JP3336598B2 - Capillary fluorescent lamp - Google Patents

Capillary fluorescent lamp

Info

Publication number
JP3336598B2
JP3336598B2 JP29427395A JP29427395A JP3336598B2 JP 3336598 B2 JP3336598 B2 JP 3336598B2 JP 29427395 A JP29427395 A JP 29427395A JP 29427395 A JP29427395 A JP 29427395A JP 3336598 B2 JP3336598 B2 JP 3336598B2
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent lamp
porosity
tube
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29427395A
Other languages
Japanese (ja)
Other versions
JPH09139190A (en
Inventor
清隆 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP29427395A priority Critical patent/JP3336598B2/en
Publication of JPH09139190A publication Critical patent/JPH09139190A/en
Application granted granted Critical
Publication of JP3336598B2 publication Critical patent/JP3336598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液晶ディスプレイ用バッ
クライト等に用いられる細管形蛍光ランプに係り、特
に、発光輝度を向上した細管形蛍光ランプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin tube fluorescent lamp used for a backlight of a liquid crystal display and the like, and more particularly to a thin tube fluorescent lamp having improved light emission luminance.

【0002】[0002]

【従来の技術】ノート型パーソナルコンピュータ、或い
はワードプロセッサのディスプレイには液晶ディスプレ
イが広く使用され、液晶のバックライトには細管形蛍光
ランプと呼ばれる極めて細い蛍光ランプが用いられてい
る。照明用の蛍光ランプはその開発期から現在に至るま
で、実用化に向けた膨大な研究がなされ、その成果によ
り蛍光ランプの性能は大きく改善されている。ところ
が、細管形蛍光ランプについてはまだ歴史は浅く、最良
の性能を十分に出し切れていないのが現状である。
2. Description of the Related Art A liquid crystal display is widely used for a display of a notebook personal computer or a word processor, and an extremely thin fluorescent lamp called a thin tube fluorescent lamp is used for a liquid crystal backlight. A great deal of research has been conducted on fluorescent lamps for lighting from the development stage to the present, with the result that the performance of fluorescent lamps has been greatly improved. However, the tube-type fluorescent lamp has only a short history, and the best performance has not yet been achieved.

【0003】例えば、一般照明用の蛍光ランプについて
は管径が12mmから36mm程度であるのに対し、細
管形蛍光ランプは4mm〜6mmと細く、最近では特に
3.6mmφ以下という極めて細い蛍光ランプが生産さ
れている。ところが、その物性的な研究を応用した最適
化は殆ど行われず、照明用の蛍光ランプに用いられてい
る技術を細管形蛍光ランプにそのまま流用したにすぎな
い。現在の細管形蛍光ランプの設計には、蛍光ランプの
放電現象及び蛍光体の励起効率について、さらに再検討
が成されるべきである。
For example, a fluorescent lamp for general illumination has a tube diameter of about 12 mm to 36 mm, whereas a thin tube fluorescent lamp is as thin as 4 mm to 6 mm, and recently a very thin fluorescent lamp having a diameter of 3.6 mmφ or less is used. Is being produced. However, optimization based on the research on the physical properties is hardly performed, and the technology used for the fluorescent lamp for illumination is simply applied to the thin-tube fluorescent lamp as it is. In the current design of the tube-type fluorescent lamp, the discharge phenomenon of the fluorescent lamp and the excitation efficiency of the phosphor should be further reexamined.

【0004】[0004]

【発明が解決しようとする課題】本発明は、細管形蛍光
ランプの発光輝度をさらに向上するために、細管形蛍光
ランプの放電構造に適合する蛍光体層を形成することを
目的する。
SUMMARY OF THE INVENTION An object of the present invention is to form a phosphor layer suitable for a discharge structure of a thin tube fluorescent lamp in order to further improve the emission luminance of the thin tube fluorescent lamp.

【0005】[0005]

【発明を解決するための手段】本発明者は、上述した課
題を解決することを目的とし、細管形蛍光ランプの発光
輝度向上に最適な蛍光体層について鋭意検討した結果、
以外にも蛍光体層の膜面が粗い状態で塗らることで、課
題を解決することができることを見いだし、本発明を完
成させるに至った。
Means for Solving the Problems The present inventor has made intensive studies on a phosphor layer most suitable for improving the emission luminance of a tubular fluorescent lamp for the purpose of solving the above-mentioned problems.
In addition, the inventors have found that the problem can be solved by coating the phosphor layer in a rough state, and have completed the present invention.

【0006】すなわち、本発明の細管形蛍光ランプは、
水銀および希ガスを含む封入ガスが充填された透光性ガ
ラス管と、この透光性ガラス管内壁面に設けられた蛍光
体粒子を含む蛍光体層と、前記封入ガス中で陽光中放電
を維持するための手段とを備える蛍光ランプにおいて、
前記蛍光ランプの管径が3.6mm以下であり、蛍光体
層の単位面積あたりの蛍光体塗布量が3〜8mg/cm
2の範囲であり、次式で表される空隙率が40〜80%
であることを特徴とする。 空隙率e=(Vl−Vp)/Vl×100 (%) Vl;蛍光体層体積 Vp;蛍光体体積
That is, the tubular fluorescent lamp of the present invention is
A translucent glass tube filled with a sealing gas containing mercury and a rare gas, a phosphor layer containing phosphor particles provided on the inner wall surface of the translucent glass tube, and maintaining a positive discharge in the sealing gas. A fluorescent lamp comprising:
The tube diameter of the fluorescent lamp is 3.6 mm or less, and the phosphor coating amount per unit area of the phosphor layer is 3 to 8 mg / cm.
2, and the porosity represented by the following formula is 40 to 80%.
It is characterized by being. Porosity e = (Vl−Vp) / Vl × 100 (%) Vl; phosphor layer volume Vp; phosphor volume

【0007】本発明が好ましく適用される蛍光ランプの
管径には制限があり、3.6mmφ以下でなければ効果
が期待できない。これより管径が太くなると、一般照明
用蛍光ランプと細管形蛍光ランプの間の放電現象の差が
小さくなり、顕著な効果が見られなくなるからである。
The tube diameter of the fluorescent lamp to which the present invention is preferably applied is limited, and the effect cannot be expected unless the diameter is 3.6 mmφ or less. If the tube diameter is larger than this, the difference in the discharge phenomenon between the fluorescent lamp for general illumination and the narrow tube-type fluorescent lamp becomes smaller, and a remarkable effect cannot be obtained.

【0008】また、蛍光体塗布量については3〜8mg
/cm2が好ましく、さらに4〜7mg/cm2の範囲が
好ましい。これは一般照明に通常用いられる2〜4mg
/cm2の範囲に比べ、塗布量はかなり多くなることが
理解できる。
The amount of the phosphor applied is 3 to 8 mg.
/ Cm2, and more preferably in the range of 4 to 7 mg / cm2. This is 2-4mg which is usually used for general lighting
It can be understood that the application amount is considerably larger than that in the range of / cm <2>.

【0009】さらに、本発明の中心技術は、空隙率を定
義し、蛍光体が占める蛍光体層に対し特定の空隙率に設
定することにより、細管形蛍光ランプの発光輝度を大き
く改善できることである。空隙率は上記式により計算さ
れ、40〜80%の範囲が好ましく、特に50〜80%
の範囲がさらに好ましい。
Further, the central technology of the present invention is that the luminosity of a thin-tube fluorescent lamp can be greatly improved by defining the porosity and setting a specific porosity for the phosphor layer occupied by the phosphor. . The porosity is calculated by the above formula, and is preferably in the range of 40 to 80%, particularly 50 to 80%.
Is more preferable.

【0010】空隙率が大きいと蛍光体層は粗くなり、蛍
光体層の蛍光体密度は低下し、蛍光体層厚み(膜厚)が
厚くなる。一般照明用蛍光ランプの場合、密度が高くな
るほど、すなわち、空隙率が小さくなるほど発光輝度は
高くなる。一般照明用蛍光ランプは実際、空隙率が20
〜40%の範囲で使用されている。この範囲の蛍光体層
を形成することが常識的であり、この点で、細管形蛍光
ランプは全く逆の挙動を示す。
When the porosity is large, the phosphor layer becomes coarse, the phosphor density of the phosphor layer decreases, and the phosphor layer thickness (film thickness) increases. In the case of a fluorescent lamp for general illumination, the higher the density, that is, the lower the porosity, the higher the emission luminance. In general, fluorescent lamps for general lighting have a porosity of 20
It is used in the range of 4040%. It is common sense to form a phosphor layer in this range, and in this regard, the thin tube fluorescent lamp behaves exactly the opposite.

【0011】蛍光体層の空隙率を目的の範囲に設定する
具体的方法として、蛍光体サスペンジョンの調製に用い
る有機バインダーの濃度を管理する方法、或いは蛍光体
の粒度を管理する方法等が可能である。例えば、バイン
ダー濃度を高くすることにより、蛍光体サスペンジョン
の粘度が高くなり、その結果得られる蛍光体層は、同じ
塗布量の低粘度のサスペンジョンを使用したものと比較
して膜厚は厚くなる。或いは、蛍光体の粒度分布をブロ
ードにすることにより蛍光体層膜厚は厚くすることがで
きる。
As a specific method of setting the porosity of the phosphor layer to a target range, a method of controlling the concentration of an organic binder used for preparing a phosphor suspension, a method of controlling the particle size of the phosphor, and the like are possible. is there. For example, by increasing the binder concentration, the viscosity of the phosphor suspension is increased, and the resulting phosphor layer is thicker than the one using a low-viscosity suspension with the same coating amount. Alternatively, the phosphor layer thickness can be increased by broadening the particle size distribution of the phosphor.

【0012】[0012]

【作用】図1には一般照明用蛍光ランプである管径26
mmのガラス管の場合と、管径2.6mmの細管形蛍光
ランプの場合の空隙率eに対する相対発光輝度の関係を
示している。ここでそれぞれの蛍光ランプには5mg/
cm2の三波長混合蛍光体が塗布されている。これらの
空隙率を変更するためには塗布サスペンジョンの有機バ
インダー濃度を変更する方法で行った。図1より明らか
なように、空隙率が45%を越えると、管径26mmの
蛍光ランプでは相対発光輝度は低下するが、逆に管径
2.6mmの細管形蛍光ランプの場合向上している。
FIG. 1 shows a fluorescent lamp for general illumination having a tube diameter of 26.
The relationship between the relative luminous brightness and the porosity e in the case of a glass tube having a diameter of 2.5 mm and in the case of a thin tube fluorescent lamp having a diameter of 2.6 mm is shown. Here, 5 mg /
A three-wavelength mixed phosphor of cm 2 is applied. The porosity was changed by changing the organic binder concentration of the application suspension. As is clear from FIG. 1, when the porosity exceeds 45%, the relative light emission luminance decreases in the case of a fluorescent lamp having a tube diameter of 26 mm, but is improved in the case of a thin tube fluorescent lamp having a tube diameter of 2.6 mm. .

【0013】この現象はガラスバブル内の低圧水銀放電
が形成する陽光柱の中でのHg(I)線強度の分布に密
接に関係している。Hg(I)線は253.7nmの紫
外線を放射し、低圧水銀蒸気放電の中で最も強度が高
く、蛍光ランプに塗布された蛍光体の励起の90%以上
に利用されている。このHg(I)253.7nm線の
中心から径方向への強度分布は、図2に示すように中心
で高く、遠ざかるにつれ低下する。また、その電子分布
もBessel関数で計算されるように、管中心より遠
ざかるにつれ次第に減少する傾向となる。
This phenomenon is closely related to the distribution of Hg (I) line intensity in the positive column formed by the low-pressure mercury discharge in the glass bubble. The Hg (I) ray emits 253.7 nm ultraviolet light, has the highest intensity in low-pressure mercury vapor discharge, and is used for 90% or more of the excitation of the phosphor applied to the fluorescent lamp. The intensity distribution in the radial direction from the center of the Hg (I) 253.7 nm line is high at the center as shown in FIG. 2 and decreases with distance. The electron distribution also tends to gradually decrease as the distance from the tube center increases, as calculated by the Bessel function.

【0014】管径が15mm以上の比較的太い蛍光ラン
プの場合、Hg(I)253.7nm線はHgと電子の
弾性衝突により次第にその放射強度が管方向に遠ざかる
につれ減少していく。これに対し、Hg(I)253.
7nm線を効率よく吸収するには、蛍光体層の放電部側
で励起され発光した蛍光体からの可視光を効率的に蛍光
ランプ外部に出力する必要がある。紫外線を最も効率的
に利用するためには、蛍光体は緻密な蛍光体層を形成し
ていることが有利である。
In the case of a relatively thick fluorescent lamp having a tube diameter of 15 mm or more, the radiation intensity of the Hg (I) 253.7 nm line gradually decreases as the distance from the tube to the tube increases due to elastic collision of Hg and electrons. In contrast, Hg (I) 253.
In order to efficiently absorb the 7 nm line, it is necessary to efficiently output visible light from the phosphor excited and emitted on the discharge portion side of the phosphor layer to the outside of the fluorescent lamp. In order to use ultraviolet rays most efficiently, it is advantageous that the phosphor forms a dense phosphor layer.

【0015】これに対し、管径が3.6mm以下である
細管形蛍光ランプの場合事情は少し異なってくる。Hg
(I)253.7nm線の強度はは図2に示されるよう
な分布構造を取るため、細管形蛍光ランプにおいては、
ガラス管全体が管中央の紫外線強度分布とほぼ均等な値
を示し、蛍光体が塗布されている管壁においても、紫外
線強度の低下がない。
On the other hand, the situation is slightly different in the case of a thin tube fluorescent lamp having a tube diameter of 3.6 mm or less. Hg
(I) Since the intensity of the 253.7 nm line has a distribution structure as shown in FIG.
The entire glass tube shows almost the same value as the ultraviolet intensity distribution at the center of the tube, and the ultraviolet intensity does not decrease even on the tube wall coated with the phosphor.

【0016】そのため、蛍光体層(蛍光体粒子間)の空
隙で発生するHg(I)253.7nm線の影響が無視
することができなくなる。このような場合、図3aに示
すように蛍光体間の空隙に発生する紫外線を多く利用で
きる方が、図3bに示すような空隙の少ない蛍光体層に
比べ、蛍光体を効率的に励起でき、結果的にランプ輝度
を高くできる。このように細管形蛍光ランプの場合、蛍
光体層近傍のHg(I)253.7nm線を有効に利用
するためには空隙率が大きい方がよい。
Therefore, the influence of the 253.7 nm line of Hg (I) generated in the gap between the phosphor layers (between the phosphor particles) cannot be ignored. In such a case, it is possible to efficiently excite the phosphor by using more ultraviolet light generated in the gap between the phosphors as shown in FIG. 3A than by using a phosphor layer having a small gap as shown in FIG. 3B. As a result, the lamp brightness can be increased. As described above, in the case of the thin tube fluorescent lamp, it is preferable that the porosity is large in order to effectively use the Hg (I) 253.7 nm line near the phosphor layer.

【0017】さらに、空隙率が大きいことで蛍光体から
の発光が他の蛍光体に吸収されず、効率的に出力でき、
結果的に輝度が高くなる。
Further, since the porosity is large, light emitted from the phosphor is not absorbed by other phosphors, and can be efficiently output.
As a result, the brightness increases.

【0018】[0018]

【実施例】本実施例において、空隙率eをコントロール
する一つの方法として、蛍光体塗布サスペンジョンに用
いる有機バインダーの濃度を変化させることで行った。
これ以外にも、蛍光体の粒度をコントロールするなどの
方法が適用可能であり、本実施例によりその方法を限定
するものではない。
EXAMPLE In this example, one method of controlling the porosity e was carried out by changing the concentration of an organic binder used in a phosphor-coated suspension.
Other than this, a method such as controlling the particle size of the phosphor can be applied, and the method is not limited by the present embodiment.

【0019】 [実施例1] 混合比 ・青色発光蛍光体として、BaMg2Al16O27:Eu 40% ・緑色発光蛍光体として、LaPO4:Ce,Tb 30% ・赤色発光蛍光体として、Y2O3:Eu 30% 上記蛍光体を混合し、全体の密度が4.6g/cm3三
波長混合蛍光体を得る。得られた混合蛍光体100g対
し、2000秒のニトロセルロース/酢酸ブチル1.6
%溶液を140g加え、必要なら結着剤を加え、攪拌し
蛍光体を分散させたスラリーを調製する。
[Example 1] Mixing ratio: BaMg2Al16O27: Eu 40% as blue light emitting phosphor LaPO4: Ce, Tb 30% as green light emitting phosphor Y2O3: Eu30% as red light emitting phosphor The bodies are mixed to give a total density of 4.6 g / cm3 triple wavelength mixed phosphor. Nitrocellulose / butyl acetate 1.6 seconds for 2000 seconds with respect to 100 g of the obtained mixed phosphor.
% Solution is added, a binder is added if necessary, and the mixture is stirred to prepare a slurry in which the phosphor is dispersed.

【0020】得られた蛍光体サスペンジョンを細管形蛍
光ランプのガラス管(管径2.6mm、管長200m
m)に均一に流し込み、温風を通じて塗布面を乾燥させ
た。乾燥後に得られた塗布バルブの重量を測定すること
により、蛍光体層の全重量が求まり、塗布表面積で除す
ることにより単位面積当たりの塗布量が計算される。本
実施例において、5.2mg/cm2が得られた。
The obtained phosphor suspension was placed in a glass tube (tube diameter: 2.6 mm, tube length: 200 m) of a thin tube type fluorescent lamp.
m), and the coated surface was dried with warm air. By measuring the weight of the coating bulb obtained after drying, the total weight of the phosphor layer is obtained, and the amount of coating per unit area is calculated by dividing by the coating surface area. In this example, 5.2 mg / cm 2 was obtained.

【0021】これより、蛍光体粒子の体積Vpは、 Vp=(5.2×10-3g)/(4.6g/cm3)=
1.13×10-3cm3 となる。
Thus, the volume Vp of the phosphor particles is as follows: Vp = (5.2 × 10 −3 g) / (4.6 g / cm 3) =
1.13.times.10@-3 cm @ 3.

【0022】また、塗布ガラスバルブの膜厚を測定する
と、27μmを得られた。それで、この場合の単位面積
当たりの蛍光体層体積Vlは、 Vl=(2.7×10-3cm)×1cm2=2.7cm3
When the thickness of the coated glass bulb was measured, it was 27 μm. In this case, the phosphor layer volume Vl per unit area is as follows: Vl = (2.7.times.10@-3 cm) .times.1 cm @ 2 = 2.7 cm @ 3

【0023】これらより空隙率eは次式で計算される。 空隙率e=(Vl−Vp)/Vl×100 (%) =(2.7−1.13)/2.7×100=58%From these, the porosity e is calculated by the following equation. Porosity e = (Vl−Vp) / Vl × 100 (%) = (2.7−1.13) /2.7×100=58%

【0024】[実施例2〜11]実施例1よりも空隙率
を高くする場合、ニトロセルロース/酢酸ブチル溶液の
濃度を高くし、空隙率を低くする場合、ニトロセルロー
ス/酢酸ブチル溶液の濃度を低くすることで行った。ま
た、蛍光体塗布量の増加する場合、混合蛍光体100g
に対するニトロセルロース/酢酸ブチル溶液の量を少な
くし、反対に、蛍光体の塗布量を少なくする場合、ニト
ロセルロース/酢酸ブチル溶液の量を多くすることでコ
ントロールすることができる。しかし、これらは相対的
なものであり、蛍光体の種類、蛍光体の粒径、乾燥条件
が代わっても、変動しうるものであるので、その都度最
適化試行しなければならない。
[Examples 2 to 11] When the porosity is higher than in Example 1, the concentration of the nitrocellulose / butyl acetate solution is increased, and when the porosity is low, the concentration of the nitrocellulose / butyl acetate solution is increased. I went by lowering it. When the phosphor coating amount is increased, 100 g of the mixed phosphor is used.
In the case where the amount of the nitrocellulose / butyl acetate solution is reduced and the amount of the phosphor applied is reduced, the amount can be controlled by increasing the amount of the nitrocellulose / butyl acetate solution. However, these are relative and may vary even if the type of phosphor, the particle size of the phosphor, and the drying conditions are changed, so that an optimization trial must be performed each time.

【0025】[比較例1]実施例1と同じ混合蛍光体1
00gに対し、2000秒のニトロセルロース/酢酸ブ
チル1.0%溶液を100g加え、攪拌し蛍光体を分散
させたスラリーを調製する。実施例1と同様の方法によ
り細管形蛍光ランプの塗布ガラスバルブを得た。
Comparative Example 1 Same Mixed Phosphor 1 as in Example 1
To 100 g, 100 g of a nitrocellulose / butyl acetate 1.0% solution for 2000 seconds is added and stirred to prepare a slurry in which the phosphor is dispersed. A coated glass bulb of a thin tube fluorescent lamp was obtained in the same manner as in Example 1.

【0026】[比較例2〜6]実施例と同様に、空隙率
を高くする場合、ニトロセルロース/酢酸ブチル溶液の
濃度を高くし、空隙率を低くする場合、ニトロセルロー
ス/酢酸ブチル溶液の濃度を低くすることで行った。ま
た、蛍光体塗布量の増加する場合、混合蛍光体100g
に対するニトロセルロース/酢酸ブチル溶液の量を少な
くし、反対に、蛍光体の塗布量を少なくする場合、ニト
ロセルロース/酢酸ブチル溶液の量を多くすることでコ
ントロールすることができる。
[Comparative Examples 2 to 6] As in the example, when the porosity is increased, the concentration of the nitrocellulose / butyl acetate solution is increased, and when the porosity is decreased, the concentration of the nitrocellulose / butyl acetate solution is increased. Was made lower. When the phosphor coating amount is increased, 100 g of the mixed phosphor is used.
In the case where the amount of the nitrocellulose / butyl acetate solution is reduced and the amount of the phosphor applied is reduced, the amount can be controlled by increasing the amount of the nitrocellulose / butyl acetate solution.

【0027】実施例1〜11、及び比較例1〜6の得ら
れたガラスバルブを通常の方法によりベーキング、電極
のマウントを行い冷陰極蛍光ランプを得た。得られた冷
陰極蛍光ランプの比較例に対する相対輝度を求め表1に
まとめた。輝度測定は蛍光ランプ中央で測定した。
The glass bulbs obtained in Examples 1 to 11 and Comparative Examples 1 to 6 were baked and mounted with electrodes by a usual method to obtain a cold cathode fluorescent lamp. The relative luminance of the obtained cold cathode fluorescent lamp with respect to the comparative example was determined and summarized in Table 1. The luminance was measured at the center of the fluorescent lamp.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より、空隙率を増加させることにより
細管形蛍光ランプの発光輝度は大きく改善されることが
分かる。また、単位面積当たりの塗布量についても、空
隙部が多いことから、一般の蛍光ランプよりも塗布量の
多いところまで輝度飽和を起こさない。その結果、蛍光
体の塗布量を増加することができ、細管形蛍光ランプ輝
度を大幅に改善できる。
It can be seen from Table 1 that the emission luminance of the thin tube fluorescent lamp is greatly improved by increasing the porosity. In addition, since the amount of application per unit area is large due to the large number of voids, luminance saturation does not occur up to a position where the amount of application is larger than that of a general fluorescent lamp. As a result, the application amount of the phosphor can be increased, and the luminance of the thin-tube fluorescent lamp can be greatly improved.

【0030】[0030]

【発明の効果】以上説明したように、本発明により塗布
膜中の蛍光体粒子間に大きな空隙を持たせ、しかも塗布
量を特定範囲に増加することにより、管径が3.6mm
以下の細管形蛍光ランプの輝度を大幅に向上することが
できる。
As described above, according to the present invention, a large gap is provided between the phosphor particles in the coating film, and the coating amount is increased to a specific range, so that the tube diameter becomes 3.6 mm.
The brightness of the following tubular fluorescent lamps can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明品と比較品の細管形蛍光ランプ及び一般
の蛍光ランプの相対発光輝度と空隙率eの関係を示す特
性図
FIG. 1 is a characteristic diagram showing a relationship between relative light emission luminance and porosity e of a tube-type fluorescent lamp of the present invention, a comparative product, and a general fluorescent lamp.

【図2】管中央から管径方向への距離とHg(I)25
3.7nm線の強度分布図
FIG. 2 shows the distance from the pipe center to the pipe radial direction and Hg (I) 25.
3.7nm line intensity distribution

【図3】蛍光体層を占める蛍光体の空隙を示す図FIG. 3 is a view showing a gap of a phosphor occupying a phosphor layer;

【符号の説明】[Explanation of symbols]

1・・・・・・蛍光体粒子 2・・・・・・透光性ガラス 1 ... phosphor particles 2 ... translucent glass

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水銀および希ガスを含む封入ガスが充填
された透光性ガラス管と、この透光性ガラス管内壁面に
設けられた蛍光体粒子を含む蛍光体層と、前記封入ガス
中で陽光中放電を維持するための手段とを備える蛍光ラ
ンプにおいて、前記蛍光ランプの管径が3.6mm以下
であり、蛍光体層の単位面積あたりの蛍光体塗布量が3
〜8mg/cm2の範囲であり、次式で表される空隙率
が40〜80%であることを特徴とする細管形蛍光ラン
プ。 空隙率e=(Vl−Vp)/Vl×100 (%) Vl;蛍光体層体積 Vp;蛍光体体積
1. A light-transmitting glass tube filled with a filling gas containing mercury and a rare gas, a phosphor layer containing phosphor particles provided on an inner wall surface of the light-transmitting glass tube, and in the fluorescent lamp and means for maintaining in sunlight discharge, before Symbol pipe diameter of the fluorescent lamp is not more than 3.6 mm, the phosphor coating amount per unit area of the phosphor layer 3
細 8 mg / cm 2, and the porosity represented by the following formula is 40-80%. Porosity e = (Vl−Vp) / Vl × 100 (%) Vl; phosphor layer volume Vp; phosphor volume
JP29427395A 1995-11-13 1995-11-13 Capillary fluorescent lamp Expired - Fee Related JP3336598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29427395A JP3336598B2 (en) 1995-11-13 1995-11-13 Capillary fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29427395A JP3336598B2 (en) 1995-11-13 1995-11-13 Capillary fluorescent lamp

Publications (2)

Publication Number Publication Date
JPH09139190A JPH09139190A (en) 1997-05-27
JP3336598B2 true JP3336598B2 (en) 2002-10-21

Family

ID=17805580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29427395A Expired - Fee Related JP3336598B2 (en) 1995-11-13 1995-11-13 Capillary fluorescent lamp

Country Status (1)

Country Link
JP (1) JP3336598B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400097B1 (en) * 2001-10-18 2002-06-04 General Electric Company Low wattage fluorescent lamp
US6931992B1 (en) * 2004-02-25 2005-08-23 Cortron Corporation Combined ablation and exposure system and method
JP4817704B2 (en) * 2005-04-18 2011-11-16 オスラム・メルコ株式会社 Fluorescent lamp
JP5426514B2 (en) * 2010-10-08 2014-02-26 三菱電機照明株式会社 Lighting system

Also Published As

Publication number Publication date
JPH09139190A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JP3837189B2 (en) Mercury vapor discharge lamp
JP4934264B2 (en) Fluorescent lamp with a single composite phosphor layer
JP2003162975A (en) Low-wattage fluorescent lamp
JPH0624116B2 (en) Hot cathode low pressure rare gas discharge fluorescent lamp
CN1235264C (en) Gas discharge lamp comprising phosphor layer
JP2004513482A (en) Low wattage fluorescent lamp
JP2009245947A (en) Fluorescent lamp, its manufacturing method, and illumination device
JPH01503662A (en) Silicon dioxide layer for selective reflection for mercury vapor discharge lamps
JP3336598B2 (en) Capillary fluorescent lamp
US6952081B1 (en) Fluorescent lamp having ultraviolet reflecting layer
CN100392795C (en) Dielectric impedance discharging gas discharge lamp containing blue phosphor
JP2008059943A (en) Coating for forming phosphor layer, and phosphor layer and fluorescent lamp using it,
JP2003077420A (en) Fluorescent lamp with long operating life
JP4472716B2 (en) Fluorescent lamp and manufacturing method thereof
JPH08306341A (en) Fluorescent lamp
FI60087B (en) GASURLADDNINGSLAMPA
JPS6049553A (en) Fluorescent lamp
KR101139542B1 (en) Multi-coated Phosphors and Manufacturing Method thereof
JP2692470B2 (en) Fluorescent lamp
JP2006140083A (en) Fluorescent lamp
JPH11265685A (en) Fluorescent lamp
JP3203804B2 (en) Capillary fluorescent lamp and backlight device
JP2002083570A (en) Vacuum ultraviolet excitation-emissive element
JPH10241634A (en) Electrodeless fluorescent lamp
JP2008288132A (en) Coating for fluorescent lamp and coating film using the same, method of manufacturing coating film, and fluorescent lamp

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees