JP2007121128A - Ammonium diuranate particle containing gadolinium and manufacturing method thereof, fuel kernel for high-temperature gas-cooled reactor fuel, coated particle for high-temperature gas-cooled reactor, and high-temperature gas-cooled reactor fuel - Google Patents

Ammonium diuranate particle containing gadolinium and manufacturing method thereof, fuel kernel for high-temperature gas-cooled reactor fuel, coated particle for high-temperature gas-cooled reactor, and high-temperature gas-cooled reactor fuel Download PDF

Info

Publication number
JP2007121128A
JP2007121128A JP2005314163A JP2005314163A JP2007121128A JP 2007121128 A JP2007121128 A JP 2007121128A JP 2005314163 A JP2005314163 A JP 2005314163A JP 2005314163 A JP2005314163 A JP 2005314163A JP 2007121128 A JP2007121128 A JP 2007121128A
Authority
JP
Japan
Prior art keywords
fuel
gadolinium
particles
temperature gas
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005314163A
Other languages
Japanese (ja)
Inventor
Masashi Takahashi
昌史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005314163A priority Critical patent/JP2007121128A/en
Publication of JP2007121128A publication Critical patent/JP2007121128A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-temperature gas-cooled reactor fuel for adjusting neutron flux during combustion for increasing the combustion efficiency in the reactor core of the high-temperature gas-cooled reactor and extending its lifetime; to provide an ammonium diuranate particle that becomes the raw material of the fuel, a fuel kernel, and a coated particle; and to provide a manufacturing method of the ammonium diuranate particle. <P>SOLUTION: The manufacturing method of the ammonium diuranate particle containing gadolinium gives: the ammonium diuranate particle containing gadolinium for a high-temperature gas-cooled reactor fuel where gadolinium is dispersed uniformly in the particle; the fuel kernel that is a uranium dioxide containing gadolinium obtained by baking the ammonium diuranate particle; the coated particle for the high-temperature gas-cooled reactor fuel where the fuel kernel is coated with a thermal decomposition carbon layer, a silicon carbide layer, or the like; the fabricated high-temperature gas-cooled reactor fuel after the coated particle is overcoated by a graphite matrix material; and the ammonium diuranate particle containing gadolinium by dripping a uniformly mixed solution drop of uranyl nitrate and gadolinium nitrate into an ammonium solution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高温ガス炉燃料用に好適なガドリニウム含有重ウラン酸アンモニウム粒子およびその製造方法、並びに高温ガス炉燃料用の燃料核、高温ガス炉用の被覆粒子および高温ガス炉用燃料に関し、詳しくはウランとガドリニウムとが均一に混合された高温ガス炉燃料用のガドリニウム含有重ウラン酸アンモニウム粒子、高温ガス炉用の燃料核、高温ガス炉用の被覆粒子、および燃料コンパクト、ペブル球等の高温ガス炉用燃料、並びにガドリニウム含有重ウラン酸アンモニウム粒子の製造方法に関するものである。   The present invention relates to gadolinium-containing ammonium heavy uranate particles suitable for a HTGR fuel, a method for producing the same, a fuel core for a HTGR fuel, coated particles for a HTGR, and a HTGR fuel. Is a gadolinium-containing ammonium heavy uranate particle for HTGR fuel in which uranium and gadolinium are homogeneously mixed, fuel core for HTGR, coated particle for HTGR, and high temperature such as fuel compact and pebble sphere The present invention relates to a gas furnace fuel and a method for producing gadolinium-containing ammonium heavy uranate particles.

通常、高温ガス炉用ウラン燃料は、硝酸ウラニル溶液から、ウラン成分を重ウラン酸アンモニウム粒子として取り出し、これを焙焼して三酸化ウラン粒子とし、さらに焙焼還元して二酸化ウラン粒子(燃料核という。)を作る。この燃料核を熱分解性炭素層、炭化珪素層等で被覆して被覆燃料粒子とし、これから燃料コンパクトやペブル球を製造している。
高温ガス炉用燃料は、通常は以下のような工程を経て製造される。まず、酸化ウラン等の粉末を硝酸に溶かし、純水及び粘度調節用増粘剤等を添加して硝酸ウラニル溶液を作る。この硝酸ウラニル溶液を細径の滴下ノズルを用いてアンモニア水溶液中に滴下する。液滴はアンモニア水溶液表面に達するまでの間に、アンモニアガスを吹きかけられ、液滴表面がゲル化し硬化して、アンモニア水溶液表面への衝突時に衝撃による変形が防止される。アンモニア水溶液中で硝酸ウラニル液滴はアンモニアと十分に反応し、固化した後、洗浄、乾燥され重ウラン酸アンモニウム(ADUともいう。)粒子となる。ここでは均質で真球度の高い球状ADU粒子が求められる。真球度の高いADU粒子の製造方法は種々検討されており、例えば、特許文献1には、硝酸ウラニル溶液から数10〜1,000μm径の真球度の高い球状ADU粒子の製造方法が開示されている。
このADU粒子は、大気中で焙焼され、さらに還元及び焼結されることにより、高密度の二酸化ウラン粒子(燃料核)となる。この燃料核(直径350〜650μm)を炭素源となる炭化水素ガス等の熱分解装置中に導入して被覆層を形成し被覆燃料粒子とする。被覆層は、低密度熱分解炭素層、高密度熱分解炭素層、SiC層又はZrC層、および高密度熱分解炭素層の順に形成される。一般的な高温ガス炉用の燃料である燃料コンパクトやペブル球は、上述の被覆燃料粒子を黒鉛粉末、粘結剤等のマトリックス材とともに、中空円筒形状、中実円筒形状または略球状(タドン状)に成型し熱処理して得られる。
上述の燃料コンパクトは黒鉛スリーブに入れられ、減速材を兼ねる黒鉛ブロック中に適当な間隔で装着され、この黒鉛ブロックの集合体が高温ガス炉用の炉心を構成している。そして、この炉心の反応度制御のため、ホウ素化合物などの可燃性毒物を黒鉛ブロックの所々に配置して中性子を吸収させる設計となっている。
Usually, uranium fuel for HTGR is extracted from uranyl nitrate solution as ammonium deuterated uranium particles, then baked into uranium trioxide particles, and further baked and reduced to uranium dioxide particles (fuel nuclei). Make.) These fuel nuclei are coated with a pyrolytic carbon layer, a silicon carbide layer or the like to form coated fuel particles, from which fuel compacts and pebble balls are manufactured.
The fuel for the HTGR is usually manufactured through the following processes. First, a powder such as uranium oxide is dissolved in nitric acid, and pure water, a viscosity adjusting thickener, and the like are added to make a uranyl nitrate solution. This uranyl nitrate solution is dropped into an aqueous ammonia solution using a small-diameter dropping nozzle. Before the droplet reaches the surface of the aqueous ammonia solution, ammonia gas is sprayed, the surface of the droplet gels and hardens, and deformation due to impact is prevented at the time of collision with the surface of the aqueous ammonia solution. Uranyl nitrate droplets in ammonia aqueous solution sufficiently react with ammonia and solidify, and then washed and dried to form ammonium deuterated uranate (also referred to as ADU) particles. Here, spherical ADU particles having a uniform and high sphericity are required. Various methods for producing ADU particles having high sphericity have been studied. For example, Patent Document 1 discloses a method for producing spherical ADU particles having a diameter of several tens to 1,000 μm and high sphericity from a uranyl nitrate solution. Has been.
The ADU particles are roasted in the atmosphere, and further reduced and sintered, thereby forming high-density uranium dioxide particles (fuel nuclei). The fuel nuclei (diameter 350 to 650 μm) are introduced into a thermal decomposition apparatus such as a hydrocarbon gas serving as a carbon source to form a coating layer to form coated fuel particles. The coating layer is formed in the order of a low density pyrolytic carbon layer, a high density pyrolytic carbon layer, a SiC layer or a ZrC layer, and a high density pyrolytic carbon layer. Fuel compacts and pebble spheres, which are fuels for general high-temperature gas reactors, include the above-mentioned coated fuel particles, together with matrix materials such as graphite powder and binder, in a hollow cylindrical shape, a solid cylindrical shape, or a substantially spherical shape (tadon shape) ) And heat-treated.
The above-described fuel compact is placed in a graphite sleeve and mounted at appropriate intervals in a graphite block that also serves as a moderator. The aggregate of the graphite blocks constitutes a core for a high-temperature gas reactor. In order to control the reactivity of the core, a flammable poison such as a boron compound is arranged in places on the graphite block to absorb neutrons.

特開2004−219195号公報JP 2004-219195 A

上述のような可燃性毒物(中性子吸収材)の配置方法では、高温ガス炉運転中、黒鉛ブロック全体としての中性子密度は調整できるが、例えば燃料コンパクト一つひとつの単位で見ると、可燃性毒物の近傍とそうでない部分とで中性子密度のむらができてしまう。そのため、原子炉の運転に伴い、比較的早期に燃焼して寿命が尽きる燃料と未燃焼でまだ十分寿命が残っている燃料とが並存することになる。しかし、全体の燃焼度が一定値を超えれば、原子炉を停止して炉心の交換をしなければならない。燃料の燃焼度が不均一であれば、燃料の使用効率は悪くなり出力が低下したり、燃料の寿命も短くなったりする。本発明は、高温ガス炉の燃料の均一な燃焼を実現し、結果として燃焼効率を上げ、寿命を延ばすことのできるガドリニウム含有重ウラン酸アンモニウム粒子およびその製造方法、並びに高温ガス炉燃料用の燃料核、高温ガス炉用の被覆粒子および高温ガス炉用燃料の提供を課題としている。   In the method of arranging flammable poisons (neutron absorbers) as described above, the neutron density of the graphite block as a whole can be adjusted during operation of the high-temperature gas furnace. And the neutron density is uneven in the parts that are not. For this reason, along with the operation of the nuclear reactor, fuel that burns relatively early and whose life is exhausted and fuel that is unburned and still has a sufficient lifespan coexist. However, if the overall burnup exceeds a certain value, the reactor must be shut down and the core replaced. If the degree of burnup of the fuel is not uniform, the fuel usage efficiency will deteriorate and the output will decrease, and the life of the fuel will also be shortened. The present invention realizes uniform combustion of a high temperature gas reactor fuel, and as a result, increases the combustion efficiency and extends the life of the gadolinium-containing ammonium heavy uranate particles, a method for producing the same, and a fuel for the high temperature gas reactor fuel An object is to provide nuclei, coated particles for a HTGR, and fuel for the HTGR.

本発明者は、燃料製造段階で原材料中のウラン化合物中に可燃性毒物であるガドリニウムを均一混合しておくことにより、均一に燃焼制御できる燃料を作製する方法を見出して以下の手段からなる発明をした。
(1)ガドリニウムが粒子中に均一に分散された高温ガス炉燃料用のガドリニウム含有重ウラン酸アンモニウム粒子。
(2)上記ガドリニウム含有重ウラン酸アンモニウム粒子を熱処理して得られるガドリニウム含有二酸化ウラン粒子である高温ガス炉燃料用の燃料核。
(3)上記燃料核を熱分解炭素層、および炭化珪素層等で被覆した高温ガス炉燃料用の被覆粒子。
(4)上記被覆粒子を黒鉛マトリックス材でオーバーコートした後、成形加工および熱処理して得られる高温ガス炉用燃料コンパクト、または高温ガス炉用ペブル球。
(5)硝酸ウラニルおよび硝酸ガドリニウムの均一混合溶液をアンモニア水中に滴下してガドリニウム含有重ウラン酸アンモニウム粒子を生成する、(1)に記載のガドリニウム含有重ウラン酸アンモニウム粒子の製造方法。
The present inventor has found a method for producing a fuel capable of uniform combustion control by uniformly mixing gadolinium, which is a flammable poison, in the uranium compound in the raw material at the fuel production stage, and comprises the following means: Did.
(1) Gadolinium-containing ammonium heavy uranate particles for HTGR fuel in which gadolinium is uniformly dispersed in the particles.
(2) A fuel core for a HTGR fuel, which is gadolinium-containing uranium dioxide particles obtained by heat-treating the gadolinium-containing ammonium heavy uranate particles.
(3) Coated particles for HTGR fuel in which the fuel core is coated with a pyrolytic carbon layer, a silicon carbide layer, or the like.
(4) A high-temperature gas reactor fuel compact or a high-temperature gas reactor pebble sphere obtained by overcoating the coated particles with a graphite matrix material, followed by molding and heat treatment.
(5) The method for producing gadolinium-containing ammonium heavy uranate particles according to (1), wherein a homogeneous mixed solution of uranyl nitrate and gadolinium nitrate is dropped into ammonia water to produce gadolinium-containing ammonium heavy uranate particles.

本発明においては、可燃性毒物であるガドリニウムが粒子中に均一に分散された、ガドリニウム含有二酸化ウラン粒子の燃料核から製造された燃料コンパクト及びペブル球等の高温ガス炉用燃料が得られる。このような高温ガス炉用燃料を用いて高温ガス炉の炉心設計をすれば、容易に高温ガス炉用燃料全体における均一な燃焼が実現でき、高温ガス炉用燃料の効率的利用、原子炉の安定した操業、燃料の長寿命化などが実現できる。   In the present invention, fuel compacts produced from fuel nuclei of gadolinium-containing uranium dioxide particles in which gadolinium, which is a flammable poison, is uniformly dispersed in the particles, and fuels for HTGRs such as pebble spheres are obtained. By designing the core of the HTGR using such HTGR fuel, it is possible to easily achieve uniform combustion throughout the HTGR fuel, making efficient use of the HTGR fuel, Stable operation and longer fuel life can be realized.

本発明のガドリニウム含有重ウラン酸アンモニウム粒子(以後、「重ウラン酸アンモニウム粒子」を「ADU粒子」と略称することがある。また、「重ウラン酸アンモニウム」を「ADU」ともいう。)は粒子中にガドリニウムを均一に分散している。これはガドリニウム化合物とウラン化合物とを均一に含む均一溶液の液滴からガドリニウム含有ADU粒子を形成させることにより実現している。さらに、このガドリニウム含有ADU粒子を焙焼、還元焼結してガドリニウム含有二酸化ウランセラミックスの燃料核を得、この燃料核に熱分解炭素層、炭化珪素層等を被覆して被覆粒子とする。被覆粒子はマトリックスとなる黒鉛等と混合して黒鉛等をオーバーコートした後、成形加工および熱処理を施して、燃料核中にガドリニウムを均一に分散した高温ガス炉用燃料である燃料コンパクトまたはペブル球となる。このような高温ガス炉用燃料はウラン中にガドリニウムが均一に分散しているので、高温ガス炉運転中それぞれの燃料核あるいは燃料核中のウランは均一に核分裂反応により燃焼することができる。   The gadolinium-containing ammonium heavy uranate particles (hereinafter, “ammonium heavy uranate particles” may be abbreviated as “ADU particles”. “Ammonium heavy uranate” is also referred to as “ADU”). Gadolinium is uniformly dispersed inside. This is realized by forming gadolinium-containing ADU particles from droplets of a uniform solution uniformly containing a gadolinium compound and a uranium compound. Further, the gadolinium-containing ADU particles are roasted and reduced and sintered to obtain a fuel nucleus of gadolinium-containing uranium dioxide ceramics. The fuel nucleus is coated with a pyrolytic carbon layer, a silicon carbide layer, or the like to form coated particles. The coated particles are mixed with graphite as a matrix and overcoated with graphite, etc., then subjected to molding and heat treatment, and fuel compact or pebble spheres that are fuels for high-temperature gas reactors in which gadolinium is uniformly dispersed in the fuel core It becomes. In such a high temperature gas reactor fuel, gadolinium is uniformly dispersed in uranium. Therefore, during operation of the high temperature gas reactor, each fuel nucleus or uranium in the fuel nucleus can be uniformly burned by a fission reaction.

以下に、高温ガス炉用燃料の製造工程に従って、各粒子および燃料の製造方法を説明する。
(ガドリニウムを含有したADU粒子の製造)
本発明のガドリニウムを含有するADU粒子は、従来のガドリニウムを含まないADU粒子同様、回分式製造方法でも連続式製造方法でも製造できる。回分式製造方法は臨界安全管理上容易であり、連続製造方法は大量生産に適しているが臨界安全管理に特に留意する必要がある。これらの製造工程は、従来のガドリニウムを含有しないADU粒子の製造工程と基本的な構成に変更はないが、最初の硝酸ウラニル溶液調製段階で、ガドリニウム化合物を加え硝酸ガドリニウム含有硝酸ウラニル溶液とすることで、本発明のガドリニウムを含有するADU粒子等が得られる。
Below, according to the manufacturing process of the fuel for high temperature gas reactors, the manufacturing method of each particle | grain and fuel is demonstrated.
(Manufacture of ADU particles containing gadolinium)
The ADU particles containing gadolinium of the present invention can be produced by either a batch production method or a continuous production method, similarly to conventional ADU particles not containing gadolinium. The batch manufacturing method is easy in terms of criticality safety control, and the continuous manufacturing method is suitable for mass production, but it is necessary to pay particular attention to criticality safety control. Although these manufacturing processes are the same as the conventional manufacturing process of ADU particles not containing gadolinium, the gadolinium compound should be added to form a gadolinium nitrate-containing uranyl nitrate solution in the first uranyl nitrate solution preparation stage. Thus, ADU particles containing gadolinium of the present invention can be obtained.

詳述すると、最初の工程はガドリニウム含有硝酸ウラニル溶液を調製して、これをアンモニアと反応させてガドリニウムを均一に含有した固体粒子であるガドリニウム含有ADU粒子を生成させる工程である。ガドリニウム含有硝酸ウラニル溶液の調製においては酸化ウランおよびガドリニウム原料を硝酸に溶解し、純水、および増粘剤等を加えて混合し均一溶液としながら、硝酸ウラニル濃度、硝酸ガドリニウム濃度および溶液粘度を調節する。酸化ウランは、すでに核燃料用に放射性同位元素が濃縮された二酸化ウラン、三酸化ウランまたは八酸化三ウラン等、好ましくは八酸化三ウランを用いればよい。ガドリニウム原料はガドリニアまたは硝酸ガドリニウム等入手し易く硝酸に溶解し易いものを用いればよい。溶解時には硝酸溶液を加温して攪拌すれば容易に溶解する。硝酸ウラニル溶液のウラン濃度は、通常1.5〜2.5molU/Lとすることが望ましい。濃度が高すぎると溶解残渣が発生し、濃度が低すぎると真球度の高い、高密度のADU粒子の生成が難しくなる。ガドリニウムの濃度は炉心設計から要求されるウランに対するガドリニウムの質量比率から計算される濃度とすればよい。通常はウランに対し質量比で10%以下、好ましくは0.5〜5%とすることが多い。   Specifically, the first step is to prepare a gadolinium-containing uranyl nitrate solution and react it with ammonia to generate gadolinium-containing ADU particles that are solid particles uniformly containing gadolinium. In the preparation of gadolinium-containing uranyl nitrate solution, the uranyl nitrate concentration, gadolinium nitrate concentration and solution viscosity are adjusted by dissolving uranium oxide and gadolinium raw materials in nitric acid and mixing with pure water and thickener to make a homogeneous solution. To do. As the uranium oxide, uranium dioxide, uranium trioxide, or triuranium octoxide that has already been enriched with radioactive isotopes for nuclear fuel, preferably uranium octaoxide may be used. As the gadolinium raw material, gadolinia or gadolinium nitrate, which is easily available and may be easily dissolved in nitric acid, may be used. At the time of dissolution, the solution is easily dissolved by heating and stirring the nitric acid solution. The uranium concentration in the uranyl nitrate solution is usually desirably 1.5 to 2.5 molU / L. If the concentration is too high, a dissolution residue is generated. If the concentration is too low, it is difficult to produce high-density ADU particles with high sphericity. The concentration of gadolinium may be a concentration calculated from the mass ratio of gadolinium to uranium required from the core design. Usually, it is 10% or less by mass ratio with respect to uranium, preferably 0.5 to 5% in many cases.

ガドリニウム含有硝酸ウラニル溶液の粘度は、後述のようにアンモニア水溶液へ滴下する際のガドリニウム含有硝酸ウラニル溶液液滴の大きさ、真球度、アンモニア水溶液上への落下、衝突時の耐変形性に大きく作用する。ただし、ガドリニウム含有硝酸ウラニル溶液の粘度は硝酸ウラニルの濃度や温度により変化するので、実際の液滴形成条件での粘度が適正に制御される。ガドリニウム含有硝酸ウラニル溶液液滴形成および初期の硝酸ウラニル溶液液滴のガドリニウム含有重ウラン酸アンモニウム化反応を室温〜50℃で行う場合に、ガドリニウム含有硝酸ウラニル溶液の粘度は、液滴形成時の温度で0.1〜100mPa・s、特に40〜90mPa・sが好ましい。粘度調節用の増粘剤としては、水溶性ポリマー等を用いるとよい。例えばポリビニルアルコール(以下、PVAと略する。)、ポリアクリル酸ナトリウム及びポリエチレンオキシド等の合成ポリマー、カルボキシメチルセルロース、ヒドロキシエチルセルロース、メチルセルロース、及びエチルセルロース等のセルロース系ポリマー、可溶性でんぷん、及びカルボキシメチルでんぷん等のでんぷん系ポリマー、デキストリン、及びガラクタン等の水溶性天然高分子等を挙げることができる。これらの中でも、合成ポリマーが好ましく、特にPVAが好ましい。これら各種の水溶性ポリマーは、その一種を単独で使用しても、二種以上を併用しても良い。このように増粘剤等を添加したガドリニウム含有硝酸ウラニル溶液(以下、「増粘剤等を添加したガドリニウム含有硝酸ウラニル溶液」を「硝酸ウラニル溶液」と省略することがある。)は、ガドリニウム含有ADU粒子製造の原料溶液となる。   The viscosity of the gadolinium-containing uranyl nitrate solution is large in the size, sphericity, drop on the aqueous ammonia solution, and deformation resistance at the time of collision when dropping into the aqueous ammonia solution as described below. Works. However, since the viscosity of the gadolinium-containing uranyl nitrate solution varies depending on the concentration and temperature of the uranyl nitrate, the viscosity under actual droplet forming conditions is appropriately controlled. When the gadolinium-containing uranyl nitrate solution droplet formation and the initial gadolinium-containing ammonium uranium acidation reaction of the uranyl nitrate solution droplet are performed at room temperature to 50 ° C., the viscosity of the gadolinium-containing uranyl nitrate solution is the temperature at the time of droplet formation. 0.1 to 100 mPa · s, particularly 40 to 90 mPa · s is preferable. A water-soluble polymer or the like may be used as the thickener for adjusting the viscosity. For example, polyvinyl alcohol (hereinafter abbreviated as PVA), synthetic polymers such as sodium polyacrylate and polyethylene oxide, cellulose polymers such as carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, and ethyl cellulose, soluble starch, and carboxymethyl starch Water-soluble natural polymers such as starch-based polymers, dextrin, and galactan can be exemplified. Among these, a synthetic polymer is preferable, and PVA is particularly preferable. These various water-soluble polymers may be used alone or in combination of two or more. A gadolinium-containing uranyl nitrate solution to which a thickener or the like is added as described above (hereinafter, “a gadolinium-containing uranyl nitrate solution to which a thickener or the like is added” may be abbreviated as “a uranyl nitrate solution”) may contain gadolinium. It becomes a raw material solution for ADU particle production.

具体的な製造例として、回分式反応装置を図1に示したが、これを参照しながら説明する。硝酸ウラニル溶液は硝酸ウラニル溶液滴下装置1に導入される。通常、硝酸ウラニル溶液滴下装置1には、下部に向かって開口する細いノズルを設けた容器が用いられる。均一な大きさの液滴を形成して落下させるには、ノズルに均一な周波数の微振動を与えて液滴を落下させてやるとよい。所望の液滴径にするには、硝酸ウラニル溶液の粘度、ノズルの形状、振動の周波数などを制御してやればよい。液滴径は、生成するADU粒子の直径に直接に影響する。なお、大量生産時は硝酸ウラニル溶液滴下装置1には、複数のノズルが配置される。ノズルが複数の場合、特にその先端形状および振動状態を揃え、同じ形状の液滴が形成されるようにすることが望ましい。   As a specific production example, a batch reaction apparatus is shown in FIG. 1 and will be described with reference to FIG. The uranyl nitrate solution is introduced into the uranyl nitrate solution dropping device 1. Usually, the uranyl nitrate solution dropping device 1 uses a container provided with a thin nozzle that opens toward the bottom. In order to form and drop a droplet having a uniform size, it is preferable to drop the droplet by giving a fine vibration of a uniform frequency to the nozzle. In order to obtain a desired droplet diameter, the viscosity of the uranyl nitrate solution, the shape of the nozzle, the frequency of vibration, and the like may be controlled. The droplet size directly affects the diameter of the ADU particles produced. A plurality of nozzles are arranged in the uranyl nitrate solution dropping device 1 during mass production. When there are a plurality of nozzles, it is particularly desirable to align the tip shape and vibration state so that droplets of the same shape are formed.

硝酸ウラニルの液滴2はまずアンモニアガス層4中に滴下され、アンモニアガス層4中を落下しながら液滴表面の一部がアンモニアガスと反応しゲル化して、液滴表面にゲル状物質の被膜が形成される。硝酸ウラニルがADU化する反応は下式で表される。共存するガドリニウムの一部にも類似の反応が起こっているものと推測される。   The uranyl nitrate droplet 2 is first dropped in the ammonia gas layer 4, and while falling in the ammonia gas layer 4, a part of the droplet surface reacts with the ammonia gas and gels, and a gel-like substance is formed on the droplet surface. A film is formed. The reaction in which uranyl nitrate is converted to ADU is represented by the following formula. It is speculated that a similar reaction occurs in some of the coexisting gadolinium.

Figure 2007121128
Figure 2007121128

表面がゲル化して固化した硝酸ウラニル溶液液滴2は反応槽3のアンモニア水溶液層5中に落下する。硝酸ウラニル溶液液滴2はアンモニア水溶液表面上への落下の衝撃による破壊や変形がない程度に表面がゲル化し固化していることが望ましい。落下した硝酸ウラニル溶液液滴2はさらにアンモニア水溶液層5中のアンモニアと反応しながらアンモニア水溶液層5中を沈下し、そのままの形状で内部までゲル化が進んでいく。アンモニア水溶液中での反応温度は10〜30℃が、生成した固体粒子7のアンモニア水溶液中での滞留時間は20〜120分が、アンモニア水溶液のアンモニア濃度は20〜35重量%が望ましい。表面からゲル化が進んできた硝酸ウラニル溶液液滴はアンモニア水溶液中でさらにウランおよびガドリニウムのアンモニアとの反応が進み、ガドリニウム含有ADUの固体粒子7となる。なお、アンモニア水溶液中のアンモニアの含有量は反応に伴って減少していくので、アンモニア濃度を維持するためアンモニアガスの吹き込み、又は新鮮なアンモニア水溶液の添加等を行うことが望ましい。この際、反応槽3の設計、使用にあたっては硝酸ウラニル溶液液滴2および反応が不十分なガドリニウム含有ADU粒子7が反応槽3中の一部に偏在したり、部分的に高密度状態になったりしないようにする。十分に反応固化していないガドリニウム含有ADU粒子がアンモニア水溶液中で堆積すると変形して球状でなくなる恐れがある。通常は円柱形、楕円柱形、直方体などの形状の反応容器とし、粒子を自然落下させたり、場合によってはアンモニア水溶液層5を流動状態に保って反応させればよい。また、粒子等が滞留しやすい箇所に循環流路を作り、アンモニア水の一部を循環させて滞留防止する方法もある。生成した少なくとも表面がゲル化して固化したガドリニウム含有ADU粒子は固体粒子7としてアンモニア水溶液層5の下部に落下してくる。   The uranyl nitrate solution droplet 2 whose surface is gelled and solidified falls into the ammonia aqueous solution layer 5 of the reaction vessel 3. It is desirable that the uranyl nitrate solution droplets 2 are gelled and solidified to such an extent that they are not broken or deformed by the impact of dropping on the surface of the aqueous ammonia solution. The dropped uranyl nitrate solution droplet 2 further sinks in the ammonia aqueous solution layer 5 while reacting with ammonia in the ammonia aqueous solution layer 5, and gelation proceeds to the inside as it is. The reaction temperature in the aqueous ammonia solution is preferably 10 to 30 ° C., the residence time of the produced solid particles 7 in the aqueous ammonia solution is preferably 20 to 120 minutes, and the ammonia concentration in the aqueous ammonia solution is preferably 20 to 35% by weight. The uranyl nitrate solution droplets that have been gelled from the surface are further reacted with ammonia of uranium and gadolinium in an aqueous ammonia solution to form gadolinium-containing ADU solid particles 7. Since the ammonia content in the aqueous ammonia solution decreases with the reaction, it is desirable to blow in ammonia gas or add a fresh aqueous ammonia solution to maintain the ammonia concentration. At this time, in designing and using the reaction vessel 3, the uranyl nitrate solution droplets 2 and the gadolinium-containing ADU particles 7 with insufficient reaction are unevenly distributed in a part of the reaction vessel 3 or partially in a high density state. Don't do it. If gadolinium-containing ADU particles that are not sufficiently reacted and solidified are deposited in an aqueous ammonia solution, they may be deformed and become non-spherical. Usually, a reaction vessel having a cylindrical shape, an elliptical column shape, a rectangular parallelepiped shape or the like is used, and the particles are allowed to fall naturally, or in some cases, the ammonia aqueous solution layer 5 may be kept in a fluid state and reacted. In addition, there is a method of preventing the stagnation by forming a circulation flow path at a place where particles or the like tend to stay and circulating a part of the ammonia water. The generated gadolinium-containing ADU particles having at least the surface gelled and solidified fall as solid particles 7 below the ammonia aqueous solution layer 5.

落下してきた固体粒子7は一定量堆積したら固体粒子排出口8から排出し、アンモニア水溶液と分離する。固体粒子の変形、臨界安全管理等の配慮がなされる限り、アンモニア水溶液と固体粒子との固液分離は通常用いられるどのような方法でもよい。好適な方法としては、デカンテーション、メッシュ等のフィルターによる分離が挙げられる。連続法としては、回転ドラム式フィルター、液体サイクロンなどが挙げられる。固体粒子排出口8の下にフィルターを斜めに設置して液体をろ過しながら固体粒子を分離する構造の連続操作可能なフィルターでもよい。固液分離は、次の工程で熟成、及び洗浄等をするので、完全でなくとも十分である。分離された液体は、再度元のアンモニア水溶液層5に導き循環使用すればよい。場合によっては、固体粒子とアンモニア水を分離しないで、このアンモニア水を後述の熟成用アンモニア水として使用することも出来る。   When a certain amount of the falling solid particles 7 is deposited, the solid particles 7 are discharged from the solid particle outlet 8 and separated from the aqueous ammonia solution. As long as consideration is given to deformation of the solid particles, critical safety control, etc., solid-liquid separation of the aqueous ammonia solution and the solid particles may be any commonly used method. Suitable methods include separation by a filter such as decantation or mesh. Examples of the continuous method include a rotary drum filter and a hydrocyclone. The filter may be a continuously operable filter having a structure in which solid particles are separated while filtering a liquid by installing a filter obliquely under the solid particle discharge port 8. The solid-liquid separation is sufficient if it is not perfect because it is aged and washed in the next step. The separated liquid may be led to the original aqueous ammonia layer 5 again and recycled. In some cases, the ammonia water can be used as the aging ammonia water described later without separating the solid particles from the ammonia water.

次に、得られた固体粒子7を熟成、洗浄工程に移送する。このようにして固液分離した固体粒子7は、ガドリニウム含有ADU化反応が不十分な場合は、さらにアンモニアと反応させて完全なガドリニウム含有ADU粒子とするための熟成槽を設け熟成することが望ましい。固体粒子のガドリニウム含有ADU化反応を十分に進行させておくと、後にガドリニウム含有二酸化ウラン焼結体である燃料核を製造した場合に緻密で高品質の燃料核が得られる。熟成は固体粒子を第二のアンモニア水溶液槽である熟成槽に移送してアンモニア水の循環、攪拌等により固体粒子を懸濁状態としてガドリニウム含有ADU化反応を進める。この場合、反応温度は30〜100℃、好ましくは40〜90℃が望ましい。また、固体粒子の熟成時間は10〜180分、好ましくは20〜120分が望ましい。熟成槽のアンモニア水溶液のアンモニア濃度は5〜40重量%、好ましくは10〜30重量%が望ましい。熟成工程においても上述と同様固体粒子の偏在を防ぐことが望ましい。完全にガドリニウム含有ADU粒子として固化した固体粒子は上記同様の分離工程に移送し固体粒子をアンモニア水溶液から分離する。   Next, the obtained solid particles 7 are transferred to an aging and washing process. When the gadolinium-containing ADU reaction is insufficient, the solid particles 7 thus solid-liquid separated are preferably aged by providing an aging tank for further reaction with ammonia to form complete gadolinium-containing ADU particles. . If the gadolinium-containing ADU reaction of the solid particles is sufficiently advanced, a dense and high-quality fuel nucleus can be obtained when a fuel nucleus which is a gadolinium-containing uranium dioxide sintered body is manufactured later. In the ripening, the solid particles are transferred to an aging tank that is a second ammonia aqueous solution tank, and the gadolinium-containing ADU reaction is advanced by suspending the solid particles by circulating, stirring, or the like. In this case, the reaction temperature is 30 to 100 ° C, preferably 40 to 90 ° C. The aging time of the solid particles is 10 to 180 minutes, preferably 20 to 120 minutes. The ammonia concentration of the aqueous ammonia solution in the aging tank is 5 to 40% by weight, preferably 10 to 30% by weight. In the ripening step, it is desirable to prevent uneven distribution of solid particles as described above. The solid particles completely solidified as gadolinium-containing ADU particles are transferred to the same separation step as described above to separate the solid particles from the aqueous ammonia solution.

固液分離した粗固体粒子は洗浄乾燥工程に導かれる。洗浄工程は、通常、純水洗浄槽と有機溶媒洗浄槽とを持つ。純水洗浄槽では粗固体粒子に含まれるアンモニア、未反応硝酸ウラニル、硝酸ガドリニウム、及び増粘剤などを除去する。洗浄条件としては、洗浄温度は5〜120℃、好ましくは10〜100℃、固体粒子の洗浄時間は10〜240分、好ましくは20〜200分が望ましい。有機溶媒洗浄槽では粗固体粒子に含まれる水分、及び残留増粘剤などの有機物等を除去する。有機溶媒としては揮発乃至蒸発し易いエタノール、メタノール、アセトンのような低沸点の水溶性溶媒や揮発性炭化水素溶媒、エーテル類を用いればよい。有機溶媒で固体粒子を洗浄する際の洗浄温度は5〜100℃好ましくは10〜80℃が望ましい。また、固体粒子の洗浄時間は10〜240分、好ましくは20〜200分が望ましい。洗浄後の固液分離は上述の固液分離と同様にすればよい。なお、有機溶媒洗浄槽での洗浄は省略してもよい。   The crude solid particles separated into solid and liquid are guided to a washing and drying process. The washing step usually has a pure water washing tank and an organic solvent washing tank. In the pure water washing tank, ammonia, unreacted uranyl nitrate, gadolinium nitrate, and thickener contained in the coarse solid particles are removed. As washing conditions, the washing temperature is 5 to 120 ° C., preferably 10 to 100 ° C., and the washing time of the solid particles is 10 to 240 minutes, preferably 20 to 200 minutes. In the organic solvent washing tank, moisture contained in the coarse solid particles and organic substances such as a residual thickener are removed. As the organic solvent, low-boiling water-soluble solvents such as ethanol, methanol, and acetone, volatile hydrocarbon solvents, and ethers that are easily volatilized or evaporated may be used. The washing temperature when washing the solid particles with an organic solvent is 5 to 100 ° C., preferably 10 to 80 ° C. The washing time of the solid particles is 10 to 240 minutes, preferably 20 to 200 minutes. Solid-liquid separation after washing may be performed in the same manner as the above-described solid-liquid separation. Note that cleaning in the organic solvent cleaning tank may be omitted.

洗浄が終わった固体粒子は乾燥工程に移送される。乾燥工程ではどのような方法で乾燥してもよい。温風乾燥、加熱乾燥、流動床式乾燥または自然乾燥でも問題はないが、搬送手段、例えばベルトコンベアー上で温風乾燥をすればよい。臨界安全管理、及び放射線防護管理等の点から制御の容易なこれらの方法が好ましい。乾燥工程においては、あまり急激に固体粒子を加熱すると固体粒子が破損したり、変形したりすることがあるので注意をする。乾燥は100℃以下で行うことが好ましい。このようにしてガドリニウム含有ADU粒子が得られる。なお、熟成から乾燥までの工程はひとつの槽で順次実施することも出来る。
また、図1に示すADU粒子製造装置は、この発明に係るガドリニウム含有重ウラン酸アンモニウム粒子を製造する一例であり、図1に示す以外の通常知られている各種の回分式、連続式のADU粒子製造装置がこの発明におけるADU粒子製造装置とすることができる。
The solid particles that have been washed are transferred to a drying process. You may dry by what kind of method in a drying process. There is no problem with hot air drying, heat drying, fluidized bed drying, or natural drying, but hot air drying may be performed on a conveying means such as a belt conveyor. These easy-to-control methods are preferable in terms of critical safety management and radiation protection management. In the drying process, care should be taken because if the solid particles are heated too rapidly, the solid particles may be damaged or deformed. Drying is preferably performed at 100 ° C. or lower. In this way, gadolinium-containing ADU particles are obtained. In addition, the process from aging to drying can also be carried out sequentially in one tank.
The ADU particle production apparatus shown in FIG. 1 is an example of producing gadolinium-containing ammonium heavy uranate particles according to the present invention, and various commonly known batch-type and continuous-type ADUs other than those shown in FIG. The particle production apparatus can be the ADU particle production apparatus in the present invention.

(ガドリニウム含有燃料核および被覆粒子の製造)
上記のようにして得られたガドリニウム含有ADU粒子は、500〜650℃で焙焼され三酸化ウランなどの酸化物粒子となる。これを還元雰囲気下で1500℃以上で焼結して酸化ガドリニウムを均一に含む二酸化ウラン粒子とする。必要に応じてこの粒子を分級、選別すると、粒度および粒子形状の整ったガドリニウム含有ADU粒子が得られ、これが燃料核として好適に利用される。通常、この燃料核は、直径約350〜650μmの微小粒子であることが好ましい。
被覆粒子は燃料核を熱分解炭素層、炭化珪素層等で被覆したものである。通常は、燃料核表面に4層の被覆層を有し、燃料核表面側から、第一層は低密度熱分解炭素層、第二層は高密度熱分解炭素層、第三層は炭化珪素層、及び第四層は高密度熱分解炭素層で構成されており、粒径は約500〜1000μmである。第一層は、密度が約1g/cmの低密度熱分解炭素からなり、ガス状の核分裂生成物(以下、「FP」と略す場合がある。)のガス溜めとしての機能及び燃料核のスウェリングを吸収するバッファとしての機能を有する。第二層は、密度が約1.8g/cmの高密度熱分解炭素からなり、ガス状FPを保持する機能を有する。第三層は、密度が約3.2g/cmの炭化珪素(以下、「SiC」と略す場合がある。)からなり、固体FPを保持する機能を有し、被覆層の主要な強度保持材である。第四層は、第二層と同様に、密度が約1.8g/cmの高密度熱分解炭素からなり、ガス状FPを保持する機能を有するとともに、第三層の保護層としての機能を有する。被覆粒子の製造方法は、例えば、燃料核を流動層反応器にて高温で流動させておき、被覆層を形成するための炭素源ガスを流動層中に導入してこれを熱分解し、燃料核の粒子表面に熱分解炭素の被覆層を形成する。例えば、第一層の低密度熱分解炭素による被覆の場合は、約1300℃でアセチレンを導入して熱分解する。また、第二層、第四層の高密度熱分解炭素による被覆の場合は、約1400℃でプロピレンを導入して熱分解する。さらに、第三層がSiCによる被覆層である場合は、約1500℃でメチルトリクロロシランを導入して熱分解する。これらの被覆層形成反応は同じ流動層反応器でそれぞれの粒子に各層の形成を連続して行うことができるし、各粒子に別々の流動層で一層づつ被覆層を形成することもできる。このようにして本発明の被覆粒子が得られる。
(Manufacture of gadolinium-containing fuel nuclei and coated particles)
The gadolinium-containing ADU particles obtained as described above are roasted at 500 to 650 ° C. to become oxide particles such as uranium trioxide. This is sintered at 1500 ° C. or higher in a reducing atmosphere to obtain uranium dioxide particles uniformly containing gadolinium oxide. When the particles are classified and selected as necessary, gadolinium-containing ADU particles having a uniform particle size and particle shape are obtained, which are suitably used as fuel nuclei. In general, the fuel core is preferably a fine particle having a diameter of about 350 to 650 μm.
The coated particles are obtained by coating fuel nuclei with a pyrolytic carbon layer, a silicon carbide layer, or the like. Normally, it has four coating layers on the surface of the fuel core. From the fuel core surface side, the first layer is a low-density pyrolytic carbon layer, the second layer is a high-density pyrolytic carbon layer, and the third layer is silicon carbide. The layer and the fourth layer are composed of a high-density pyrolytic carbon layer, and the particle size is about 500 to 1000 μm. The first layer is made of low-density pyrolytic carbon having a density of about 1 g / cm 3 , functions as a gas reservoir for gaseous fission products (hereinafter sometimes referred to as “FP”), and fuel nucleus. It functions as a buffer that absorbs swelling. The second layer is made of high-density pyrolytic carbon having a density of about 1.8 g / cm 3 and has a function of holding the gaseous FP. The third layer is made of silicon carbide having a density of about 3.2 g / cm 3 (hereinafter sometimes abbreviated as “SiC”), has a function of holding a solid FP, and maintains the main strength of the coating layer. It is a material. The fourth layer, like the second layer, is made of high-density pyrolytic carbon having a density of about 1.8 g / cm 3 , has a function of holding the gaseous FP, and functions as a protective layer for the third layer. Have The method for producing coated particles is, for example, in which a fuel core is fluidized at a high temperature in a fluidized bed reactor, a carbon source gas for forming a coating layer is introduced into the fluidized bed, and this is pyrolyzed, A coating layer of pyrolytic carbon is formed on the surface of the core particle. For example, in the case of coating the first layer with low-density pyrolytic carbon, acetylene is introduced at about 1300 ° C. and pyrolyzed. In the case of coating the second layer and the fourth layer with high-density pyrolytic carbon, propylene is introduced at about 1400 ° C. and pyrolyzed. Furthermore, when the third layer is a coating layer made of SiC, it is thermally decomposed by introducing methyltrichlorosilane at about 1500 ° C. These coating layer forming reactions can be carried out by continuously forming each layer on each particle in the same fluidized bed reactor, or by forming a coating layer one by one on each particle in a separate fluidized bed. Thus, the coated particles of the present invention are obtained.

(高温ガス炉用燃料の製造)
被覆粒子は、射出成形法またはオーバーコートプレスで成形して、燃料コンパクトやペブル球と呼ばれる高温ガス炉用燃料とする。射出成形法は、被覆粒子を黒鉛粉末、及びピッチやフェノール樹脂をはじめとする脂熱硬化性樹脂などのバインダーとからなる黒鉛マトリックス材と混合してオーバーコートし、射出成形機により成形した後、1000℃以上に加熱してバインダーを炭化させる。これにより、被覆粒子充填率の比較的高い燃料コンパクトが製造できる。オーバーコートプレスは、被覆粒子を黒鉛粉末、及びフェノール樹脂などの熱硬化性樹脂のバインダーと混合し、150℃前後で一次プレスして成形してから、さらに加熱してバインダーを硬化させる。この成形体の表面を再度黒鉛粉末で被覆し、モールド内に装填して2次プレスし、外表面に外郭(シェル)を形成する。これを1000℃以上で熱処理して高温ガス炉用燃料とする。直径、高さが約20〜50mmの円筒形または円柱形に成形したものが燃料コンパクトと呼ばれ、およそ30〜50mmの略球形にしたものがペブル球と呼ばれていて、これらは本発明の高温ガス炉用の燃料として使用される。
(Manufacture of fuel for HTGR)
The coated particles are molded by an injection molding method or an overcoat press to obtain a fuel for a HTGR called a fuel compact or pebble sphere. In the injection molding method, the coated particles are mixed with a graphite matrix material composed of graphite powder and a binder such as a fat thermosetting resin such as pitch and phenol resin, and after being overcoated and molded by an injection molding machine, Heat to 1000 ° C. or higher to carbonize the binder. Thereby, a fuel compact having a relatively high coating particle filling rate can be manufactured. In the overcoat press, the coated particles are mixed with graphite powder and a binder of a thermosetting resin such as a phenol resin, subjected to primary pressing at around 150 ° C., and then further heated to cure the binder. The surface of the molded body is again coated with graphite powder, loaded into a mold, and subjected to secondary pressing to form an outer shell (shell) on the outer surface. This is heat-treated at 1000 ° C. or higher to obtain a high temperature gas reactor fuel. Those formed into a cylindrical or cylindrical shape having a diameter and height of about 20 to 50 mm are called fuel compacts, and those made into a substantially spherical shape of about 30 to 50 mm are called pebble balls. Used as fuel for HTGR.

本発明の高温ガス炉燃料用のガドリニウム含有重ウラン酸アンモニウム粒子、燃料核、および燃料コンパクトまたはペブル球は高温ガス炉用の新規な燃料として、高温ガス炉の設計、運転の自由度を増し、経済的で安全性の高い高温ガス炉用燃料として利用される。   The gadolinium-containing ammonium heavy uranate particles, fuel nuclei, and fuel compacts or pebble spheres for the HTGR fuel of the present invention are novel fuels for the HTGR, increasing the freedom of design and operation of the HTGR, It is used as an economical and safe fuel for HTGR.

図1は、本発明のガドリニウム含有ADU粒子製造の反応槽の一例を示す。FIG. 1 shows an example of a reaction vessel for producing gadolinium-containing ADU particles of the present invention.

符号の説明Explanation of symbols

1:硝酸ウラニル溶液滴下装置、 2:硝酸ウラニル溶液液滴、 3:反応槽、 4:アンモニアガス層、 5:アンモニア水溶液層、 6:アンモニアガス供給口、 7:固体粒子(ガドリニウム含有ADU粒子)、 8:固体粒子排出口   1: Uranyl nitrate solution dropping device, 2: Uranyl nitrate solution droplet, 3: Reaction tank, 4: Ammonia gas layer, 5: Ammonia aqueous solution layer, 6: Ammonia gas supply port, 7: Solid particles (gadolinium-containing ADU particles) 8: Solid particle outlet

Claims (5)

ガドリニウムが粒子中に均一に分散された高温ガス炉燃料用のガドリニウム含有重ウラン酸アンモニウム粒子。   Gadolinium-containing ammonium heavy uranate particles for HTGR fuel in which gadolinium is uniformly dispersed in the particles. 請求項1に記載したガドリニウム含有重ウラン酸アンモニウム粒子を熱処理して得られるガドリニウム含有二酸化ウラン粒子である高温ガス炉燃料用の燃料核。   A fuel core for a HTGR fuel, which is gadolinium-containing uranium dioxide particles obtained by heat-treating the gadolinium-containing ammonium heavy uranate particles according to claim 1. 請求項2に記載した燃料核を熱分解炭素層、および炭化珪素層で被覆した高温ガス炉燃料用の被覆粒子。   Coated particles for HTGR fuel, wherein the fuel core according to claim 2 is coated with a pyrolytic carbon layer and a silicon carbide layer. 請求項3に記載した被覆粒子を黒鉛マトリックス材でオーバーコートした後、成形加工および熱処理して得られる高温ガス炉用燃料コンパクト、または高温ガス炉用ペブル球。   A fuel compact for a HTGR, or a pebble sphere for a HTGR obtained by overcoating the coated particles according to claim 3 with a graphite matrix material, followed by molding and heat treatment. 硝酸ウラニルおよび硝酸ガドリニウムの均一混合溶液をアンモニア水中に滴下してガドリニウム含有重ウラン酸アンモニウム粒子を生成する請求項1に記載のガドリニウム含有重ウラン酸アンモニウム粒子の製造方法。   The method for producing gadolinium-containing ammonium heavy uranate particles according to claim 1, wherein a homogeneous mixed solution of uranyl nitrate and gadolinium nitrate is dropped into ammonia water to produce gadolinium-containing ammonium heavy uranate particles.
JP2005314163A 2005-10-28 2005-10-28 Ammonium diuranate particle containing gadolinium and manufacturing method thereof, fuel kernel for high-temperature gas-cooled reactor fuel, coated particle for high-temperature gas-cooled reactor, and high-temperature gas-cooled reactor fuel Withdrawn JP2007121128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314163A JP2007121128A (en) 2005-10-28 2005-10-28 Ammonium diuranate particle containing gadolinium and manufacturing method thereof, fuel kernel for high-temperature gas-cooled reactor fuel, coated particle for high-temperature gas-cooled reactor, and high-temperature gas-cooled reactor fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314163A JP2007121128A (en) 2005-10-28 2005-10-28 Ammonium diuranate particle containing gadolinium and manufacturing method thereof, fuel kernel for high-temperature gas-cooled reactor fuel, coated particle for high-temperature gas-cooled reactor, and high-temperature gas-cooled reactor fuel

Publications (1)

Publication Number Publication Date
JP2007121128A true JP2007121128A (en) 2007-05-17

Family

ID=38145132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314163A Withdrawn JP2007121128A (en) 2005-10-28 2005-10-28 Ammonium diuranate particle containing gadolinium and manufacturing method thereof, fuel kernel for high-temperature gas-cooled reactor fuel, coated particle for high-temperature gas-cooled reactor, and high-temperature gas-cooled reactor fuel

Country Status (1)

Country Link
JP (1) JP2007121128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503193A (en) * 2008-09-18 2012-02-02 コミッサリア ア レネルジ アトミック エ オ エネルジ オルターネイティブ Nuclear fuel cladding with high thermal conductivity and method for manufacturing the same
CN116564562A (en) * 2023-07-10 2023-08-08 中核北方核燃料元件有限公司 High-uranium-density dispersion fuel containing ZrC coating layer and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503193A (en) * 2008-09-18 2012-02-02 コミッサリア ア レネルジ アトミック エ オ エネルジ オルターネイティブ Nuclear fuel cladding with high thermal conductivity and method for manufacturing the same
CN116564562A (en) * 2023-07-10 2023-08-08 中核北方核燃料元件有限公司 High-uranium-density dispersion fuel containing ZrC coating layer and preparation method thereof
CN116564562B (en) * 2023-07-10 2023-11-14 中核北方核燃料元件有限公司 High-uranium-density dispersion fuel containing ZrC coating layer and preparation method thereof

Similar Documents

Publication Publication Date Title
Naefe et al. Preparation of uranium kernels by an external gelation process
CA2661603C (en) Spherical fuel element and production thereof for gas-cooled high temperature pebble bed nuclear reactors (htr)
CN101061552B (en) System and method for radioactive waste destruction
US4231976A (en) Process for the production of ceramic plutonium-uranium nuclear fuel in the form of sintered pellets
JP2007121128A (en) Ammonium diuranate particle containing gadolinium and manufacturing method thereof, fuel kernel for high-temperature gas-cooled reactor fuel, coated particle for high-temperature gas-cooled reactor, and high-temperature gas-cooled reactor fuel
JP4075116B2 (en) Method for producing nuclear fuel particles and method for producing nuclear fuel pellets
JP6699882B2 (en) Nuclear fuel compact, method of manufacturing nuclear fuel compact, and nuclear fuel rod
Nagarajan et al. Sol-gel processes for nuclear fuel fabrication
JP2005195454A (en) Pebble-bed type fuel for high-temperature gas-cooled reactor and its manufacturing method
JP4697938B2 (en) Method for producing coated fuel particles for HTGR
Gündüz et al. Effects of Different Parameters on the Densities of Uranium Dioxide and Uranium Dioxide–Gadolinium Oxide Fuels Produced by the Sol-Gel Technique
JP4636831B2 (en) Production equipment for ammonium deuterated uranate particles
WO2005061387A1 (en) Liquid stock for dropping, method for preparing liquid stock for dropping, method for preparing uranyl nitrate solution, and method for preparing polyvinyl alcohol solution
KR100812952B1 (en) Zirconia added neutron absorbing pellets and their fabrication methods
JP2006300638A (en) ZrC LAYER BREAKAGE RATE INSPECTION METHOD ON COATED FUEL PARTICLE FOR HIGH-TEMPERATURE GAS REACTOR
JP2007084376A (en) Apparatus for manufacturing ammonium diuranate particle
JP2007147335A (en) Pebble-bed fuel and method for manufacturing same
JP4729344B2 (en) Continuous production method and continuous production apparatus for ammonium heavy uranate particles
JP2006078401A (en) Pebble bed type nuclear fuel for high-temperature gas-cooled reactor and its manufacturing method
US3657137A (en) Nuclear fuel comprising uranium dioxide in a porous ceramic oxide matrix
JP2006225236A (en) Apparatus for manufacturing ammonium diuranate particle
JP2006038793A (en) Method for manufacturing fuel kernel particle
JP2006143521A (en) Uranyl nitrate-containing raw liquid preparation device
JP2006225242A (en) Apparatus for manufacturing ammonium diuranate particle
JP2007127484A (en) Fuel assembly for high-temperature gas-cooled reactor, and manufacturing method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106