JP4075116B2 - Method for producing nuclear fuel particles and method for producing nuclear fuel pellets - Google Patents

Method for producing nuclear fuel particles and method for producing nuclear fuel pellets Download PDF

Info

Publication number
JP4075116B2
JP4075116B2 JP35450997A JP35450997A JP4075116B2 JP 4075116 B2 JP4075116 B2 JP 4075116B2 JP 35450997 A JP35450997 A JP 35450997A JP 35450997 A JP35450997 A JP 35450997A JP 4075116 B2 JP4075116 B2 JP 4075116B2
Authority
JP
Japan
Prior art keywords
powder
nuclear fuel
granulated
oxide powder
liquid binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35450997A
Other languages
Japanese (ja)
Other versions
JPH11183686A (en
Inventor
渉 斎木
晴雄 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP35450997A priority Critical patent/JP4075116B2/en
Publication of JPH11183686A publication Critical patent/JPH11183686A/en
Application granted granted Critical
Publication of JP4075116B2 publication Critical patent/JP4075116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はウラン(U)、プルトニウム(Pu)、トリウム(Th)、ネプツニウム(Np)、アメリシウム(Am)、キュリウム(Cm)等の核燃料物質の硝酸塩を含む水溶液から核燃料粉末又は核燃料ペレットを製造する方法に関するものである。
【0002】
【従来の技術】
従来、核燃料、例えばMOX燃料(プルトニウム・ウラン混合酸化物の燃料)のペレットを製造する場合には、硝酸ウラニル水溶液と硝酸プルトニウム水溶液を用意し、これらを所定の割合で混合し、この混合物をマイクロ波により加熱、脱硝してUO3とPuO2の粉末を作製し、これを粉砕する。次いで粉砕した粉末を焙焼還元してUO2とPuO2の粉末を作製し、造粒した後、ペレットに成形し、最後に焼結してMOX燃料ペレットを得ていた。
しかしこのMOX燃料中のウラン、プルトニウムの濃度調整やプルトニウムの富化度調整はUO2のような酸化物粉末を製造工程の途中で添加混合することにより実施されるため、核燃料の組成測定や計量が非常に煩雑であった。
【0003】
これを改善するために原料の硝酸ウラニル水溶液と硝酸プルトニウム水溶液の段階でウラン、プルトニウムの濃度調整やプルトニウムの富化度調整を行うプロセスが提案されている(液混合プロセス)。この液混合プロセスでは、原料溶液の段階でプルトニウムの濃度調整やプルトニウムの富化度調整を行った後、上記方法と同様に、マイクロ波により加熱、脱硝してUO3とPuO2の粉末を作製し、これを粉砕する。次いで粉砕した粉末を焙焼還元してUO2とPuO2の粉末を作製し、造粒した後、ペレットに成形し、最後に焼結してMOX燃料を得ていた。この液混合プロセスによれば、製造工程途中での組成測定や計量の回数を減らすことができ、またUO2粉末の混合が不要となる利点がある。
【0004】
【発明が解決しようとする課題】
上記2つの従来の方法とも、焙焼還元工程以降の造粒工程を含む製造工程においては核燃料物質の臨界安全管理の観点から、水を用いない乾式工程であることが製造設備設計上望ましいため、ステアリン酸粉末をバインダとする乾式で造粒した後、UO2とPuO2の粉末を圧縮して成形体を作製し、これを解砕、分級して造粒粉末とする工程が採用される。
しかし、これらの方法でマイクロ波脱硝で得られたUO3とPuO2の粉末はサブミクロン級の非常に細かい粒子が凝集したものであるため、製造工程中、特に造粒工程でダスティング(微粉末の飛散)を生じ、核燃料物質の飛散や粉末の歩留りが低下する不都合がある。
【0005】
本発明の目的は、焙焼還元工程以降を乾式にして臨界安全管理上、製造設備の設計を容易にし、かつ造粒工程でダスティングを生じず、粉末の歩留りを低下させない核燃料粒子及び核燃料ペレットの製造方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように核燃料物質の硝酸塩を含む水溶液10をマイクロ波により加熱脱硝して核燃料物質の酸化物粉末12を作製する工程11と、この酸化物粉末12を粉砕する工程13と、粉砕された酸化物粉末14に液体バインダ16を添加混合して造粒粉末18を作製する工程と、造粒粉末18を焙焼還元する工程19とを含む核燃料粒子の製造方法である。
マイクロ波脱硝により作製された核燃料物質の酸化物粉末を粉砕した後、液体バインダを添加混合して湿式で造粒粉末を作製することにより、造粒工程でのダスティングを防止でき、粉末の歩留りが低下しない。また湿式造粒した後、焙焼還元して乾式で核燃料粒子を製造するため、臨界安全管理上、製造設備の大きさや形状に制約を受けなくて済む。
【0007】
請求項2に係る発明は、請求項1に係る発明であって、液体バインダ16が核燃料物質の硝酸塩を含む水溶液10であって、この水溶液を核燃料物質に含まれる金属量が粉砕された酸化物粉末14の重量に対して0.1〜10重量%の割合で粉砕された酸化物粉末14に添加混合する核燃料粒子の製造方法である。
造粒時に核燃料物質の硝酸塩を含む水溶液を使用すると、この水溶液が造粒時に乾燥されて核燃料物質の塩を生じ、この塩がバインダとして作用する。また水溶液の量を制御することにより造粒粉末の強度を調節できる。また焙焼還元工程以降でこの塩は原料粉末と同一の酸化物となるため、従来のバインダと異なり他元素の混入がない。
【0008】
請求項3に係る発明は、請求項1に係る発明であって、液体バインダ16が水又は6N以下の硝酸であって、この水又は硝酸を粉砕された酸化物粉末に対して0.1〜15重量%の割合で添加混合する核燃料粒子の製造方法である。
造粒時に水を使用した場合には、マイクロ波脱硝された酸化物粉末は残留物として硝酸根を含んでいるため、水が硝酸根と反応して請求項2に係る発明の場合と同様に核燃料物質の塩を生じ、この塩がバインダとして作用する。また水の量を制御することにより造粒粉末の強度を調節できる。液体バインダとして6N以下の硝酸を使用した場合には、この硝酸が酸化物粉末の一部を溶解させ、この溶解物がバインダとして作用する。また硝酸の量を制御することにより造粒粉末の強度を調節できる。
【0009】
請求項4に係る発明は、請求項2に記載した液体バインダ16を用いて造粒した粉末18を焙焼還元した後に、焙焼還元された粉末21を焼結して焼結粒子23を作製する工程22を更に含む核燃料粒子の製造方法である。
核燃料物質の硝酸塩を含む水溶液をバインダとして用いて造粒した後、焙焼還元した粉末をそのまま焼結して得られる焼結粒子は、粒子の強度が比較的高く、振動充填型核燃料粒子に適する。
【0010】
請求項5に係る発明は、請求項3に記載した液体バインダ16を用いて造粒した粉末18を焙焼還元した後に、焙焼還元された粉末21をペレットに成形する工程24と、このペレットを焼結して焼結体ペレット26を作製する工程25を含む核燃料ペレットの製造方法である。
水又は6N以下の硝酸をバインダとして用いて造粒した後、焙焼還元した粉末は、粉末の強度は高くなく、この粉末はペレットに成形し易く、この粉末を焼結して得られる焼結体は核燃料ペレットに適する。
【0011】
【発明の実施の形態】
本発明において、核燃料物質はウラン(U)、プルトニウム(Pu)、トリウム(Th)、ネプツニウム(Np)、アメリシウム(Am)、キュリウム(Cm)等である。この核燃料物質を含む硝酸塩水溶液は、硝酸ウラニル(UO2(NO3)3),硝酸プルトニウム(Pu(NO3)4),硝酸トリウム(Th(NO3)4),硝酸ネプツニウム(Np(NO3)4),硝酸アメシウム(Am(NO3)3),硝酸キュリウム(Cm(NO3)3)等の硝酸塩を単独で又は混合して水溶液にして用いられる。
本発明で使用される液体バインダは請求項2に記載した核燃料物質の硝酸塩を含む水溶液及び請求項3に記載した水又は6N以下の硝酸以外にもポリビニルアルコールや澱粉等の水溶液も使用できる。ポリビニルアルコールや澱粉等をバインダとして用いた場合には、これらのバインダは焙焼還元の工程で揮発又は燃焼により造粒粉末から除去されるが、有機物であるため、排気側に有機物のトラップを設けて後で取除く必要がある。
【0012】
請求項2に係る発明において、液体バインダとして用いられる核燃料物質の硝酸塩を含む水溶液の使用量がこの核燃料物質に含まれる金属量が酸化物粉末の重量に対して0.1重量%未満に相当する量の場合には造粒粉末の強度が不十分となり、10重量%に相当する量を超えると焙焼還元後の粉末の焼結性が劣るため好ましくない。上記水溶液のより好ましい使用量は1〜5重量%である。
請求項3に係る発明において、液体バインダとして用いられる硝酸の濃度が6Nを超えると原料の酸化物粉末の溶解が不均一となり造粒が困難となる。また水又は硝酸の添加量が酸化物粉末に対して0.1重量%に満たない場合には造粒が困難となり、15重量%を超えて添加しても造粒の効果が変らず、かえって造粒工程の乾燥時に熱エネルギーを多く必要とし不経済となる。特に硝酸を多量に添加すると酸化物粉末の溶解量が増えるため好ましくない。水又は硝酸のより好ましい使用量は1〜5重量%である。
【0013】
粉砕された酸化物粉末に液体バインダを添加混合して造粒粉末を作製する場合には、例えば図2に示すような造粒機が用いられる。
図2に示すように造粒機本体30の内部には密閉されたチャンバ31が設けられる。チャンバ31の内底部の近傍には撹拌羽根32が設けられ、撹拌羽根32はチャンバ31の外側に設けられたモータ33により回転する。造粒機本体30の上部にはマイクロ波脱硝された後粉砕された核燃料物質の酸化物粉末14を収容するホッパ34が設けられ、造粒機本体30の別の上部には液体バインダ16を収容するタンク36が設けられる。酸化物粉末14は開閉弁37を切換えることによりホッパ34からチャンバ31内で回転する撹拌羽根32上に供給され、液体バインダ16はタンク36からスプレーノズル38によりチャンバ31内で回転する撹拌羽根32上に噴霧されるようになっている。
【0014】
このように構成された造粒機において、先ず撹拌羽根32を回転させながら撹拌羽根32上に酸化物粉末14を供給して酸化物粉末14を撹拌する。次いで撹拌を続けながら液体バインダ16を撹拌されている酸化物粉末14に噴霧する。その結果、酸化物粉末14と液体バインダ16の混合物は撹拌羽根32により渦巻き状の循環流を起して転動作用を与えられて10〜1500μmの粒径となるように造粒される。
【0015】
【実施例】
次に本発明の具体的態様を示すために、本発明の実施例を比較例とともに説明する。
【0016】
<実施例1>
ウラン濃度が300gU/Lの硝酸ウラニル水溶液をアルミナ皿に入れてマイクロ波で加熱脱硝して原料粉末となるUO3粉末を生成した。この原料粉末のUO3粉末を粉砕した後、図2に示す造粒機のホッパに入れた。造粒機のタンクに液体バインダとしてマイクロ波加熱脱硝したものと同一のウラン濃度が300gU/Lの硝酸ウラニル水溶液を貯えた。撹拌羽根で撹拌しながら原料粉末のUO3粉末に対して金属量で5重量%となるようにノズルから硝酸ウラニル水溶液を噴霧し、硝酸ウラニル水溶液とUO3粉末とを混合することにより造粒した。得られた造粒粉末と原料粉末の物性を表1に示す。
【0017】
【表1】

Figure 0004075116
【0018】
上記造粒粉末を以下の3群の篩(A〜C)を使用して3種類の粒度に篩分した後、水素雰囲気中において600℃で2時間焙焼還元し、UO2粉末を生成した。このUO2粉末を水素雰囲気中において1600℃で5時間焼結し、焼結粒子を作製した。焼結粒子の理論密度に対する密度(%)を液浸法により測定した。その結果を表2に示す。
【0019】
なお、A群の篩は篩番号#12〜#16(篩の目開き:1410μm〜1000μm)の篩から構成され、B群の篩は篩番号#100〜#150(篩の目開き:149μm〜105μm)の篩から構成され、C群の篩は篩番号#270〜#400(篩の目開き:53μm〜37μm)の篩から構成されている。
【0020】
【表2】
Figure 0004075116
【0021】
<実施例2>
液体バインダとして3Nの硝酸を原料粉末に対して0.5重量%の割合で添加混合して造粒したことを除いては実質的に実施例1の方法を繰返して実施例2の造粒粉末を得た。得られた造粒粉末と原料粉末の物性を表3に示す。
【0022】
【表3】
Figure 0004075116
【0023】
上記造粒粉末を上記の3群の篩(A〜C)を使用して3種類の粒度に篩分した後、篩群Aの篩を通過した粒径1000μm以下の造粒粉末を水素雰囲気中において600℃で2時間焙焼還元してUO2粉末を生成した。このUO2粉末を金型に入れて3トン/cm2の圧力でプレス成形して、直径11mm、長さ14mmのペレットに成形した。この成形したペレットを水素雰囲気中において1600℃で5時間焼結し、焼結体ペレットを作製した。得られた焼結体ペレットの理論密度に対する密度(%)は95.5%TDであり、焼結体ペレットの組織も均一であることが確認された。
【0024】
<比較例1>
原料粉末に液体バインダとしてウラン濃度が300gU/Lの硝酸ウラニル水溶液を粉砕粉末に対して金属量で12重量%となるように添加混合して造粒したことを除いては実質的に実施例1の方法を繰返して比較例1の造粒粉末を得た。得られた造粒粉末と原料粉末の物性を表4に示す。
【0025】
【表4】
Figure 0004075116
【0026】
以後の工程は実質的に実施例1の方法を繰返して比較例1の焼結粒子を作製した。焼結粒子の理論密度に対する密度(%)を液浸法により測定した。その結果を表5に示す。
【0027】
【表5】
Figure 0004075116
【0028】
<比較評価>
実施例1の表2に示した密度、実施例2で述べた密度及び比較例1の表5に示した密度の各値から明らかなように、実施例1の焼結粒子及び実施例2の焼結体ペレットはいずれも理論密度に対して95%以上の密度が得られるが、比較例1の焼結粒子は理論密度に対して91〜93%程度の低い焼結密度しか得られないことが判る。
【0029】
【発明の効果】
以上述べたように、本発明によれば、核燃料物質の硝酸塩を含む水溶液をマイクロ波により加熱脱硝して核燃料物質の酸化物粉末を作製し、これを粉砕した酸化物粉末に液体バインダを添加混合して造粒粉末を作製した後、造粒粉末を焙焼還元するようにしたので、焙焼還元工程以降を乾式にすることができ、臨界安全管理上、製造設備の設計が容易になる。また湿式造粒のため造粒工程でダスティングを生じず、従来の乾式造粒と比較して粉末の歩留りを低下させない。
本発明で製造された焼結粒子又は焼結体ペレットは簡単な工程で理論密度に対して95%以上の高密度になる。
【図面の簡単な説明】
【図1】本発明の核燃料粒子及び核燃料ペレットの製造工程を示す図。
【図2】本発明の造粒機の構成図。
【符号の説明】
10 核燃料物質の硝酸塩を含む水溶液
11 マイクロ波加熱脱硝工程
12 酸化物粉末
13 粉砕工程
14 粉砕された酸化物粉末
16 液体バインダ
17 造粒工程
18 造粒粉末
19 焙焼還元工程
21 還元された酸化物粉末
22 焼結工程
23 焼結粒子
24 ペレット成形
25 焼結工程
26 焼結体ペレット[0001]
BACKGROUND OF THE INVENTION
The present invention produces nuclear fuel powder or nuclear fuel pellets from an aqueous solution containing nitrates of nuclear fuel materials such as uranium (U), plutonium (Pu), thorium (Th), neptunium (Np), americium (Am), and curium (Cm). It is about the method.
[0002]
[Prior art]
Conventionally, when producing pellets of nuclear fuel, for example, MOX fuel (plutonium-uranium mixed oxide fuel), an uranyl nitrate aqueous solution and a plutonium nitrate aqueous solution are prepared and mixed at a predetermined ratio. UO 3 and PuO 2 powders are produced by heating and denitration using waves, and this is pulverized. Subsequently, the pulverized powder was roasted and reduced to produce UO 2 and PuO 2 powders, granulated, formed into pellets, and finally sintered to obtain MOX fuel pellets.
However, the uranium and plutonium concentration adjustment and the plutonium enrichment adjustment in the MOX fuel are carried out by adding and mixing oxide powder such as UO 2 during the manufacturing process. Was very cumbersome.
[0003]
In order to improve this, a process has been proposed in which the concentration of uranium and plutonium and the enrichment of plutonium are adjusted at the stage of the raw material uranyl nitrate aqueous solution and plutonium nitrate aqueous solution (liquid mixing process). In this liquid mixing process, after adjusting the concentration of plutonium and adjusting the enrichment level of plutonium at the stage of the raw material solution, heating and denitration are performed using microwaves in the same manner as described above to produce UO 3 and PuO 2 powders. And crush this. Subsequently, the pulverized powder was roasted and reduced to produce UO 2 and PuO 2 powders, granulated, formed into pellets, and finally sintered to obtain MOX fuel. According to this liquid mixing process, it is possible to reduce the number of times of composition measurement and measurement during the manufacturing process, and there is an advantage that the mixing of UO 2 powder is unnecessary.
[0004]
[Problems to be solved by the invention]
In the above two conventional methods, in the manufacturing process including the granulation process after the roasting reduction process, from the viewpoint of the critical safety management of the nuclear fuel material, it is desirable for the manufacturing equipment design to be a dry process that does not use water. A step of granulating by a dry method using stearic acid powder as a binder, and then compressing UO 2 and PuO 2 powders to produce a compact, which is crushed and classified to form a granulated powder is employed.
However, since UO 3 and PuO 2 powders obtained by microwave denitration by these methods are aggregates of very fine particles of submicron grade, dusting (microscopically) during the manufacturing process, especially in the granulation process. (Spattering of the powder) occurs, and there is a disadvantage that the scattering of the nuclear fuel material and the yield of the powder are reduced.
[0005]
An object of the present invention is to provide a nuclear fuel particle and a nuclear fuel pellet that do not cause dusting in the granulation process and reduce the yield of powder by making the process after the roasting reduction process dry to facilitate criticality safety management, making the design of manufacturing equipment easy It is in providing the manufacturing method of.
[0006]
[Means for Solving the Problems]
As shown in FIG. 1, the invention according to claim 1 includes a step 11 of producing an oxide powder 12 of nuclear fuel material by heating and denitrating an aqueous solution 10 containing nitrate of the nuclear fuel material using microwaves, Production of nuclear fuel particles including a step 13 of pulverization, a step of adding and mixing a liquid binder 16 to the pulverized oxide powder 14 to produce a granulated powder 18, and a step 19 of roasting and reducing the granulated powder 18 Is the method.
After pulverizing the oxide powder of nuclear fuel material produced by microwave denitration, a liquid binder is added and mixed to produce wet granulated powder, thereby preventing dusting in the granulation process, and the yield of the powder Does not drop. Further, since the nuclear fuel particles are produced by wet-granulation and then roasted and reduced to dry, it is not necessary to be restricted by the size and shape of the production equipment for critical safety management.
[0007]
The invention according to claim 2 is the invention according to claim 1, wherein the liquid binder 16 is an aqueous solution 10 containing a nitrate of a nuclear fuel material, and this aqueous solution is an oxide obtained by pulverizing the amount of metal contained in the nuclear fuel material This is a method for producing nuclear fuel particles, which is added to and mixed with oxide powder 14 pulverized at a ratio of 0.1 to 10% by weight with respect to the weight of powder 14.
When an aqueous solution containing a nuclear fuel material nitrate is used during granulation, this aqueous solution is dried during granulation to produce a salt of the nuclear fuel material, which acts as a binder. Moreover, the intensity | strength of granulated powder can be adjusted by controlling the quantity of aqueous solution. Further, since this salt becomes the same oxide as the raw material powder after the roasting reduction step, there is no mixing of other elements unlike the conventional binder.
[0008]
The invention according to claim 3 is the invention according to claim 1, wherein the liquid binder 16 is water or nitric acid of 6N or less, and the water or nitric acid is pulverized to 0.1 to This is a method for producing nuclear fuel particles in which 15% by weight is added and mixed.
When water is used at the time of granulation, the oxide powder that has been subjected to microwave denitration contains nitrate radicals as a residue, so that the water reacts with nitrate radicals, as in the case of the invention according to claim 2. This produces a salt of nuclear fuel material, which acts as a binder. In addition, the strength of the granulated powder can be adjusted by controlling the amount of water. When nitric acid of 6N or less is used as the liquid binder, this nitric acid dissolves a part of the oxide powder, and this dissolved substance acts as a binder. Further, the strength of the granulated powder can be adjusted by controlling the amount of nitric acid.
[0009]
In the invention according to claim 4, the powder 18 granulated using the liquid binder 16 described in claim 2 is roasted and reduced, and then the roasted and reduced powder 21 is sintered to produce sintered particles 23. The method for producing nuclear fuel particles further includes the step 22 of
Sintered particles obtained by granulating an aqueous solution containing a nuclear fuel material nitrate as a binder and then sintering the roasted and reduced powder as it is have a relatively high particle strength and are suitable for vibration-filled nuclear fuel particles. .
[0010]
The invention according to claim 5 includes the step 24 of forming the powder 21 granulated with the liquid binder 16 according to claim 3 by roasting and reducing, and then forming the powder 21 after roasting and reducing into the pellet, and the pellet Is a method for producing nuclear fuel pellets, which includes the step 25 of producing the sintered body pellets 26 by sintering.
Powder that has been granulated using water or nitric acid of 6N or less as a binder and then roasted and reduced does not have high powder strength. This powder is easy to be formed into pellets and is obtained by sintering this powder. The body is suitable for nuclear fuel pellets.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the nuclear fuel material is uranium (U), plutonium (Pu), thorium (Th), neptunium (Np), americium (Am), curium (Cm) and the like. This aqueous nitrate solution containing nuclear fuel material is composed of uranyl nitrate (UO 2 (NO 3 ) 3 ), plutonium nitrate (Pu (NO 3 ) 4 ), thorium nitrate (Th (NO 3 ) 4 ), neptunium nitrate (Np (NO 3) 4 ), nitrates such as amethium nitrate (Am (NO 3 ) 3 ), curium nitrate (Cm (NO 3 ) 3 ) are used alone or mixed to form an aqueous solution.
As the liquid binder used in the present invention, aqueous solutions such as polyvinyl alcohol and starch can be used in addition to the aqueous solution containing the nitrate of the nuclear fuel substance described in claim 2 and the water described in claim 3 or nitric acid of 6N or less. When polyvinyl alcohol, starch, or the like is used as a binder, these binders are removed from the granulated powder by volatilization or combustion in the roasting reduction process. However, since these are organic substances, an organic substance trap is provided on the exhaust side. Need to be removed later.
[0012]
In the invention according to claim 2, the amount of aqueous solution containing nitrates of nuclear fuel substance used as a liquid binder, the amount of metal contained in the nuclear fuel material is equivalent to less than 0.1% by weight relative to the weight of the oxide powder If the amount is too large , the strength of the granulated powder is insufficient, and if the amount exceeds 10% by weight , the sinterability of the powder after roasting reduction is inferior. The more preferable usage-amount of the said aqueous solution is 1 to 5 weight%.
In the invention according to claim 3, when the concentration of nitric acid used as a liquid binder exceeds 6N, the dissolution of the raw material oxide powder becomes uneven and granulation becomes difficult. Further, when the amount of water or nitric acid added is less than 0.1% by weight with respect to the oxide powder, granulation becomes difficult, and even if added over 15% by weight, the effect of granulation does not change. A large amount of heat energy is required during drying of the granulation process, which is uneconomical. In particular, adding a large amount of nitric acid is not preferable because the amount of oxide powder dissolved increases. A more preferable amount of water or nitric acid is 1 to 5% by weight.
[0013]
When a granulated powder is produced by adding and mixing a liquid binder to the pulverized oxide powder, for example, a granulator as shown in FIG. 2 is used.
As shown in FIG. 2, a sealed chamber 31 is provided inside the granulator main body 30. A stirring blade 32 is provided near the inner bottom of the chamber 31, and the stirring blade 32 is rotated by a motor 33 provided outside the chamber 31. A hopper 34 is provided in the upper part of the granulator body 30 to receive the oxide powder 14 of the nuclear fuel material that has been pulverized after being subjected to microwave denitration, and the liquid binder 16 is accommodated in another upper part of the granulator body 30. A tank 36 is provided. The oxide powder 14 is supplied from the hopper 34 onto the stirring blade 32 rotating in the chamber 31 by switching the on-off valve 37, and the liquid binder 16 is supplied from the tank 36 onto the stirring blade 32 rotating in the chamber 31 by the spray nozzle 38. It is supposed to be sprayed on.
[0014]
In the granulator configured as above, first, the oxide powder 14 is supplied onto the stirring blade 32 while the stirring blade 32 is rotated, and the oxide powder 14 is stirred. Next, the liquid binder 16 is sprayed onto the stirred oxide powder 14 while stirring is continued. As a result, the mixture of the oxide powder 14 and the liquid binder 16 is granulated so as to have a particle diameter of 10 to 1500 μm by causing a spiral circulation flow by the stirring blade 32 and giving a rolling action.
[0015]
【Example】
Next, in order to show the concrete mode of the present invention, the example of the present invention is explained with a comparative example.
[0016]
<Example 1>
An aqueous uranyl nitrate solution having a uranium concentration of 300 gU / L was placed in an alumina dish and heated and denitrated with microwaves to produce UO 3 powder as a raw material powder. The raw material UO 3 powder was pulverized and placed in the hopper of the granulator shown in FIG. In the granulator tank, an aqueous uranyl nitrate solution having a uranium concentration of 300 gU / L was stored as a liquid binder by microwave heating and denitration. While stirring at a stirring blade was sprayed uranyl nitrate solution from the nozzles to be 5 wt% of a metal amount to the UO 3 powder of the raw material powder was granulated by mixing an aqueous solution of uranyl nitrate and the UO 3 powder . Table 1 shows the physical properties of the obtained granulated powder and raw material powder.
[0017]
[Table 1]
Figure 0004075116
[0018]
After sieving the granulated powder into three particle sizes using the following three groups of sieves (A to C), the powder was roasted and reduced at 600 ° C. for 2 hours in a hydrogen atmosphere to produce UO 2 powder. . This UO 2 powder was sintered in a hydrogen atmosphere at 1600 ° C. for 5 hours to produce sintered particles. The density (%) with respect to the theoretical density of the sintered particles was measured by a liquid immersion method. The results are shown in Table 2.
[0019]
In addition, the sieve of group A is composed of sieves of sieve numbers # 12 to # 16 (screen openings: 1410 μm to 1000 μm), and the sieve of group B is sieve numbers # 100 to # 150 (screen openings of sieves: 149 μm to 105 μm), and Group C sieves are composed of sieves with sieve numbers # 270 to # 400 (mesh openings: 53 μm to 37 μm).
[0020]
[Table 2]
Figure 0004075116
[0021]
<Example 2>
The granulated powder of Example 2 was substantially repeated by repeating the method of Example 1 except that 3N nitric acid was added and mixed as a liquid binder in a proportion of 0.5% by weight with respect to the raw material powder. Got. Table 3 shows the physical properties of the obtained granulated powder and raw material powder.
[0022]
[Table 3]
Figure 0004075116
[0023]
After sieving the granulated powder into three types of particle sizes using the above three groups of sieves (A to C), the granulated powder having a particle size of 1000 μm or less that has passed through the sieve of the sieve group A is in a hydrogen atmosphere. And then reduced by baking at 600 ° C. for 2 hours to produce UO 2 powder. This UO 2 powder was put into a mold and press-molded at a pressure of 3 ton / cm 2 to form pellets having a diameter of 11 mm and a length of 14 mm. The molded pellets were sintered in a hydrogen atmosphere at 1600 ° C. for 5 hours to produce sintered pellets. The density (%) with respect to the theoretical density of the obtained sintered pellet was 95.5% TD, and it was confirmed that the structure of the sintered pellet was uniform.
[0024]
<Comparative Example 1>
Example 1 is substantially the same as the raw material powder except that an aqueous uranyl nitrate solution having a uranium concentration of 300 gU / L as a liquid binder is added and mixed so that the amount of metal is 12% by weight with respect to the pulverized powder. The above method was repeated to obtain a granulated powder of Comparative Example 1. Table 4 shows the physical properties of the obtained granulated powder and raw material powder.
[0025]
[Table 4]
Figure 0004075116
[0026]
In the subsequent steps, the method of Example 1 was substantially repeated to produce sintered particles of Comparative Example 1. The density (%) with respect to the theoretical density of the sintered particles was measured by a liquid immersion method. The results are shown in Table 5.
[0027]
[Table 5]
Figure 0004075116
[0028]
<Comparison evaluation>
As is clear from the values of density shown in Table 2 of Example 1, density described in Example 2, and density shown in Table 5 of Comparative Example 1, the sintered particles of Example 1 and those of Example 2 were used. The sintered body pellets can obtain a density of 95% or more of the theoretical density, but the sintered particles of Comparative Example 1 can only obtain a sintered density as low as 91 to 93% of the theoretical density. I understand.
[0029]
【The invention's effect】
As described above, according to the present invention, an aqueous solution containing a nuclear fuel material nitrate is heated and denitrated by microwaves to produce a nuclear fuel material oxide powder, and a liquid binder is added to the pulverized oxide powder and mixed. Then, after the granulated powder is produced, the granulated powder is roasted and reduced, so that the process after the roasting and reducing process can be made dry, and the design of manufacturing equipment is facilitated for critical safety management. In addition, because of wet granulation, dusting does not occur in the granulation process, and the yield of the powder is not reduced compared to conventional dry granulation.
The sintered particles or sintered body pellets produced by the present invention have a high density of 95% or more with respect to the theoretical density by a simple process.
[Brief description of the drawings]
FIG. 1 is a diagram showing a process for producing nuclear fuel particles and nuclear fuel pellets according to the present invention.
FIG. 2 is a configuration diagram of the granulator of the present invention.
[Explanation of symbols]
10 Aqueous solution containing nitrate of nuclear fuel material 11 Microwave heating denitration process 12 Oxide powder 13 Grinding process 14 Grinded oxide powder 16 Liquid binder 17 Granulation process 18 Granulated powder 19 Roasting reduction process 21 Reduced oxide Powder 22 Sintering process 23 Sintered particle 24 Pellet molding 25 Sintering process 26 Sintered pellet

Claims (5)

核燃料物質の硝酸塩を含む水溶液(10)をマイクロ波により加熱脱硝して核燃料物質の酸化物粉末(12)を作製する工程(11)と、
前記酸化物粉末(12)を粉砕する工程(13)と、
前記粉砕された酸化物粉末(14)に液体バインダ(16)を添加混合して造粒粉末(18)を作製する工程(17)と、
前記造粒粉末(18)を焙焼還元する工程(19)と
を含む核燃料粒子の製造方法。
A step (11) of producing an oxide powder (12) of a nuclear fuel material by heating and denitrating an aqueous solution (10) containing a nuclear fuel material nitrate by microwaves;
Crushing the oxide powder (12) (13),
A step (17) of producing a granulated powder (18) by adding and mixing a liquid binder (16) to the pulverized oxide powder (14);
And (19) a step of roasting and reducing the granulated powder (18).
液体バインダ(16)が核燃料物質の硝酸塩を含む水溶液(10)であって、前記水溶液を前記核燃料物質に含まれる金属量が粉砕された酸化物粉末 (14) の重量に対して0.1〜10重量%の割合で粉砕された酸化物粉末(14)に添加混合する請求項1記載の核燃料粒子の製造方法。The liquid binder (16) is an aqueous solution (10) containing nitrate of nuclear fuel material, and the aqueous solution is 0.1 to the weight of the oxide powder (14) in which the amount of metal contained in the nuclear fuel material is crushed. The method for producing nuclear fuel particles according to claim 1, wherein the oxide powder (14) pulverized at a rate of 10% by weight is added and mixed. 液体バインダ(16)が水又は6N以下の硝酸であって、前記水又は硝酸を粉砕された酸化物粉末(14)に対して0.1〜15重量%の割合で添加混合する請求項1記載の核燃料粒子の製造方法。  The liquid binder (16) is water or nitric acid of 6N or less, and the water or nitric acid is added and mixed at a ratio of 0.1 to 15% by weight with respect to the pulverized oxide powder (14). Method for producing nuclear fuel particles. 請求項2に記載した液体バインダ(16)を用いて造粒した粉末(18)を焙焼還元した後に、焙焼還元された粉末(21)を焼結して焼結粒子(23)を作製する工程(22)を更に含む核燃料粒子の製造方法。  The powder (18) granulated using the liquid binder (16) according to claim 2 is roasted and reduced, and then the roasted and reduced powder (21) is sintered to produce sintered particles (23). A method for producing nuclear fuel particles, further comprising the step (22) of: 請求項3に記載した液体バインダ(16)を用いて造粒した粉末(18)を焙焼還元した後に、焙焼還元された粉末(21)をペレットに成形する工程(24)と、このペレットを焼結して焼結体ペレット(26)を作製する工程(25)を含む核燃料ペレットの製造方法。  A step (24) of forming the powder (21), which has been granulated using the liquid binder (16) according to claim 3, by roasting and reducing, and then forming the powder (21) that has been roasted and reduced into pellets; A method for producing nuclear fuel pellets, comprising the step (25) of sintering the sintered body pellets (26).
JP35450997A 1997-12-24 1997-12-24 Method for producing nuclear fuel particles and method for producing nuclear fuel pellets Expired - Lifetime JP4075116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35450997A JP4075116B2 (en) 1997-12-24 1997-12-24 Method for producing nuclear fuel particles and method for producing nuclear fuel pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35450997A JP4075116B2 (en) 1997-12-24 1997-12-24 Method for producing nuclear fuel particles and method for producing nuclear fuel pellets

Publications (2)

Publication Number Publication Date
JPH11183686A JPH11183686A (en) 1999-07-09
JP4075116B2 true JP4075116B2 (en) 2008-04-16

Family

ID=18438044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35450997A Expired - Lifetime JP4075116B2 (en) 1997-12-24 1997-12-24 Method for producing nuclear fuel particles and method for producing nuclear fuel pellets

Country Status (1)

Country Link
JP (1) JP4075116B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863314B2 (en) * 2009-02-18 2012-01-25 独立行政法人日本原子力研究開発機構 Method for producing nuclear fuel pellets for fast breeder reactors by rolling granulation
JP4863313B2 (en) * 2009-02-18 2012-01-25 独立行政法人日本原子力研究開発機構 Method for producing nuclear fuel pellet for fast breeder reactor in fast breeder reactor cycle
JP2010190720A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for nuclear fuel pellet for fast breeder reactors by kneading pelletization
JP4863315B2 (en) * 2009-02-18 2012-01-25 独立行政法人日本原子力研究開発機構 Method for producing nuclear fuel pellet for fast breeder reactor
JP5626675B2 (en) * 2009-07-29 2014-11-19 独立行政法人日本原子力研究開発機構 Nuclear fuel pellet and manufacturing method thereof
FR2949598B1 (en) * 2009-09-02 2013-03-29 Commissariat Energie Atomique PROCESS FOR PREPARING A POROUS NUCLEAR FUEL BASED ON AT LEAST ONE MINOR ACTINIDE
JP5729671B2 (en) * 2011-03-31 2015-06-03 三菱マテリアル株式会社 Nuclear fuel powder granulation method
FR2996045B1 (en) * 2012-09-26 2018-10-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR THE PREPARATION OF A NUCLEAR FUEL BY LIQUID WAY

Also Published As

Publication number Publication date
JPH11183686A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
US4364859A (en) Method for producing oxide powder
JP4075116B2 (en) Method for producing nuclear fuel particles and method for producing nuclear fuel pellets
CN1251245C (en) Method for producing mixed oxide nuclear fuel powder and mixed oxide nuclear fuel sintered compact
JPH0159556B2 (en)
JP7258853B2 (en) Process for producing powders containing uranium oxide UO2, optionally plutonium oxide PuO2, and optionally americium oxide AmO2 and/or oxides of other minor actinides
CN1886805A (en) Method for the production of nuclear fuel pellets
JPH01148994A (en) Manufacture of nuclear fuel pellet for mixed oxide (u,pu)o2 base
CN105924169A (en) Preparation method for high-density UO2 pellet by using waste UO2 powder material as raw material
Lerch et al. Nuclear fuel conversion and fabrication chemistry
US4676935A (en) Method of producing mixed-oxide nuclear fuel pellets soluble in nitric acid
JPS5895617A (en) Method of increasing grain size of uranium oxide
EP0277708B1 (en) Pellet fabrication
JP2003504596A (en) Method for producing (U, Pu) O2 mixed oxide nuclear fuel pellets from non-fluid UO2 powder
CA1169643A (en) Method for producing mixed-oxide nuclear fuel pellets soluble in nitric acid
Tiegs et al. Sphere-cal process: fabrication of fuel pellets from gel microspheres
JP3170468B2 (en) Method for producing nuclear fuel pellets
DE2921423A1 (en) METHOD OF MANUFACTURING A SHAPED BODY
KR840002150B1 (en) Method of improving the green strengh of nuclear fuel pellets
JP2008008644A (en) Granulating method of granule for pellet manufacturing
RU2253913C2 (en) Mode of receiving fuel pellets for heat-generating elements out of uranium dioxide
US3518328A (en) Process for preparing microspheres of uranium,plutonium or thorium carbide
US3278655A (en) Method for sphering refractory oxides
JP2012166983A (en) Method for producing particle for producing nuclear fuel pellet
RU2186431C2 (en) Method for manufacturing ceramic fuel pellets for nuclear reactors
KR100266480B1 (en) Uranium dioxide pellet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

EXPY Cancellation because of completion of term