JP2007118500A - Mold for extrusion molding - Google Patents

Mold for extrusion molding Download PDF

Info

Publication number
JP2007118500A
JP2007118500A JP2005316601A JP2005316601A JP2007118500A JP 2007118500 A JP2007118500 A JP 2007118500A JP 2005316601 A JP2005316601 A JP 2005316601A JP 2005316601 A JP2005316601 A JP 2005316601A JP 2007118500 A JP2007118500 A JP 2007118500A
Authority
JP
Japan
Prior art keywords
region
mold
flow path
parallel
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005316601A
Other languages
Japanese (ja)
Other versions
JP4693595B2 (en
Inventor
Masakazu Ishiyama
雅一 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005316601A priority Critical patent/JP4693595B2/en
Publication of JP2007118500A publication Critical patent/JP2007118500A/en
Application granted granted Critical
Publication of JP4693595B2 publication Critical patent/JP4693595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • B29C47/92

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold for extrusion molding capable of controlling the occurrence of streaks in extrusion molding of cylindrical tubes made of a synthetic resin. <P>SOLUTION: A cylindrical resin passage 13 is secured by an inside mold 11 and an outside mold 12. A spiral area 14, a communicating area 15 and a parallel area 16 are demarcated in the resin passage 13, and the mold 1B for extrusion molding is constituted so that a molten resin is supplied and extruded to mold cylindrical tubes continuously. The shear rate γ<SB>w</SB>of the molten resin, expressed by an equation (1), is ≤300 s<SP>-1</SP>on the inner peripheral surface 12a of the outside mold 12a and the outer peripheral surface 11a of the inside mold 11a in the parallel area 16. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、合成樹脂の押出成形に用いられる押出成形用金型に関する。特に、円筒管を成形するための押出成形用金型の改良に関する。   The present invention relates to an extrusion mold used for extrusion molding of a synthetic resin. In particular, it relates to an improvement of an extrusion mold for forming a cylindrical tube.

従来より、合成樹脂の円筒管を成形するためには押出成形が行われており、この押出成形は、一般に押出機、金型、および、引取装置を用いて以下のように行われる。   Conventionally, extrusion molding has been performed to mold a cylindrical tube of synthetic resin, and this extrusion molding is generally performed as follows using an extruder, a die, and a take-up device.

まず、樹脂材料が押出機に供給され、この押出機によって樹脂材料は加熱され均一な流動状態にされるとともに、加圧され金型に連続的に送り出される。次に、押出機から送り出された溶融樹脂は、金型によって円筒形状に成形されて先端の吐出口から外部に押し出される。最後に、金型の吐出口から押し出された円筒管を引取装置によって、形状と寸法とを規制しつつ冷却しながら引き取っていくことで、所定形状の合成樹脂の円筒管が得られる。   First, a resin material is supplied to an extruder, and the resin material is heated to be in a uniform fluid state by the extruder, and is pressurized and continuously sent out to a mold. Next, the molten resin sent out from the extruder is formed into a cylindrical shape by a mold and pushed out from the discharge port at the tip. Finally, a cylindrical tube of a predetermined shape is obtained by pulling out the cylindrical tube pushed out from the discharge port of the mold while cooling the shape and size while regulating the shape and size.

このような押出成形に用いられる金型としては、スパイラルダイ、スパイダーダイ、クロスヘッドダイなどがあげられるが、それらの中でも円筒管の肉厚を均一に精度よく成形することができることから、合成樹脂の円筒管の押出成形には図3に示されるようなスパイラルダイがよく用いられている(例えば、特許文献1)。   Examples of molds used for such extrusion molding include spiral dies, spider dies, and crosshead dies. Among these, synthetic resin can be used because the thickness of the cylindrical tube can be uniformly and accurately formed. A spiral die as shown in FIG. 3 is often used for extrusion molding of a cylindrical tube (for example, Patent Document 1).

このスパイラルダイは、内型11と外型12とによって円筒状の樹脂流路13が確保されており、この樹脂流路13は、内型11の外周面11aに刻設した螺旋溝14aにより構成される最上流部の螺旋領域14と、内型11の中心軸18と平行にされた最下流部の平行領域16と、螺旋領域14と平行領域16とを連通させる連通領域15とで構成されている。溶融樹脂は、図外の押出機から樹脂流路13の最上流部に所定押出量で供給され、樹脂流路13の螺旋領域14、連通領域15および平行領域16を順次通過して吐出口17から押し出されることで、円筒管が連続的に成形される。
特開平10−29237号公報
In the spiral die, a cylindrical resin flow path 13 is secured by the inner mold 11 and the outer mold 12, and the resin flow path 13 is configured by a spiral groove 14 a formed on the outer peripheral surface 11 a of the inner mold 11. The most upstream spiral region 14, the most downstream parallel region 16 parallel to the central axis 18 of the inner mold 11, and the communication region 15 that connects the spiral region 14 and the parallel region 16. ing. The molten resin is supplied from the extruder (not shown) to the uppermost stream portion of the resin flow path 13 at a predetermined extrusion amount, and sequentially passes through the spiral area 14, the communication area 15, and the parallel area 16 of the resin flow path 13. The cylindrical tube is continuously formed by being pushed out from.
JP-A-10-29237

ところで、上記のスパイラルダイには、溶融樹脂が押出機から加圧されながら供給されるため、金型内の合成樹脂は圧力が負荷された状態となっており、この圧力が平行領域16の内型外周面11aおよび外型内周面12aと溶融樹脂との間に摩擦を生じさせていた。このとき、平行領域16の内型外周面11aおよび外型内周面12aにおける溶融樹脂の剪断速度が速いと、内型外周面11aおよび外型内周面12aに溶融樹脂が擦れることでカスが発生し、このカスが吐出口17から円筒管と同時に押し出されてしまう。このカスは吐出口17に付着して溜まっていき、この溜まったカスが金型から離脱して、押し出されている円筒管に付着してしまうことがある。このようなカスの付着が生じると、円筒管はカスが付着した状態で冷却され、カスが付着したまま硬化してしまうため、外観不良または肉厚不良となり、その結果カスが付着した円筒管は不良品として廃棄されていた。   By the way, since the molten resin is supplied to the spiral die while being pressurized from the extruder, the synthetic resin in the mold is in a state where pressure is applied. Friction was generated between the mold outer peripheral surface 11a and the outer mold inner peripheral surface 12a and the molten resin. At this time, if the shear rate of the molten resin on the inner mold outer peripheral surface 11a and the outer mold inner peripheral surface 12a of the parallel region 16 is high, the molten resin rubs against the inner mold outer peripheral surface 11a and the outer mold inner peripheral surface 12a, thereby causing residue. This debris is pushed out from the discharge port 17 at the same time as the cylindrical tube. The debris adheres to the discharge port 17 and accumulates, and the accumulated debris may detach from the mold and adhere to the extruded cylindrical tube. When such debris adheres, the cylindrical tube is cooled in a state where the debris is adhered and hardens while the debris is adhered, resulting in poor appearance or poor thickness. It was discarded as a defective product.

また、カスが吐出口17に付着した状態で押出成形を継続すると、押し出されている円筒管をカスが引っ掻いて傷をつける虞があり、その場合も円筒管は外観不良または肉厚不良となり不良品として廃棄されていた。   Further, if extrusion molding is continued with the residue attached to the discharge port 17, there is a risk that the residue will scratch the cylindrical tube being pushed out. It was discarded as a good product.

さらに、押出機から供給される溶融樹脂は、複数本の螺旋溝14aを通って、連通領域15の基端部で合流し円筒形状を形成する。その際、螺旋領域14と連通領域15との境界での背圧が小さいと、螺旋溝14aで複数本に分割されていた溶融樹脂が合流した際に互いに押しつけ合う力が不足するため十分に融合されず、それぞれの溶融樹脂の境界にスジが発生してしまう。このようにスジが発生した円筒管を管継手と接続した場合、円筒管のスジの部分で両者の間に隙間が生じてしまい、流体の漏れを発生させる原因になっていた。従って、スジが発生した円筒管も、カスが付着した円筒管と同様、外観不良または肉厚不良で不良品として廃棄されていた。   Further, the molten resin supplied from the extruder passes through the plurality of spiral grooves 14 a and joins at the base end portion of the communication region 15 to form a cylindrical shape. At that time, if the back pressure at the boundary between the spiral region 14 and the communication region 15 is small, the molten resin that has been divided into a plurality of pieces by the spiral groove 14a has insufficient force to press each other and merges sufficiently. In other words, streaks occur at the boundaries between the molten resins. When the cylindrical tube in which streaks are generated in this way is connected to a pipe joint, a gap is formed between the two at the streaks of the cylindrical tube, which causes a fluid leak. Accordingly, the cylindrical tube in which streaks are generated has been discarded as a defective product due to an appearance defect or a wall thickness defect similarly to the cylindrical tube to which debris is attached.

本発明は係る実情に鑑みてなされたもので、その目的は、合成樹脂製円筒管の押出成形において、金型吐出口に付着するカス、および、連通領域の基端部での溶融樹脂の合流および融合を円滑なものとし、スジの発生を抑制することができる押出成形用金型を提供することにある。   SUMMARY OF THE INVENTION The present invention has been made in view of the actual situation, and the object thereof is to join a molten resin at a base end portion of a communication region and a residue attached to a mold discharge port in extrusion molding of a synthetic resin cylindrical tube. Another object of the present invention is to provide an extrusion mold capable of smooth fusion and suppressing generation of streaks.

上記課題を解決するため、本発明の押出成形用金型は、内型と外型とによって円筒状の樹脂流路が確保され、この樹脂流路の最上流部には、前記内型の外周面に刻設した螺旋溝により構成される螺旋領域が設定される一方、樹脂流路の末端となる吐出口に連なる最下流部には、前記内型の中心軸と平行な平行領域が設定されるとともに、前記螺旋領域と前記平行領域との間にはこれら2つの領域を連通させる連通領域が設定されてなり、前記内型の基端側に接続した押出機から前記樹脂流路の最上流部に所定押出量で溶融樹脂を供給して、この溶融樹脂を前記樹脂流路の螺旋領域、連通領域および平行領域を順次通過させ前記吐出口から押し出すことで円筒管が連続的に成形されるように構成された押出成形金型において、前記平行領域の外型内周面および内型外周面における溶融樹脂の次式(1)で表される剪断速度γwが300s-1以下とされたことを特徴とする。 In order to solve the above problems, the extrusion molding die of the present invention has a cylindrical resin flow path secured by the inner mold and the outer mold, and the outermost portion of the inner mold is provided at the most upstream portion of the resin flow path. A spiral region constituted by spiral grooves carved on the surface is set, while a parallel region parallel to the central axis of the inner mold is set in the most downstream portion connected to the discharge port that is the end of the resin flow path. In addition, a communication region for communicating these two regions is set between the spiral region and the parallel region, and the uppermost stream of the resin flow path from the extruder connected to the proximal end side of the inner mold A molten resin is supplied to the part at a predetermined extrusion amount, and the molten resin is sequentially passed through the spiral region, the communication region, and the parallel region of the resin flow path, and is extruded from the discharge port to continuously form a cylindrical tube. In the extrusion mold configured as described above, outside the parallel region Shear rate gamma w represented by the following formula of the molten resin in the inner circumferential surface and the inner mold the outer peripheral surface (1) is characterized in that it is a 300 s -1 or less.

Figure 2007118500
このような本発明によると、平行領域の外型内周面および内型外周面における溶融樹脂の上記式(1)で表される剪断速度γwが300s-1以下とされたものであるから、溶融樹脂が平行領域の外型内周面および内型外周面から受ける摩擦が小さくなり、吐出口でのカスの発生が抑制される。従って、カスが押し出された円筒管に付着することがなく、また、カスによって押し出されている円筒管を傷つけることがなくなるため、カスに起因する不良品の発生が減少する。
Figure 2007118500
According to the present invention as described above, the shear rate γ w represented by the above formula (1) of the molten resin on the outer peripheral surface of the outer mold and the outer peripheral surface of the inner mold in the parallel region is 300 s −1 or less. Further, the friction that the molten resin receives from the outer peripheral surface of the outer mold and the outer peripheral surface of the inner mold in the parallel region is reduced, and the generation of waste at the discharge port is suppressed. Therefore, the residue does not adhere to the extruded cylindrical tube, and the cylindrical tube extruded by the residue is not damaged, so that the occurrence of defective products due to the residue is reduced.

また、本発明の押出成形用金型は、内型と外型とによって円筒状の樹脂流路が確保され、この樹脂流路の最上流部には、前記内型の外周面に刻設した螺旋溝により構成される螺旋領域が設定される一方、樹脂流路の末端となる吐出口に連なる最下流部には、前記内型の中心軸と平行な平行領域が設定されるとともに、前記螺旋領域と前記平行領域との間にはこれら2つの領域を連通させる連通領域が設定されてなり、前記内型の基端側に接続した押出機から前記樹脂流路の最上流部に所定押出量で溶融樹脂を供給して、この溶融樹脂を前記樹脂流路の螺旋領域、連通領域および平行領域を順次通過させ前記吐出口から押し出すことで円筒管が連続的に成形されるように構成された押出成形金型において、前記螺旋領域と前記連通領域との境界における溶融樹脂の次式(2)および(3)で表される背圧Pが15MPa以上とされたことを特徴とする。   In the extrusion mold of the present invention, a cylindrical resin flow path is secured by the inner mold and the outer mold, and the most upstream portion of the resin flow path is engraved on the outer peripheral surface of the inner mold. While a spiral region constituted by a spiral groove is set, a parallel region parallel to the central axis of the inner mold is set in the most downstream part connected to the discharge port that is the end of the resin flow path, and the spiral A communication region for communicating these two regions is set between the region and the parallel region, and a predetermined amount of extrusion from the extruder connected to the proximal end side of the inner mold to the most upstream portion of the resin flow path. The cylindrical resin is continuously formed by supplying the molten resin with the above, and sequentially passing the molten resin through the spiral region, the communication region, and the parallel region of the resin flow path and extruding from the discharge port. In an extrusion mold, the boundary between the spiral region and the communication region Back pressure P represented by the following formula (2) and (3) of the definitive molten resin is characterized in that it is a more 15 MPa.

Figure 2007118500
このような本発明によると、螺旋領域と連通領域との境界における溶融樹脂の上記式(2)および(3)で表される背圧Pが15MPa以上とされたものであるから、螺旋溝によって複数本に分割されていた溶融樹脂が連通領域の基端部で合流する際に、互いに十分な圧力で押しつけ合って良好に融合される。従って、押し出された円筒管におけるスジの発生がないため、スジに起因する不良品の発生が減少する。
Figure 2007118500
According to the present invention, the back pressure P expressed by the above formulas (2) and (3) of the molten resin at the boundary between the spiral region and the communication region is set to 15 MPa or more. When the molten resin that has been divided into a plurality of pieces merges at the base end portion of the communication region, the molten resins are pressed against each other with sufficient pressure and are fused well. Therefore, since no streak is generated in the extruded cylindrical tube, the generation of defective products due to the streak is reduced.

さらに、本発明の押出成形用金型は、上記した2種類の条件を共に満足するものであってもよい。   Furthermore, the extrusion mold according to the present invention may satisfy both of the above two conditions.

すなわち、内型と外型とによって円筒状の樹脂流路が確保され、この樹脂流路の最上流部には、前記内型の外周面に刻設した螺旋溝により構成される螺旋領域が設定される一方、樹脂流路の末端となる吐出口に連なる最下流部には、前記内型の中心軸と平行な平行領域が設定されるとともに、前記螺旋領域と前記平行領域との間にはこれら2つの領域を連通させる連通領域が設定されてなり、前記内型の基端側に接続した押出機から前記樹脂流路の最上流部に所定押出量で溶融樹脂を供給して、この溶融樹脂を前記樹脂流路の螺旋領域、連通領域および平行領域を順次通過させ前記吐出口から押し出すことで円筒管が連続的に成形されるように構成された押出成形金型において、前記平行領域の外型内周面および内型外周面における溶融樹脂の上記式(1)で表される剪断速度γwが300s-1以下とされるとともに、前記螺旋領域と前記連通領域との境界における溶融樹脂の上記式(2)および(3)で表される背圧Pが15MPa以上とされたことを特徴とする。 That is, a cylindrical resin flow path is secured by the inner mold and the outer mold, and a spiral region constituted by a spiral groove carved on the outer peripheral surface of the inner mold is set in the uppermost stream portion of the resin flow path. On the other hand, a parallel region parallel to the central axis of the inner mold is set in the most downstream portion connected to the discharge port that is the end of the resin flow path, and between the spiral region and the parallel region. A communication region is set to connect these two regions, and the molten resin is supplied to the most upstream portion of the resin flow path from the extruder connected to the proximal end side of the inner mold at a predetermined extrusion amount. In an extrusion mold configured to continuously form a cylindrical tube by sequentially passing resin through a spiral region, a communication region, and a parallel region of the resin flow path and extruding the resin from the discharge port, Molten resin on outer peripheral surface of outer mold and outer peripheral surface of inner mold With the shear rate gamma w represented by the above formula (1) is a 300 s -1 or less, represented by the above formula of the molten resin at the boundary between the helical region and the communicating area (2) and (3) The back pressure P is set to 15 MPa or more.

このような本発明によると、平行領域の外型内周面および内型外周面における溶融樹脂の上記式(1)で表される剪断速度γwが300s-1以下とされたものであるから、溶融樹脂が平行領域の外型内周面および内型外周面から受ける摩擦が小さくなり、吐出口でのカスの発生が抑制される。従って、カスが押し出された円筒管に付着することがなく、また、カスが押し出されている円筒管を傷つけることがなくなるため、カスに起因する不良品の発生が減少する。 According to the present invention as described above, the shear rate γ w represented by the above formula (1) of the molten resin on the outer peripheral surface of the outer mold and the outer peripheral surface of the inner mold in the parallel region is 300 s −1 or less. Further, the friction that the molten resin receives from the outer peripheral surface of the outer mold and the outer peripheral surface of the inner mold in the parallel region is reduced, and the generation of waste at the discharge port is suppressed. Therefore, since the residue does not adhere to the extruded cylindrical tube and the cylindrical tube from which the residue is extruded is not damaged, the occurrence of defective products due to the residue is reduced.

また、それと同時に、螺旋領域と連通領域との境界における溶融樹脂の上記式(2)および(3)で表される背圧Pが15MPa以上とされたものであるから、螺旋溝によって複数本に分割されていた溶融樹脂が連通領域の基端部で合流する際に、互いに十分な圧力で押しつけ合って良好に融合される。従って、押し出された円筒管にスジが形成されることがないため、スジに起因する不良品の発生が減少する。   At the same time, the back pressure P expressed by the above equations (2) and (3) of the molten resin at the boundary between the spiral region and the communication region is set to 15 MPa or more. When the divided molten resin joins at the base end portion of the communication region, they are pressed against each other with sufficient pressure and are fused well. Accordingly, no streaks are formed in the extruded cylindrical tube, and the occurrence of defective products due to the streaks is reduced.

本発明の押出成形用金型は、合成樹脂製円筒管の押出成形において、金型吐出口にカスが付着することがなく、また、連通領域の基端部での溶融樹脂の合流および融合が円滑におこなわれるため、カスやスジに起因する不良品の発生を抑えることができ、延いては従来に比べて成形不良による円筒管の廃棄量を格段に減少させることができるといった効果を奏する。   In the extrusion molding die of the present invention, in the extrusion molding of a synthetic resin cylindrical tube, no debris adheres to the mold discharge port, and the molten resin joins and fuses at the base end of the communication region. Since the process is carried out smoothly, it is possible to suppress the generation of defective products due to scum and streaks. As a result, the amount of discarded cylindrical tubes due to defective molding can be significantly reduced as compared with the conventional case.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本実施の形態の押出成形用金型1Aを示す部分断面図である。
[Embodiment 1]
FIG. 1 is a partial cross-sectional view showing an extrusion mold 1A according to the present embodiment.

本実施の形態の押出成形用金型1Aは、内型11と外型12とによって円筒状の樹脂流路13が確保され、また、この樹脂流路13は、最上流部の螺旋領域14、最下流部の平行領域16、および、螺旋領域14と平行領域16とを連通させる連通領域15で構成されている。   In the extrusion mold 1A of the present embodiment, a cylindrical resin flow path 13 is secured by the inner mold 11 and the outer mold 12, and the resin flow path 13 is formed in the spiral region 14 in the most upstream area, It is composed of a parallel region 16 at the most downstream portion and a communication region 15 that allows the spiral region 14 and the parallel region 16 to communicate with each other.

上記螺旋領域14は、図示しない押出機から供給された溶融樹脂を、後述する連通領域15の円周上に均一に展開させるための領域である。また、螺旋領域14は、樹脂流路13の最上流部に相当する領域であって、内型外周面11aに刻設した複数本の螺旋溝14aにより構成されたものである。   The spiral region 14 is a region for uniformly spreading the molten resin supplied from an unillustrated extruder on the circumference of the communication region 15 described later. Further, the spiral region 14 is a region corresponding to the most upstream portion of the resin flow path 13 and is configured by a plurality of spiral grooves 14a carved on the inner peripheral surface 11a.

上記螺旋溝14aは、押出機と接続される基端側から先端側(樹脂流路13の下流側)に向かうにしたがって次第に浅くなるように形成されており、この螺旋溝14aの基端には、図外の押出機から、加圧された溶融樹脂が供給されるようになっている。   The spiral groove 14a is formed so as to gradually become shallower from the proximal end side connected to the extruder toward the distal end side (downstream side of the resin flow path 13), and at the proximal end of the spiral groove 14a, A pressurized molten resin is supplied from an extruder not shown.

上記平行領域16は、連通領域15で合流および融合した溶融樹脂を、所定の内径および外径に整えて押出成形用金型1Aの外へ押し出すための領域である。また、平行領域16は、樹脂流路13の末端となる吐出口17に連なる最下流部に位置し、内型11の中心軸と平行に形成されている。この平行領域16は、成形品の形状を安定させるために所定の長さを有している。   The parallel region 16 is a region for adjusting the molten resin merged and fused in the communication region 15 to a predetermined inner diameter and outer diameter and extruding the molten resin out of the extrusion mold 1A. The parallel region 16 is located in the most downstream part connected to the discharge port 17 that is the end of the resin flow path 13, and is formed in parallel with the central axis of the inner mold 11. The parallel region 16 has a predetermined length in order to stabilize the shape of the molded product.

上記連通領域15は、螺旋領域14における複数本の螺旋溝14aから押し出されてくる溶融樹脂が合流するとともに、螺旋領域14と連通領域15との境界において負荷される背圧によって円滑に融合し、均一な円筒形状に形成される領域である。   The communication region 15 is smoothly fused by the back pressure applied at the boundary between the spiral region 14 and the communication region 15 while the molten resin extruded from the plurality of spiral grooves 14a in the spiral region 14 merges. It is an area formed in a uniform cylindrical shape.

本実施の形態の押出成形用金型1Aは、平行領域16の外型内周面12aおよび内型外周面11aにおける溶融樹脂の次式(1)で表される剪断速度γwが300s-1以下とされるとともに、螺旋領域14と連通領域15との境界における溶融樹脂の次式(2)および(3)で表される背圧Pが15MPa以上とされる金型設計が行われている。 In the extrusion mold 1A of the present embodiment, the shear rate γ w represented by the following equation (1) of the molten resin on the outer mold inner peripheral surface 12a and the inner mold outer peripheral surface 11a of the parallel region 16 is 300 s −1. In addition to the following, a mold design is performed in which the back pressure P expressed by the following equations (2) and (3) of the molten resin at the boundary between the spiral region 14 and the communication region 15 is 15 MPa or more. .

Figure 2007118500
Figure 2007118500

Figure 2007118500
<実施例と比較例>
上記の本実施の形態1の押出成形用金型1Aを用いてポリエチレン樹脂を押出成形した際の実施例および従来の押出成形用金型1Cを用いた比較例について表1を用いて説明する。
Figure 2007118500
<Examples and comparative examples>
An example when a polyethylene resin is extruded using the above-described extrusion mold 1A according to the first embodiment and a comparative example using a conventional extrusion mold 1C will be described with reference to Table 1.

Figure 2007118500
(実施例1〜3)
実施例1、2および3における押出成形用金型1Aの連通領域15は、図1に示すように、内型11の中心軸18と平行とされた第1区間15aと、内型11の中心軸18と平行とされるとともに内型11の外径が第1区間15aよりも大きくされた第2区間15bと、第2区間15bからテーパ状に縮径された第3区間15cの3つの区間で構成した。各区間における外型12の内径、内型11の外径および軸方向の長さを表1に記載の通りとした。また、平行領域16を第4区間とし、この平行領域(第4区間)16における外型12の内径、内型11の外径および軸方向の長さを表1に記載の通りとした。
Figure 2007118500
(Examples 1-3)
As shown in FIG. 1, the communication region 15 of the extrusion mold 1 </ b> A in Examples 1, 2, and 3 includes a first section 15 a parallel to the central axis 18 of the inner mold 11, and the center of the inner mold 11. Three sections, a second section 15b that is parallel to the shaft 18 and whose outer diameter of the inner mold 11 is larger than the first section 15a, and a third section 15c that is tapered from the second section 15b in a tapered shape. Consists of. Table 1 shows the inner diameter of the outer mold 12, the outer diameter of the inner mold 11, and the axial length in each section. The parallel region 16 is defined as a fourth section, and the inner diameter of the outer mold 12, the outer diameter of the inner mold 11, and the length in the axial direction in the parallel region (fourth section) 16 are set as shown in Table 1.

(比較例1〜3)
比較例1、2および3における押出成形用金型1Cの連通領域15は、図3に示すように、実施例1〜3の第2区間15bに相当する区間を省いた構成とした。すなわち、内型11の中心軸18と平行とされた第1区間15aと、第1区間15aからテーパ状に縮径された第3区間15cとで構成されている。
(Comparative Examples 1-3)
As shown in FIG. 3, the communication region 15 of the extrusion mold 1 </ b> C in Comparative Examples 1, 2, and 3 has a configuration in which a section corresponding to the second section 15 b of Examples 1 to 3 is omitted. That is, the first section 15a is made parallel to the central axis 18 of the inner mold 11, and the third section 15c is reduced in diameter from the first section 15a in a tapered shape.

これらの比較例1〜3では、実施例1〜3に比べて、上述したように第2区間が存在せず、また、第3区間15cの軸方向の長さは短く、平行領域(第4区間)16における外型12の内径、内型11の外径は小さく且つ軸方向の長さは短く設定されている。   In these comparative examples 1 to 3, the second section does not exist as described above, and the axial length of the third section 15c is short as compared with the first to third embodiments. In the section) 16, the inner diameter of the outer mold 12 and the outer diameter of the inner mold 11 are set small and the axial length is set short.

なお、全ての実施例および比較例において同じポリエチレン樹脂を用いているため、粘性係数ηは全て同じ値となっている。また、実施例1と比較例1、実施例2と比較例2、および、実施例3と比較例3は、押出量Qおよび成形後の円筒管の寸法がそれぞれ同じになるように設定されている。ここで、成形後の円筒管の寸法は、押出成形用金型1Aの吐出口17から押し出された直後の寸法ではなく、その後に、図示しない引取装置で引き取りながら最終形状にした際の寸法である。   In addition, since the same polyethylene resin is used in all Examples and Comparative Examples, the viscosity coefficients η all have the same value. Further, Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3 are set so that the extrusion amount Q and the dimension of the cylindrical tube after molding are the same. Yes. Here, the dimension of the cylindrical tube after molding is not the dimension immediately after being extruded from the discharge port 17 of the extrusion molding die 1A, but is the dimension when the final shape is obtained while being taken out by a take-off device (not shown). is there.

表1に示されるように、全ての実施例において、平行領域(第4区間)16における外型12の内径および内型11の外径をそれぞれの比較例より大きくすることによって、平行領域16の外型内周面12aおよび内型外周面11aにおける溶融樹脂の前記式(1)で表される剪断速度が300s-1以下となり、その結果、吐出口17でのカスの発生が抑制された。 As shown in Table 1, in all the examples, by increasing the inner diameter of the outer mold 12 and the outer diameter of the inner mold 11 in the parallel region (fourth section) 16 than the respective comparative examples, The shear rate represented by the formula (1) of the molten resin on the outer peripheral surface 12a and the outer peripheral surface 11a of the inner mold was 300 s −1 or less, and as a result, the generation of debris at the discharge port 17 was suppressed.

また、比較例に対して実施例では、流路を狭くした第2区間15bを設けるとともに、第3区間15cと平行領域(第4区間)16の軸方向の長さを長くし且つ外型12の内径、内型11の外径を大きくすることによって、螺旋領域14と連通領域15との境界における溶融樹脂の前記式(2)および(3)で表される背圧が15MPa以上となり、その結果、成形後の円筒管にスジが発生するのを抑制することができた。   Further, in the embodiment, in contrast to the comparative example, the second section 15b having a narrow flow path is provided, the length of the third section 15c and the parallel region (fourth section) 16 in the axial direction is increased, and the outer mold 12 is provided. By increasing the inner diameter of the inner mold 11 and the outer diameter of the inner mold 11, the back pressure expressed by the equations (2) and (3) of the molten resin at the boundary between the spiral region 14 and the communication region 15 becomes 15 MPa or more, As a result, it was possible to suppress the generation of streaks in the formed cylindrical tube.

[実施の形態2]
図2は、本実施の形態の押出成形用金型1Bを示す部分断面図である。
[Embodiment 2]
FIG. 2 is a partial cross-sectional view showing an extrusion mold 1B according to the present embodiment.

本実施の形態の押出成形用金型1Bは、内型11と外型12とによって円筒状の樹脂流路13が確保され、また、この樹脂流路13は、最上流部の螺旋領域14、最下流部の平行領域16、および、螺旋領域14と平行領域16とを連通させる連通領域15で構成されている。   In the extrusion molding die 1B of the present embodiment, a cylindrical resin flow path 13 is secured by the inner mold 11 and the outer mold 12, and the resin flow path 13 is formed in the spiral region 14 in the most upstream area, It is composed of a parallel region 16 at the most downstream portion and a communication region 15 that allows the spiral region 14 and the parallel region 16 to communicate with each other.

なお、本実施の形態の押出成形用金型1Bは、上記した実施の形態1の押出成形用金型1Aと基本的に同じ構成であるので、同一部材には同一符号を付してその説明を省略し、相違点のみを説明する。   The extrusion mold 1B according to the present embodiment has basically the same configuration as the extrusion mold 1A according to the first embodiment, and therefore, the same members are denoted by the same reference numerals and the description thereof is omitted. Will be omitted and only the differences will be described.

本実施の形態の押出成形用金型1Bは、平行領域16の外型内周面12aおよび内型外周面11aにおける溶融樹脂の次式(1)で表される剪断速度γwが300s-1以下とされる金型設計が行われている。 In the extrusion mold 1B of the present embodiment, the shear rate γ w represented by the following equation (1) of the molten resin on the outer mold inner peripheral surface 12a and the inner mold outer peripheral surface 11a of the parallel region 16 is 300 s −1. The following mold design is performed.

Figure 2007118500
<実施例と比較例>
上記の本実施の形態2の押出成形用金型1Bを用いてポリエチレン樹脂を押出成形した際の実施例および従来の押出成形用金型1Cを用いた比較例について表2を用いて説明する。
Figure 2007118500
<Examples and comparative examples>
An example when a polyethylene resin is extruded using the above-described extrusion mold 1B of the second embodiment and a comparative example using the conventional extrusion mold 1C will be described with reference to Table 2.

Figure 2007118500
(実施例4〜6)
実施例4、5および6における押出成形用金型1Bは、図2に示すように、平行領域16における外型12の内径および内型11の外径を表2に記載の通りとした。
Figure 2007118500
(Examples 4 to 6)
As shown in FIG. 2, the extrusion mold 1B in Examples 4, 5 and 6 had the inner diameter of the outer mold 12 and the outer diameter of the inner mold 11 in the parallel region 16 as shown in Table 2.

(比較例4〜6)
これらの比較例4〜6では、実施例4〜6に比べて、平行領域16における外型12の内径、内型11の外径は小さく且つこれらの間隔が狭く設定されている。
(Comparative Examples 4-6)
In these comparative examples 4-6, compared with Examples 4-6, the internal diameter of the outer mold | type 12 in the parallel area | region 16 and the outer diameter of the inner mold | type 11 are small, and these space | intervals are set narrowly.

なお、全ての実施例および比較例において同じポリエチレン樹脂を用いているため、粘性係数ηは全て同じ値となっている。また、実施例4と比較例4、実施例5と比較例5、および、実施例6と比較例6は、押出量Qおよび成形後の円筒管の寸法がそれぞれ同じになるように設定されている。ここで、成形後の円筒管の寸法は、押出成形用金型1Bの吐出口17から押し出された直後の寸法ではなく、その後に、図示しない引取装置で引き取りながら最終形状にした際の寸法である。   In addition, since the same polyethylene resin is used in all Examples and Comparative Examples, the viscosity coefficients η all have the same value. Further, Example 4 and Comparative Example 4, Example 5 and Comparative Example 5, and Example 6 and Comparative Example 6 are set such that the extrusion amount Q and the dimension of the formed cylindrical tube are the same. Yes. Here, the dimension of the cylindrical tube after molding is not a dimension immediately after being extruded from the discharge port 17 of the extrusion molding die 1B, but is a dimension when the final shape is obtained while being taken out by a take-off device (not shown). is there.

表2に示されるように、全ての実施例において、平行領域16における外型12の内径および内型11の外径をそれぞれの比較例より大きく且つこれらの間隔を広くすることによって、平行領域16の外型内周面12aおよび内型外周面11aにおける溶融樹脂の前記式(1)で表される剪断速度が300s-1以下となり、その結果、吐出口17でのカスの発生が抑制された。 As shown in Table 2, in all of the examples, the parallel region 16 has an inner diameter of the outer mold 12 and an outer diameter of the inner mold 11 that are larger than those of the comparative examples and wider than each other. The shear rate represented by the above formula (1) of the molten resin on the outer peripheral surface 12a and the outer peripheral surface 11a of the inner mold was 300 s −1 or less, and as a result, generation of debris at the discharge port 17 was suppressed. .

[実施の形態3]
図1は、本実施の形態の押出成形用金型1Aを示す部分断面図である。
[Embodiment 3]
FIG. 1 is a partial cross-sectional view showing an extrusion mold 1A according to the present embodiment.

本実施の形態の押出成形用金型1Aは、内型11と外型12とによって円筒状の樹脂流路13が確保され、また、この樹脂流路13は、最上流部の螺旋領域14、最下流部の平行領域16、および、螺旋領域14と平行領域16とを連通させる連通領域15で構成されている。   In the extrusion mold 1A of the present embodiment, a cylindrical resin flow path 13 is secured by the inner mold 11 and the outer mold 12, and the resin flow path 13 is formed in the spiral region 14 in the most upstream area, It is composed of a parallel region 16 at the most downstream portion and a communication region 15 that allows the spiral region 14 and the parallel region 16 to communicate with each other.

なお、本実施の形態の押出成形用金型1Aは、上記した実施の形態1のものと基本的に同じ構成であるので、同一部材には同一符号を付してその説明を省略し、相違点のみを説明する。   The extrusion mold 1A of the present embodiment has basically the same configuration as that of the above-described first embodiment. Therefore, the same members are denoted by the same reference numerals, and the description thereof is omitted. Only the point will be described.

本実施の形態の押出成形用金型1Aは、螺旋領域14と連通領域15との境界における溶融樹脂の次式(2)および(3)で表される背圧Pが15MPa以上とされる金型設計が行われている。   The extrusion mold 1A of the present embodiment is a mold in which the back pressure P expressed by the following equations (2) and (3) of the molten resin at the boundary between the spiral region 14 and the communication region 15 is 15 MPa or more. Mold design is in progress.

Figure 2007118500
<実施例と比較例>
上記の本実施の形態3の押出成形用金型1Aを用いてポリエチレン樹脂を押出成形した際の実施例および従来の押出成形用金型1Cを用いた比較例について表3を用いて説明する。
Figure 2007118500
<Examples and comparative examples>
An example when the polyethylene resin is extruded using the extrusion mold 1A of the third embodiment and a comparative example using the conventional extrusion mold 1C will be described with reference to Table 3.

Figure 2007118500
(実施例7〜9)
実施例7、8および9における押出成形用金型1Aの連通領域15は、図1に示すように、内型11の中心軸18と平行とされた第1区間15aと、内型11の中心軸18と平行とされるとともに内型11の外径が第1区間15aよりも大きくされた第2区間15bと、第2区間15bからテーパ状に縮径された第3区間15cの3つの区間で構成した。各区間における外型12の内径、内型11の外径および軸方向の長さを表3に記載の通りとした。また、平行領域16を第4区間とし、この平行領域(第4区間)16における外型12の内径、内型11の外径および軸方向の長さを表3に記載の通りとした。
Figure 2007118500
(Examples 7 to 9)
As shown in FIG. 1, the communication region 15 of the extrusion mold 1 </ b> A in Examples 7, 8 and 9 includes a first section 15 a parallel to the central axis 18 of the inner mold 11, and the center of the inner mold 11. Three sections, a second section 15b that is parallel to the shaft 18 and whose outer diameter of the inner mold 11 is larger than the first section 15a, and a third section 15c that is tapered from the second section 15b in a tapered shape. Consists of. Table 3 shows the inner diameter of the outer mold 12, the outer diameter of the inner mold 11, and the axial length in each section. Further, the parallel region 16 is defined as a fourth section, and the inner diameter of the outer mold 12, the outer diameter of the inner mold 11 and the length in the axial direction in the parallel region (fourth section) 16 are as shown in Table 3.

(比較例7〜9)
比較例7、8および9における押出成形用金型1Cの連通領域15は、図3に示すように、実施例7〜9の第2区間15bに相当する区間を省いた構成とした。すなわち、内型11の中心軸18と平行とされた第1区間15aと、第1区間15aからテーパ状に縮径された第3区間15cとで構成されている。
(Comparative Examples 7-9)
As shown in FIG. 3, the communication region 15 of the extrusion molding die 1 </ b> C in Comparative Examples 7, 8 and 9 has a configuration in which a section corresponding to the second section 15 b of Examples 7 to 9 is omitted. That is, the first section 15a is made parallel to the central axis 18 of the inner mold 11, and the third section 15c is reduced in diameter from the first section 15a in a tapered shape.

これらの比較例7〜9では、実施例7〜9に比べて、上述したように第2区間が存在せず、また、第3区間15cおよび平行領域(第4区間)16の軸方向の長さは短く設定されている。   In these comparative examples 7 to 9, as compared with the examples 7 to 9, the second section does not exist as described above, and the axial length of the third section 15c and the parallel region (fourth section) 16 is longer. The length is set short.

なお、全ての実施例および比較例において同じポリエチレン樹脂を用いているため、粘性係数ηは全て同じ値となっている。また、実施例7と比較例7、実施例8と比較例8、および、実施例9と比較例9は、押出量Qおよび成形後の円筒管の寸法がそれぞれ同じになるように設定されている。ここで、成形後の円筒管の寸法は、押出成形用金型1Aの吐出口17から押し出された直後の寸法ではなく、その後に、図示しない引取装置で引き取りながら最終形状にした際の寸法である。   In addition, since the same polyethylene resin is used in all Examples and Comparative Examples, the viscosity coefficients η all have the same value. Further, Example 7 and Comparative Example 7, Example 8 and Comparative Example 8, and Example 9 and Comparative Example 9 are set such that the extrusion amount Q and the dimension of the cylindrical tube after molding are the same. Yes. Here, the dimension of the cylindrical tube after molding is not the dimension immediately after being extruded from the discharge port 17 of the extrusion molding die 1A, but is the dimension when the final shape is obtained while being taken out by a take-off device (not shown). is there.

表3に示されるように、比較例に対して実施例では、流路を狭くした第2区間15bを設けるとともに、第3区間15cと平行領域(第4区間)16の軸方向の長さを長くすることによって、螺旋領域14と連通領域15との境界における溶融樹脂の前記式(2)および(3)で表される背圧が15MPa以上となり、その結果、成形後の円筒管にスジが発生するのを抑制することができた。   As shown in Table 3, with respect to the comparative example, in the embodiment, the second section 15b having a narrow flow path is provided, and the axial length of the third section 15c and the parallel region (fourth section) 16 is set. By increasing the length, the back pressure expressed by the equations (2) and (3) of the molten resin at the boundary between the spiral region 14 and the communication region 15 becomes 15 MPa or more. As a result, streaks are formed in the cylindrical tube after molding. It was possible to suppress the occurrence.

本発明の実施の形態1および3の押出成形用金型を示す部分断面図である。It is a fragmentary sectional view which shows the metal mold | die for extrusion molding of Embodiment 1 and 3 of this invention. 本発明の実施の形態2の押出成形用金型を示す部分断面図であるIt is a fragmentary sectional view which shows the metal mold | die for extrusion molding of Embodiment 2 of this invention. 従来の押出成形用金型を示す部分断面図である。It is a fragmentary sectional view which shows the conventional metal mold | die for extrusion molding.

符号の説明Explanation of symbols

1 押出成形用金型
11 内型
11a 内型外周面
12 外型
12a 外型内周面
13 樹脂流路
14 螺旋領域
14a 螺旋溝
15 連通領域
15a 第1区間
15b 第2区間
15c 第3区間
16 平行領域(第4区間)
17 吐出口
18 内型の中心軸
DESCRIPTION OF SYMBOLS 1 Mold for extrusion 11 Inner mold 11a Inner outer peripheral surface 12 Outer mold 12a Outer inner peripheral surface 13 Resin flow path 14 Spiral area 14a Spiral groove 15 Communication area 15a First section 15b Second section 15c Third section 16 Parallel Area (4th section)
17 Discharge port 18 Central axis of inner mold

Claims (3)

内型と外型とによって円筒状の樹脂流路が確保され、この樹脂流路の最上流部には、前記内型の外周面に刻設した螺旋溝により構成される螺旋領域が設定される一方、樹脂流路の末端となる吐出口に連なる最下流部には、前記内型の中心軸と平行な平行領域が設定されるとともに、前記螺旋領域と前記平行領域との間にはこれら2つの領域を連通させる連通領域が設定されてなり、前記内型の基端側に接続した押出機から前記樹脂流路の最上流部に所定押出量で溶融樹脂を供給して、この溶融樹脂を前記樹脂流路の螺旋領域、連通領域および平行領域を順次通過させ前記吐出口から押し出すことで円筒管が連続的に成形されるように構成された押出成形金型において、
前記平行領域の外型内周面および内型外周面における溶融樹脂の次式(1)で表される剪断速度γwが300s-1以下とされたことを特徴とする押出成形用金型。
Figure 2007118500
A cylindrical resin flow path is secured by the inner mold and the outer mold, and a spiral region constituted by a spiral groove carved on the outer peripheral surface of the inner mold is set in the uppermost stream portion of the resin flow path. On the other hand, a parallel region parallel to the central axis of the inner mold is set in the most downstream part connected to the discharge port that is the end of the resin flow path, and between these two regions between the spiral region and the parallel region. A communication region that connects the two regions is set, and a molten resin is supplied to the uppermost stream portion of the resin flow path from the extruder connected to the proximal end side of the inner mold with a predetermined extrusion amount. In an extrusion mold configured so that a cylindrical tube is continuously formed by sequentially passing through a spiral region, a communication region and a parallel region of the resin flow path and extruding from the discharge port,
An extrusion mold, wherein the shear rate γ w represented by the following formula (1) of the molten resin on the inner peripheral surface and the outer peripheral surface of the inner mold in the parallel region is 300 s −1 or less.
Figure 2007118500
内型と外型とによって円筒状の樹脂流路が確保され、この樹脂流路の最上流部には、前記内型の外周面に刻設した螺旋溝により構成される螺旋領域が設定される一方、樹脂流路の末端となる吐出口に連なる最下流部には、前記内型の中心軸と平行な平行領域が設定されるとともに、前記螺旋領域と前記平行領域との間にはこれら2つの領域を連通させる連通領域が設定されてなり、前記内型の基端側に接続した押出機から前記樹脂流路の最上流部に所定押出量で溶融樹脂を供給して、この溶融樹脂を前記樹脂流路の螺旋領域、連通領域および平行領域を順次通過させ前記吐出口から押し出すことで円筒管が連続的に成形されるように構成された押出成形金型において、
前記螺旋領域と前記連通領域との境界における溶融樹脂の次式(2)および(3)で表される背圧Pが15MPa以上とされたことを特徴とする押出成形用金型。
Figure 2007118500
A cylindrical resin flow path is secured by the inner mold and the outer mold, and a spiral region constituted by a spiral groove carved on the outer peripheral surface of the inner mold is set in the uppermost stream portion of the resin flow path. On the other hand, a parallel region parallel to the central axis of the inner mold is set in the most downstream part connected to the discharge port that is the end of the resin flow path, and between these two regions between the spiral region and the parallel region. A communication region that connects the two regions is set, and a molten resin is supplied to the uppermost stream portion of the resin flow path from the extruder connected to the proximal end side of the inner mold with a predetermined extrusion amount. In an extrusion mold configured so that a cylindrical tube is continuously formed by sequentially passing through a spiral region, a communication region and a parallel region of the resin flow path and extruding from the discharge port,
An extrusion mold, wherein a back pressure P expressed by the following equations (2) and (3) of the molten resin at a boundary between the spiral region and the communication region is 15 MPa or more.
Figure 2007118500
内型と外型とによって円筒状の樹脂流路が確保され、この樹脂流路の最上流部には、前記内型の外周面に刻設した螺旋溝により構成される螺旋領域が設定される一方、樹脂流路の末端となる吐出口に連なる最下流部には、前記内型の中心軸と平行な平行領域が設定されるとともに、前記螺旋領域と前記平行領域との間にはこれら2つの領域を連通させる連通領域が設定されてなり、前記内型の基端側に接続した押出機から前記樹脂流路の最上流部に所定押出量で溶融樹脂を供給して、この溶融樹脂を前記樹脂流路の螺旋領域、連通領域および平行領域を順次通過させ前記吐出口から押し出すことで円筒管が連続的に成形されるように構成された押出成形金型において、
前記平行領域の外型内周面および内型外周面における溶融樹脂の次式(1)で表される剪断速度γwが300s-1以下とされるとともに、
前記螺旋領域と前記連通領域との境界における溶融樹脂の次式(2)および(3)で表される背圧Pが15MPa以上とされたことを特徴とする押出成形用金型。
Figure 2007118500
Figure 2007118500
A cylindrical resin flow path is secured by the inner mold and the outer mold, and a spiral region constituted by a spiral groove carved on the outer peripheral surface of the inner mold is set in the uppermost stream portion of the resin flow path. On the other hand, a parallel region parallel to the central axis of the inner mold is set in the most downstream part connected to the discharge port that is the end of the resin flow path, and between these two regions between the spiral region and the parallel region. A communication region that connects the two regions is set, and a molten resin is supplied to the uppermost stream portion of the resin flow path from the extruder connected to the proximal end side of the inner mold with a predetermined extrusion amount. In an extrusion mold configured so that a cylindrical tube is continuously formed by sequentially passing through a spiral region, a communication region and a parallel region of the resin flow path and extruding from the discharge port,
The shear rate γ w represented by the following formula (1) of the molten resin on the outer peripheral surface of the outer mold and the outer peripheral surface of the inner mold in the parallel region is set to 300 s −1 or less,
An extrusion mold, wherein a back pressure P expressed by the following equations (2) and (3) of the molten resin at a boundary between the spiral region and the communication region is 15 MPa or more.
Figure 2007118500
Figure 2007118500
JP2005316601A 2005-10-31 2005-10-31 Extrusion method Active JP4693595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005316601A JP4693595B2 (en) 2005-10-31 2005-10-31 Extrusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005316601A JP4693595B2 (en) 2005-10-31 2005-10-31 Extrusion method

Publications (2)

Publication Number Publication Date
JP2007118500A true JP2007118500A (en) 2007-05-17
JP4693595B2 JP4693595B2 (en) 2011-06-01

Family

ID=38142860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005316601A Active JP4693595B2 (en) 2005-10-31 2005-10-31 Extrusion method

Country Status (1)

Country Link
JP (1) JP4693595B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001042T5 (en) 2007-04-27 2010-05-12 Nsk Ltd. steering device
CN107127949A (en) * 2017-05-05 2017-09-05 南京联塑科技实业有限公司 A kind of method of reduction PE hollow spiral tube product stress

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243863A (en) * 1975-10-06 1977-04-06 Asahi Dow Ltd Annular die
JPH03274137A (en) * 1990-03-26 1991-12-05 Showa Denko Kk Preparation of hollow molded product
JP2005022195A (en) * 2003-07-01 2005-01-27 Asahi Kasei Life & Living Corp Method for preventing occurrence of thermally deteriorated matter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243863A (en) * 1975-10-06 1977-04-06 Asahi Dow Ltd Annular die
JPH03274137A (en) * 1990-03-26 1991-12-05 Showa Denko Kk Preparation of hollow molded product
JP2005022195A (en) * 2003-07-01 2005-01-27 Asahi Kasei Life & Living Corp Method for preventing occurrence of thermally deteriorated matter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001042T5 (en) 2007-04-27 2010-05-12 Nsk Ltd. steering device
CN107127949A (en) * 2017-05-05 2017-09-05 南京联塑科技实业有限公司 A kind of method of reduction PE hollow spiral tube product stress

Also Published As

Publication number Publication date
JP4693595B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4759563B2 (en) Method for continuously producing a double wall tube with socket, double wall tube, and apparatus for carrying out the method and producing the double wall tube
JP5658218B2 (en) High pressure nozzle
AU606229B2 (en) Method of producing an internally-smooth, externally ribbed tube from extrudable plastic and apparatus for carrying out the method
CN108582720B (en) Polyolefin pipeline extrusion die
JP2008509827A (en) Film blow mold for producing tubular film
HU206468B (en) Method and apparatus for producing ribbed tubes
CN205395082U (en) Cable extruder head mould
JP4693595B2 (en) Extrusion method
CN103052488A (en) Extrusion die head
FI120823B (en) Arrangements in connection with extrusion agents
DE502008003167D1 (en) METHOD AND DEVICE FOR CONTINUOUS MANUFACTURE OF A PLASTIC CONNECTING TUBE WITH TUBE MUFF
US5340299A (en) Apparatus for manufacturing ribbed pipes
JP2001269411A (en) Tube for catheter
US11660798B2 (en) Annular manifold for an extrusion head for producing a tubular moulding from a thermoplastic material
JP2006312242A (en) Breaker plate for extruder and extruder
JP6831172B2 (en) Extruder
JP2008087362A (en) Spiral die
JP4321329B2 (en) Die for resin molding and method for manufacturing resin molded product
JP6931195B2 (en) Extruder
JP4739005B2 (en) Die and film manufacturing method
JP3560354B2 (en) Mold in extrusion molding machine
FI111060B (en) Extrusion procedure and extruder
KR100638403B1 (en) A pipe extruding machine make the soft layer between hard layer
KR100371395B1 (en) Crosslinked Polyethylene Pipe Extrusion Machine
JP2017087240A (en) Molding device, plunger tip and molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4693595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151