JP2007123085A - Rare gas fluorescent lamp and formation method of phosphor layer - Google Patents

Rare gas fluorescent lamp and formation method of phosphor layer Download PDF

Info

Publication number
JP2007123085A
JP2007123085A JP2005314306A JP2005314306A JP2007123085A JP 2007123085 A JP2007123085 A JP 2007123085A JP 2005314306 A JP2005314306 A JP 2005314306A JP 2005314306 A JP2005314306 A JP 2005314306A JP 2007123085 A JP2007123085 A JP 2007123085A
Authority
JP
Japan
Prior art keywords
phosphor layer
base film
rare gas
arc tube
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005314306A
Other languages
Japanese (ja)
Inventor
Kengo Yamazaki
憲五 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2005314306A priority Critical patent/JP2007123085A/en
Publication of JP2007123085A publication Critical patent/JP2007123085A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare gas fluorescent lamp allowing thickness irregularity of a phosphor layer to be reduced by improving adhesiveness of a coating film of a phosphor; and to provide a formation method of a phosphor layer excelling in adhesiveness of the phosphor layer to a glass surface and capable of preventing the phosphor layer from being easily separated even when impact or the like is applied. <P>SOLUTION: This rare gas fluorescent lamp is characterized in that a porous base film formed by binding superfine particles each having a particle diameter not greater than 100 nm to one another is formed between an inside surface of an arc tube and the phosphor layer. This formation method of a phosphor layer is characterized by including processes of: preparing a suspension liquid with superfine particles dispersed therein by mixing a mixture solution of a Si alkoxide polymer, superfine particles of insulating powder each having a particle diameter not greater than 100 nm and an organic solvent; forming the porous base film with the superfine particles bound to one another by applying the suspension liquid of the superfine particles to a surface of a glass substrate and drying it; and applying a fluorescent substance to the glass substrate surface with the base film formed thereon by running down a suspension liquid with the fluorescent substance dispersed therein thereto. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、希ガス蛍光ランプに関し、特に蛍光体層の形成方法に関するものである。   The present invention relates to a rare gas fluorescent lamp, and more particularly to a method for forming a phosphor layer.

従来、液晶表示体などのバックライト装置に使用されるランプは、細長いガラス管からなる発光管内に水銀及び希ガスが封入され、内面に蛍光体が塗布されたものであり、発光管の両端に一対の内部電極を具備した、いわゆる低圧水銀ランプである。かかるランプは、低圧水銀蒸気放電によって得られる254nmの紫外線で蛍光体を励起し、可視光を得るものである。
このような水銀を用いるランプは低温時の光束立ち上がり特性が悪く、また、環境負荷の大きな水銀を用いることから、最近では、このような問題のない、環境負荷の低いランプへの代替が検討、模索されている(特許文献1参照)。
Conventionally, a lamp used in a backlight device such as a liquid crystal display body is one in which mercury and a rare gas are sealed in an arc tube made of an elongated glass tube, and a phosphor is coated on the inner surface. This is a so-called low-pressure mercury lamp provided with a pair of internal electrodes. Such a lamp excites a phosphor with ultraviolet rays of 254 nm obtained by low-pressure mercury vapor discharge to obtain visible light.
Lamps using such mercury have poor luminous flux rise characteristics at low temperatures, and because they use mercury with a large environmental load, recently, replacement with a low environmental load lamp that does not have such problems has been studied. It has been sought (see Patent Document 1).

一方、従来から原稿照明用光源として好適に使用されている希ガス蛍光ランプは、水銀を用いず、主として、5〜10kPa程度の低圧のXeガス放電からの光で蛍光体を励起し、発光するランプである。その構造は、ガラス等の誘電体からなる発光管を具備し、その外表面に、当該発光管の長さ方向にそれぞれ伸びる一対の外部電極が、互いに離間して配置されたものであり、発光管の内表面に蛍光体層が形成されたものとなっている。前記外部電極に電圧を印加すると、電極間で誘電体を介在させた放電が発生し、上述したようにXeガスの波長172nmの発光が得られ、この紫外線が蛍光体を励起し、可視光に変換されるというものである。   On the other hand, a rare gas fluorescent lamp that has been conventionally used favorably as a light source for illuminating a document does not use mercury, and excites a phosphor mainly with light from a low-pressure Xe gas discharge of about 5 to 10 kPa to emit light. It is a lamp. The structure includes an arc tube made of a dielectric material such as glass, and a pair of external electrodes extending in the length direction of the arc tube on the outer surface of the arc tube. A phosphor layer is formed on the inner surface of the tube. When a voltage is applied to the external electrode, a discharge with a dielectric interposed between the electrodes is generated, and as described above, emission of Xe gas having a wavelength of 172 nm is obtained, and this ultraviolet light excites the phosphor to make visible light. It is to be converted.

上記希ガス蛍光ランプは、立ち上がり特性が良好であり、低圧水銀ランプのように水銀を用いず、環境負荷の面からも好適と考えられる。また、ランプ構造上も、水銀を使用していないので、発光管を構成するガラスのアルカリ成分と水銀とが反応する恐れがなく、発光管内面に保護膜を形成する必要も無い。   The rare gas fluorescent lamp has good start-up characteristics and does not use mercury unlike a low-pressure mercury lamp, and is considered suitable from the viewpoint of environmental burden. Also, since mercury is not used in the lamp structure, there is no fear that the alkali component of the glass constituting the arc tube reacts with mercury, and it is not necessary to form a protective film on the inner surface of the arc tube.

特開平11−339729号公報JP-A-11-339729

而して、上記希ガス蛍光ランプを、いわゆる直下型のバックライト用光源や一般照明用に用いる場合においては、全光束を取り出して光出射面に照射する必要がある。そして、複数のランプを同一平面上に並設した時に、光出射面において輝度のムラを抑える必要がある。
このような事情から、原稿照明用では一般的であったアパーチャ型の構造と異なり、蛍光体を管の全周に塗布形成し、発光管内で形成された可視光を蛍光体層を透過させて光を取り出す構造が採用される。従って、蛍光体層は、当該蛍光体層からの透過光を効率よく得るために、原稿照明用のものに比較して膜厚が薄く形成されると共に、反射膜を形成しないで、蛍光物質を発光管を構成するガラス管に直接塗布する構造が好適と考えられる。
Thus, when the rare gas fluorescent lamp is used for a so-called direct-type backlight light source or general illumination, it is necessary to extract the entire luminous flux and irradiate the light exit surface. And when a some lamp | ramp is arranged in parallel on the same plane, it is necessary to suppress the nonuniformity of a brightness | luminance in a light-projection surface.
For this reason, unlike the aperture-type structure that is common for document illumination, the phosphor is applied to the entire circumference of the tube, and the visible light formed in the arc tube is transmitted through the phosphor layer. A structure for extracting light is adopted. Therefore, in order to efficiently obtain the transmitted light from the phosphor layer, the phosphor layer is formed thinner than the one for illuminating the original, and the phosphor layer is formed without forming a reflective film. A structure that is directly applied to the glass tube constituting the arc tube is considered suitable.

ここで、希ガス蛍光ランプ作製における蛍光体塗布工程を簡単に説明する。
まず、ニトロセルロースを少量溶かした酢酸ブチル溶液に粉末状の蛍光物質を分散させて懸濁液を調製する。蛍光物質が分散された懸濁液を長尺のガラス管内に吸い上げ等の手法により導入し、適度な速さで自然落下させることにより塗布している。その後、乾燥、焼成などの工程を経て、最終的に蛍光体層が成形されることになる。
Here, the phosphor coating process in the production of the rare gas fluorescent lamp will be briefly described.
First, a suspension is prepared by dispersing a powdery fluorescent substance in a butyl acetate solution in which a small amount of nitrocellulose is dissolved. The suspension in which the fluorescent material is dispersed is introduced into a long glass tube by a technique such as suction, and is applied by dropping naturally at an appropriate speed. Thereafter, the phosphor layer is finally formed through steps such as drying and baking.

しかしながら、蛍光体層は、ガラス基材が平滑な表面を有するものであるため、蛍光物質の懸濁液が管内壁との濡れ性のムラや内部ガスの流れのムラなど種々の要因によって均一に形成させることは困難で、周方向および軸方向いずれにおいても蛍光体の膜厚が±10%以上変位してしまう。そのため、蛍光体層の厚みの不均一性を招き、最終的な希ガス蛍光ランプとした時に輝度ムラを生じることがある。   However, since the phosphor layer is a glass substrate having a smooth surface, the suspension of the fluorescent material is uniformly distributed due to various factors such as uneven wettability with the inner wall of the tube and uneven internal gas flow. It is difficult to form, and the phosphor film thickness is displaced by ± 10% or more in both the circumferential direction and the axial direction. For this reason, the thickness of the phosphor layer becomes non-uniform, and brightness unevenness may occur when the final rare gas fluorescent lamp is formed.

また、蛍光物質は、ガラス基材表面が平滑であるため密着性が悪く、少しの衝撃などで簡単に蛍光体層がはがれることがある。   In addition, since the fluorescent material has a smooth glass substrate surface, the fluorescent material has poor adhesion, and the phosphor layer may be easily peeled off with a slight impact.

本発明は上記事情に鑑みなされたものであって、本発明の目的は、蛍光体の塗布膜の密着性を改善し、最終的な蛍光体層における厚さムラを低減でき、希ガス蛍光ランプの輝度分布の均一性が高い、希ガス蛍光ランプを提供することにある。
更に、ガラス基材に対する蛍光体層の形成方法において、蛍光体層とガラス表面との密着性が良好で、衝撃などが加わっても簡単に蛍光体層がはがれることがない、蛍光体層の形成方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the adhesion of the phosphor coating film, to reduce thickness unevenness in the final phosphor layer, and to provide a rare gas fluorescent lamp. It is an object of the present invention to provide a rare gas fluorescent lamp with high uniformity of luminance distribution.
Furthermore, in the method for forming the phosphor layer on the glass substrate, the phosphor layer has good adhesion between the phosphor layer and the glass surface, and the phosphor layer is not easily peeled off even when an impact is applied. It is to provide a method.

本発明においては、上記課題を次のように解決する。
希ガスが封入され、内面に蛍光体層を形成した直管状の発光管を有し、
該発光管の外面に、一方の電極を発光管外部に長手方向に亘って形成すると共に、他方の電極を一方の電極と該他方の電極の間に誘電体を介在させて形成し、
一方と他方の電極の間で誘電体を介して放電させることにより、前記発光管内でエキシマ発光させる希ガス蛍光ランプにおいて、
前記発光管内表面と蛍光体層の間に粒径100nm以下の超微粒子が結合された多孔質状の下地膜が形成されていることを特徴とする。
In the present invention, the above problem is solved as follows.
It has a straight tubular arc tube in which a rare gas is enclosed and a phosphor layer is formed on the inner surface,
One electrode is formed on the outer surface of the arc tube in the longitudinal direction outside the arc tube, and the other electrode is formed with a dielectric interposed between the one electrode and the other electrode,
In a rare gas fluorescent lamp that emits excimer light in the arc tube by discharging through a dielectric between one and the other electrode,
A porous base film in which ultrafine particles having a particle size of 100 nm or less are bonded is formed between the inner surface of the arc tube and the phosphor layer.

また、前記下地膜と発光管内表面との間に、シロキサン結合が形成されていることを特徴とする。
また、前記超微粒子は、SiO,Al,ZrO,MgF、AlNのいずれかの物質を含むことを特徴とする。
Further, a siloxane bond is formed between the base film and the inner surface of the arc tube.
The ultrafine particles include any one of SiO 2 , Al 2 O 3 , ZrO 2 , MgF 2 , and AlN.

又、本発明に係る蛍光体の塗布方法においては、ガラス基材の表面に蛍光体層を形成する蛍光体層の形成方法であって、
Siアルコキシド重合体の混合溶液と、粒径100nm以下の絶縁性粉末の超微粒子と、有機溶媒と、を混合して超微粒子が分散された懸濁液を作製する工程と、
ガラス基材表面に前記超微粒子の懸濁液を塗布、乾燥することにより超微粒子が結合してなる多孔質状の下地膜を形成する工程と、
前記下地膜が形成されたガラス基材表面に蛍光物質が分散された懸濁液を流下させて蛍光物質を塗布する工程と、を含むことを特徴とする。
The phosphor coating method according to the present invention is a phosphor layer forming method for forming a phosphor layer on the surface of a glass substrate,
A step of preparing a suspension in which ultrafine particles are dispersed by mixing a mixed solution of Si alkoxide polymer, ultrafine particles of insulating powder having a particle size of 100 nm or less, and an organic solvent;
Applying a suspension of the ultrafine particles on the surface of the glass substrate and drying to form a porous base film formed by bonding the ultrafine particles;
And a step of applying a fluorescent material by flowing down a suspension in which the fluorescent material is dispersed on the surface of the glass substrate on which the base film is formed.

(1)ガラス管の表面に多孔質上の下地膜が形成されているので、蛍光物質の懸濁液を塗布する際に、蛍光物質が均一厚みで形成されるようになり、しかも、蛍光体粒子の結合状態が良好で、蛍光物質が剥がれ落ちることが抑制される。
(2)下地膜とガラス管の間にシロキサン結合(‐Si‐O‐)が形成されているので、下地膜とガラス管表面との間の結合状態も良好であり、蛍光体層が剥がれることがない。
(3)SiO,Al,ZrO,MgF、AlNなどの酸化物、弗化物、窒化物から選択されることにより、化学的な安定性や入手性において優位である。特にSiOやMgFを用いる場合には、これらの物質は屈折率が比較的小さいため、コート膜における反射損失を回避できて好ましい。
(4)本発明に係る蛍光体層の形成方法によれば、超微粒子の懸濁液にSiアルコキシド重合体の溶液が混合されているので、超微粒子同士が空間をもって結合し、多孔質状の下地膜を形成することができる。また、Siアルコキシド重合体の溶液を用いているため、ガラス基材に対してシロキサン結合(‐Si‐O‐)を形成することができ、下地膜のガラス基材表面に対する結合が強固になる。更に、多孔質状の下地膜が形成された状態で蛍光物質の懸濁液を流下させて塗布しているため、均一な膜厚の蛍光体層が得られると共に下地膜と蛍光体層の結合状態が良好なものが得られる。
(1) Since the porous base film is formed on the surface of the glass tube, the fluorescent material is formed with a uniform thickness when the suspension of the fluorescent material is applied. The bonded state of the particles is good, and the fluorescent material is prevented from peeling off.
(2) Since a siloxane bond (-Si-O-) is formed between the base film and the glass tube, the bonding state between the base film and the glass tube surface is also good, and the phosphor layer is peeled off. There is no.
(3) By selecting from oxides such as SiO 2 , Al 2 O 3 , ZrO 2 , MgF 2 , and AlN, fluorides, and nitrides, it is superior in chemical stability and availability. In particular, when SiO 2 or MgF 2 is used, these materials are preferable because they have a relatively low refractive index and can avoid reflection loss in the coating film.
(4) According to the method for forming a phosphor layer according to the present invention, since the solution of the Si alkoxide polymer is mixed with the suspension of ultrafine particles, the ultrafine particles are bonded together in a space, and the porous state A base film can be formed. Further, since a solution of the Si alkoxide polymer is used, a siloxane bond (—Si—O—) can be formed on the glass substrate, and the bond of the base film to the glass substrate surface becomes strong. Furthermore, since the suspension of the fluorescent substance is applied while the porous base film is formed, a phosphor layer having a uniform film thickness is obtained and the base film and the phosphor layer are bonded. Good condition is obtained.

以下、本発明の実施形態を説明するが、本発明はこれに限定されるものではない。   Hereinafter, although embodiment of this invention is described, this invention is not limited to this.

図1は本発明の実施例の希ガス蛍光ランプの構成を示す図であり、同図(a)は本発明の実施例の希ガス蛍光ランプの斜視図、同図(b)は希ガス蛍光ランプを管軸に垂直な平面で切った断面図を示している。
発光管11は透光性のガラスよりなり、その材質としては例えばソーダ石灰ガラス、アルミノ珪酸ガラス、硼珪酸ガラス、バリウムガラスなどを挙げることができる。管の寸法は、例えば、内径1.4〜9.0mm、外径2.0〜10.0mmで、肉厚は0.3〜0.5mmである。発光管11の外表面上には一対の帯状の電極12a,12bが、当該発光管11の長さ方向に伸びるように配置されている。これら電極12a,12bは、図1(b)に示す管軸に垂直な断面図において、互いに対向するよう配置されている。
外部電極12a,12bは、材質としては導電性のものであれば特に制限されるものではなく、例えば、金、銀、ニッケル、カーボン、金パラジウム、銀パラジウム、白金などを好適に用いることができ、発光管10の外表面にテープ状金属を貼付したり、導電性ペーストをスクリーン印刷して焼成したりすることにより、実現する。
FIG. 1 is a diagram showing the configuration of a rare gas fluorescent lamp according to an embodiment of the present invention. FIG. 1 (a) is a perspective view of the rare gas fluorescent lamp according to the embodiment of the present invention, and FIG. 1 (b) is a rare gas fluorescent lamp. A sectional view of the lamp cut along a plane perpendicular to the tube axis is shown.
The arc tube 11 is made of translucent glass, and examples of the material thereof include soda lime glass, aluminosilicate glass, borosilicate glass, and barium glass. The dimensions of the tube are, for example, an inner diameter of 1.4 to 9.0 mm, an outer diameter of 2.0 to 10.0 mm, and a wall thickness of 0.3 to 0.5 mm. On the outer surface of the arc tube 11, a pair of strip-shaped electrodes 12 a and 12 b are arranged so as to extend in the length direction of the arc tube 11. These electrodes 12a and 12b are arranged so as to face each other in the cross-sectional view perpendicular to the tube axis shown in FIG.
The external electrodes 12a and 12b are not particularly limited as long as they are electrically conductive. For example, gold, silver, nickel, carbon, gold palladium, silver palladium, platinum, or the like can be suitably used. This is realized by sticking a tape-like metal to the outer surface of the arc tube 10 or screen-printing and baking a conductive paste.

発光管11の内部には、例えばXe(キセノン)30%,Ne(ネオン)70%からなる全封入圧5〜100kPaの希ガスが封入されて、同図に示す点灯電源20より、高周波電圧が印加されると、外部電極12a,12bの間に誘電体を介在させた放電が発生し、この放電によりキセノンによるエキシマ分子発光が発生する。   The arc tube 11 is filled with a rare gas of, for example, 30% Xe (xenon) and 70% Ne (neon) with a total enclosed pressure of 5 to 100 kPa. When applied, a discharge with a dielectric interposed between the external electrodes 12a and 12b is generated, and this discharge generates excimer molecular light emission by xenon.

発光管11には、その内表面上に平均粒径が100nm以下の超微粒子が結合された多孔質組織を有する下地膜が14形成されており、当該下地膜の上に積層状態に蛍光体層13が形成されている。すなわち、蛍光物質13の塗布に先立って、発光管11を構成するガラス管内面に下地膜14が形成されている。   On the inner surface of the arc tube 11, a base film 14 having a porous structure in which ultrafine particles having an average particle size of 100 nm or less are bonded is formed, and the phosphor layer is laminated on the base film. 13 is formed. That is, prior to the application of the fluorescent material 13, the base film 14 is formed on the inner surface of the glass tube constituting the arc tube 11.

このように、発光管11の表面に多孔質状の下地膜14が形成されていることにより、蛍光体層13の形成工程において、蛍光物質の懸濁液を塗布する際に、蛍光物質が均一厚みで下地膜14上に形成されるようになる。そして、下地膜が超微粒子の結合組織からなるので、ガラスのような平滑面とは異なった表面特性を有し、蛍光体粒子が下地膜14に結合しやすく、密着状態が良好であって、剥がれ落ちることが抑制される。   As described above, since the porous base film 14 is formed on the surface of the arc tube 11, the fluorescent material is uniformly applied when the fluorescent material suspension is applied in the step of forming the fluorescent material layer 13. It is formed on the base film 14 with a thickness. And since the base film is made of a connective structure of ultrafine particles, it has surface characteristics different from a smooth surface such as glass, the phosphor particles are easily bonded to the base film 14, and the adhesion state is good. The peeling off is suppressed.

蛍光体層13を形成するための蛍光体としては、既知の希ガス放電ランプ用の蛍光体を用いることができ、具体的には希土類蛍光体やハロリン酸系の蛍光体などの公知の蛍光性物質を用いることができる。   As a phosphor for forming the phosphor layer 13, a known phosphor for a rare gas discharge lamp can be used. Specifically, a known phosphor such as a rare earth phosphor or a halophosphate phosphor is used. Substances can be used.

また、下地膜14を構成するための超微粒子絶縁性粉末は、具体的に言うと、化学的な安定性や入手性などからSiO,Al,ZrO,MgF、AlNなどが好適し、なかでも、SiOやMgFが、屈折率が小さく、特に好ましい。
下地膜14として屈折率の小さい物質(具体的数値で言うと、屈折率n=1.5以下)を用いることで、ランプとした際、可視光の反射損失を避けることができ、効率のよいランプを得ることができる。
More specifically, the ultrafine insulating powder for forming the base film 14 is made of SiO 2 , Al 2 O 3 , ZrO 2 , MgF 2 , AlN or the like because of chemical stability or availability. Among them, SiO 2 and MgF 2 are particularly preferable because they have a small refractive index.
By using a material having a low refractive index as the base film 14 (specifically, a refractive index n = 1.5 or less), it is possible to avoid a visible light reflection loss when the lamp is used, and it is efficient. A lamp can be obtained.

特に、この下地膜14の形成に際して、Siアルコキシド重合体を用いることにより、下地膜14と発光管11を構成するガラス基材との間に−Si−O−のシロキサン結合が形成されるため、下地膜14とガラス基材との間の結合がより強固になる。
よって、蛍光体層13が下地膜14ごと発光管11から剥がれ落ちるという問題もない。
In particular, when the base film 14 is formed, by using a Si alkoxide polymer, a —Si—O— siloxane bond is formed between the base film 14 and the glass substrate constituting the arc tube 11. The bond between the base film 14 and the glass substrate becomes stronger.
Therefore, there is no problem that the phosphor layer 13 is peeled off from the arc tube 11 together with the base film 14.

以上の本願発明に係る希ガス蛍光ランプによれば、エキシマ発光で得られた波長172nmの真空紫外光が蛍光体層13における蛍光物質を照射して励起し、可視光が放射される。可視光の多数は蛍光体層13で反射されて、反射光が対向部の蛍光体層13及び下地膜14をある確率で透過し、発光管11の外部に出射される。   According to the rare gas fluorescent lamp according to the present invention described above, vacuum ultraviolet light having a wavelength of 172 nm obtained by excimer emission is excited by irradiating the fluorescent material in the phosphor layer 13 to emit visible light. Most of the visible light is reflected by the phosphor layer 13, and the reflected light passes through the phosphor layer 13 and the base film 14 at the opposing portion with a certain probability and is emitted to the outside of the arc tube 11.

ここで、本願発明にかかる蛍光体層の形成方法について図面を参照しながら説明する。
[1]
粒径100nm以下の絶縁性粉末の超微粒子と、有機溶媒と、Siアルコキシド重合体の混合溶液と、を混合して超微粒子が分散された懸濁液を作製する。
[2]
この超微粒子分散懸濁液を、発光管構成用のガラス管の表面に塗布し、乾燥させる。
図2(a)で示すように、懸濁液塗布直後は、懸濁液はSiアルコキシド重合体の溶液を含むため、ガラス基材30表面において、同元素の−O−Si−O−シロキサン結合が形成され、塗布膜がガラス基材30に強固に密着したものとなる。
図2(b)、(c)は図2(a)よりも巨視的にガラス基材30表面を観察した図である。懸濁液は、溶媒の蒸発による濃度の増大とSiアルコキシドの更なる重合化により急激に粘度が上がる。超微粒子が配合されていると、超微粒子31は(b)で示すように溶媒中をランダムに浮遊しているが、塗布後の乾燥過程において、溶媒の蒸発により液の粘度が急激に増大するため、最密に充填する前に固定化され、硬化する(図2(c))。
有機溶媒とSiアルコキシド重合体からなるバインダーは、最終的には緻密で硬いガラス状の硬化物となる。
このようにして多孔質構造を有する下地膜14が形成される。
Siアルコキシドは乾燥後、最終的にSiOになるのでガラスの主要な成分であるSiOと同質の物質であり、基材のガラス30のSi−Oと−Si−O−Si−の強固なシロキサン結合を形成して下地膜14の密着性が強まる、と考えられる。
[3]
下地膜14を形成した後、ガラス基材30表面に蛍光物質が分散された懸濁液を調製し、流下させて塗布膜を形成する。
図3はこの様子を解説する図である。蛍光物質32が分散された懸濁液を下地膜14上に流下させると、溶媒の一部が超微粒子31の間に浸透し、溶媒中を浮遊している蛍光物質32が下地膜14上に堆積する。蛍光物質32は、下地膜14の超微粒子31で形成された凹凸に係止されて安定的に密着することにより、厚さがほぼ均一な状態に塗布され、厚みのムラがなく蛍光物質32の塗布膜を形成することができる。
[4]
しかる後、蛍光物質32の塗布膜を乾燥させ、所定の雰囲気、温度で焼成すると、簡単なCO、HOなどの分子が分解して揮発し、最終的に、超微粒子31により形成された多孔質状の下地膜14上に、蛍光体層15が積層状態に形成されたガラス基材30が得られる。
Here, a method for forming a phosphor layer according to the present invention will be described with reference to the drawings.
[1]
A suspension in which ultrafine particles are dispersed is prepared by mixing ultrafine particles of an insulating powder having a particle size of 100 nm or less, an organic solvent, and a mixed solution of an Si alkoxide polymer.
[2]
This ultrafine particle dispersion suspension is applied to the surface of a glass tube for arc tube construction and dried.
As shown in FIG. 2 (a), immediately after the suspension is applied, the suspension contains a solution of the Si alkoxide polymer, so that the -O-Si-O-siloxane bond of the same element is formed on the surface of the glass substrate 30. Is formed, and the coating film is firmly adhered to the glass substrate 30.
FIGS. 2B and 2C are views in which the surface of the glass substrate 30 is observed more macroscopically than in FIG. The viscosity of the suspension increases rapidly due to the increase in concentration due to evaporation of the solvent and further polymerization of the Si alkoxide. When ultrafine particles are blended, the ultrafine particles 31 are randomly floating in the solvent as shown in (b), but in the drying process after coating, the viscosity of the liquid increases rapidly due to evaporation of the solvent. For this reason, it is fixed and hardened before the closest filling (FIG. 2C).
The binder composed of the organic solvent and the Si alkoxide polymer finally becomes a dense and hard glassy cured product.
In this way, the base film 14 having a porous structure is formed.
Since Si alkoxide finally becomes SiO 2 after drying, it is a substance of the same quality as SiO 2 which is the main component of glass, and is strong in Si—O and —Si—O—Si— of substrate glass 30. It is considered that the adhesion of the base film 14 is strengthened by forming a siloxane bond.
[3]
After the base film 14 is formed, a suspension in which a fluorescent material is dispersed on the surface of the glass substrate 30 is prepared and allowed to flow down to form a coating film.
FIG. 3 is a diagram explaining this situation. When the suspension in which the fluorescent material 32 is dispersed is caused to flow down on the base film 14, a part of the solvent penetrates between the ultrafine particles 31, and the fluorescent material 32 floating in the solvent is on the base film 14. accumulate. The fluorescent material 32 is locked to the irregularities formed by the ultrafine particles 31 of the base film 14 and stably adheres, so that the fluorescent material 32 is applied in a substantially uniform state, and there is no unevenness in thickness. A coating film can be formed.
[4]
After that, when the coating film of the fluorescent material 32 is dried and baked in a predetermined atmosphere and temperature, simple molecules such as CO 2 and H 2 O are decomposed and volatilized, and finally formed by the ultrafine particles 31. A glass substrate 30 in which the phosphor layer 15 is formed in a laminated state on the porous base film 14 is obtained.

以上において、超微粒子が分散された懸濁液においては、バインダーの含有量が少なくなると、超微粒子同士を結合する量が少なくなり、硬化体の強度が弱くなると共に、ガラスとの結合に使われるバインダー量も減少し、ガラス管とコート膜との密着性が低下すると考えられる。従って、適正な配合比率とすることも条件としてあると考えられる。   In the above, in the suspension in which the ultrafine particles are dispersed, when the binder content decreases, the amount of the ultrafine particles bonded to each other decreases, the strength of the cured body decreases, and it is used for bonding to the glass. It is considered that the amount of the binder also decreases, and the adhesion between the glass tube and the coating film decreases. Therefore, it is considered that there is a condition that the mixing ratio is appropriate.

なお、Siアルコキシド重合体を用いない場合は、超微粒子の塗布膜の形成時に、比較的長い時間を掛けて乾燥するため、図4で示すように密に充填する。このようになると、蛍光物質の塗布膜を形成する際、下地膜は溶媒を吸収せず、ガラス基材表面に直接蛍光体を塗布した状態と大差がなく、蛍光体塗布膜の厚みが不均一になる。また、蛍光体層形成後、ランプを作製した後にも蛍光物質が脱落する可能性もある。
さらには、下地膜とガラス基材との間にはシクロキサン結合が形成されないため、下地膜とガラス基材との密着性も本発明に比較して劣る。
In the case where the Si alkoxide polymer is not used, the film is dried densely as shown in FIG. In this case, when forming the fluorescent material coating film, the base film does not absorb the solvent, is not much different from the state in which the fluorescent material is directly applied to the surface of the glass substrate, and the thickness of the fluorescent material coating film is not uniform. become. In addition, the fluorescent material may fall off after the phosphor layer is formed and the lamp is manufactured.
Furthermore, since a cycloxan bond is not formed between the base film and the glass substrate, the adhesion between the base film and the glass substrate is also inferior to that of the present invention.

以上、本発明に係る希ガス蛍光ランプによれば、発光管を構成するガラス管と蛍光体層との間に、SiOと、絶縁性物質の超微粒子とからなる多孔質状の下地膜が形成されているので、蛍光体粉末の塗布工程において、蛍光体塗布膜の膜厚を均一化でき、本焼成後えられた蛍光体層は、下地膜に良好に結着して容易に剥がれるようなことがなくなる。また、下地膜をSiアルコキシドを用いて形成しているので、当該下地膜中のSiOと発光管を構成するガラスとの結合力も強固なものが得られ、当該下地膜も容易に剥がれることがない。よって、最終製品の希ガス蛍光ランプは、蛍光体層の膜厚がほぼ一定となって、ランプ点灯時における輝度ムラの発生を抑制することができる。 As described above, according to the rare gas fluorescent lamp of the present invention, the porous base film composed of SiO 2 and the ultrafine particles of the insulating material is interposed between the glass tube and the phosphor layer constituting the arc tube. Since it is formed, the thickness of the phosphor coating film can be made uniform in the phosphor powder coating process, so that the phosphor layer obtained after the main baking is well bonded to the base film and easily peeled off. There is nothing wrong. Further, since the base film is formed using Si alkoxide, it is possible to obtain a strong bond between SiO 2 in the base film and the glass constituting the arc tube, and the base film can be easily peeled off. Absent. Therefore, in the rare gas fluorescent lamp as the final product, the thickness of the phosphor layer is substantially constant, and the occurrence of uneven brightness when the lamp is lit can be suppressed.

以上、本発明について詳細を説明したが、上記実施形態に限定されず、適宜変更が可能であることは言うまでもなく、例えば、下地膜は、塗布工程上ガラス管の内表面、外表面とも塗布されていても構わない。   As described above, the present invention has been described in detail. However, the present invention is not limited to the above-described embodiment, and it is needless to say that changes can be made as appropriate. It does not matter.

以下、本発明に係る製造方法により、蛍光体層を形成した。以下、実験例を説明するが、本発明はこの内容に限定されるものではない。   Hereinafter, the phosphor layer was formed by the manufacturing method according to the present invention. Hereinafter, although an experiment example is demonstrated, this invention is not limited to this content.

<実験例1>
(1)ディップコート(下地膜)液の調製
オルトケイ酸テトラエチル(化学式:Si(OC)350gを、エタノール1030g、酢酸330g、及び塩酸0.6gを還流用フラスコにいれ、よく攪拌したのちマントルヒーターにて12時間還流操作し、Siアルコキシド重合体溶液を調製した。
この重合液とシーアイ化成製SIAP10wt%−X360液(商品名)とを重量比で1:x(但し、xは0〜15.0)の割合で混合し、さらにこの混合液に酢酸エチルを重量比で1:1の割合で混合し、下地膜形成用の超微粒子が分散された懸濁液を作製した。
シーアイ化成製SIAP10wt%−X360液はシーアイ化成社のSiOの超微粒子であるが、他社からもSiO超微粒子は販売されており、例えば触媒化成社のオスカルシリーズ、日産化学社のスノーテックスシリーズである。他の超微粒子は例えばシーアイ化成社より、Al、ZrO,ZnOなど容易に入手可能である。配合するxの大きさで気孔率が変化する。
(2)下地膜の形成
外径8mm、肉厚0.4mm、長さ100mmのガラス管内面に、先に作製した超微粒子の懸濁液を浸漬・引き上げ法を用いてコートした。この引き上げ速度を変えると膜厚が変化する。ここでは4〜5mm/secの引き上げ速度で引き上げた。しかる後、150℃程度で乾燥し、100〜200nm膜厚の硬いコート膜を得た。
(3)蛍光体スラリーの調製
少量のニトロセルロースと酢酸ブチルとの混合溶液に適当量の蛍光体粉末を混ぜ、粘度が15センチポアズになるよう蛍光物質が分散された懸濁液を調製した。できあがった懸濁液は乳濁色の分散溶液であった。
(4)
この蛍光体スラリーを、先に形成した下地膜を形成したガラス管の内面に塗布した。塗布方法は吸引・自然落下法であった。
(5)
200℃で10分間乾燥した後、500℃で20分間本焼成を行った。
<Experimental example 1>
(1) Preparation of dip coat (undercoat film) solution 350 g of tetraethyl orthosilicate (chemical formula: Si (OC 2 H 5 ) 4 ), 1030 g of ethanol, 330 g of acetic acid, and 0.6 g of hydrochloric acid were placed in a reflux flask and stirred well. Thereafter, the mixture was refluxed with a mantle heater for 12 hours to prepare a Si alkoxide polymer solution.
This polymerization solution and SIAI Kasei SIAP 10 wt% -X360 solution (trade name) are mixed at a weight ratio of 1: x (where x is 0 to 15.0), and ethyl acetate is added to the mixture by weight. The mixture was mixed at a ratio of 1: 1 to prepare a suspension in which ultrafine particles for forming the base film were dispersed.
Although manufactured by CI Kasei Co., SIAP10wt% -X360 solution is an ultra-fine particles of CI Kasei Co., of SiO 2, and SiO 2 ultrafine particles are sold also from other companies, for example catalyst Chemical Industry Co., Ltd. of Oscar series, Nissan Chemical Industries, Ltd. of Snowtex series It is. Other ultrafine particles can be easily obtained from CII Kasei Co., Ltd. such as Al 2 O 3 , ZrO 2 , ZnO. The porosity varies depending on the size of x to be blended.
(2) Formation of base film The previously prepared suspension of ultrafine particles was coated on the inner surface of a glass tube having an outer diameter of 8 mm, a wall thickness of 0.4 mm, and a length of 100 mm using a dipping / pulling method. When this pulling speed is changed, the film thickness changes. Here, it pulled up at a pulling speed of 4 to 5 mm / sec. Thereafter, it was dried at about 150 ° C. to obtain a hard coat film having a thickness of 100 to 200 nm.
(3) Preparation of phosphor slurry An appropriate amount of phosphor powder was mixed in a small amount of a mixed solution of nitrocellulose and butyl acetate to prepare a suspension in which the phosphor was dispersed so that the viscosity was 15 centipoise. The resulting suspension was an emulsion dispersion.
(4)
This phosphor slurry was applied to the inner surface of the glass tube on which the previously formed base film was formed. The application method was a suction / natural drop method.
(5)
After drying at 200 ° C. for 10 minutes, main baking was performed at 500 ° C. for 20 minutes.

ガラス管内面に形成した蛍光体層の厚さを、1個のサンプルにつき計12点の測定点で測定し、その標準偏差を求めることにより、蛍光体の膜厚のバラツキ程度を測った。測定点は、ガラス管の両端部及び中央部の軸方向の3箇所において、周方向で等間隔に4点採取した。なお膜厚の測定に際しては、管を切断し、断面を光学顕微鏡で拡大して求めた。密着性の評価は、麻布で軽くこすった時、簡単にすべて剥がれた場合、×、一部剥がれた場合、△、全く剥がれなかった場合、○として評価したものである。
膜厚のバラツキは、1試料12点の測定点の標準偏差、2σである。
The thickness of the phosphor layer formed on the inner surface of the glass tube was measured at a total of 12 measurement points per sample, and the standard deviation was obtained to measure the degree of variation in the phosphor film thickness. Four measurement points were collected at regular intervals in the circumferential direction at three axial positions of both ends and the center of the glass tube. In measuring the film thickness, the tube was cut and the cross section was enlarged with an optical microscope. The evaluation of adhesion was evaluated as ◯ when it was easily peeled off with linen, x was peeled off easily, Δ was partially peeled off, Δ was not peeled off at all.
The variation in film thickness is a standard deviation of 12 measurement points per sample, 2σ.

図3は、SiO超微粒子の配合割合を変化させたときの、蛍光体層のバラツキの状態を示す。
SiO超微粒子がない、若しくは、少なすぎると蛍光体層のバラツキが大きくなり、また多すぎる、すなわちSiアルコキシド重合液量が少なすぎると密着性が低下する。この実施例によれば、SiOの10wt%液を用いた場合、上記仕様のSiアルコキシド重合液の混合に対して混合する割合の最適な範囲はSiアルコキシド重合体溶液に対して0.5から10の範囲であるとわかった。
FIG. 3 shows a variation state of the phosphor layer when the mixing ratio of the SiO 2 ultrafine particles is changed.
If there is no SiO 2 ultrafine particles, or if the amount is too small, the phosphor layer will vary widely, and if it is too large, that is, if the amount of the Si alkoxide polymerization solution is too small, the adhesion will be reduced. According to this example, when a 10 wt% solution of SiO 2 is used, the optimum range of the mixing ratio with respect to the mixing of the Si alkoxide polymerization solution of the above specifications is from 0.5 to the Si alkoxide polymer solution. It was found to be in the range of 10.

以上の実施例は、本願発明を実施するうえで一例を述べたに過ぎず、適宜変更可能であることは言うまでもない。   The above embodiment is merely an example for carrying out the present invention, and it goes without saying that it can be changed as appropriate.

本発明にかかる希ガス蛍光ランプの斜視図及び断面図である。It is the perspective view and sectional drawing of the noble gas fluorescent lamp concerning this invention. 本発明にかかる下地膜の形成方法を解説する説明図である。It is explanatory drawing explaining the formation method of the base film concerning this invention. 本発明にかかる蛍光体層の形成方法を解説する説明図である。It is explanatory drawing explaining the formation method of the fluorescent substance layer concerning this invention. Siアルコキシド重合液を用いない場合の超微粒子の堆積状態を模式的に示す図である。It is a figure which shows typically the deposition state of the ultrafine particle in the case of not using Si alkoxide polymerization liquid. 実施例の結果をまとめて示す表である。It is a table | surface which shows the result of an Example collectively.

符号の説明Explanation of symbols

11 発光管
12a,12b 外部電極
13 下地膜
14 蛍光体層
20 点灯電源
30 ガラス基材
31 超微粒子
32 蛍光物質
DESCRIPTION OF SYMBOLS 11 Arc tube 12a, 12b External electrode 13 Base film 14 Phosphor layer 20 Lighting power source 30 Glass base material 31 Ultrafine particle 32 Fluorescent substance

Claims (4)

希ガスが封入され、内面に蛍光体層を形成した直管状の発光管を有し、
該発光管の外面に、一方の電極を発光管外部に長手方向に亘って形成すると共に、他方の電極を一方の電極と該他方の電極の間に誘電体を介在させて形成し、
一方と他方の電極の間で誘電体を介して放電させることにより、前記発光管内でエキシマ発光させる希ガス蛍光ランプにおいて、
前記発光管内表面と蛍光体層の間に粒径100nm以下の超微粒子が結合された多孔質状の下地膜が形成されていることを特徴とする希ガス蛍光ランプ。
It has a straight tubular arc tube in which a rare gas is enclosed and a phosphor layer is formed on the inner surface,
One electrode is formed on the outer surface of the arc tube in the longitudinal direction outside the arc tube, and the other electrode is formed with a dielectric interposed between the one electrode and the other electrode,
In a rare gas fluorescent lamp that emits excimer light in the arc tube by discharging through a dielectric between one and the other electrode,
A rare gas fluorescent lamp, wherein a porous base film in which ultrafine particles having a particle size of 100 nm or less are bonded is formed between the inner surface of the arc tube and a phosphor layer.
前記下地膜と発光管内表面との間に、シロキサン結合が形成されていることを特徴とする請求項1記載の希ガス蛍光ランプ。   The rare gas fluorescent lamp according to claim 1, wherein a siloxane bond is formed between the base film and the inner surface of the arc tube. 前記超微粒子は、SiO,Al,ZrO,MgF、AlNのいずれかの物質を含むことを特徴とする請求項1記載の希ガス蛍光ランプ。 2. The rare gas fluorescent lamp according to claim 1, wherein the ultrafine particles include any one of SiO 2 , Al 2 O 3 , ZrO 2 , MgF 2 , and AlN. ガラス基材の表面に蛍光体層を形成する蛍光体層の形成方法であって、
Siアルコキシド重合体の混合溶液と、粒径100nm以下の絶縁性粉末の超微粒子と、有機溶媒と、を混合して超微粒子が分散された懸濁液を作製する工程と、
ガラス基材表面に前記超微粒子の懸濁液を塗布、乾燥することにより超微粒子が結合してなる多孔質状の下地膜を形成する工程と、
前記下地膜が形成されたガラス基材表面に蛍光物質が分散された懸濁液を流下させて蛍光物質を塗布する工程と、を含むことを特徴とする蛍光体層の形成方法。
A method for forming a phosphor layer that forms a phosphor layer on the surface of a glass substrate,
A step of preparing a suspension in which ultrafine particles are dispersed by mixing a mixed solution of Si alkoxide polymer, ultrafine particles of insulating powder having a particle size of 100 nm or less, and an organic solvent;
Applying a suspension of the ultrafine particles on the surface of the glass substrate and drying to form a porous base film formed by bonding the ultrafine particles;
And a step of applying a fluorescent material by flowing a suspension in which the fluorescent material is dispersed onto the surface of the glass substrate on which the base film is formed.
JP2005314306A 2005-10-28 2005-10-28 Rare gas fluorescent lamp and formation method of phosphor layer Withdrawn JP2007123085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314306A JP2007123085A (en) 2005-10-28 2005-10-28 Rare gas fluorescent lamp and formation method of phosphor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314306A JP2007123085A (en) 2005-10-28 2005-10-28 Rare gas fluorescent lamp and formation method of phosphor layer

Publications (1)

Publication Number Publication Date
JP2007123085A true JP2007123085A (en) 2007-05-17

Family

ID=38146697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314306A Withdrawn JP2007123085A (en) 2005-10-28 2005-10-28 Rare gas fluorescent lamp and formation method of phosphor layer

Country Status (1)

Country Link
JP (1) JP2007123085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151968A (en) * 2007-12-19 2009-07-09 Ushio Inc Ultraviolet lamp, excimer lamp, and method for manufacturing excimer lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151968A (en) * 2007-12-19 2009-07-09 Ushio Inc Ultraviolet lamp, excimer lamp, and method for manufacturing excimer lamp

Similar Documents

Publication Publication Date Title
JP4934264B2 (en) Fluorescent lamp with a single composite phosphor layer
JP2008297194A (en) Method for production of adhesive for fluorescent dye, and method of using the same
JP2011175823A (en) Fluorescent lamp
KR20060052039A (en) Fluorescent lamp, backlight apparatus, and manufacturing method of fluorescent lamp
US7727042B2 (en) Fluorescent lamp and manufacturing method thereof
TWI514438B (en) A fluorescent lamp for emitting ultraviolet light and a method for manufacturing the same
JPH11312491A (en) Fluorescent lamp and its manufacture
TWI549157B (en) Fluorescent light
TWI471895B (en) Long arc metal halide lamp
JP2007123085A (en) Rare gas fluorescent lamp and formation method of phosphor layer
JP4499085B2 (en) Film-forming slurry composition, fluorescent lamp produced using the same, and method for producing the same
JP5163175B2 (en) Excimer lamp
JP2008059943A (en) Coating for forming phosphor layer, and phosphor layer and fluorescent lamp using it,
JP2009123406A (en) External electrode type rare gas fluorescent lamp
JP3336598B2 (en) Capillary fluorescent lamp
JP2007227144A (en) Discharge lamp and method of manufacturing same
JP4249194B2 (en) Paint, coating film using the same, coating film manufacturing method, and fluorescent lamp
JP5387626B2 (en) Fluorescent lamp
JP2007134059A (en) Rare gas fluorescent lamp and light source device
JPH11265685A (en) Fluorescent lamp
JPH10228884A (en) Fluorescent lamp and lighting system
JP2000285861A (en) Fluorescent lamp and lighting system
JP2009013252A (en) Fluorescent assembly and fluorescent paste composition
JP5029149B2 (en) Nitrocellulose solution, phosphor slurry and method for producing the same, phosphor film, and fluorescent lamp
JP2011100615A (en) Fluorescent lamp and manufacturing method of fluorescent lamp

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106