極性を有する同期機の磁気飽和現象を用いた電流楕円軌跡の最大値が示す磁極位置の判定では、電流楕円軌跡の長径軸方向の二つの電流振幅の最大値の差が小さい場合に磁極判定精度が低下し、望ましくない誤判定が生じる可能性があった。この問題を解決するには、高周波電圧を増加して大きな高周波電流を通電し、一方側の磁極位置にて生じる磁気飽和を強化すればよい。しかしながら、このような高周波電流の増大は、磁気騒音の増大や電力損失の増大を招き、好ましくない。   In the determination of the magnetic pole position indicated by the maximum value of the current elliptical locus using the magnetic saturation phenomenon of the conventional synchronous machine having the saliency described above, the difference between the two current amplitude maximum values in the major axis direction of the current elliptical locus is small. In some cases, the magnetic pole determination accuracy is lowered, and an undesirable erroneous determination may occur. In order to solve this problem, it is only necessary to increase the high-frequency voltage and supply a large high-frequency current to reinforce magnetic saturation that occurs at the magnetic pole position on one side. However, such an increase in high-frequency current causes an increase in magnetic noise and power loss, which is not preferable.

本発明は上記問題点に鑑みなされたものであり、消費電力増大や磁気騒音の増大を抑止しつつ回転子位置推定精度を向上可能な突極性を有する同期機の回転角推定方法を提供することをその解決すべき課題としている。   The present invention has been made in view of the above problems, and provides a rotational angle estimation method for a synchronous machine having a saliency capable of improving rotor position estimation accuracy while suppressing an increase in power consumption and magnetic noise. Is a problem to be solved.

上記課題を解決する第1、第2発明の突極性を有する同期機の回転角推定方法は、突極性を有する同期機の駆動電圧周波数よりも高い周波数及び一定の振幅を有して静止座標系上を回転する高周波電圧を前記同期機の電機子コイルに重畳する高周波電圧重畳手段と、前記高周波電圧によって前記電機子コイルに流れる高周波電流を検出する高周波電流検出手段と、検出した前記高周波電流に基づいて回転子位置を推定する回転子位置推定手段と、所定極性の磁極位置における前記高周波電流の最大振幅値と、反対極性の磁極位置における前記高周波電流の最大振幅値との比較により磁極位置を判定する磁極判定手段とを備える突極性を有する同期機の回転角推定方法に適用される。この種の装置は公知となっている。   The rotation angle estimation method for a synchronous machine having a saliency according to the first and second aspects of the present invention solves the above problem, and has a stationary coordinate system having a frequency higher than a driving voltage frequency of the synchronous machine having a saliency and a constant amplitude. A high-frequency voltage superimposing means for superimposing a high-frequency voltage rotating on the armature coil of the synchronous machine; a high-frequency current detecting means for detecting a high-frequency current flowing in the armature coil by the high-frequency voltage; and the detected high-frequency current A magnetic pole position by comparing the maximum amplitude value of the high-frequency current at the magnetic pole position of a predetermined polarity and the maximum amplitude value of the high-frequency current at the magnetic pole position of the opposite polarity. The present invention is applied to a method for estimating the rotation angle of a synchronous machine having saliency with a magnetic pole determining means for determining. Such devices are known.

第1発明では特に、高周波電圧重畳手段が、所定極性の磁極位置における高周波電流の最大振幅値と、反対極性の磁極位置における高周波電流の最大振幅値との差を演算し、前記差が所定しきい値以上となるように高周波電圧の振幅を調整することを特徴としている。このようにすれば、確実に上記振幅値の差を必要レベルに維持することができるので、磁極判定が必要な場合に常に正確な磁極判定を行うことができる。   Particularly in the first invention, the high-frequency voltage superimposing means calculates a difference between the maximum amplitude value of the high-frequency current at the magnetic pole position of the predetermined polarity and the maximum amplitude value of the high-frequency current at the magnetic pole position of the opposite polarity, and the difference is predetermined. It is characterized in that the amplitude of the high frequency voltage is adjusted so as to be equal to or greater than the threshold value. In this way, the difference between the amplitude values can be reliably maintained at a required level, so that accurate magnetic pole determination can always be performed when magnetic pole determination is necessary.

好適な態様において、高周波電圧重畳手段は、この差が、所定しきい値より大きい第2の所定しきい値以下となるように高周波電圧の振幅を調整する。このようにすれば、必要以上に高周波電流を流すことがないため、磁気騒音及び消費電力の低減を図ることができる。   In a preferred aspect, the high-frequency voltage superimposing means adjusts the amplitude of the high-frequency voltage so that the difference is equal to or smaller than a second predetermined threshold value that is greater than the predetermined threshold value. In this way, since a high-frequency current does not flow more than necessary, magnetic noise and power consumption can be reduced.

好適な態様において、高周波電圧重畳手段は、同期機の起動時に所定の調整期間だけ調整を行う。このようにすれば、過去の判定結果を利用できず磁極判定の必要度が最も重要な起動時に確実に磁極判定を行うことができる。なお、起動後は、過去の磁極判定履歴を踏襲して高周波電流の最大値の磁極位置を判定すればよい。これにより、起動時以外において、磁極判定のための高周波電流の増大を必要としないため、磁気騒音及び消費電力の低減を図ることができる。   In a preferred aspect, the high frequency voltage superimposing means performs adjustment for a predetermined adjustment period when the synchronous machine is started. In this way, it is possible to reliably perform the magnetic pole determination at the start-up in which the past determination result cannot be used and the necessity of magnetic pole determination is the most important. After startup, the magnetic pole position having the maximum value of the high-frequency current may be determined by following the past magnetic pole determination history. Thereby, it is not necessary to increase the high-frequency current for determining the magnetic poles other than at the time of start-up, so that magnetic noise and power consumption can be reduced.

好適な態様において、高周波電圧重畳手段は、同期機の運転中に所定期間毎に所定の調整期間だけ上記調整を行う。このようにすれば、モータ駆動中においても所定期間毎に磁極判定を行うことで外乱による脱調を防止することができる。   In a preferred aspect, the high-frequency voltage superimposing means performs the adjustment for a predetermined adjustment period every predetermined period during operation of the synchronous machine. In this way, step-out due to disturbance can be prevented by performing the magnetic pole determination every predetermined period even during motor driving.

好適な態様において、この所定期間は、駆動電圧周波数が高い場合、又は、駆動電圧周波数の変化が大きい場合に短縮される。このようにすれば、磁極を誤判定する可能性が高い場合にのみ高頻度にて磁極判定を行うため、磁気騒音及び電力損失増大を抑止しつつ磁極判定精度を確保することができる。   In a preferred aspect, the predetermined period is shortened when the drive voltage frequency is high or when the change in the drive voltage frequency is large. In this way, the magnetic pole determination is performed with high frequency only when there is a high possibility of erroneous determination of the magnetic pole, so that magnetic pole determination accuracy can be ensured while suppressing an increase in magnetic noise and power loss.

好適な態様において、この調整期間は、高周波電圧の略2〜10周期に設定される。このようにすれば、確実に磁極判定を行えるとともに無駄に長時間の大きな高周波電流通電を必要としないため、磁気騒音及び消費電力の低減を図ることができる。   In a preferred embodiment, this adjustment period is set to approximately 2 to 10 cycles of the high frequency voltage. In this way, it is possible to reliably determine the magnetic pole and not to use a large high-frequency current for a long time, so that magnetic noise and power consumption can be reduced.

好適な態様において、調整期間の開始時の高周波電圧の増加率は、調整期間の停止時の高周波電圧の減少率より大きく設定されている。立ち上げ後の1周期のデータは捨てることが可能だが立ち下げ後は捨てることができないため、緩やかに変化させることで電流の安定性を向上させて検出誤差を低減することができる。   In a preferred aspect, the increase rate of the high-frequency voltage at the start of the adjustment period is set to be larger than the decrease rate of the high-frequency voltage at the stop of the adjustment period. Data for one cycle after the start-up can be discarded, but cannot be discarded after the start-up. Therefore, by gradually changing the data, the current stability can be improved and the detection error can be reduced.

好適な態様において、所定極性の磁極位置における高周波電流の最大振幅値と、反対極性の磁極位置における高周波電流の最大振幅値との差が所定しきい値未満の場合に磁極位置判定を中止し、最大振幅値の差が所定しきい値を超える場合に磁極位置判定を許可する。上記調整にもかかわらず上記差が所定値以下のときは磁極判定を中止するので、磁極判定ミスを防止することができる。   In a preferred embodiment, when the difference between the maximum amplitude value of the high-frequency current at the magnetic pole position of the predetermined polarity and the maximum amplitude value of the high-frequency current at the magnetic pole position of the opposite polarity is less than a predetermined threshold, the magnetic pole position determination is stopped. The magnetic pole position determination is permitted when the difference between the maximum amplitude values exceeds a predetermined threshold value. When the difference is equal to or smaller than the predetermined value regardless of the adjustment, the magnetic pole determination is stopped, so that a magnetic pole determination error can be prevented.

第2発明では特に、同期機の起動開始後の所定の磁極判定期間にのみ、高周波電圧重畳手段に高周波電圧の重畳を指令し、かつ、磁極判定手段に磁極位置判定を指令するとともに、磁極判定期間の高周波電圧の振幅値を、磁極判定期間以外の高周波電圧の振幅値よりも増加させる磁極判定用高周波電流制御手段を有することを特徴としている。   In the second invention, in particular, only in a predetermined magnetic pole determination period after the start of the synchronous machine, the high frequency voltage superimposing means is instructed to superimpose the high frequency voltage, and the magnetic pole determining means is instructed to determine the magnetic pole position. It is characterized by having magnetic pole determination high-frequency current control means for increasing the amplitude value of the high-frequency voltage during the period more than the amplitude value of the high-frequency voltage during the period other than the magnetic pole determination period.

なお、磁極判定を行わない期間には直前の磁極判定期間にて判定した磁極判定結果を、高周波電流の最大値を検出する度に反転して磁極判定結果の今回値として用いればよい。磁極判定期間としては起動時が少なくとも好適であり、その後、所定インタバルで実施することが好適である。このようにすれば、磁極判定精度の向上と磁気騒音や電力損失の低減とを両立することができる。   It should be noted that the magnetic pole determination result determined in the immediately preceding magnetic pole determination period may be inverted every time the maximum value of the high-frequency current is detected and used as the current value of the magnetic pole determination result during the period when the magnetic pole determination is not performed. As the magnetic pole determination period, at the time of start-up is preferable, and thereafter, it is preferable to carry out at a predetermined interval. In this way, it is possible to achieve both improvement in magnetic pole determination accuracy and reduction in magnetic noise and power loss.

以下、本発明の同期機の高周波数重畳式回転角検出装置の好適態様を図面を参照して説明する。ただし、本発明は下記の実施態様に限定解釈されるべきものではなく、本発明の技術思想を他の技術の組み合わせにより実施しても良いことは言うまでもない。   Hereinafter, preferred embodiments of a high-frequency superposition type rotation angle detection device for a synchronous machine according to the present invention will be described with reference to the drawings. However, the present invention should not be construed as being limited to the following embodiments, and it goes without saying that the technical idea of the present invention may be implemented by a combination of other techniques.

(実施形態1)
実施形態1の突極性を有する同期機の回転角推定方法を備えたモータ制御装置を図1に示すブロック回路図を参照して説明する。
(Embodiment 1)
A motor control apparatus provided with the rotation angle estimation method for a synchronous machine having saliency according to the first embodiment will be described with reference to a block circuit diagram shown in FIG.

(回路構成)
図1において、1は電流指令部、2,3は減算器、4,5はPIアンプ、6はdq/3相座標変換部、7〜9は加算器、10はPWM電圧発生回路、11は三相インバータ、12,13は相電流を検出する電流センサ、Mは突極性を有する同期機、14,15はローパスフィルタ、16は3相/dq座標変換部、17,18はバンドパスフィルタ、19は3相/2相座標変換部、20はこの実施例の要部をなす回転子位置推定部である。電流指令部1、減算器2,3、PIアンプ4,5、dq/3相座標変換部6、PWM電圧発生回路10、三相インバータ11、電流センサ12,13、3相/dq座標変換部16からなる電流制御部は、従来構成と同じであり、従来と同様のモータ制御動作を行う。
(Circuit configuration)
In FIG. 1, 1 is a current command unit, 2 and 3 are subtractors, 4 and 5 are PI amplifiers, 6 is a dq / 3-phase coordinate conversion unit, 7 to 9 are adders, 10 is a PWM voltage generation circuit, 11 is Three-phase inverters, 12 and 13 are current sensors that detect phase currents, M is a synchronous machine having saliency, 14, 15 are low-pass filters, 16 are three-phase / dq coordinate converters, 17 and 18 are band-pass filters, Reference numeral 19 denotes a three-phase / two-phase coordinate conversion unit, and reference numeral 20 denotes a rotor position estimation unit which forms a main part of this embodiment. Current command unit 1, subtracters 2 and 3, PI amplifiers 4 and 5, dq / 3 phase coordinate conversion unit 6, PWM voltage generation circuit 10, three phase inverter 11, current sensors 12 and 13, 3 phase / dq coordinate conversion unit The current control unit 16 is the same as the conventional configuration and performs the same motor control operation as the conventional one.

バンドパスフィルタ17,18、3相/2相座標変換部19、回転子位置推定部20は、本発明の特徴をなす高周波電圧重畳方式の回転子位置推定系を構成している。この回転子位置推定系は突極性を有する同期機13の回転子の位置を検出する機能を果たす。簡潔に言えば、この回転子位置推定系は、突極性を有する同期機Mの電機子コイルに重畳すべき三相の高周波電圧指令Vuh、Vvh、Vwhを加算器7〜9により駆動電圧指令としての三相電圧指令Vu’、Vv’、Vw’に加算し、それにより生じた高周波電流iuh、ivhから回転子位置θを推定する。   The band-pass filters 17 and 18, the three-phase / two-phase coordinate conversion unit 19, and the rotor position estimation unit 20 constitute a high-frequency voltage superimposition type rotor position estimation system that characterizes the present invention. This rotor position estimation system functions to detect the position of the rotor of the synchronous machine 13 having saliency. In short, this rotor position estimation system uses three-phase high-frequency voltage commands Vuh, Vvh, Vwh to be superimposed on armature coils of the synchronous machine M having saliency as drive voltage commands by adders 7-9. Are added to the three-phase voltage commands Vu ′, Vv ′, Vw ′, and the rotor position θ is estimated from the high-frequency currents iuh, ivh generated thereby.

また、この実施形態では、三相電圧指令Vu’、Vv’、Vw’に重畳した高周波電圧指令Vuh、Vvh、Vwhにより電流センサ12,13の検出電流iu、ivが高周波電流iuh、ivhを含むため、これが電流制御系に流れるのを防ぐため、3相/dq座標変換部16の手前にローパスフィルタ14,15を設けている。なお、このローパスフィルタ14,15は、3相/dq座標変換部16の出力側に設けても良く、場合によっては省略してもよい。   In this embodiment, the detection currents iu and iv of the current sensors 12 and 13 include the high-frequency currents iuh and ivh by the high-frequency voltage commands Vuh, Vvh, and Vwh superimposed on the three-phase voltage commands Vu ′, Vv ′, and Vw ′. Therefore, in order to prevent this from flowing to the current control system, low-pass filters 14 and 15 are provided in front of the three-phase / dq coordinate conversion unit 16. The low-pass filters 14 and 15 may be provided on the output side of the three-phase / dq coordinate conversion unit 16 or may be omitted in some cases.

(基本制御説明)
まず、トルク指令に基づくモータ駆動制御を説明する。ただし、この制御自体は従来と同じであるため、説明は簡単に行う。電流センサ12,13で検出されたU相電流iuと、V相電流ivからローパスフィルタ14,15によりその低周波成分が抽出されて3相/dq座標変換部16に送られる。3相/dq座標変換部16は入力信号を静止三相座標系からdq軸回転直交座標系に変換し、電流iq、idを出力する。
(Basic control explanation)
First, motor drive control based on a torque command will be described. However, since this control itself is the same as the conventional one, the description will be given simply. The low frequency components are extracted by the low-pass filters 14 and 15 from the U-phase current iu detected by the current sensors 12 and 13 and the V-phase current iv and sent to the three-phase / dq coordinate conversion unit 16. The three-phase / dq coordinate conversion unit 16 converts the input signal from the stationary three-phase coordinate system to the dq-axis rotation orthogonal coordinate system, and outputs currents iq and id.

電流指令部1は、外部から入力されるトルク指令及び回転子位置推定部20から入力される回転子位置θに基づいて電流指令値id’、iq’を形成する。検出したd軸電流idとq軸電流iqは減算器2,3に送られ、減算器2,3は、d軸電流指令値id’からd軸電流idを、q軸電流指令値iq’からq軸電流iqを減算する。   The current command unit 1 forms current command values id ′ and iq ′ based on the torque command input from the outside and the rotor position θ input from the rotor position estimation unit 20. The detected d-axis current id and q-axis current iq are sent to the subtracters 2 and 3, and the subtracters 2 and 3 obtain the d-axis current id from the d-axis current command value id 'and the q-axis current command value iq'. The q-axis current iq is subtracted.

減算器2,3から出力される電流偏差Δid、ΔiqはPIアンプ4,5によりこれら電流偏差Δid、Δiqを0とする電圧指令Vd、VqにPI変換され、電圧指令Vd、Vqはdq/3相座標変換部6にて三相電圧指令Vu’、Vv’、Vw’に座標変換された後、加算器7〜9により後述する高周波電圧指令Vuh、Vvh、Vwhと加算されて、最終電圧指令Vu、Vv、Vwとされる。最終電圧指令Vu、Vv、Vwは、PWM電圧発生回路10にてPWM電圧に変換されて三相インバータ11を駆動し、これにより、三相インバータ11から三相同期機Mに三相電流iu、iv、iwが通電される。   The current deviations Δid and Δiq output from the subtracters 2 and 3 are PI-converted by the PI amplifiers 4 and 5 into voltage commands Vd and Vq that make these current deviations Δid and Δiq 0, and the voltage commands Vd and Vq are dq / 3. After the coordinate conversion to the three-phase voltage commands Vu ′, Vv ′, Vw ′ by the phase coordinate conversion unit 6, the final voltage command is added by high frequency voltage commands Vuh, Vvh, Vwh (to be described later) by the adders 7 to 9. Vu, Vv, and Vw. The final voltage commands Vu, Vv, and Vw are converted into PWM voltages by the PWM voltage generation circuit 10 to drive the three-phase inverter 11, whereby the three-phase current iu, iv and iw are energized.

(回転子位置推定の基本動作説明)
バンドパスフィルタ17,18は、相電流iu、ivから、高周波電圧指令Vuh、Vvh、Vwhの周波数を含む狭帯域の電流成分すなわち高周波電流iuh、ivhを抽出し、3相/2相座標変換部19に送る。3相/2相座標変換部19は、入力された高周波電流iuh、ivhを2相静止直交座標系上の電流iα、iβに変換し、この電流iα、iβを回転子位置推定部20に送る。回転子位置推定部20は、入力された電流iα、iβから回転子位置θを推定するとともに、2相静止直交座標系上の高周波電圧指令Vα、Vβを形成し、これを2相/3相座標変換して三相の高周波電圧指令Vuh、Vvh、Vwhとした後、加算器7〜9に送る。なお、回転子位置推定部20は、直接三相の高周波電圧指令Vuh、Vvh、Vwhを形成してもよい。
(Explanation of basic operation for rotor position estimation)
The band-pass filters 17 and 18 extract narrow-band current components including high-frequency voltage commands Vuh, Vvh, and Vwh, that is, high-frequency currents iuh and ivh, from the phase currents iu and iv, and a three-phase / two-phase coordinate conversion unit. Send to 19. The three-phase / two-phase coordinate conversion unit 19 converts the input high-frequency currents iuh and ivh into currents iα and iβ on the two-phase stationary orthogonal coordinate system, and sends the currents iα and iβ to the rotor position estimation unit 20. . The rotor position estimation unit 20 estimates the rotor position θ from the input currents iα and iβ, and forms high-frequency voltage commands Vα and Vβ on the two-phase stationary orthogonal coordinate system, which are converted into two-phase / 3-phase. The coordinates are converted into three-phase high-frequency voltage commands Vuh, Vvh, Vwh, and then sent to adders 7-9. The rotor position estimating unit 20 may directly form the three-phase high-frequency voltage commands Vuh, Vvh, Vwh.

(回転子位置推定部20の説明)
次に、回転子位置推定部20の構成及びその動作を図2を参照して更に詳しく説明する。
(Description of Rotor Position Estimation Unit 20)
Next, the configuration and operation of the rotor position estimation unit 20 will be described in more detail with reference to FIG.

回転子位置推定部20は、駆動電圧周波数fを検出する駆動周波数検出部201、高周波電圧指令Vuh、Vvh、Vwhを発生する高周波電圧発生部202、三角波であるPWMキャリヤ電圧Vcを発生するキャリヤ電圧発生部203、バンドパスフィルタ17,18から出力される高周波電流iuh、ivhを所定の電流検出期間、所定サンプリング周期にてサンプルホールドする電流サンプルホールド部204、直前の電流検出期間の間だけサンプルホールドされた所定個数の電流値データからその最大振幅値を検出する最大振幅演算部205、最大振幅演算部205で検出された最大振幅値に基づいて回転子位置θを推定する回転子位置演算部206、最大振幅演算部205で検出された最大振幅値がN極側か否かを判定する磁極判定部207、回転子位置θ及び磁極判定結果に基づいて回転子位置θを補正する回転子位置補正部208を有している。   The rotor position estimation unit 20 includes a drive frequency detection unit 201 that detects a drive voltage frequency f, a high frequency voltage generation unit 202 that generates high frequency voltage commands Vuh, Vvh, and Vwh, and a carrier voltage that generates a PWM carrier voltage Vc that is a triangular wave. The generator 203, the high frequency currents iuh and ivh output from the bandpass filters 17 and 18 are sampled and held for a predetermined current detection period and a predetermined sampling period, and the sample hold is performed only during the immediately preceding current detection period. A maximum amplitude calculator 205 that detects the maximum amplitude value from the predetermined number of current value data, and a rotor position calculator 206 that estimates the rotor position θ based on the maximum amplitude value detected by the maximum amplitude calculator 205. The magnetic pole judgment for determining whether or not the maximum amplitude value detected by the maximum amplitude calculator 205 is on the N pole side. Part 207 has a rotor position correcting unit 208 for correcting the rotor position θ on the basis of the rotor position θ and the magnetic pole determination result.

(動作説明)
(回転子位置推定動作の説明)
まず、電流サンプルホールド部204、最大振幅演算部205、回転子位置演算部206、磁極判定部207及び回転子位置補正部208からなる回転子位置推定部による回転子位置θの推定動作を以下に説明する。
(Description of operation)
(Explanation of rotor position estimation operation)
First, the estimation operation of the rotor position θ by the rotor position estimation unit including the current sample hold unit 204, the maximum amplitude calculation unit 205, the rotor position calculation unit 206, the magnetic pole determination unit 207, and the rotor position correction unit 208 will be described below. explain.

まず、電流サンプルホールド部204により高周波電流Ih(=iα+jiβ)を所定のサンプリングタイミングにてサンプルホールドする。サンプリングタイミングは、PWM電圧発生回路10に出力されるPWMキャリヤ電圧である三角波電圧の最大点と最小点とが採用される。サンプルホールドされた高周波電流Ihの各データのうち直前の高周波電圧Vhの半周期分の各データは、高周波電圧Vhの半周期ごとに最大振幅演算部205に出力される。最大振幅演算部205は、入力された電流楕円軌跡半周期分の各データから最大のものを最大値Imaxとして選択する。なお、各データは時刻情報を含むベクトルデータである。抽出された最大値Imaxは回転子位置演算部206に入力され、回転子位置演算部206は最大値Imaxをα軸成分Imaxαとβ軸成分Imaxβとに分割し、これらα軸成分Imaxαとβ軸成分Imaxβから回転子位置θを既述の式により推定する。   First, the high frequency current Ih (= iα + jiβ) is sampled and held at a predetermined sampling timing by the current sample hold unit 204. As the sampling timing, the maximum point and the minimum point of the triangular wave voltage which is the PWM carrier voltage output to the PWM voltage generation circuit 10 are employed. Of the data of the sampled and held high-frequency current Ih, the data for the half cycle of the immediately preceding high-frequency voltage Vh is output to the maximum amplitude calculation unit 205 for each half cycle of the high-frequency voltage Vh. The maximum amplitude calculation unit 205 selects the maximum value as the maximum value Imax from the input data for the current elliptical locus half cycle. Each data is vector data including time information. The extracted maximum value Imax is input to the rotor position calculation unit 206. The rotor position calculation unit 206 divides the maximum value Imax into an α-axis component Imaxα and a β-axis component Imaxβ, and these α-axis component Imaxα and β-axis The rotor position θ is estimated from the component Imaxβ by the above-described formula.

(磁極判定動作の説明)
次に、磁極判定部207は、今回の電流楕円軌跡半周期分の各データから抽出された最大値Imaxが電流楕円軌跡の長径軸方向N極向きかどうかを判定する磁極判定を行う。この磁極判定には種々の方法があるが、この実施形態では、起動時又は所定タイミングにて後述する磁極判定動作を行って磁極を判定し、この判定結果を電流楕円軌跡半周期ごとに言い換えれば高周波電圧半周期ごとに反転して記憶するものとする。磁極判定部207が起動時又は所定タイミングにて行う磁極判定動作を以下に説明する。この動作では、直前の電流楕円軌跡半周から得た最大値Imaxと、それより更に半周期前の電流楕円軌跡半周期から得た最大値Imaxとを比較し、大きい方をN極側すなわちd軸位置方向とする。この磁極判定結果は回転子位置補正部208に出力される。
(Description of magnetic pole judgment operation)
Next, the magnetic pole determination unit 207 performs magnetic pole determination to determine whether the maximum value Imax extracted from each data for the current half cycle of the current elliptical locus is in the major axis direction N-pole direction of the current elliptical locus. There are various methods for this magnetic pole determination. In this embodiment, the magnetic pole determination operation described later is performed at start-up or at a predetermined timing to determine the magnetic pole, and this determination result can be rephrased every half cycle of the current elliptical locus. Inverted and stored every high-frequency voltage half cycle. A magnetic pole determination operation performed by the magnetic pole determination unit 207 at startup or at a predetermined timing will be described below. In this operation, the maximum value Imax obtained from the previous half cycle of the current elliptical locus is compared with the maximum value Imax obtained from the half cycle of the current elliptical locus that is one half cycle before, and the larger value is compared with the N pole side, that is, the d axis. Position direction. The magnetic pole determination result is output to the rotor position correction unit 208.

回転子位置補正部208は、回転子位置補正部208から入力された回転子位置θと磁極判定部207から入力された磁極判定結果に基づいて回転子位置θが正規のd軸方向(N極)の回転子位置θである場合には無補正にて、回転子位置θが反対のd軸方向(S極)の回転子位置θである場合には回転子位置θにπを加えて最終的な回転子位置θとし、出力する。   Based on the rotor position θ input from the rotor position correction unit 208 and the magnetic pole determination result input from the magnetic pole determination unit 207, the rotor position correction unit 208 determines that the rotor position θ is in the normal d-axis direction (N pole If the rotor position θ is the rotor position θ in the opposite d-axis direction (S pole), add π to the rotor position θ. And output as a typical rotor position θ.

磁極判定は、その他、種々の方式が考えられる。たとえば、起動時やモータ運転中に一定インタバルで電流楕円軌跡1周期分の電流データを取得し、それから最大値Imaxを抽出し、それにより正規の回転子位置θを求める。なお、この場合、正規のd軸方向において磁気飽和が生じる大きさの高周波電流Ihを通電するものとする。これにより正確な磁極方向に対する回転子位置θを得ることができる。その後は、電流楕円軌跡の奇数番目の半周期に得た最大値Imaxから演算した回転子位置θに対してはπを加算し、電流楕円軌跡の偶数番目の半周期に得た最大値から演算した回転子位置θに対してはπを加算しない。これにより電流楕円軌跡の半周期ごとに回転子位置推定を行うにもかかわらず正確に位置推定を行うことができる。上記回転子位置推定動作は、従来の電流楕円軌跡一周期分の電流データではなく、電流楕円軌跡半周期分の電流データを用いて行う点を除けば従来と同じであるため、これ以上の説明は省略する。なお、この回転子位置推定動作を行う回路はハードウエア回路により構成されてもよく、ソフトウエア演算で行っても良い。   For the magnetic pole determination, various other methods can be considered. For example, current data for one cycle of a current elliptical locus is acquired at a constant interval during start-up or motor operation, and the maximum value Imax is extracted therefrom, thereby obtaining the normal rotor position θ. In this case, a high-frequency current Ih having a magnitude that causes magnetic saturation in the normal d-axis direction is supplied. Thereby, the rotor position θ with respect to the correct magnetic pole direction can be obtained. After that, π is added to the rotor position θ calculated from the maximum value Imax obtained in the odd-numbered half cycle of the current elliptical locus, and calculation is performed from the maximum value obtained in the even-numbered half cycle of the current elliptical locus. Π is not added to the rotor position θ. As a result, the position can be estimated accurately despite the rotor position being estimated every half cycle of the current elliptical locus. The above rotor position estimation operation is the same as the conventional one except that it is performed using current data for one half of the current elliptical locus instead of current data for one period of the current elliptical locus. Is omitted. The circuit for performing the rotor position estimation operation may be configured by a hardware circuit or may be performed by software calculation.

(高周波電圧発生動作の説明)
次に、駆動周波数検出部201、高周波電圧発生部202及びキャリヤ電圧発生部203にて行われる高周波電圧Vh及びPWMキャリヤ電圧の発生制御について以下に説明する。
(Description of high-frequency voltage generation operation)
Next, generation control of the high frequency voltage Vh and the PWM carrier voltage performed by the drive frequency detection unit 201, the high frequency voltage generation unit 202, and the carrier voltage generation unit 203 will be described below.

駆動周波数検出部201は、駆動電圧からその周波数すなわち駆動周波数fを検出する。駆動周波数fは、種々の信号から検出できる。たとえばローパスフィルタ14又は15から出力される相電流の低域成分iul又はivlのゼロクロスにより抽出できる。その他、回転子位置推定部20が出力する回転子位置θのからも抽出することができる。高周波電圧発生部202は、駆動周波数検出部201により検出された駆動周波数fに正相関もつ周波数fhをもつ三相の高周波電圧指令Vhを発生する。この高周波電圧指令Vhは、U相高周波電圧指令Vuh、V相高周波電圧指令Vvh、W相高周波電圧指令Vwhからなる。高周波電圧指令Vuh、Vvh、Vwhの振幅は特別の指令が無い限り一定とされる。したがって、高周波電流Ihの周波数はfhとなる。キャリヤ電圧発生部203も、駆動周波数検出部201により検出された駆動周波数fに正相関もつ周波数fcをもつ三角波電圧をPWM電圧発生回路10のキャリヤ電圧として発生する。ここで、駆動周波数fと高周波電圧Vhの周波数fhとキャリヤ電圧の周波数fcとは、回転子位置推定部20から出力される回転子位置θの誤差が所定の許容レベル以下更に好適には最小値となるように設定される。   The drive frequency detector 201 detects the frequency, that is, the drive frequency f from the drive voltage. The driving frequency f can be detected from various signals. For example, the phase current output from the low-pass filter 14 or 15 can be extracted by the zero crossing of the low-frequency component iul or ivl. In addition, it can be extracted from the rotor position θ output by the rotor position estimation unit 20. The high frequency voltage generation unit 202 generates a three-phase high frequency voltage command Vh having a frequency fh that is positively correlated with the drive frequency f detected by the drive frequency detection unit 201. The high-frequency voltage command Vh includes a U-phase high-frequency voltage command Vuh, a V-phase high-frequency voltage command Vvh, and a W-phase high-frequency voltage command Vwh. The amplitudes of the high-frequency voltage commands Vuh, Vvh, Vwh are constant unless there is a special command. Therefore, the frequency of the high-frequency current Ih is fh. The carrier voltage generation unit 203 also generates a triangular wave voltage having a frequency fc positively correlated with the drive frequency f detected by the drive frequency detection unit 201 as the carrier voltage of the PWM voltage generation circuit 10. Here, the drive frequency f, the frequency fh of the high-frequency voltage Vh, and the frequency fc of the carrier voltage are such that the error of the rotor position θ output from the rotor position estimation unit 20 is less than a predetermined allowable level, and more preferably a minimum value. Is set to be

(磁極判定用高周波電流制御動作の説明)
次に、磁極判定用高周波電流制御部209により行われる磁極判定用高周波電流制御動作を説明する。
(Description of high-frequency current control operation for magnetic pole determination)
Next, the magnetic pole determination high-frequency current control operation performed by the magnetic pole determination high-frequency current control unit 209 will be described.

この磁極判定用高周波電流制御動作は、既述した磁極判定を精度よく行うためにモータMの磁気回路を十分に磁気飽和させると、磁気騒音が増大するという問題に着目して行われたものである。この磁気騒音は特にステータコアのティースに径方向に作用する磁気力の周期振動により生じることが判明している。といって、高周波電流Ihの振幅を低減すると、図4に示す電流楕円軌跡の長径軸方向両側の高周波電流Ihの最大振幅値ImaxとImax’との差ΔIが小さくなり、磁極判定精度が低下してしまう。   This high-frequency current control operation for magnetic pole determination has been performed by paying attention to the problem that magnetic noise increases if the magnetic circuit of the motor M is sufficiently magnetically saturated in order to accurately perform the magnetic pole determination described above. is there. It has been found that this magnetic noise is caused in particular by periodic vibrations of magnetic force acting in the radial direction on the teeth of the stator core. However, when the amplitude of the high-frequency current Ih is reduced, the difference ΔI between the maximum amplitude values Imax and Imax ′ of the high-frequency current Ih on both sides in the major axis direction of the current elliptical locus shown in FIG. Resulting in.

この問題を改善するために、磁極判定用高周波電流制御部209は、主として二つの解決策を用いる。その一つは、磁極判定精度を確保できる最小レベルに差ΔIをフィードバック制御することである。もう一つは、磁極判定動作を常時行うのではなく、特定の期間にだけ行い、かつ、この特定期間に磁極判定精度を向上するために高周波電流Ihを増加させ、それ以外の期間では高周波電流Ihを低減することである。   In order to improve this problem, the magnetic pole determination high-frequency current control unit 209 mainly uses two solutions. One of them is feedback control of the difference ΔI to the minimum level that can ensure the magnetic pole determination accuracy. The other is that the magnetic pole determination operation is not always performed, but only during a specific period, and the high-frequency current Ih is increased during this specific period in order to improve the magnetic pole determination accuracy. It is to reduce Ih.

以下、この磁極判定用高周波電流制御部209の具体的な制御動作の一例を図5〜図7に示すフローチャートを参照して説明する。なお、この制御はたとえば所定の短インタバルにてたとえば割り込み処理により実施されるものとする。   Hereinafter, an example of a specific control operation of the magnetic pole determination high-frequency current control unit 209 will be described with reference to the flowcharts shown in FIGS. This control is performed, for example, by interrupt processing at a predetermined short interval.

まず、モータMの起動指令が入力されたかどうかを調べ、起動されたら磁極判定すべきとしてステップS204に進み(ステップS200)、そうでなければ磁極判定期間が到来したか否かを判定し(ステップS202)、到来したと判定したらステップS104に進み、そうでなければステップS214に進む。なお、ここで言う磁極判定期間とは、所定の磁極判定インタバルにて所定の長さの時間に設定された磁極判定のための期間を言う。   First, it is checked whether or not an activation command for the motor M has been input, and if activated, the magnetic pole determination should be performed and the process proceeds to step S204 (step S200). Otherwise, it is determined whether or not the magnetic pole determination period has arrived (step S200). If it is determined that it has arrived (S202), the process proceeds to step S104, and if not, the process proceeds to step S214. The magnetic pole determination period here refers to a period for magnetic pole determination that is set to a predetermined length of time at a predetermined magnetic pole determination interval.

ステップS204では、高周波電圧発生部202に高周波電圧Vhの重畳を指令し、磁極判定部207に磁極判定を指令するとともに、最大振幅演算部205から高周波電流Ihの直前の二つの最大振幅値データである最大振幅値Imax、Imax’(図4参照)を読み込む。なお、この実施例では、電流楕円軌跡半周期に一度最大振幅値Imax又はImax’を検出するため、読み込む最大振幅値ImaxとImax’とは、直前の半周期に得た最大振幅値と更にその半周期前の最大振幅値とにより構成される。   In step S204, the high frequency voltage generator 202 is instructed to superimpose the high frequency voltage Vh, the magnetic pole determination unit 207 is instructed to determine the magnetic pole, and the maximum amplitude calculation unit 205 uses the two maximum amplitude value data immediately before the high frequency current Ih. A certain maximum amplitude value Imax, Imax ′ (see FIG. 4) is read. In this embodiment, since the maximum amplitude value Imax or Imax ′ is detected once in the half cycle of the current elliptical locus, the maximum amplitude values Imax and Imax ′ to be read are the maximum amplitude value obtained in the immediately preceding half cycle, and further And a maximum amplitude value before a half cycle.

次に、読み込んだ最大振幅値ImaxとImax’との差ΔIを算出し(ステップS206)、差ΔIが所定の低しきい値Ith1と所定の高しきい値Ith2との間に存在するか否かを調べ(ステップS208)、差ΔIが低しきい値Ith1以下であれば高周波電圧発生部202に高周波電圧Vhを所定値ΔVだけ増加することを指令し(ステップS208)、差ΔIが高しきい値Ith2以上であれば高周波電圧発生部202に高周波電圧Vhを所定値ΔVだけ減らすことを指令する。なお、低しきい値Ith1は必要な磁極判定精度を確保するために最低必要な高周波電流Ihの値とされ、高しきい値Ith2は必要な磁極判定精度を確保するために十分な高周波電流Ihの値とされる。   Next, a difference ΔI between the read maximum amplitude values Imax and Imax ′ is calculated (step S206), and whether or not the difference ΔI exists between a predetermined low threshold value Ith1 and a predetermined high threshold value Ith2. If the difference ΔI is less than or equal to the low threshold value Ith1, the high frequency voltage generator 202 is commanded to increase the high frequency voltage Vh by a predetermined value ΔV (step S208), and the difference ΔI increases. If it is equal to or greater than the threshold value Ith2, the high-frequency voltage generator 202 is commanded to reduce the high-frequency voltage Vh by a predetermined value ΔV. The low threshold value Ith1 is the minimum value of the high-frequency current Ih necessary to ensure the necessary magnetic pole determination accuracy, and the high threshold value Ith2 is sufficient high-frequency current Ih to ensure the necessary magnetic pole determination accuracy. The value of

次に、磁極判定期間が終了したかどうかを判定し、終了していなければ、ステップS204にリターンし、終了していたらステップS214に進む。次に、駆動電圧周波数fが所定しきい値より高いかどうかすなわちモータが高回転状態かどうかを判定し、そうでなければステップS216に進み、そうであればステップS220に進む。ステップS216では駆動電圧周波数fの変化が所定しきい値以上かどうかを調べ、そうでなければステップS218に進み、そうであればステップS220に進む。   Next, it is determined whether or not the magnetic pole determination period has ended. If not, the process returns to step S204, and if it has ended, the process proceeds to step S214. Next, it is determined whether or not the drive voltage frequency f is higher than a predetermined threshold value, that is, whether or not the motor is in a high rotation state. If not, the process proceeds to step S216, otherwise proceeds to step S220. In step S216, it is checked whether or not the change in the drive voltage frequency f is greater than or equal to a predetermined threshold value. If not, the process proceeds to step S218, and if so, the process proceeds to step S220.

ステップS218では、磁極判定インタバルを所定の長いインタバルに設定し、ステップS220では、磁極判定インタバルを所定の短いインタバルに設定する。磁極判定インタバルの一例を図8に示す。図8では、磁極判定期間以外においては、高周波電圧Vhは電流楕円軌跡の最大値が判定できる程度の振幅に抑制されている。   In step S218, the magnetic pole determination interval is set to a predetermined long interval, and in step S220, the magnetic pole determination interval is set to a predetermined short interval. An example of the magnetic pole determination interval is shown in FIG. In FIG. 8, the high-frequency voltage Vh is suppressed to an amplitude that allows the maximum value of the current elliptical locus to be determined outside the magnetic pole determination period.

磁極判定期間の開始時における高周波電圧Vhの立ち上がり波形、並びに、磁極判定期間の終了時における高周波電圧Vhの立ち下がり波形の好適例を図9に示す。図9では、磁極判定期間の開始に際して、高周波電圧Vhの振幅を、いままでの高周波電流Ihの最大振幅値判定可能レベルから磁極判定好適レベルまで高周波電圧Vhの1周期の間に増加している。また、磁極判定期間の終了に際して、高周波電圧Vhの振幅を、いままでの磁極判定好適レベルから高周波電流Ihの最大振幅値判定可能レベルまで高周波電圧Vhの3周期の間に減少している。すなわち、高周波電圧Vhの増大は素早く行い、減少は緩慢に行っている。立ち上げ後の1周期のデータは捨てることが可能だが立ち下げ後は捨てることができないため、緩やかに変化させることで電流の安定性を向上させて検出誤差を低減することができる。   FIG. 9 shows a suitable example of the rising waveform of the high-frequency voltage Vh at the start of the magnetic pole determination period and the falling waveform of the high-frequency voltage Vh at the end of the magnetic pole determination period. In FIG. 9, at the start of the magnetic pole determination period, the amplitude of the high-frequency voltage Vh is increased during one cycle of the high-frequency voltage Vh from the level at which the maximum amplitude value of the high-frequency current Ih can be determined to the preferred level for determining the magnetic pole. . In addition, at the end of the magnetic pole determination period, the amplitude of the high frequency voltage Vh is decreased during the three periods of the high frequency voltage Vh from the current magnetic pole determination suitable level to the maximum amplitude value determinable level of the high frequency current Ih. That is, the increase of the high frequency voltage Vh is performed quickly, and the decrease is performed slowly. Data for one cycle after the start-up can be discarded, but cannot be discarded after the start-up. Therefore, by gradually changing the data, the current stability can be improved and the detection error can be reduced.

その他、磁極判定期間の終了後、次の磁極判定期間にて磁極判定を行うまで、直前の磁極判定期間で得た磁極判定データを高周波電圧Vhの半周期ごとに反転して使用しても良い。   In addition, after the end of the magnetic pole determination period, until the magnetic pole determination is performed in the next magnetic pole determination period, the magnetic pole determination data obtained in the immediately preceding magnetic pole determination period may be inverted and used every half cycle of the high-frequency voltage Vh. .

(変形態様)
なお、図6に示すフローチャートではステップS208とステップS210にて行う高周波電流Ihのフィードバック制御と、磁極判定部207により行う磁極判定とを並行して行ったが、高周波電流Ihの値を上記フィードバック制御により適切な値に設定した後、磁極判定部207により磁極判定を行うかあるいはその磁極判定結果の使用を許可するようにしてもよい。
(Modification)
In the flowchart shown in FIG. 6, the feedback control of the high-frequency current Ih performed in steps S208 and S210 and the magnetic pole determination performed by the magnetic pole determination unit 207 are performed in parallel, but the value of the high-frequency current Ih is controlled by the feedback control. After setting to an appropriate value, the magnetic pole determination unit 207 may perform magnetic pole determination or allow the use of the magnetic pole determination result.

(変形態様)
図7に示すフローチャートでは、モータが高回転状態又は回転数変化が大きい状態にて磁極判定頻度を2段階に変化させたが、回転数又はその変化の大きさに応じて連続的に変化させても良い。
(Modification)
In the flowchart shown in FIG. 7, the magnetic pole determination frequency is changed in two stages while the motor is in a high rotation state or a large change in the number of rotations. However, it is continuously changed according to the number of rotations or the magnitude of the change. Also good.

(変形態様)
モータ回転数が所定しきい値以上となれば、高周波電圧Vhの重畳を停止してもよい。なお、この場合の回転子位置の推定はたとえば検出した相電流の位相を用いておこなうこともできる。
(Modification)
The superposition of the high-frequency voltage Vh may be stopped if the motor rotation speed is equal to or higher than a predetermined threshold value. In this case, the estimation of the rotor position can also be performed using the phase of the detected phase current, for example.

(変形態様)
上記実施形態では、高周波電流制御部21を図5〜図7に示すソフトウエア処理にて行ったが、ハードウエア回路により構成しても良いことは当然である。
(Modification)
In the above embodiment, the high-frequency current control unit 21 is performed by the software processing shown in FIGS. 5 to 7, but it is natural that the high-frequency current control unit 21 may be configured by a hardware circuit.

(変形態様)
磁極判定を行わない期間には直前の磁極判定期間にて判定した磁極判定結果を、高周波電流の最大値を検出する度に反転して磁極判定結果の今回値として用いる代わりに、過去に行った複数回の磁極判定結果全体を調べて、第1の判定結果群とそれと反対となる第2の判定結果群とに分別し、データ数が多い判定結果群に従って次の磁極判定までの磁極方向を推定してもよい。
(Modification)
Instead of using the magnetic pole determination result determined in the immediately previous magnetic pole determination period as the current value of the magnetic pole determination result by inverting it every time the maximum value of the high frequency current is detected during the period when the magnetic pole determination is not performed The entire magnetic pole determination result of a plurality of times is examined and classified into a first determination result group and a second determination result group opposite to the first determination result group, and the magnetic pole direction until the next magnetic pole determination is determined according to the determination result group having a large number of data. It may be estimated.

(変形態様)
図10に示すように、図6に示すフローチャートにステップS222〜S226を追加することにより、最大振幅値ImaxとImax’の差ΔIが低しきい値Ith1より小さい場合には、磁極判定部207による最大振幅値ImaxとImax’との比較による磁極判定を中止し、その代わりに直前の電流楕円軌跡半周期間における磁極方向と反対方向の磁極方向と判定する記憶型の磁極判定を行うようにしてもよい。
(Modification)
As shown in FIG. 10, by adding steps S222 to S226 to the flowchart shown in FIG. 6, when the difference ΔI between the maximum amplitude values Imax and Imax ′ is smaller than the low threshold value Ith1, the magnetic pole determination unit 207 The magnetic pole determination based on the comparison between the maximum amplitude values Imax and Imax ′ is stopped, and instead, the memory-type magnetic pole determination is performed to determine the magnetic pole direction opposite to the magnetic pole direction during the immediately preceding current elliptical locus half cycle. Good.

(変形態様)
上記実施形態では、電流サンプリング周期をPWMキャリヤ周期の2倍としたが、電流サンプリング周期とPWMキャリヤ周期とを等しくしてもよい。この場合には、PWMキャリヤ電圧Vcの最大値点又は最小値点のどちらかにて電流サンプリングを行えばよい。
(Modification)
In the above embodiment, the current sampling period is twice the PWM carrier period, but the current sampling period and the PWM carrier period may be equal. In this case, current sampling may be performed at either the maximum value point or the minimum value point of the PWM carrier voltage Vc.

(変形態様)
上記実施形態では、高周波電圧Vhの周期を電流サンプリング周期すなわちPWMキャリヤ電圧の周期の偶数倍としたが、両者をずらすことも可能である。このようにすると、各電流楕円軌跡上の最大の電流サンプリング値が存在する位置が毎回ずれるため、何回かに一回は最大の電流サンプリング値として電流楕円軌跡の長径軸方向の値をサンプリングすることができる。
(Modification)
In the above embodiment, the period of the high-frequency voltage Vh is an even multiple of the current sampling period, that is, the period of the PWM carrier voltage, but it is also possible to shift both. In this case, the position where the maximum current sampling value exists on each current elliptical locus is shifted every time, so the value in the major axis direction of the current elliptical locus is sampled as the maximum current sampling value once every several times. be able to.

(変形態様)
上記実施形態では、電流楕円軌跡半周期分の各電流データから回転子位置推定、すなわち最大振幅値Imaxの抽出とそれを用いた回転子位置θの演算をおこなった。しかし、直前の1周期更には3/2周期、2周期あるいはそれ以上の周期にわたって電流データをサンプリングホールドし、得た多数の電流データから最大振幅値Imaxを抽出して回転子位置θを演算してもよい。
(Modification)
In the above embodiment, the rotor position is estimated from each current data corresponding to the current elliptical locus half cycle, that is, the maximum amplitude value Imax is extracted and the rotor position θ is calculated using the rotor position θ. However, the current data is sampled and held over the immediately preceding cycle, 3/2 cycles, 2 cycles or more, and the rotor position θ is calculated by extracting the maximum amplitude value Imax from the obtained many current data. May be.

また、直前の複数の電流楕円軌跡半周期ごとに個別に得た複数の回転子位置θから今回の回転子位置θを所定の演算式にて演算してもよい。たとえば、これら各電流楕円軌跡半周期ごとに得た各回転子位置θは、ロータ角速度だけずれているはずであるが、各回転子位置θは相互に関連をもつ値となる。たとえば、定速運転では各回転子位置θ間の角度差(電流楕円軌跡半周期の間のロータ角進み量)は一定となり、増速状態では角度差は次第に増加し、減速状態では角度差は次第に減少する。したがって、直前に得た複数の回転子位置θの間の角度差の傾向を利用して回転子位置θの今回値を補正することもできる。   Alternatively, the current rotor position θ may be calculated from a plurality of rotor positions θ individually obtained for each of the immediately preceding current elliptical locus half cycles by a predetermined arithmetic expression. For example, each rotor position θ obtained for each half cycle of each current elliptical locus should be shifted by the rotor angular velocity, but each rotor position θ is a value related to each other. For example, in constant speed operation, the angle difference between the rotor positions θ (rotor angle advance amount during a half cycle of the current elliptical locus) is constant, the angle difference gradually increases in the acceleration state, and the angle difference in the deceleration state It gradually decreases. Therefore, the current value of the rotor position θ can be corrected using the tendency of the angle difference between the plurality of rotor positions θ obtained immediately before.

(効果)
上記した実施形態によれば、磁極判定精度の低下を防止しつつ磁気騒音及び電力損失の低減が可能となる。
(effect)
According to the above-described embodiment, magnetic noise and power loss can be reduced while preventing a decrease in magnetic pole determination accuracy.

実施形態1のモータ制御装置を示すブロック図である。1 is a block diagram illustrating a motor control device according to a first embodiment. 図1に示す回転子位置推定部を示すブロック図である。It is a block diagram which shows the rotor position estimation part shown in FIG. 静止直交座標系上の高周波電圧及び高周波電流のベクトル軌跡を示す図である。It is a figure which shows the vector locus | trajectory of the high frequency voltage and high frequency current on a stationary orthogonal coordinate system. 磁気飽和状態における静止直交座標系上の高周波電圧及び高周波電流のベクトル軌跡を示す図である。It is a figure which shows the vector locus | trajectory of the high frequency voltage and high frequency current on a stationary orthogonal coordinate system in a magnetic saturation state. 磁極判定用高周波電流の制御動作を示すフローチャートである。It is a flowchart which shows the control operation | movement of the high frequency current for magnetic pole determination. 磁極判定用高周波電流の制御動作を示すフローチャートである。It is a flowchart which shows the control operation | movement of the high frequency current for magnetic pole determination. 磁極判定用高周波電流の制御動作を示すフローチャートである。It is a flowchart which shows the control operation | movement of the high frequency current for magnetic pole determination. 磁極判定インタバルの一例を示すタイミングチャートである。It is a timing chart which shows an example of a magnetic pole determination interval. 磁極判定期間における高周波電圧の波形例を示すタイミングチャートである。It is a timing chart which shows the example of a waveform of the high frequency voltage in a magnetic pole determination period. 磁極判定用高周波電流の制御動作の変形態様を示すフローチャートである。It is a flowchart which shows the deformation | transformation aspect of the control operation | movement of the high frequency current for magnetic pole determination.

符号の説明Explanation of symbols

1は電流指令部、2,3は減算器、4,5はPIアンプ、6はdq/3相座標変換部、7〜9は加算器、10はPWM電圧発生回路、11は三相インバータ、12,13は相電流を検出する電流センサ、Mは突極性を有する同期機、14,15はローパスフィルタ、16は3相/dq座標変換部、17,18はバンドパスフィルタ、201は駆動周波数検出部、202は高周波電圧発生部、203はキャリヤ電圧発生部、204は電流サンプルホールド部、205は最大振幅演算部、206は回転子位置演算部、207は磁極判定部、208は回転子位置補正部、209は磁極判定用高周波電流制御部である。   1 is a current command unit, 2 and 3 are subtractors, 4 and 5 are PI amplifiers, 6 is a dq / 3-phase coordinate conversion unit, 7 to 9 are adders, 10 is a PWM voltage generation circuit, 11 is a three-phase inverter, Reference numerals 12 and 13 are current sensors for detecting phase currents, M is a synchronous machine having saliency, 14 and 15 are low-pass filters, 16 is a three-phase / dq coordinate converter, 17 and 18 are band-pass filters, and 201 is a drive frequency. Detecting unit, 202 is a high frequency voltage generating unit, 203 is a carrier voltage generating unit, 204 is a current sample and hold unit, 205 is a maximum amplitude calculating unit, 206 is a rotor position calculating unit, 207 is a magnetic pole determining unit, and 208 is a rotor position. A correction unit 209 is a magnetic pole determination high-frequency current control unit.

Claims (9)

突極性を有する同期機の駆動電圧周波数よりも高い周波数及び一定の振幅を有して静止座標系上を回転する高周波電圧を前記同期機の電機子コイルに重畳する高周波電圧重畳手段と、
前記高周波電圧によって前記電機子コイルに流れる高周波電流を検出する高周波電流検出手段と、
検出した前記高周波電流に基づいて回転子位置を推定する回転子位置推定手段と、
所定極性の磁極位置における前記高周波電流の最大振幅値と、反対極性の磁極位置における前記高周波電流の最大振幅値との比較により磁極位置を判定する磁極判定手段と、
を備え、
前記高周波電圧重畳手段は、
前記所定極性の磁極位置における高周波電流の最大振幅値と、前記反対極性の磁極位置における高周波電流の最大振幅値との差を演算し、前記差が所定しきい値以上となるように前記高周波電圧の振幅を調整することを特徴とする突極性を有する同期機の回転角推定方法。
High-frequency voltage superimposing means for superimposing a high-frequency voltage rotating on a stationary coordinate system with a frequency higher than a driving voltage frequency of a synchronous machine having saliency and a constant amplitude on an armature coil of the synchronous machine;
High-frequency current detecting means for detecting a high-frequency current flowing in the armature coil by the high-frequency voltage;
Rotor position estimating means for estimating a rotor position based on the detected high-frequency current;
Magnetic pole determination means for determining a magnetic pole position by comparing the maximum amplitude value of the high-frequency current at a magnetic pole position of a predetermined polarity and the maximum amplitude value of the high-frequency current at a magnetic pole position of the opposite polarity;
With
The high frequency voltage superimposing means includes:
The difference between the maximum amplitude value of the high-frequency current at the magnetic pole position of the predetermined polarity and the maximum amplitude value of the high-frequency current at the magnetic pole position of the opposite polarity is calculated, and the high-frequency voltage is set so that the difference is not less than a predetermined threshold value. A method for estimating the rotation angle of a synchronous machine having a saliency, characterized by adjusting the amplitude of the motor.
請求項1において、
前記高周波電圧重畳手段は、
前記差が、前記所定しきい値より大きい第2の所定しきい値以下となるように前記高周波電圧の振幅を調整することを特徴とする突極性を有する同期機の回転角推定方法。
In claim 1,
The high frequency voltage superimposing means includes:
A method for estimating a rotation angle of a synchronous machine having a saliency, wherein the amplitude of the high-frequency voltage is adjusted so that the difference is equal to or smaller than a second predetermined threshold value that is greater than the predetermined threshold value.
請求項1又は2において、
前記高周波電圧重畳手段は、
前記同期機の起動時に所定の調整期間だけ前記調整を行う突極性を有する同期機の回転角推定方法。
In claim 1 or 2,
The high frequency voltage superimposing means includes:
A method for estimating a rotation angle of a synchronous machine having a saliency that performs the adjustment for a predetermined adjustment period when the synchronous machine is started.
請求項1乃至3のいずれかにおいて、
前記高周波電圧重畳手段は、
前記同期機の運転中に所定期間毎に所定の調整期間だけ前記調整を行う突極性を有する同期機の回転角推定方法。
In any one of Claims 1 thru | or 3,
The high frequency voltage superimposing means includes:
A method for estimating a rotation angle of a synchronous machine having a saliency that performs the adjustment for a predetermined adjustment period every predetermined period during operation of the synchronous machine.
請求項4において、
前記所定期間は、前記駆動電圧周波数が高い場合、又は、前記駆動電圧周波数の変化が大きい場合に短縮される突極性を有する同期機の回転角推定方法。
In claim 4,
The method for estimating a rotation angle of a synchronous machine having a saliency that is shortened when the driving voltage frequency is high or when the driving voltage frequency changes greatly during the predetermined period.
請求項3又は4において、
前記調整期間は、前記高周波電圧の略2〜10周期に設定される突極性を有する同期機の回転角推定方法。
In claim 3 or 4,
The adjustment period is a method of estimating a rotation angle of a synchronous machine having a saliency set to approximately 2 to 10 cycles of the high-frequency voltage.
請求項1乃至6のいずれかにおいて、
前記調整期間の開始時の高周波電圧の増加率は、前記調整期間の停止時の高周波電圧の減少率より大きく設定されている突極性を有する同期機の回転角推定方法。
In any one of Claims 1 thru | or 6.
A method for estimating a rotation angle of a synchronous machine having a saliency in which an increase rate of a high-frequency voltage at the start of the adjustment period is set larger than a decrease rate of the high-frequency voltage at the stop of the adjustment period.
請求項1乃至7いずれかにおいて、
前記回転子位置推定手段は、
前記所定極性の磁極位置における高周波電流の最大振幅値と、前記反対極性の磁極位置における高周波電流の最大振幅値との差が所定しきい値未満の場合に前記磁極位置判定を中止し、前記最大振幅値の差が前記所定しきい値を超える場合に前記磁極位置判定を許可する突極性を有する同期機の回転角推定方法。
In any one of Claims 1 thru | or 7,
The rotor position estimating means includes
When the difference between the maximum amplitude value of the high-frequency current at the magnetic pole position of the predetermined polarity and the maximum amplitude value of the high-frequency current at the magnetic pole position of the opposite polarity is less than a predetermined threshold, the magnetic pole position determination is stopped, and the maximum A method of estimating a rotation angle of a synchronous machine having a saliency that permits the magnetic pole position determination when a difference in amplitude value exceeds the predetermined threshold value.
突極性を有する同期機の駆動電圧周波数よりも高い周波数及び一定の振幅を有して静止座標系上を回転する高周波電圧を前記同期機の電機子コイルに重畳する高周波電圧重畳手段と、
前記高周波電圧によって前記電機子コイルに流れる高周波電流を検出する高周波電流検出手段と、
検出した前記高周波電流に基づいて回転子位置を推定する回転子位置推定手段と、
所定極性の磁極位置における前記高周波電流の最大振幅値と、反対極性の磁極位置における前記高周波電流の最大振幅値との比較により磁極位置を判定する磁極判定手段と、
を備え、
前記同期機の起動開始後の所定の磁極判定期間にのみ、前記高周波電圧重畳手段に前記高周波電圧の重畳を指令し、かつ、前記磁極判定手段に前記磁極位置判定を指令するとともに、前記磁極判定期間の前記高周波電圧の振幅値を、前記磁極判定期間以外の前記高周波電圧の振幅値よりも増加させる磁極判定用高周波電流制御手段を有することを特徴とする同期機の突極性を有する同期機の回転角推定方法。
High-frequency voltage superimposing means for superimposing a high-frequency voltage rotating on a stationary coordinate system with a frequency higher than a driving voltage frequency of a synchronous machine having saliency and a constant amplitude on an armature coil of the synchronous machine;
High-frequency current detecting means for detecting a high-frequency current flowing in the armature coil by the high-frequency voltage;
Rotor position estimating means for estimating a rotor position based on the detected high-frequency current;
Magnetic pole determination means for determining a magnetic pole position by comparing the maximum amplitude value of the high-frequency current at a magnetic pole position of a predetermined polarity and the maximum amplitude value of the high-frequency current at a magnetic pole position of the opposite polarity;
With
Only during a predetermined magnetic pole determination period after the start of the synchronous machine, the high-frequency voltage superimposing means is instructed to superimpose the high-frequency voltage, and the magnetic pole determining means is instructed to determine the magnetic pole position, and the magnetic pole determination A synchronous machine having a saliency of a synchronous machine, characterized by having high-frequency current control means for magnetic pole determination that increases an amplitude value of the high-frequency voltage in a period more than an amplitude value of the high-frequency voltage in a period other than the magnetic pole determination period Rotation angle estimation method.
JP2005315180A 2005-10-28 2005-10-28 Method of estimating rotating angle of synchronous machine having saliency Withdrawn JP2007124835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315180A JP2007124835A (en) 2005-10-28 2005-10-28 Method of estimating rotating angle of synchronous machine having saliency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315180A JP2007124835A (en) 2005-10-28 2005-10-28 Method of estimating rotating angle of synchronous machine having saliency

Publications (1)

Publication Number Publication Date
JP2007124835A true JP2007124835A (en) 2007-05-17

Family

ID=38148054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315180A Withdrawn JP2007124835A (en) 2005-10-28 2005-10-28 Method of estimating rotating angle of synchronous machine having saliency

Country Status (1)

Country Link
JP (1) JP2007124835A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273254A (en) * 2008-05-08 2009-11-19 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor
JP2011519258A (en) * 2008-04-24 2011-06-30 コネ コーポレイション Judgment of electrical machine rotor position
JP2012239271A (en) * 2011-05-11 2012-12-06 Denso Corp Controller of rotary machine
US8829829B2 (en) 2011-02-14 2014-09-09 Denso Corporation Apparatus for calculating rotational position of rotary machine
JP2014204567A (en) * 2013-04-05 2014-10-27 三菱電機株式会社 Controller for ac rotary machine
DE112016003844T5 (en) 2015-08-25 2018-05-03 Denso Corporation Motor controller

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519258A (en) * 2008-04-24 2011-06-30 コネ コーポレイション Judgment of electrical machine rotor position
JP2009273254A (en) * 2008-05-08 2009-11-19 Fuji Electric Systems Co Ltd Controller for permanent magnet type synchronous motor
US8829829B2 (en) 2011-02-14 2014-09-09 Denso Corporation Apparatus for calculating rotational position of rotary machine
JP2012239271A (en) * 2011-05-11 2012-12-06 Denso Corp Controller of rotary machine
JP2014204567A (en) * 2013-04-05 2014-10-27 三菱電機株式会社 Controller for ac rotary machine
DE112016003844T5 (en) 2015-08-25 2018-05-03 Denso Corporation Motor controller
US10164558B2 (en) 2015-08-25 2018-12-25 Denso Corporation Electric motor control device

Similar Documents

Publication Publication Date Title
US8159161B2 (en) Motor control device
JP4556572B2 (en) Electric drive control device, electric drive control method, and program
JP5425173B2 (en) Control device
JP2007124836A (en) Method of estimating rotating angle of synchronous machine having saliency
JP2008220096A (en) Sensorless controller of synchronous electric motor
JP2008220100A (en) Motor controller
JP2007124835A (en) Method of estimating rotating angle of synchronous machine having saliency
JP4120420B2 (en) Motor control device
JP2009254112A (en) Angle estimation device for rotating machine
JP3598909B2 (en) Synchronous motor control device, electric vehicle control device, and synchronous motor control method
WO2020045568A1 (en) Motor control device
JP2008079489A (en) Motor control device
JP2008005646A (en) Initial magnetic pole position estimating apparatus of permanent-magnet synchronous motor
JP4703204B2 (en) Synchronous machine drive control device
JP4281316B2 (en) Electric machine control device, electric machine control method and program
JP2004032908A (en) Motor controller
JP4779201B2 (en) Motor control device
JP7196469B2 (en) Controller for synchronous reluctance motor
KR101937958B1 (en) Device for detecting error of sensorless motor using bemf signal
JP2009100544A (en) Motor controller
JP5798513B2 (en) Method and apparatus for detecting initial magnetic pole position of permanent magnet synchronous motor, and control apparatus for permanent magnet synchronous motor
JP4232420B2 (en) Electric machine control device, electric machine control method and program
JP5402105B2 (en) Electric motor control device and electric motor state estimation method
JP4735287B2 (en) Synchronous motor control device and control method using the synchronous motor control device
JP5282443B2 (en) Control device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090728