JP2007117854A - Disposer - Google Patents

Disposer Download PDF

Info

Publication number
JP2007117854A
JP2007117854A JP2005312017A JP2005312017A JP2007117854A JP 2007117854 A JP2007117854 A JP 2007117854A JP 2005312017 A JP2005312017 A JP 2005312017A JP 2005312017 A JP2005312017 A JP 2005312017A JP 2007117854 A JP2007117854 A JP 2007117854A
Authority
JP
Japan
Prior art keywords
disposer
tank
gas
fine bubbles
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005312017A
Other languages
Japanese (ja)
Other versions
JP5249496B2 (en
Inventor
Yasunari Maeda
康成 前田
Shigeyuki Yamaguchi
重行 山口
Hitoshi Kitamura
仁史 北村
Kazumasa Rokushima
一雅 六嶋
Noriyuki Kitachi
範行 北地
Yoshiyasu Ito
良泰 伊藤
Hisanori Shibata
尚紀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005312017A priority Critical patent/JP5249496B2/en
Publication of JP2007117854A publication Critical patent/JP2007117854A/en
Application granted granted Critical
Publication of JP5249496B2 publication Critical patent/JP5249496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crushing And Pulverization Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disposer capable of obtaining a cleaning effect or the like by means of fine bubbles. <P>SOLUTION: The disposer is provided with: a disposer tank 2 for crushing a accommodated garbage; a water feed passage 4 with its outlet facing the disposer tank 2; and a fine bubble generator 5 for generating fine bubbles in water for the tank to be discharged into the disposer tank 2 from the outlet 4a of the water feed passage 4 for the tank. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ディスポーザーに関するものである。   The present invention relates to a disposer.

従来から、排水処理の分野では、排水を処理する微生物の生息環境を良好にするために、微細気泡の良好な拡散性に注目して微細気泡発生装置にて発生させた微細気泡を排水中に供給することが行われている(たとえば、特許文献1乃至3参照)。ところで、近年では気泡に関する研究が進み、気泡(特に微細気泡)には気泡の気液界面の吸着特性や微細気泡の崩壊時に生じる衝撃波による汚れ除去効果などの洗浄効果が見出されてきており、微細気泡を発生させる微細気泡発生装置は様々な分野での応用が期待されているのが現状である。
特開2002−210498号公報 特公平7−115023号公報 特開2003−164890号公報
Conventionally, in the field of wastewater treatment, in order to improve the habitat environment of microorganisms that treat wastewater, attention is paid to the good diffusibility of fine bubbles, and the fine bubbles generated by the fine bubble generator are discharged into the wastewater. Supply is performed (for example, refer to Patent Documents 1 to 3). By the way, in recent years, research on bubbles has progressed, and bubbles (especially fine bubbles) have been found to have a cleaning effect such as adsorption characteristics at the gas-liquid interface of bubbles and removal of dirt due to shock waves generated when fine bubbles collapse, At present, fine bubble generators that generate fine bubbles are expected to be applied in various fields.
Japanese Patent Laid-Open No. 2002-210498 Japanese Patent Publication 7-115023 JP 2003-164890 A

本発明は上記の従来の問題点に鑑みて為したものであって、微細気泡による洗浄効果等の有効な効果を享受できるディスポーザーを提供することを課題とするものである。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a disposer that can enjoy effective effects such as a cleaning effect due to fine bubbles.

上記課題を解決するために本発明の請求項1に係るディスポーザーは、収納した生ごみを破砕処理するディスポーザー槽2と、ディスポーザー槽2に出口4aを臨ませた槽用水給水経路4と、槽用水給水経路4の出口4aからディスポーザー槽2内に吐水される槽用水に微細気泡を発生させる微細気泡発生装置5とを備えたことを特徴とする。これによると、台所での悪臭の一つの原因となっていたディスポーザー槽2内に微細気泡の持つ洗浄効果を作用させることで、ディスポーザー槽2内を清潔に保つことができて悪臭発生を抑制することができる。   In order to solve the above problems, a disposer according to claim 1 of the present invention includes a disposer tank 2 for crushing stored garbage, a tank water supply path 4 with an outlet 4a facing the disposer tank 2, and tank water And a fine bubble generating device 5 for generating fine bubbles in the tank water discharged from the outlet 4a of the water supply path 4 into the disposer tank 2. According to this, the inside of the disposer tank 2 can be kept clean by causing the cleaning effect of the fine bubbles to act on the disposer tank 2 which has been one cause of bad odor in the kitchen, and the generation of bad odor is suppressed. be able to.

また、請求項2に係るディスポーザーは、請求項1において、微細気泡発生装置5で泡径0.1〜1000μmの微細気泡を発生させるようにしたことを特徴とする。これによると、同量の気体を微細化して得た気泡において、一般のミリメータサイズの気泡に比べて泡径0.1〜1000μmの微細気泡はその表面積(気液界面の面積)を格段に大きくできて反応効率を高めることができ、ディスポーザー槽2内に微細気泡による汚れ除去効果等の洗浄効果を充分に発揮させることができる。   A disposer according to claim 2 is characterized in that, in claim 1, the fine bubble generator 5 generates fine bubbles having a bubble diameter of 0.1 to 1000 μm. According to this, in the bubbles obtained by refining the same amount of gas, the surface area (area of the gas-liquid interface) of the fine bubbles having a bubble diameter of 0.1 to 1000 μm is remarkably larger than that of general millimeter-sized bubbles. Thus, the reaction efficiency can be enhanced, and the cleaning effect such as the effect of removing dirt due to the fine bubbles can be sufficiently exhibited in the disposer tank 2.

また、請求項3に係るディスポーザーは、請求項1または請求項2において、微細気泡発生装置5に槽用水給水経路4に気体を混入させる気体混入部15を備え、この気体混入部15に気体の槽用水への混入量を調整する気体混入量調整手段11を設けたことを特徴とする。これによると、たとえば気体混入量調整手段11を操作して気体の槽用水への混入量を少量にすると微細気泡発生装置5で発生した微細気泡の密度を低減できて微細気泡の泡径を小さく維持することができるなど、微細気泡発生装置5での微細化効率、ひいては発生させる微細気泡の泡径の調整を行わせることができる。また、気体混入量調整手段11によると気体の槽用水への混入を止めることもでき、つまり槽用水として微細気泡含有水と微細気泡が含まれない水とを切り替えることもでき、微細気泡が含まれない水で槽用水を構成したことによる利点(ディスポーザー槽2の内面に付着した洗剤泡の洗い落しを効率よく行える)をも備えることができる。   A disposer according to claim 3 is provided with a gas mixing part 15 for mixing gas into the tank water supply path 4 in the fine bubble generating device 5 according to claim 1 or 2, and the gas mixing part 15 contains gas. A gas mixing amount adjusting means 11 for adjusting the mixing amount into the tank water is provided. According to this, for example, when the gas mixing amount adjusting means 11 is operated to reduce the mixing amount of the gas into the tank water, the density of the fine bubbles generated in the fine bubble generating device 5 can be reduced and the bubble diameter of the fine bubbles can be reduced. It is possible to adjust the micronization efficiency in the microbubble generator 5 and thus the bubble diameter of the microbubbles to be generated. Moreover, according to the gas mixing amount adjusting means 11, mixing of the gas into the tank water can be stopped, that is, the water containing the fine bubbles and the water not containing the fine bubbles can be switched as the tank water, and the fine bubbles are included. It is also possible to provide the advantage (the washing of the detergent bubbles adhering to the inner surface of the disposer tank 2 can be efficiently performed) by configuring the tank water with water that cannot be removed.

また、請求項4に係るディスポーザーは、請求項1乃至請求項3のいずれかにおいて、微細気泡発生装置5に、発生させる微細気泡の泡径を調整する泡径調整手段13を設けたことを特徴とする。これによると、泡径調整手段13によって微細気泡発生装置5で発生させる微細気泡の泡径の調整を行わせることができるのであり、ディスポーザー1の使用性を高めることができる。   According to a fourth aspect of the present invention, in the disposer according to any one of the first to third aspects, the fine bubble generating device 5 is provided with a bubble diameter adjusting means 13 for adjusting a bubble diameter of the generated fine bubbles. And According to this, the bubble diameter of the fine bubbles generated by the fine bubble generator 5 can be adjusted by the bubble diameter adjusting means 13, and the usability of the disposer 1 can be improved.

また、請求項5に係るディスポーザーは、請求項1乃至請求項4のいずれかにおいて、槽用水給水経路4に、気体有用成分混入手段43を設けたことを特徴とする。これによると、気体有用成分混入手段43にて混入させた有用成分を微細気泡発生装置5にて発生させた微細気泡内に閉じ込めることができ、微細気泡の槽用水への拡散性を利用して有用成分の効果をディスポーザー槽2の内面に隈なく発揮させることができる。   The disposer according to claim 5 is characterized in that in any one of claims 1 to 4, gas useful component mixing means 43 is provided in the tank water supply path 4. According to this, the useful component mixed by the gas useful component mixing means 43 can be confined in the fine bubbles generated by the fine bubble generating device 5, and the diffusibility of the fine bubbles into the tank water is utilized. The effect of the useful component can be exhibited on the inner surface of the disposer tank 2 without any defects.

また、請求項6に係るディスポーザーは、請求項1乃至5のいずれかにおいて、槽用水給水経路4に、液体有用成分混入手段44を設けたことを特徴とする。これによると、液体有用成分混入手段44にて混入させた有用成分は微細気泡発生装置5にて発生させた微細気泡の気液界面に集まって濃縮されるのであり、また微細気泡は気液界面の吸着効果によってディスポーザー槽2の内面に付着し易いものであるから、微細気泡の気液界面に存する有用成分の効果をディスポーザー槽2の内面に有効に発揮させることができる。   Further, the disposer according to claim 6 is characterized in that in any one of claims 1 to 5, liquid useful component mixing means 44 is provided in the tank water supply path 4. According to this, the useful components mixed by the liquid useful component mixing means 44 are collected and concentrated at the gas-liquid interface of the microbubbles generated by the microbubble generator 5, and the microbubbles are condensed at the gas-liquid interface. Since the adsorbing effect is easy to adhere to the inner surface of the disposer tank 2, the effect of useful components existing at the gas-liquid interface of the fine bubbles can be effectively exhibited on the inner surface of the disposer tank 2.

また、請求項7に係るディスポーザーは、請求項1乃至6のいずれかにおいて、槽用水給水経路4に、固体有用成分混入手段45を設けたことを特徴とする。これによると、固体有用成分混入手段45によって槽用水給水経路4内を流れる槽用水に有用成分を溶かして混入でき、槽用水に溶けた有用成分は微細気泡発生装置5にて発生させた微細気泡の気液界面に集まって濃縮されるのであり、また微細気泡は気液界面の吸着効果によってディスポーザー槽2の内面に付着し易いものであるから、微細気泡の気液界面に存する有用成分の効果をディスポーザー槽2の内面に有効に発揮させることができる。   A disposer according to claim 7 is characterized in that in any one of claims 1 to 6, a solid useful component mixing means 45 is provided in the tank water supply path 4. According to this, the useful component can be dissolved and mixed in the tank water flowing in the tank water supply passage 4 by the solid useful component mixing means 45, and the useful component dissolved in the tank water is generated by the microbubble generator 5. Since the fine bubbles are likely to adhere to the inner surface of the disposer tank 2 due to the adsorption effect of the gas-liquid interface, the effect of useful components existing at the gas-liquid interface of the fine bubbles is collected. Can be effectively exhibited on the inner surface of the disposer tank 2.

また、請求項8に係るディスポーザーは、請求項5において、気体有用成分を、酸素、オゾン、芳香成分の少なくとも1つで構成したことを特徴とする。これによると、槽用水に微細気泡として隈なく拡散させた酸素によって微細物を活性化して生ごみ分解効率を向上できたり、また槽用水に微細気泡として隈なく拡散させたオゾンによってディスポーザー槽2内に隈なく殺菌・制菌効果を作用させることができたり、また槽用水に微細気泡として隈なく拡散させた芳香成分によってディスポーザー槽2内に隈なく芳香効果を発揮させることができる。   The disposer according to claim 8 is characterized in that, in claim 5, the gas useful component is composed of at least one of oxygen, ozone, and an aromatic component. According to this, it is possible to improve the efficiency of garbage decomposition by activating fines by oxygen diffused as fine bubbles in the tank water, or in the disposer tank 2 by ozone diffused as fine bubbles in the tank water. The sterilizing / antibacterial effect can be applied to the disperser tank 2 without any problem, and the aromatic effect can be exhibited in the disposer tank 2 by the fragrance component diffused as fine bubbles in the tank water.

また、請求項9に係るディスポーザーは、請求項8において、気体混入部15に気体供給流路19を槽用水給水経路4に至るように設け、この気体供給流路19の途中にオゾンを発生させる高電圧放電部40を設けたことを特徴とする。これによると、高電圧放電部40にて発生させるオゾンは気体供給流路19を通る気体を原料とするので永久に行えるのであり、つまり取替作業などのメンテが不要であって使用性を良好にできる。   The disposer according to claim 9 is the disposer according to claim 8, wherein the gas supply passage 19 is provided in the gas mixing portion 15 so as to reach the tank water supply passage 4, and ozone is generated in the middle of the gas supply passage 19. A high voltage discharge unit 40 is provided. According to this, ozone generated in the high-voltage discharge unit 40 can be made permanently because the gas passing through the gas supply channel 19 is used as a raw material, that is, maintenance such as replacement work is unnecessary and good usability. Can be.

また、請求項10に係るディスポーザーは、請求項6において、液体有用成分を、界面活性剤、芳香成分の少なくとも1つで構成したことを特徴とする。これによると、微細気泡の気液界面に集まって濃縮された界面活性剤によってディスポーザー槽2内の油分を有効に除去させたり、微細気泡の気液界面に集まって濃縮された芳香成分にてディスポーザー槽2内に芳香効果を有効に発揮させたりできる。   The disposer according to claim 10 is characterized in that, in claim 6, the liquid useful component is composed of at least one of a surfactant and an aromatic component. According to this, the oil in the disposer tank 2 is effectively removed by the surfactant concentrated at the gas-liquid interface of the fine bubbles, or the disperser with the concentrated aroma component at the gas-liquid interface of the fine bubbles. The aroma effect can be effectively exhibited in the tank 2.

また、請求項11に係るディスポーザーは、請求項7において、固体有用成分を芳香成分で構成したことを特徴とする。これによると、微細気泡の気液界面に集まって濃縮された芳香成分によってディスポーザー槽2内に芳香効果を有効に発揮できる。   The disposer according to claim 11 is characterized in that, in claim 7, the solid useful component is composed of an aromatic component. According to this, the aroma effect can be effectively exhibited in the disposer tank 2 by the concentrated aroma components gathered at the gas-liquid interface of the fine bubbles.

また、請求項12に係るディスポーザーは、請求項1乃至11のいずれかにおいて、ディスポーザー1の運転前からディスポーザー槽2内に微細気泡を含んだ槽用水を供給させる制御部9を設けたことを特徴とする。これによると、ディスポーザー1の運転前からディスポーザー槽2内に微細気泡を供給しておくとディスポーザー1の運転による悪臭の拡散(上昇)を抑制することができる。特に、微細気泡に芳香成分を含ませておくと、芳香成分を拡散(上昇)させることができる。   A disposer according to claim 12 is characterized in that, in any one of claims 1 to 11, a control unit 9 is provided for supplying the tank water containing fine bubbles into the disposer tank 2 before the operation of the disposer 1. And According to this, if fine bubbles are supplied into the disposer tank 2 before the operation of the disposer 1, the spread (rise) of bad odor due to the operation of the disposer 1 can be suppressed. In particular, if the fragrance component is included in the fine bubbles, the fragrance component can be diffused (increased).

また、請求項13に係るディスポーザーは、請求項1乃至12のいずれかにおいて、ディスポーザー1の運転後にディスポーザー槽2内に微細気泡を含んだ槽用水を供給させる制御部9を設けたことを特徴とする。これによると、運転後のディスポーザー槽2に微細気泡による洗浄効果を作用させてディスポーザー槽2に破砕後の生ごみかすが付着して残ることを防止できる。特に、微細気泡にオゾンを含ませて構成させると、ディスポーザー槽2内に制菌・殺菌効果を発揮できると共に、ディスポーザー槽2内に残った生ごみかすにおいても雑菌が増殖するのを防止できる。   Further, the disposer according to claim 13 is characterized in that, in any of claims 1 to 12, the controller 9 is provided for supplying water for the tank containing fine bubbles into the disposer tank 2 after the operation of the disposer 1. To do. According to this, it is possible to prevent the garbage scraps after being crushed from adhering to the disposer tank 2 by causing the cleaning effect by the fine bubbles to act on the disposer tank 2 after operation. In particular, when ozone is contained in the fine bubbles, it is possible to exert antibacterial and sterilizing effects in the disposer tank 2, and it is possible to prevent germs from growing in the garbage scrap remaining in the disposer tank 2.

本発明は、台所での悪臭の一つの原因となっていたディスポーザー槽内に微細気泡の持つ洗浄効果を作用させてディスポーザー槽内を清潔に保つことができて悪臭発生を抑制できるといった利点を有する。   The present invention has an advantage that it is possible to keep the inside of the disposer tank clean by controlling the cleaning effect of fine bubbles in the disposer tank, which has been one cause of bad odor in the kitchen, and to suppress the generation of bad odor. .

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

本発明のディスポーザー1は、収納した生ごみを破砕処理するディスポーザー槽2と、ディスポーザー槽2に出口4aを臨ませて槽用水をディスポーザー槽2にのみ給水するようにした槽用水給水経路4と、槽用水給水経路4の出口4aからディスポーザー槽2内に吐水される槽用水に微細気泡を発生させる微細気泡発生装置5とを備えて構成されている。図1(b)のように、ディスポーザー槽2は上方に開口せる有底筒形状に形成されており、その底部にはディスポーザー1の排水経路8の入口が開口すると共に、上記排水経路8の入口の上部にディスポーザー槽2内に収納された生ごみを破砕する破砕部10が設けられている。破砕部10はモータ10bにより回転駆動される可動刃10aを有して構成されている。また、ディスポーザー1には制御部9が設けられ、槽用水のディスポーザー槽2への給水や破砕部10の駆動制御や微細気泡発生装置5の作動等が制御されるようになっている。   The disposer 1 of the present invention includes a disposer tank 2 for crushing the stored garbage, a tank water supply path 4 configured to feed the tank water only to the disposer tank 2 with the outlet 4a facing the disposer tank 2, and A fine bubble generating device 5 for generating fine bubbles in the tank water discharged from the outlet 4a of the tank water supply path 4 into the disposer tank 2 is provided. As shown in FIG. 1B, the disposer tank 2 is formed in a bottomed cylindrical shape that can be opened upward, and an inlet of the drainage path 8 of the disposer 1 is opened at the bottom, and the inlet of the drainage path 8 is formed. The crushing part 10 which crushes the garbage accommodated in the disposer tank 2 is provided in the upper part. The crushing part 10 has a movable blade 10a that is rotationally driven by a motor 10b. Further, the disposer 1 is provided with a control unit 9 for controlling the water supply to the disposer tank 2 for tank water, the drive control of the crushing section 10, the operation of the fine bubble generator 5 and the like.

本例のディスポーザー1は、図1(a)のように、キッチンキャビネット6の上面カウンター6aに上方に開口せるシンク3の排水経路3bの途中に、シンク3の排水孔3aにディスポーザー槽2の上方開口を開口させるようにして、ディスポーザー槽2が配設されている。詳しくは、キャビネット6のシンク3の下方には収納スペースや配管スペースとして利用可能なシンク下空間7が設けられており、このシンク下空間7にディスポーザー1が配設されている。このシンク下空間7には建物から槽用水給水経路4が引き込まれてディスポーザー槽2に至るようにされており、このシンク下空間7の槽用水給水経路4に微細気泡発生装置5が配設されている。なお、槽用水給水経路4はシンク3のカラン3cに給水するシンク用水給水経路から分岐させて設けてもよい。槽用水給水経路4には制御部9による槽用水の給水制御を行う給水弁14が配設されている。   As shown in FIG. 1A, the disposer 1 of the present example is located above the disposer tank 2 in the drainage hole 3a of the sink 3 in the middle of the drainage path 3b of the sink 3 that opens upward to the upper counter 6a of the kitchen cabinet 6. The disposer tank 2 is disposed so as to open the opening. Specifically, a sink lower space 7 that can be used as a storage space or a piping space is provided below the sink 3 of the cabinet 6, and the disposer 1 is disposed in the sink lower space 7. The tank water supply path 4 is drawn from the building to the disposer tank 2 in the space under the sink 7, and the fine bubble generating device 5 is disposed in the tank water supply path 4 in the space under the sink 7. ing. The tank water supply path 4 may be branched from the sink water supply path for supplying water to the currant 3 c of the sink 3. A water supply valve 14 for performing water supply control of the tank water by the control unit 9 is disposed in the tank water supply path 4.

本例の微細気泡発生装置5は、図2のように、上記槽用水給水経路4に上流側から、槽用水給水経路4を流れる水に気体を混入させて気体混合水を得る気体混入部15、槽用水給水経路4に水を圧送するポンプ16、気体混合水内の気泡を高圧環境下で水に溶解させて気体溶解水を得る溶解部17を構成する溶解タンク17a、上記気体溶解水内の気体を析出させて微細気泡を発生させて微細気泡含有水を得る析出部18を構成する微細気泡発生ノズル18aを順に設けて構成されている。   As shown in FIG. 2, the fine bubble generating device 5 of this example includes a gas mixing unit 15 that obtains gas mixed water by mixing gas into water flowing through the tank water supply path 4 from the upstream side of the tank water supply path 4. , A pump 16 that pumps water to the tank water supply path 4, a dissolution tank 17 a that constitutes a dissolution part 17 that dissolves bubbles in the gas-mixed water in water under a high-pressure environment to obtain gas-dissolved water, The fine bubble generating nozzle 18a that constitutes the precipitation portion 18 that precipitates the gas and generates fine bubbles to obtain water containing fine bubbles is sequentially provided.

気体混入部15にはエアポンプにより気体を水に圧送する強制混入機構を採用することもできるが、本例では、特に動力を必要としないために構成の簡略化を図り得る、槽用水給水経路4を流れる水に気体をエゼクター効果にて自然に引き込ませるエゼクター機構が採用されている。詳しくは、槽用水給水経路4に絞り部を設ける等して形成した負圧発生部に室内に開口せる気体供給流路19を接続することで構成され、室内の空気を水に混入可能にしている。ここで、上記気体供給流路19には水の逆流を防ぐ逆止弁(図示せず)が設けられると共に、気体混入量調整手段11を構成する気体混入量調整弁12が設けられている。   Although the forced mixing mechanism which pumps gas to water with an air pump can also be employ | adopted for the gas mixing part 15, in this example, since power is not especially required, the structure can be simplified and the tank water supply path 4 can be achieved. Ejector mechanism that naturally draws gas into the water that flows through the ejector effect is adopted. Specifically, it is configured by connecting a gas supply flow path 19 that opens to the room to a negative pressure generating part formed by providing a throttle part in the tank water supply path 4 so that indoor air can be mixed into water. Yes. Here, the gas supply flow path 19 is provided with a check valve (not shown) for preventing the backflow of water and a gas mixing amount adjusting valve 12 constituting the gas mixing amount adjusting means 11.

気体混入量調整弁12は、図3(a)のように、気体供給流路19に内部流路を連通させた筒状の本体部12aと、本体部12aの内部流路の内周壁にその外周部を螺合させて本体部12a内に配置された可動弁体12bとを有し、可動弁体12bを本体部12aの内部流路に螺進させることで本体部12aと可動弁体12bとの隙間を大小変化させることが可能にされたものであり、気体混入部15による気体の槽用水への混入量が調整可能にされている。なお図中12aは本体部12aに設けた雌ネジ部、12bは可動弁体12bに設けた雄ネジ部である。可動弁体12bは制御部9にて制御される図示しないモータにて回転駆動されており、つまり制御部9にて槽用水への取込気体量が制御可能にされている。たとえば、気体混入量調整手段11にて気体の槽用水への混入量を少量にすると、溶解タンク17a中でのボイド率(空間を占める気体の割合)を抑えることができて気体を効率よく液中に溶解できたり、発生させた微細気泡の密度を低減できて微細気泡の泡径を小さく維持することができたりなど、微細気泡発生装置5での微細化効率、ひいては発生させる微細気泡の泡径の調整を行わせることができる。特に、取込気体量の槽用水に対する体積比を0.1〜10%にすると、気体混合水が通過するポンプ16にかかる負担の抑制を図ることもできて好ましい。 As shown in FIG. 3A, the gas mixing amount adjustment valve 12 has a cylindrical main body portion 12a in which the internal flow passage is communicated with the gas supply flow passage 19, and an inner peripheral wall of the internal flow passage of the main body portion 12a. A movable valve body 12b disposed in the main body portion 12a by screwing the outer peripheral portion, and the main body portion 12a and the movable valve body 12b by screwing the movable valve body 12b into the internal flow path of the main body portion 12a. The amount of gas mixed into the tank water by the gas mixing unit 15 can be adjusted. In the figure, 12a 1 is a female screw portion provided in the main body portion 12a, and 12b 1 is a male screw portion provided in the movable valve body 12b. The movable valve body 12b is driven to rotate by a motor (not shown) controlled by the control unit 9, that is, the control unit 9 can control the amount of gas taken into the tank water. For example, if the amount of gas mixed into the tank water is made small by the gas mixing amount adjusting means 11, the void ratio (ratio of gas occupying the space) in the dissolution tank 17a can be suppressed, and the gas can be efficiently liquefied. It can be dissolved in the inside, and the density of the generated fine bubbles can be reduced and the bubble diameter of the fine bubbles can be kept small. The diameter can be adjusted. In particular, when the volume ratio of the intake gas amount to the tank water is set to 0.1 to 10%, it is preferable because the burden on the pump 16 through which the gas-mixed water passes can be suppressed.

また、溶解タンク17aは図3(b)にようにその内部は区画壁22で一次側槽20(バブリング槽)と二次側槽21(水位検知槽)に区分され一次側槽20と二次側槽21は区画壁22の上部の気体環流部23及び区画壁22の下部の水通過部24でそれぞれ連通する構造になっている。一次側槽20上部には上流側の槽用水給水経路4が接続されて噴霧ノズル25が配置され、二次側槽21の底部には下流側の槽用水給水経路4が接続されてタンク排出口26が配置され、また二次側槽21の側壁には空気抜弁27が設けられている。一次側槽20は、ポンプ16にて圧送された気体混合水が噴霧ノズル25によって高速噴射されて槽内でバブリング状態にされ、上記ポンプ16の圧送による高圧環境下で水に気体を溶解させて気体溶解水を得るための槽であり、二次側槽21は、タンク排出口26までに解けきれなかった気泡を気体環流部23に上昇させると共に、余剰気体を空気抜弁27によって除いて溶解タンク17a内の水位を安定させて溶解タンク17aの安定稼動を図るための槽である。   The dissolution tank 17a is divided into a primary tank 20 (a bubbling tank) and a secondary tank 21 (a water level detection tank) by a partition wall 22 as shown in FIG. The side tank 21 has a structure in which the gas circulation part 23 at the upper part of the partition wall 22 and the water passage part 24 at the lower part of the partition wall 22 communicate with each other. The upstream tank water supply path 4 is connected to the upper part of the primary tank 20 and a spray nozzle 25 is arranged. The downstream tank water supply path 4 is connected to the bottom of the secondary tank 21 and the tank discharge port. 26 is disposed, and an air vent valve 27 is provided on the side wall of the secondary tank 21. In the primary side tank 20, the gas mixed water pumped by the pump 16 is jetted at a high speed by the spray nozzle 25 to be bubbled in the tank, and the gas is dissolved in water under a high pressure environment by the pump 16. The secondary tank 21 is a tank for obtaining gas-dissolved water. The secondary tank 21 raises bubbles that could not be dissolved up to the tank outlet 26 to the gas recirculation part 23, and removed excess gas by the air vent valve 27. It is a tank for stabilizing the water level in 17a and achieving stable operation of the dissolution tank 17a.

また、微細気泡発生ノズル18aは図3(c)のように槽用水給水経路4の上流側からノズル入口28、ノズル入口28から放射状に連通する小径経路29、この小径経路29に連通する渦流部30、この渦流部30に連通するノズル出口31を順に設けて構成されている。ここで、小径経路29では、流れる水の圧力が急激に低下されて気体溶解水の溶解気体に減圧沸騰が始まり、気体溶解水から気体を泡径0.1〜1000μmの微細気泡として析出する機能を有する。つまり、実質的に析出部18は小径経路29にて構成されている。また、渦流部30では、内部で水の渦流を発生させて比較的泡径の小さく均質な微細気泡のみをノズル出口31に流す機能を有する。詳しくは、渦流部30では矢印Cのような渦が発生する。渦の中心部は渦の外周部よりも流速が低いので圧力が低くなりこの渦の中心部には小径経路29で発生した微細気泡同士が衝突する等でできた径の大きい気泡がたまる。なお、渦には、渦の半径方向に発生する速度勾配によりせん断力が作用するので、渦の中心部の大きな気泡が渦の外周部に遠心力で移動する際に、渦のせん断力によって分割されて小さい気泡に変化する。ノズル出口31には矢印Dのように渦の回転による遠心力により渦の外周部が優先的に吐出されるが、上記のように渦の外周部には径の大きい気泡が除かれた所定径以下の微細気泡が存在しているので、所定径以下の微細気泡が水と共に渦の外周部から連続して吐出されるようになっている。つまり、この渦流部30によると、微細気泡発生後に何らかの原因によって泡径が大きくなった気泡を排除することができ、少なくとも泡径0.1〜1000μmの微細気泡のみで構成される均質な微細気泡含有水を安定して得ることが可能にされている。なお、渦流部30を経て吐出される微細気泡の大きさは渦流部30の渦の角速度によって決定され、角速度が大きい程小さい気泡を吐出することができ、この渦の角速度は渦流部30に流入させる流速によって可変であるため、渦流部30への流入流速を変えることで所望の泡径の微細気泡を発生させることができる。   Further, as shown in FIG. 3C, the fine bubble generating nozzle 18 a includes a nozzle inlet 28 from the upstream side of the tank water supply path 4, a small diameter path 29 communicating radially from the nozzle inlet 28, and a vortex portion communicating with the small diameter path 29. 30 and a nozzle outlet 31 communicating with the swirl portion 30 is provided in order. Here, in the small-diameter path 29, the pressure of the flowing water is drastically decreased, the decompression boiling starts in the dissolved gas of the dissolved gas water, and the gas is precipitated from the dissolved gas as fine bubbles having a bubble diameter of 0.1 to 1000 μm. Have That is, the precipitation part 18 is substantially constituted by the small diameter path 29. Further, the vortex section 30 has a function of generating a vortex flow of water inside and flowing only uniform fine bubbles having a relatively small bubble diameter to the nozzle outlet 31. Specifically, a vortex as indicated by an arrow C is generated in the vortex section 30. Since the central portion of the vortex has a lower flow velocity than the outer peripheral portion of the vortex, the pressure is reduced, and bubbles having a large diameter are formed in the central portion of the vortex due to collision of fine bubbles generated in the small diameter path 29. Since the shear force acts on the vortex due to the velocity gradient generated in the radial direction of the vortex, when a large bubble at the center of the vortex moves to the outer periphery of the vortex by centrifugal force, it is divided by the vortex shear force. It turns into a small bubble. The outer periphery of the vortex is preferentially discharged to the nozzle outlet 31 by the centrifugal force due to the rotation of the vortex as indicated by the arrow D, but the predetermined diameter from which bubbles having a large diameter are removed as described above. Since the following microbubbles are present, microbubbles having a predetermined diameter or less are continuously discharged from the outer periphery of the vortex together with water. That is, according to this eddy current portion 30, it is possible to eliminate bubbles whose bubble diameter has increased due to some cause after the generation of fine bubbles, and homogeneous microbubbles composed only of fine bubbles with a bubble diameter of 0.1 to 1000 μm. It is possible to obtain the contained water stably. The size of the fine bubbles discharged through the vortex section 30 is determined by the angular velocity of the vortex of the vortex section 30, and smaller bubbles can be discharged as the angular velocity increases, and the vortex angular velocity flows into the vortex section 30. Since it is variable according to the flow velocity to be generated, fine bubbles having a desired bubble diameter can be generated by changing the flow velocity of the flow into the vortex section 30.

ここで、本例のディスポーザー1では、上記微細気泡発生ノズル18aは槽用水給水経路4の出口4aに設けてある。したがって、析出直後の微細気泡が含有された槽用水を槽用水給水経路4の出口4aからディスポーザー槽2内に吐水できるようにされている。つまり、発生した多数の微細気泡が合一して泡径が大きくなる前の極力泡径が小さく且つ均一な微細気泡を槽用水給水経路4の出口4aからディスポーザー槽2内に吐水された槽用水に含有させることが可能にされているのである。   Here, in the disposer 1 of this example, the fine bubble generating nozzle 18 a is provided at the outlet 4 a of the tank water supply path 4. Accordingly, the tank water containing the fine bubbles immediately after the precipitation can be discharged into the disposer tank 2 from the outlet 4a of the tank water supply path 4. In other words, the water for the tank in which the fine bubbles having a small bubble diameter as small as possible before the large number of generated fine bubbles are combined to increase the bubble diameter are discharged into the disposer tank 2 from the outlet 4a of the tank water supply passage 4. It is possible to make it contain.

本例のディスポーザー1においては、台所での悪臭の一つの原因となっていたディスポーザー槽2内に微細気泡発生装置5にて発生させた微細気泡の持つ洗浄効果を作用させることができ、ディスポーザー槽2内を清潔に保つことができて悪臭発生を抑制することが可能にされている。無論、槽用水が排水される排水経路8においても微細気泡の持つ洗浄効果を作用させて悪臭発生を抑制することが可能にされている。つまり、破砕部10で破砕した生ごみのかすがディスポーザー槽2の内面に付着、残留してしまうことでディスポーザー槽2から悪臭が発生してしまうものであったが、本例では微細気泡が有する汚物除去効果の洗浄効果によって、ディスポーザー槽2の内面に付着した生ごみのかすを剥離し、排水経路8に流して除去することができたから、ディスポーザー槽2内を清潔に保つことができて悪臭発生を抑制することが可能にされているのである。詳しくは、多量の微細気泡が槽用水内に隈なく広がってディスポーザー槽2の内面に付着した生ごみのかすに効率よく衝突して破裂することにより汚れを剥離させたり、多量の微細気泡の崩壊時に生じる多量の超音波により生ごみのかすをディスポーザー槽2の内面から剥離させたり、微細気泡界面が有する吸着特性(マランゴニ効果など)により生ごみのかすに吸着してディスポーザー槽2の内面から剥離させたり、更に懸濁物質(剥離後の生ごみのかす)に吸着して浮上分離させたり、微細気泡表面が負に帯電することによって懸濁物質に静電吸着して懸濁物質を微細気泡で包むことができるといったことで、ディスポーザー槽2内に有効な洗浄効果を付与できる。また、微細気泡の含有により摩擦抵抗が減少することで水跳ね防止効果や洗浄音の静音化効果も得られる。また、槽用水に微細気泡が含有されたことにより、槽用水の見かけの嵩比重が低減するので節水効果も得られるのである。   In the disposer 1 of this example, the cleaning effect of the fine bubbles generated by the fine bubble generator 5 can be applied to the disposer tank 2 which has been one cause of bad odor in the kitchen. The inside of 2 can be kept clean and it is possible to suppress the generation of malodor. Of course, in the drainage path 8 through which the tank water is drained, it is possible to suppress the generation of bad odor by acting the cleaning effect of the fine bubbles. In other words, although the waste litter crushed by the crushing unit 10 adheres to and remains on the inner surface of the disposer tank 2, a bad odor is generated from the disposer tank 2. Due to the cleaning effect of the removal effect, it was possible to peel off garbage debris adhering to the inner surface of the disposer tank 2 and flow it to the drainage path 8 to remove it. It is possible to suppress this. Specifically, a large amount of microbubbles spreads in the tank water and collides efficiently with garbage debris attached to the inner surface of the disposer tank 2 to rupture the soil, or a large amount of microbubbles collapse Garbage debris is peeled off from the inner surface of the disposer tank 2 by a large amount of ultrasonic waves generated from time to time, or adsorbed to the garbage debris by the adsorption characteristics (Marangoni effect, etc.) of the microbubble interface and peeled from the inner surface of the disposer tank 2 It is adsorbed to suspended substances (garbage debris after peeling) and floated and separated, or the surface of the microbubbles is negatively charged and electrostatically adsorbed to the suspended substances to make the suspended substances fine bubbles. Therefore, an effective cleaning effect can be imparted to the disposer tank 2. Further, the frictional resistance is reduced due to the inclusion of fine bubbles, so that the effect of preventing water splashing and the effect of silence of the cleaning sound can be obtained. In addition, since the microbubbles are contained in the tank water, the apparent bulk specific gravity of the tank water is reduced, so that a water saving effect can be obtained.

また、本例のディスポーザー1の槽用水給水経路4の出口4aは、ディスポーザー槽2の内面の上部においてその開口方向がディスポーザー槽2の内面に沿うように設けられており、槽用水給水経路4の出口4aから吐水された槽用水はディスポーザー槽2の内面に沿わせて流下させることができ(矢印A)、上記微細気泡による洗浄効果をディスポーザー槽2の内面に隈なく発揮させることが可能にされている。また、本例の微細気泡発生装置5によると、槽用水に一旦気体を溶解させた後に析出させて微細気泡を発生させているので、泡径0.1〜1000μmの微細気泡のみが含まれる槽用水を安定的に得ることができる。この泡径0.1〜1000μmの微細気泡は槽用水に隈なく拡散可能であると共に槽用水に長い時間滞留可能であることから、微細気泡の有する洗浄効果をディスポーザー槽2内や排水経路8に有効に作用させることができたものである。一般に排水経路8には貯留水で封止する排水トラップが設けられるが、貯留水を微細気泡を含んだ槽用水にて構成できたことで、生ごみのかす等が付着し易い排水トラップを清潔にすると共に詰まりを防止できるという利点もある。なお、気体混入量調整手段11を調整したり等して、微細気泡発生装置5にて槽用水に泡径0.1〜200μmの微細気泡のみを含ませるようにしても好ましく、この場合には上記洗浄効果を更に効果的に得ることができる。更に言うと、泡径0.1〜1μmの微細気泡のみを含ませるようにすると、上記0.1〜1.0μmの微細気泡は極めて槽用水中への滞留時間が長いことから上記洗浄効果を持続的に得ることができる。   In addition, the outlet 4 a of the tank water supply path 4 of the disposer 1 of this example is provided in the upper part of the inner surface of the disposer tank 2 so that the opening direction is along the inner surface of the disposer tank 2. The tank water discharged from the outlet 4a can flow down along the inner surface of the disposer tank 2 (arrow A), and the cleaning effect by the fine bubbles can be exhibited on the inner surface of the disposer tank 2 without any problems. ing. Moreover, according to the fine bubble generating apparatus 5 of this example, since the gas is once dissolved in the tank water and then precipitated to generate the fine bubbles, the tank containing only the fine bubbles having a bubble diameter of 0.1 to 1000 μm. Water can be obtained stably. Since the fine bubbles having a bubble diameter of 0.1 to 1000 μm can be diffused in the tank water and can stay in the tank water for a long time, the cleaning effect of the fine bubbles is exerted in the disposer tank 2 and the drainage path 8. It was able to act effectively. In general, the drainage path 8 is provided with a drainage trap that is sealed with stored water. However, since the stored water can be constituted by tank water containing fine bubbles, the drainage trap that is likely to be attached to garbage debris is cleaned. There is also an advantage that clogging can be prevented. It is preferable to adjust the gas mixing amount adjusting means 11 or the like so that only fine bubbles having a bubble diameter of 0.1 to 200 μm are included in the tank water in the fine bubble generator 5. The cleaning effect can be obtained more effectively. Furthermore, if only the fine bubbles with a bubble diameter of 0.1 to 1 μm are included, the fine bubbles with the above 0.1 to 1.0 μm have a very long residence time in the tank water, so that the above cleaning effect is obtained. Can be obtained continuously.

また、気体混入量調整手段11によると、気体の槽用水への混入を止めることもできるのであって、つまり、槽用水として微細気泡含有水と微細気泡が含まれない水とを切り替えることもでき、しかして、気体混入量調整手段11は微細気泡含有水と微細気泡が含まれない水とを切り替える気泡有無切替手段としても機能できる。微細気泡が含まれない槽用水は微細気泡が含まれた槽用水に比べてディスポーザー槽2の内面等に対する摩擦抵抗が大きく、つまり、微細気泡が含まれない槽用水は微細気泡が含まれた槽用水に比べてディスポーザー槽2の内面等への衝撃が大きく、しかして、ディスポーザー槽2の内面に付着した洗剤泡の洗い落としには適している。本例のディスポーザー1のようにディスポーザー槽2がシンク3の排水経路3bに配設されたものにあって、シンク3で行う食器洗いの際に用いた洗剤の洗剤泡がシンク用水の排水(矢印B)によってディスポーザー槽2の内面に付着することが想定される場合には、気体混入量調整手段11によって槽用水に微細気泡を含ませないようにすることは有用である。   Further, according to the gas mixing amount adjusting means 11, mixing of gas into the tank water can be stopped, that is, the water containing fine bubbles and the water not containing fine bubbles can be switched as the tank water. However, the gas mixing amount adjusting unit 11 can also function as a bubble presence / absence switching unit that switches between water containing fine bubbles and water not containing fine bubbles. The tank water that does not contain fine bubbles has a higher frictional resistance against the inner surface of the disposer tank 2 than the tank water that contains fine bubbles, that is, the tank water that does not contain fine bubbles contains a fine bubble. Compared to irrigation water, the impact on the inner surface of the disposer tank 2 is large, and therefore, it is suitable for washing away the detergent bubbles adhering to the inner surface of the disposer tank 2. The disposer tank 2 is disposed in the drainage path 3b of the sink 3 as in the case of the disposer 1 of this example, and the detergent foam of the detergent used in the dishwashing performed in the sink 3 is the drainage of the sink water (arrow B ), It is useful that the gas mixing amount adjusting means 11 does not contain fine bubbles in the tank water when it is assumed to adhere to the inner surface of the disposer tank 2.

図4には実施の形態の他例を示す。なお先例と同様部位には同符合を付して説明を省く。本例は溶解部17として図2や図3(b)の溶解タンク17aの代わりに溶解管17bにて構成したものである。この溶解管17bは、たとえば内面に圧力及び流速を急変させるための連続した抵抗体33を設けてなる蛇腹管で構成することができる。蛇腹管は断面弧状をした環状凹部33aを溶解管17bの軸方向に連続して形成したもので、隣合う環状凹部33a同士の連結部分が溶解管17b内に突出した環状凸部33bとなっている。つまり、溶解管17bは環状凸部33b部分において最も径が小さく、環状凹部33aの底部分において最も径が大きく、その間は次第に径が変化していっている。ポンプ16で加圧された気体混合水が内面に連続して抵抗体33を設けた管体に流入すると、気液混合水は連続した抵抗体33によって次々と局所的に大きく撹乱され、ポンプ16通過後の加圧状態で攪拌混合される。この場合、蛇腹管で構成される溶解管17bでは図4(b)の矢印Eに示すように溶解管17bの内面の連続する環状凸部33bに当たって環状凹部33a内面に沿って旋回流となって撹乱され、この撹乱が溶解管17bの全内周にわたって次々と行われる。更に、図4(c)に示すように、溶解管17b内は環状凸部33b部分が最も径が小さいので、この環状凸部33b部分を含む部分が流速が速く且つ圧力が小となり、また、環状凹部33aの底部分が最も径が大きいので、この環状凹部33aの底部分を含む部分が流速が遅く且つ圧力が大となり、これにより溶解管17b内を通過する気液混合水は流速、圧力の急変を連続的に繰り返す。これらの作用により気体混合水が溶解管17bを通過する際に連続して攪拌混合され、気体混合水中の気体の水への溶解が大きく促進されることになる。また、溶解管17bの環状凹部33aを気体混合水が旋回して撹乱する際に上記のように気体の水への溶解が促進されるのであるが、この場合、溶解されなかった未溶解の気体34が環状凹部33aの底に溜まることになる。つまり、環状凹部33aの底が未溶解の気体34が溜まる微小な気体溜まりとなる。そして、加圧状態で形成された気体溜まりに環状凹部33aを旋回しながら流れる水とが接触しその界面において未溶解の気体34が水に効果的に溶解する。これは、先の溶解タンク17aの持つ機能と同様のものであり、管体で溶解管17bを構成したにもかかわらず、効果的に気体を水に溶解した気体溶解水を得ることができるのであって、微細気泡発生装置5の小型化を図ることができたものである。なお、上記溶解管7bは蛇腹状のフレキシブルホースにて構成することもできる。なお、図1乃至図4のような気体を加圧溶解した後に減圧することで微細気泡を得る微細気泡発生装置5にあっては、極めて微細かつ均一性の高い微細気泡が生成可能であるという利点を有している。   FIG. 4 shows another example of the embodiment. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted. In this example, the melting portion 17 is constituted by a melting tube 17b instead of the melting tank 17a of FIG. 2 or FIG. The melting tube 17b can be constituted by, for example, a bellows tube in which a continuous resistor 33 for suddenly changing the pressure and flow velocity is provided on the inner surface. The bellows tube is formed by continuously forming an annular recess 33a having an arc cross section in the axial direction of the melting tube 17b, and a connecting portion between adjacent annular recesses 33a becomes an annular projection 33b protruding into the melting tube 17b. Yes. That is, the melting tube 17b has the smallest diameter at the annular convex portion 33b and the largest diameter at the bottom portion of the annular concave portion 33a, and the diameter gradually changes during that time. When the gas-mixed water pressurized by the pump 16 flows into the tubular body provided with the resistor 33 continuously on the inner surface, the gas-liquid mixed water is greatly disturbed locally by the continuous resistor 33 one after another. The mixture is stirred and mixed in the pressurized state after passing. In this case, in the melting tube 17b formed of a bellows tube, as shown by an arrow E in FIG. 4B, the inner surface of the melting tube 17b hits the continuous annular convex portion 33b and turns along the inner surface of the annular concave portion 33a. It is disturbed, and this disturbance is performed one after another over the entire inner circumference of the dissolution tube 17b. Furthermore, as shown in FIG. 4 (c), since the annular convex portion 33b portion has the smallest diameter in the melting tube 17b, the portion including the annular convex portion 33b portion has a high flow velocity and a small pressure, Since the bottom portion of the annular recess 33a has the largest diameter, the portion including the bottom portion of the annular recess 33a has a slow flow rate and a large pressure, whereby the gas-liquid mixed water passing through the dissolution tube 17b has a flow rate and pressure. The sudden change is repeated continuously. Due to these actions, the gas-mixed water is continuously stirred and mixed as it passes through the dissolution tube 17b, and the dissolution of the gas in the gas-mixed water into the water is greatly promoted. Further, when the gas mixture water swirls and disturbs the annular recess 33a of the dissolution tube 17b, the dissolution of the gas in water is promoted as described above. In this case, the undissolved gas that has not been dissolved 34 accumulates at the bottom of the annular recess 33a. That is, the bottom of the annular recess 33a becomes a minute gas reservoir in which the undissolved gas 34 is accumulated. Then, water flowing while swirling the annular recess 33a comes into contact with a gas reservoir formed in a pressurized state, and the undissolved gas 34 is effectively dissolved in water at the interface. This is the same function as that of the previous dissolution tank 17a, and even though the dissolution tube 17b is formed of a tubular body, it is possible to obtain gas dissolution water that effectively dissolves gas in water. Thus, the miniaturized bubble generator 5 can be miniaturized. The melting tube 7b can also be configured by a bellows-like flexible hose. In addition, in the fine bubble generating apparatus 5 that obtains fine bubbles by decompressing the gas as shown in FIGS. 1 to 4 and then reducing the pressure, it is possible to generate extremely fine and highly uniform fine bubbles. Has advantages.

図5には実施の形態の更に他例を示す。本例の微細気泡発生装置5は、槽用水給水経路4に設けた圧力急変部36によって、気体混入部15にて槽用水給水経路4内の水に混入された気泡に対して圧力変動に伴うせん断力を作用させることで微細化させて微細気泡を発生させている。本例の圧力急変部36は減圧・加圧手段37で構成させている。この減圧・加圧手段37にはたとえばベンチュリ管38を採用でき、この減圧・加圧手段37では、気泡がスロート部を通る際に流速が速くなるとともに減圧されて膨張し、その後は断面積が増加するに従って加圧されて収縮するが、この時に生じるせん断力によって気泡が圧壊されるようにして微細化されて泡径0.1〜1000μmの微細気泡が得られるようにされている。なお、減圧・加圧手段37より下流の槽用水給水経路4にメッシュを配設してこのメッシュに微細気泡含有水を通すと、この微細気泡の泡径を更に細分化することができて好ましい。また、減圧・加圧手段37の下流に渦流部30を設けてもよく、渦流部30にて所定径以下の微細気泡を含む比較的均質な微細気泡含有水を得ることができる。   FIG. 5 shows still another example of the embodiment. The fine bubble generating device 5 of this example is accompanied by pressure fluctuation with respect to the bubbles mixed in the water in the tank water supply path 4 in the gas mixing section 15 by the pressure sudden change section 36 provided in the tank water supply path 4. Fine bubbles are generated by miniaturization by applying a shearing force. The sudden pressure change part 36 of this example is constituted by a pressure reducing / pressurizing means 37. For example, a Venturi tube 38 can be used as the pressure reducing / pressurizing means 37. In the pressure reducing / pressurizing means 37, when the bubbles pass through the throat portion, the flow velocity is increased and the pressure is reduced and expanded, and thereafter the cross-sectional area is increased. The pressure increases and shrinks as it increases, but the bubbles are crushed by the shearing force generated at this time, so that fine bubbles with a bubble diameter of 0.1 to 1000 μm are obtained. In addition, it is preferable to dispose the mesh in the tank water supply path 4 downstream from the decompression / pressurization means 37 and to pass the water containing fine bubbles through the mesh because the diameter of the fine bubbles can be further subdivided. . Further, the vortex section 30 may be provided downstream of the pressure reducing / pressurizing means 37, and relatively homogeneous water containing fine bubbles including fine bubbles having a predetermined diameter or less can be obtained in the vortex section 30.

図6には実施の形態の更に他例を示す。本例の微細気泡発生装置5は、上記圧力急変部36を槽用水給水経路4の多段箇所に設け、気泡の微細化工程を多段に構成してより効率的で高度な微細気泡化を図っている。具体的に本例では、圧力急変部36としての減圧・加圧手段37a,37bを槽用水給水経路4の上流側と下流側とに2段に形成してあり、圧力変動に伴うせん断力気泡に対して2段に作用させてより微細化させてより泡径の小さい微細気泡の発生が図られている。詳しくは、上流側の減圧・加圧手段37aは一つのベンチュリ管38を槽用水給水経路4(基幹流路4a)の一部として設けてある。下流側の減圧・加圧手段37bは、槽用水給水経路4の前記上流側の減圧・加圧手段37aを設けた部分より下流側を複数の分岐流路4bに分岐し、各分岐流路4bにそれぞれベンチュリ管38を設けて構成されている。更に言うと、下流側のベンチュリ管38は、上流側のベンチュリ管38の径の1/2、断面積は1/4となるように発生させる微細気泡の径に応じて形成すると共に、分岐流路4bを四つ形成して各分岐流路4bにそれぞれベンチュリ管38を設けてあり、下流側のベンチュリ管38の断面積の合計は上流側のベンチュリ管38の断面積に等しくされている。なお、発生した微細気泡が一箇所に集中すると連結してより大きな気泡となってしまうため、本例においては複数の分岐流路4bに分岐して各分岐流路4bに下流側のベンチュリ管38を設けたことで、微細気泡が一箇所に集中して多数衝突することにより大きな気泡が発生するのを抑制して所定径の微細気泡を安定して得ることを可能にさせるといった工夫も施されている。   FIG. 6 shows still another example of the embodiment. The fine bubble generating apparatus 5 of the present example is provided with the pressure suddenly changing portion 36 at multiple stages in the tank water supply path 4 to configure the bubble refinement process in multiple stages to achieve more efficient and advanced microbubble formation. Yes. Specifically, in this example, the pressure reducing / pressurizing means 37a and 37b as the pressure suddenly changing portion 36 are formed in two stages on the upstream side and the downstream side of the tank water supply path 4, and shear force bubbles due to pressure fluctuations are formed. On the other hand, the generation of fine bubbles having a smaller bubble diameter is achieved by acting in two stages. Specifically, the upstream pressure reducing / pressurizing means 37a is provided with one venturi pipe 38 as a part of the tank water supply path 4 (main flow path 4a). The downstream decompression / pressurization means 37b branches the downstream side of the tank water supply path 4 from the portion where the upstream decompression / pressurization means 37a is provided into a plurality of branch channels 4b. Are each provided with a venturi tube 38. More specifically, the downstream venturi tube 38 is formed according to the diameter of the fine bubbles to be generated so as to be 1/2 the diameter of the upstream venturi tube 38 and the cross-sectional area is 1/4. Four passages 4b are formed, and each branch flow path 4b is provided with a venturi tube 38. The total cross-sectional area of the downstream venturi tube 38 is equal to the cross-sectional area of the upstream venturi tube 38. When the generated fine bubbles are concentrated at one place, they are connected to become larger bubbles, and in this example, they branch into a plurality of branch flow paths 4b and are downstream of each branch flow path 4b. In other words, it has been devised to suppress the generation of large bubbles by colliding a large number of fine bubbles at one location and making it possible to stably obtain fine bubbles of a predetermined diameter. ing.

ところで、図5や図6の例のように、微細気泡発生装置5が気体混入水中の気泡に対してせん断力を作用させることで微細化させて微細気泡を発生させる装置の場合には、図1乃至4のように気体混入水を一旦気体溶解水にしてその後析出により微細気泡を発生させて微細気泡含有水を得る微細気泡発生装置5に比べて、装置が簡略化できて小型化が図れるという利点があり、更には多大な動力源を必要としないため、図7の例のようにポンプ16を無くして水道圧を利用する微細気泡発生装置5として該装置の簡略化、小型化を促進させることもできる。また、図8のように気体混入部15をポンプ16よりも下流の槽用水給水経路4に設けることもできる。   By the way, in the case of a device in which the fine bubble generating device 5 generates fine bubbles by making the fine bubble generating device 5 fine by applying a shearing force to the bubbles in the gas-mixed water, as in the examples of FIGS. Compared with the fine bubble generating device 5 that once converts the gas-mixed water into gas-dissolved water as in 1 to 4 and then generates fine bubbles by precipitation to obtain fine bubble-containing water, the device can be simplified and the size can be reduced. In addition, since a large power source is not required, the simplification and miniaturization of the apparatus can be facilitated as the microbubble generator 5 that uses the water pressure without the pump 16 as in the example of FIG. It can also be made. Moreover, the gas mixing part 15 can also be provided in the tank water supply path 4 downstream of the pump 16 as shown in FIG.

図9には実施の形態の更に他例を示す。この例は、先例のような気体混入水中の気泡に対してせん断力を作用させることで微細化させて微細気泡を発生させる微細気泡発生装置5の他例であり、微細気泡発生装置5が気体混合水中に気液せん断層を形成させる気液せん断層発生手段35で構成された例である。本例の気液せん断層発生手段35は、槽用水給水経路4を絞る等して気体混合水に流速が著しく速いジェット憤流を生じさせる手段で構成されており、ジェット憤流中の気体混合水内の気液境界面にはせん断力が発生し(いわゆる気液境界面が気液せん断層となる)、このせん断力によって気泡が微細化されて微細気泡を得るようにしている。詳しくは、本例では気体混合部15の気体導入部分で槽用水給水経路4を流れる水がジェット憤流となっており、混合された気泡と水との速度の違いによって気泡と水との気液境界面がいわゆる気液せん断層となり、気泡に対してせん断力が作用されて微細化され、微細気泡を得るようにしている。   FIG. 9 shows still another example of the embodiment. This example is another example of the fine bubble generating device 5 that generates fine bubbles by applying a shearing force to bubbles in the gas-containing water as in the previous example, and the fine bubble generating device 5 is a gas. This is an example constituted by gas-liquid shear layer generating means 35 for forming a gas-liquid shear layer in the mixed water. The gas-liquid shear layer generating means 35 of this example is configured by means for generating a jet stream that has a remarkably fast flow velocity in the gas mixture water by, for example, constricting the tank water supply path 4, and mixing the gas in the jet stream A shear force is generated at the gas-liquid interface in the water (so-called gas-liquid interface becomes a gas-liquid shear layer), and the bubbles are refined by the shear force to obtain fine bubbles. Specifically, in this example, the water flowing through the tank water supply path 4 at the gas introduction part of the gas mixing unit 15 is a jet stream, and the gas between the bubbles and water is different due to the difference in speed between the mixed bubbles and water. The liquid boundary surface becomes a so-called gas-liquid shear layer, and a shearing force is applied to the bubbles so that the bubbles are refined to obtain fine bubbles.

図10には実施の形態の更に他例を示す。この例は、先例同様に微細気泡発生装置5が気体混合水に気液せん断層を形成させる気液せん断層発生手段35で構成された例である。本例の気液せん断層発生手段35は、上述の微細気泡発生ノズル18aと同構成物を用いており、つまり気体混合水が流れる槽用水給水経路4の流路幅を極端に絞った小径経路29と、この小径経路29に連続して内部に旋回流を生じさせる渦流部30とで構成されている。すなわち、小径経路29を通る気体混合水にはその断面方向の速度勾配によって気泡と水との境界面にせん断力が発生し(いわゆる気液境界面が気液せん断層となる)、このせん断力によって気泡が微細化されており、また続けて、渦流部30で生じる渦流によっても渦流の内外での速度勾配によって気泡と水との境界面にはせん断力が発生し(いわゆる気液境界面が気液せん断層となる)、このせん断力によって気泡が微細化されて、微細気泡を得るようにしている。なお、気液せん断層発生手段35としては小径経路29または渦流部30の少なくとも1つでも構成できる。   FIG. 10 shows still another example of the embodiment. This example is an example in which the fine bubble generating device 5 is configured by the gas-liquid shear layer generating means 35 for forming a gas-liquid shear layer in the gas mixture water as in the previous example. The gas-liquid shear layer generating means 35 of this example uses the same structure as the fine bubble generating nozzle 18a described above, that is, a small-diameter path in which the channel width of the tank water supply path 4 through which the gas mixture water flows is extremely narrowed. 29 and a vortex section 30 that generates a swirling flow inside the small-diameter path 29 continuously. That is, in the gas mixture water passing through the small-diameter path 29, a shear force is generated at the boundary surface between bubbles and water due to the velocity gradient in the cross-sectional direction (so-called gas-liquid boundary surface becomes a gas-liquid shear layer). Then, the bubbles are made finer, and the vortex generated in the vortex section 30 also generates a shearing force at the boundary between the bubbles and water due to the velocity gradient inside and outside the vortex (so-called gas-liquid interface is This becomes a gas-liquid shear layer), and the bubbles are refined by this shearing force to obtain fine bubbles. The gas-liquid shear layer generating means 35 can be configured by at least one of the small-diameter path 29 or the vortex section 30.

ここで、上記図10の例の変形例として図11に実施の形態の更に他例を示す。この例は、図10の小径経路29の流路幅を可変にすることで発生させる微細気泡の泡径を調整可能にした例であり、つまり泡径調整手段13を設けた例である。具体的に、本例の微細気泡発生装置5にあっては、槽用水給水経路4の流れ方向を軸方向とする中空筒状の固定部材52の内面部位に軸中心方向に向けて突部53が突設されると共に、突部53よりも槽用水給水経路4の下流側の固定部材52の内面部位に周方向に所定間隔に脚部54が軸中心方向に向けて突設されており、槽用水給水経路4の流れ方向を軸方向とする円柱状の可動部材55が周面に刻設したネジ部55bを脚部54の突出先端に刻設したネジ部54aに螺合させて軸方向に螺進自在にして固定部材52の内部における突部53の下流側の部位に配設されており、小径経路29を形成する突部53の下流側端面53aと可動部材55の上流側端面55aとの対向距離が可動部材55の軸方向への螺進によって可変にされており、すなわち小径経路29の流路幅が可変にされている。可動部材55は制御部9に制御される図示しないモータにて回転制御されるようになっており、つまり制御部9にて槽用水に発生させる微細気泡の泡径の大小が制御可能されている。たとえば、小径経路29の流路幅を小さくすると、小径経路29を流れる気体混合水の断面方向の速度勾配がより大きくなって気体混合水の気泡に作用するせん断力が強まることから、気泡の細分化が促進されて比較的泡径の小さな微細気泡を発生させることができる。逆に、小径経路29の流路幅が大きくなると、上記と逆の理由で比較的泡径の大きな微細気泡を発生させることができるのである。なお、このような泡径調整手段13によって泡径が均一に整えられた微細気泡が含有される微細気泡含有水は、微細気泡が合一して大型化したり不均一な状態になる前に、そのまま吐水として使用されるのが好ましい。つまり、泡径調整手段13はディスポーザー槽2に臨む槽用水給水経路4の出口4a付近に設けるのが好ましい。これら図9乃至図11の微細気泡発生装置5によると、たとえば先例の圧力急変部36にて微細気泡を得る微細気泡発生装置5に比べても、装置5内での圧力損失を小さくできるため、より低圧環境への適用が可能となる利点を有している。   Here, FIG. 11 shows still another example of the embodiment as a modification of the example of FIG. This example is an example in which the bubble diameter of the fine bubbles generated by making the flow path width of the small diameter path 29 in FIG. 10 variable is adjustable, that is, an example in which the bubble diameter adjusting means 13 is provided. Specifically, in the fine bubble generating device 5 of this example, the protrusion 53 is directed toward the axial center direction on the inner surface portion of the hollow cylindrical fixing member 52 whose axial direction is the flow direction of the tank water supply passage 4. Are protruded, and leg portions 54 are protruded toward the axial center direction at predetermined intervals in the circumferential direction on the inner surface portion of the fixing member 52 on the downstream side of the tank water supply path 4 from the protrusion 53. A threaded portion 55b engraved on the peripheral surface of a cylindrical movable member 55 whose axial direction is the flow direction of the tank water supply path 4 is screwed into a threaded portion 54a engraved at the protruding tip of the leg portion 54 to axially move. The downstream end surface 53a of the projecting portion 53 and the upstream end surface 55a of the movable member 55, which are disposed at the downstream side of the projecting portion 53 inside the fixed member 52 so as to be freely screwable to each other. Is made variable by the screwing of the movable member 55 in the axial direction. , I.e. channel width of the small-diameter path 29 is variable. The movable member 55 is rotationally controlled by a motor (not shown) controlled by the control unit 9, that is, the control unit 9 can control the size of the bubble diameter of the fine bubbles generated in the tank water. . For example, if the flow path width of the small-diameter path 29 is reduced, the velocity gradient in the cross-sectional direction of the gas mixed water flowing through the small-diameter path 29 is increased, and the shear force acting on the bubbles of the gas mixed water is increased. The formation of fine bubbles having a relatively small bubble diameter can be generated. On the contrary, when the flow path width of the small diameter passage 29 is increased, fine bubbles having a relatively large bubble diameter can be generated for the reason opposite to the above. In addition, the fine bubble-containing water containing the fine bubbles whose bubble diameter is uniformly adjusted by the bubble diameter adjusting means 13 before the fine bubbles are united and become larger or non-uniform, It is preferable to use it as water discharge as it is. That is, the bubble diameter adjusting means 13 is preferably provided in the vicinity of the outlet 4 a of the tank water supply path 4 facing the disposer tank 2. According to the fine bubble generating device 5 of FIGS. 9 to 11, since the pressure loss in the device 5 can be reduced as compared with, for example, the fine bubble generating device 5 that obtains fine bubbles in the pressure sudden change portion 36 of the previous example, It has an advantage that it can be applied to a lower pressure environment.

図12には実施の形態の更に他例を示す。この例は、微細気泡発生装置5を、槽用水給水経路4を流れる水に気体を混入させて気体混合水を得る気体混入部15と、気体混合水が流れる槽用水給水経路4に配設した超音波振動子39とによって構成させたものであり、この超音波振動子39によって気体混合水に超音波振動を作用させ、その定常波領域で気泡をせん断させて微細化して微細気泡を得るようにしている。この微細気泡発生装置5によると、装置5内での圧力損失の発生がほとんど無いという利点を有し、さらには超音波振動子39で発生させる超音波の周波数を変えることで微細気泡の泡径の制御が可能になるといった利点も有している(つまり、超音波振動子39で発生させる超音波周波数調節手段が制御部9で制御される微細気泡の泡径調整手段13を構成する)。   FIG. 12 shows still another example of the embodiment. In this example, the fine bubble generating device 5 is disposed in a gas mixing portion 15 for obtaining gas mixed water by mixing a gas into water flowing in the tank water supply path 4 and a tank water supply path 4 in which the gas mixed water flows. The ultrasonic vibrator 39 is configured to cause ultrasonic vibration to act on the gas-mixed water and shear the bubbles in the standing wave region so as to obtain fine bubbles. ing. This fine bubble generating device 5 has the advantage that almost no pressure loss is generated in the device 5, and further, the bubble diameter of the fine bubbles is changed by changing the frequency of the ultrasonic wave generated by the ultrasonic vibrator 39. (That is, the ultrasonic frequency adjusting means generated by the ultrasonic transducer 39 constitutes the fine bubble diameter adjusting means 13 controlled by the control unit 9).

図13には実施の形態の更に他例を示す。本例は、槽用水給水経路4に、制御部9にて動作制御される気体有用成分混入手段43を設けた例である。具体的に、本例では、気体混入部15の気体供給流路19の途中にオゾンを発生させる高電圧放電部40を設けている。すなわち、水に混入される気体をオゾンにて構成できたことから、微細気泡発生装置5を経てオゾンの微細気泡を発生させてオゾンを含む微細気泡含有水を得て、このオゾンを含む微細気泡含有水でなる槽用水をディスポーザー槽2内に供給可能にしてある。ここで、オゾンは強力な酸化力を有しているから高い殺菌効果や有機物分解効果を備えるものである。そして、微細気泡発生装置5で発生させた微細気泡は、上述のように比表面積や内部圧力が高くて水からすぐに出てしまうことがなくて分散することが可能であって、洗浄対象物と気泡界面との接触効率も高い。しかして、両者の相乗効果によってディスポーザー槽2内(及び排水経路8)に対する汚れ除去効果を飛躍的に高めることができると共に、少量のオゾンであってもディスポーザー槽2内(及び排水経路8)に対して汚れ除去効果を発揮させることができるのである。また、ディスポーザー槽2の内面の殺菌に有効であるのはもとより、雑菌が発生し易い排水経路8や排水経路8のトラップ部にはオゾンを含む微細気泡含有水が貯留水として貯留するので、貯留水自身や排水経路8の内面の殺菌・制菌効果を有効に得ることができ、汚物や尿石、ぬめりの除去効果、及び汚物の付着防止効果をも有効に高めることができる。また、本例のように高電圧放電部40にて発生させるオゾンは気体供給流路19を通る気体を原料とするので永久に行えるのであり、つまり取替作業などのメンテが不要であって良好な使用性を備えている。   FIG. 13 shows still another example of the embodiment. This example is an example in which gas useful component mixing means 43 whose operation is controlled by the control unit 9 is provided in the tank water supply path 4. Specifically, in this example, a high voltage discharge unit 40 that generates ozone is provided in the middle of the gas supply channel 19 of the gas mixing unit 15. That is, since the gas mixed in the water can be constituted by ozone, the fine bubbles containing ozone are obtained by generating fine bubbles of ozone through the fine bubble generating device 5, and the fine bubbles containing ozone are obtained. Tank water made of contained water can be supplied into the disposer tank 2. Here, since ozone has a strong oxidizing power, it has a high bactericidal effect and an organic matter decomposing effect. The fine bubbles generated by the fine bubble generator 5 can be dispersed without having to immediately come out of the water due to the high specific surface area and internal pressure as described above. And contact efficiency between the bubble interface Thus, the synergistic effect of both can dramatically improve the dirt removal effect in the disposer tank 2 (and the drainage path 8), and even in a small amount of ozone, the disposer tank 2 (and the drainage path 8) On the other hand, the dirt removal effect can be exhibited. In addition to being effective for sterilizing the inner surface of the disposer tank 2, the microbubble-containing water containing ozone is stored as stored water in the drainage path 8 where the germs are likely to be generated and the trap part of the drainage path 8. The sterilization / antibacterial effect of the water itself and the inner surface of the drainage channel 8 can be effectively obtained, and the effect of removing dirt, urine stones and slime, and the effect of preventing the adhesion of dirt can be effectively enhanced. Further, as in this example, the ozone generated in the high voltage discharge unit 40 can be made permanently because the gas passing through the gas supply flow path 19 is used as a raw material, that is, maintenance such as replacement work is unnecessary and good. It has excellent usability.

また、気体有用成分混入手段43としては、図14のように、槽用水に混入させる気体の酸素濃度を増加させる酸素供給部42を気体混入部15の気体供給流路19の途中に配設しても、槽用水に混入させる気体に芳香成分を含ませる芳香成分供給部46を気体混入部15の気体供給流路19の途中に配設しても好ましい。なお、上記酸素供給部42としては、気体供給流路19を流れる気体の酸素濃度を25〜40%に高めてなる酸素富化空気を得ることができる酸素富化膜42aを採用することができる。酸素供給部42によると酸素を微細気泡に閉じ込めることができて、生ごみを分解処理する好気性微生物に隈なく微細気泡にて酸素を供給できて、好気性微生物の働きを活発化させることができる。芳香成分供給部46によると微細気泡に芳香成分を閉じ込めることができて、ディスポーザー槽2内全体に微細気泡と共に芳香成分を行き渡らせて、ディスポーザー槽2内全体から芳香を発生させることができる。なお、酸素供給部42で得た酸素富化空気中に芳香成分を混入させるとも好ましい。   Further, as the gas useful component mixing means 43, as shown in FIG. 14, an oxygen supply unit 42 that increases the oxygen concentration of the gas mixed into the tank water is arranged in the middle of the gas supply channel 19 of the gas mixing unit 15. However, it is also preferable that the fragrance component supply unit 46 that includes the fragrance component in the gas mixed in the tank water is disposed in the middle of the gas supply channel 19 of the gas mixing unit 15. As the oxygen supply unit 42, an oxygen-enriched film 42a that can obtain oxygen-enriched air obtained by increasing the oxygen concentration of the gas flowing through the gas supply channel 19 to 25 to 40% can be employed. . According to the oxygen supply part 42, oxygen can be confined in the fine bubbles, oxygen can be supplied in the fine bubbles as much as the aerobic microorganisms for decomposing the garbage, and the function of the aerobic microorganisms can be activated. it can. According to the fragrance component supply unit 46, the fragrance component can be confined in the fine bubbles, and the fragrance component can be distributed throughout the disposer tank 2 together with the fine bubbles to generate the fragrance from the entire disposer tank 2. In addition, it is also preferable to mix a fragrance component in the oxygen-enriched air obtained by the oxygen supply unit 42.

また、図15のように、気体供給流路19における高電圧放電部40よりも上流部位に、上流側から順に、気体の除湿をするシリカゲル等が装填された吸湿部41、先の酸素供給部42を設けても好ましい。これによると、高電圧放電部40に吸湿部41により除湿した気体を導入することができて、高電圧放電部40でのオゾンの発生効率を向上できる。また、酸素富化膜42aによって気体の酸素濃度を高めることができて高電圧放電部40でのオゾンの発生効率を向上できる。このように高電圧放電部40でのオゾンの発生効率を高めたことによって、微細気泡含有水のオゾン濃度を高めてオゾンの殺菌効果を更に高めることができ、上記汚れ除去効果やディスポーザー槽2の内面の殺菌・制菌効果を更に高めることができる。   Further, as shown in FIG. 15, a hygroscopic part 41 in which silica gel or the like for dehumidifying gas is loaded in an upstream part of the gas supply flow path 19 from the high voltage discharge part 40 in order from the upstream side, the previous oxygen supply part 42 is also preferable. According to this, the gas dehumidified by the moisture absorption part 41 can be introduced into the high voltage discharge part 40, and the generation efficiency of ozone in the high voltage discharge part 40 can be improved. Further, the oxygen enrichment film 42a can increase the oxygen concentration of the gas, and the ozone generation efficiency in the high voltage discharge unit 40 can be improved. Thus, by increasing the ozone generation efficiency in the high-voltage discharge section 40, the ozone concentration of the fine bubble-containing water can be increased to further enhance the sterilization effect of ozone. The sterilization / antibacterial effect on the inner surface can be further enhanced.

また、図16には実施の形態の更に他例を示す。本例は、槽用水給水経路4に、制御部9にて動作制御される液体有用成分混入手段44を設けた例である。液体有用成分混入手段44は、有用成分を充填した有用成分貯留タンク44aと有用成分貯留タンク44aから槽用水給水経路4に至る有用成分供給通路44bとを有して構成される。有用成分供給通路44bには、有用成分貯留タンク44aに充填した有用成分を槽用水給水経路4に適宜供給させる供給手段(図示せず)が設けられ、この供給手段が制御部9にて駆動制御される。供給手段としては、有用成分貯留タンク44a内の有用成分を槽用水給水経路4に強制注入させるポンプや、有用成分供給通路44bを開閉して液体有用成分を槽用水に供給自在にする有用成分供給弁で構成することができる。なお、有用成分貯留タンク44aはカートリッジ式のように有用成分供給通路44bに着脱自在にして取替可能にしてもよい。液体有用成分としては、界面活性剤、芳香成分等が好ましい。微細気泡の気液界面には液体有用成分が集まり易いものであり、また微細気泡は気液界面の吸着効果にてディスポーザー槽2の内面に付着し易いものである。しかして、たとえば液体有用成分が界面活性剤の場合には、微細気泡の気液界面に集まって濃縮された界面活性剤をディスポーザー槽2の内面に効率よく付着させることができてディスポーザー槽2の内面から油分を有効に除去させることができる。また、界面活性剤によると微細気泡が水面に浮上しても破裂して消滅し難くなるため、排水経路8のトラップ部の貯留水の水面部分に微細気泡層を形成させることができて、微細気泡層にて排水経路8を封止できて排水経路8の臭気防止効果の向上を図ることができる。更に言うと、界面活性剤によると槽用水の表面張力を低下できてせん断力等による気泡の微細化を促進することもできる。また、液体有用成分が芳香成分の場合には、微細気泡の気液界面に集まって濃縮された芳香成分をディスポーザー槽2の内面に効率よく付着させ、ディスポーザー槽2の内面から芳香を発生させることができる。   FIG. 16 shows still another example of the embodiment. This example is an example in which liquid useful component mixing means 44 whose operation is controlled by the control unit 9 is provided in the tank water supply path 4. The liquid useful component mixing means 44 includes a useful component storage tank 44 a filled with useful components and a useful component supply passage 44 b extending from the useful component storage tank 44 a to the tank water supply passage 4. The useful component supply passage 44b is provided with supply means (not shown) for appropriately supplying useful components filled in the useful component storage tank 44a to the tank water supply path 4, and this supply means is driven and controlled by the controller 9. Is done. The supply means includes a pump that forcibly injects the useful component in the useful component storage tank 44a into the tank water supply passage 4, and a useful component supply that opens and closes the useful component supply passage 44b to freely supply the liquid useful component to the tank water. It can consist of valves. The useful component storage tank 44a may be detachably attached to the useful component supply passage 44b like a cartridge type so as to be replaceable. As the liquid useful component, a surfactant, an aromatic component and the like are preferable. Liquid useful components are likely to gather at the gas-liquid interface of the fine bubbles, and the fine bubbles are likely to adhere to the inner surface of the disposer tank 2 due to the adsorption effect of the gas-liquid interface. Thus, for example, when the useful liquid component is a surfactant, the concentrated surfactant collected at the gas-liquid interface of fine bubbles can be efficiently attached to the inner surface of the disposer tank 2, and Oil can be effectively removed from the inner surface. Further, according to the surfactant, even if the fine bubbles float on the water surface, it is difficult to rupture and disappear, so that the fine bubble layer can be formed on the water surface portion of the stored water in the trap portion of the drainage path 8 and the fine bubbles can be formed. The drainage path 8 can be sealed with the bubble layer, and the odor prevention effect of the drainage path 8 can be improved. Furthermore, the surface active agent can reduce the surface tension of the tank water and promote the refinement of bubbles by shearing force or the like. Moreover, when the liquid useful component is an aroma component, the concentrated aroma component gathered at the gas-liquid interface of fine bubbles is efficiently attached to the inner surface of the disposer tank 2 to generate aroma from the inner surface of the disposer tank 2. Can do.

また、図17には実施の形態の更に他例を示す。本例は、槽用水給水経路4に、固体有用成分混入手段45を設けた例である。固体有用成分混入手段45によると、固体有用成分を槽用水に溶かし込ませることができる。槽用水に溶かし込まれた固体有用成分は液体有用成分と同様に微細気泡の気液界面に集まる性質を有する。ここで、固体有用成分としては芳香成分等が好ましく、微細気泡の気液界面に集まって濃縮された芳香成分をディスポーザー槽2の内面に効率よく付着させ、ディスポーザー槽2の内面から芳香を発生させることができる。なお、各有用成分混入手段43,44,45は各種有用成分を組み合わせて槽用水に供給させたり、上記有用成分混入手段43,44,45同士を併用しても好ましい。また、各有用成分混入手段43,44,45にて槽用水に供給する有用成分として上記例では、殺菌・制菌効果を付与する有用成分としてオゾンを、油分等の特定物質の洗浄効果を付与する有用成分として界面活性剤を、悪臭を打ち消す効果を付与する有用成分として芳香成分(芳香剤)を、好気性微生物を活性化させる等の上記効果に含まれない他の機能を付与する有用成分として酸素をそれぞれ例示したが、各種有用成分として他の有用成分を用いることもできる。   FIG. 17 shows still another example of the embodiment. This example is an example in which solid useful component mixing means 45 is provided in the tank water supply path 4. According to the solid useful component mixing means 45, the solid useful component can be dissolved in the tank water. The solid useful component dissolved in the tank water has the property of being collected at the gas-liquid interface of the fine bubbles in the same manner as the liquid useful component. Here, as the solid useful component, an aroma component or the like is preferable, and the concentrated aroma component gathered at the gas-liquid interface of fine bubbles is efficiently attached to the inner surface of the disposer tank 2 to generate aroma from the inner surface of the disposer tank 2. be able to. Each useful component mixing means 43, 44, 45 is preferably combined with various useful components and supplied to the tank water, or the useful component mixing means 43, 44, 45 may be used in combination. In addition, in the above example, ozone is used as a useful component for supplying bactericidal and antibacterial effects as a useful component to be supplied to tank water by each of the useful component mixing means 43, 44, 45, and a cleaning effect for specific substances such as oil is given. A useful component that imparts other functions not included in the above effects, such as activating aerobic microorganisms, a fragrance component (fragrance) as a useful component that imparts an effect to counteract malodor, a surfactant as a useful component As examples, oxygen is exemplified, but other useful components may be used as various useful components.

図18には実施の形態の更に他例を示す。本例は、ディスポーザー槽2に臨む槽用水給水経路4の出口4aのノズル形状が、ディスポーザー槽2の広範囲に槽用水を当てることができるように、その吐水形態がシャワー流となるようなシャワー流吐水口とされており、この槽用水給水経路4の出口4aに微細気泡発生装置5にて発生された微細気泡の泡径を調整して吐水に含有させる泡径調整手段13が設けられている。詳しくは、多数のシャワー吐出孔57aを穿設した散水板56が配置された槽用水給水経路4の出口4aに、散水板56と同様に多数のシャワー吐出孔57bを穿設した開口面積調整カバー58が散水板56に重ねて回転自在に取り付けられており、この開口面積調整カバー58を回転操作することで、散水板56のシャワー吐出孔57aと開口面積調整カバー58のシャワー吐出孔57bとの重なり面積(つまり、シャワー吐出孔57個々の開口面積)の大小を変化できるようにしている。開口面積調整カバー58は制御部9に制御される図示しないモータにて回転制御されるようになっており、つまり制御部9にて槽用水に発生させる微細気泡の泡径の大小が制御可能にされている。たとえば、シャワー吐出孔57の開口面積を小さくすると、圧力変動の幅を大きくできて微細気泡の微細化を促進でき、微細気泡の泡径を小さく整えることができるのである。   FIG. 18 shows still another example of the embodiment. In this example, the nozzle flow at the outlet 4a of the tank water supply path 4 facing the disposer tank 2 can apply the tank water to a wide area of the disposer tank 2 so that the water discharge form is a shower flow. The water outlet is provided with a bubble diameter adjusting means 13 for adjusting the bubble diameter of the fine bubbles generated by the fine bubble generating device 5 to be contained in the discharged water at the outlet 4a of the tank water supply path 4. . Specifically, an opening area adjustment cover in which a large number of shower discharge holes 57b are formed in the outlet 4a of the water supply passage 4 for the tank where the water spray plate 56 having a large number of shower discharge holes 57a is disposed. 58 is attached to the water spray plate 56 so as to be freely rotatable. By rotating the opening area adjustment cover 58, the shower discharge hole 57a of the water spray plate 56 and the shower discharge hole 57b of the opening area adjustment cover 58 are connected. The size of the overlapping area (that is, the opening area of each shower discharge hole 57) can be changed. The opening area adjustment cover 58 is rotationally controlled by a motor (not shown) controlled by the control unit 9, that is, the control unit 9 can control the size of the bubble diameter of the fine bubbles generated in the tank water. Has been. For example, if the opening area of the shower discharge hole 57 is reduced, the width of the pressure fluctuation can be increased, the miniaturization of the fine bubbles can be promoted, and the bubble diameter of the fine bubbles can be adjusted small.

また、泡径調整手段13としては図19のものも適用できる。本例の泡径調整手段13は、散水板56のシャワー吐出孔57を閉塞自在にする開口孔数調整カバー59を周方向にスライド自在に槽用水給水経路4の出口4aに取り付けており、開口孔数調整カバー59を周方向にスライドさせることで散水板56の多数のシャワー吐出孔57を周方向に徐々に閉塞させ、シャワー吐出孔57全体の開口面積の大小を変化できるようにしている。開口孔数調整カバー59は制御部9に制御される図示しないモータにて回転制御されるようになっており、つまり制御部9にて槽用水に発生させる微細気泡の泡径の大小が制御可能にされている。たとえば、シャワー吐出孔57全体の開口面積を小さくすると、圧力変動の幅を大きくできて微細気泡の微細化を促進でき、微細気泡の泡径を小さく整えることができるのである。   As the bubble diameter adjusting means 13, the one shown in FIG. The bubble diameter adjusting means 13 of this example has an opening hole number adjusting cover 59 that allows the shower discharge hole 57 of the water spray plate 56 to be closed, and is attached to the outlet 4a of the tank water supply path 4 so as to be slidable in the circumferential direction. By sliding the hole number adjusting cover 59 in the circumferential direction, the numerous shower discharge holes 57 of the water spray plate 56 are gradually closed in the circumferential direction so that the size of the entire opening area of the shower discharge holes 57 can be changed. The opening hole number adjusting cover 59 is rotationally controlled by a motor (not shown) controlled by the control unit 9, that is, the control unit 9 can control the size of the bubble diameter of the fine bubbles generated in the tank water. Has been. For example, if the opening area of the entire shower discharge hole 57 is reduced, the width of the pressure fluctuation can be increased, miniaturization of the fine bubbles can be promoted, and the bubble diameter of the fine bubbles can be adjusted to be small.

なお、上記実施形態では、図1乃至図4には気体混合水中の気泡を一旦溶解させた後に析出させて微細気泡を得るタイプの微細気泡発生装置5を、図5乃至図12には気体混合水中の気泡をせん断させて細分化して微細気泡を得るタイプの微細気泡発生装置5を例示したが、図13乃至図19の例は、上記例示したいずれのタイプの微細気泡発生装置5にもそれぞれ適用できるのはいうまでもない。   In addition, in the said embodiment, in FIG. 1 thru | or FIG. 4, the microbubble generator 5 of the type which melt | dissolves the bubble in gas mixed water once, and deposits it, and obtains a fine bubble is shown in FIG. 5 thru | or FIG. Although the fine bubble generating device 5 of the type that shears and subdivides bubbles in water to obtain fine bubbles has been illustrated, the examples of FIGS. 13 to 19 are respectively shown in any of the types of fine bubble generating devices 5 illustrated above. Needless to say, it can be applied.

ところで、ディスポーザー1の制御部9によると、ディスポーザー1の運転中または運転後等、適宜のタイミングで微細気泡を含有させた槽用水をディスポーザー槽2に吐水させたり、微細気泡の泡径を変化させたり、有用成分を槽用水に供給するようにできる。たとえば、ディスポーザー1が微細気泡発生装置5の他に、界面活性剤を槽用水に混入させる液体有用成分混入手段44を備えると共にオゾンを槽用水に混入させる気体有用成分混入手段43を備えて構成された場合には、制御部9によって、図20のように、破砕部10での生ごみ破砕運転と同時に微細気泡発生装置5を作動させてディスポーザー槽2内に微細気泡を含有した槽用水を供給し、破砕部10での生ごみ破砕運転終了と同時に液体有用成分混入手段44を作動させ、界面活性剤を槽用水に混入させてディスポーザー槽2の内面の油分を除去させ、液体有用成分混入手段44の作動終了後に続けて気体有用成分混入手段43を作動させ、ディスポーザー槽2の内面に制菌・殺菌効果を発揮させるといった制御を行わせることができる。ディスポーザー槽2内で破砕部10により生ごみを破砕する際には破砕部10の可動刃10aの駆動に伴って生ごみが動いてディスポーザー槽2から生ごみ臭が上昇することもあるが、破砕部10の運転開始時(破砕部10の運転前でもよい)からディスポーザー槽2内に微細気泡を供給しておくと、ディスポーザー槽2内に微細気泡を充満させて微細気泡でディスポーザー槽2内を覆うことができ、ディスポーザー1の運転による悪臭の拡散(上昇)を抑制することができて好ましい。特に、気体有用成分供給手段等にて槽用水に芳香成分を含ませておくと、芳香成分を拡散(上昇)させることもできて好ましい。また上記のようにディスポーザー1の運転終了時に気体有用成分混入手段43等で槽用水にオゾンを含ませておくと、ディスポーザー槽2内に制菌・殺菌効果を発揮できると共に、ディスポーザー槽2内に残った生ごみかすにおいても雑菌が増殖するのを防止できて好ましい。なお、ディスポーザー1が更に泡径調整手段13や気体混入量調整手段11を備える場合には、制御部9によって、生ごみが破砕される時間に伴って微細気泡の泡径を変化させる制御も可能である。   By the way, according to the control part 9 of the disposer 1, the water for the tank containing the fine bubbles is discharged into the disposer tank 2 at an appropriate timing during the operation or after the operation of the disposer 1, or the bubble diameter of the fine bubbles is changed. Alternatively, useful components can be supplied to the tank water. For example, the disposer 1 is provided with a liquid useful component mixing means 44 for mixing a surfactant into the tank water and a gas useful component mixing means 43 for mixing ozone into the tank water in addition to the fine bubble generating device 5. 20, the control unit 9 supplies the tank water containing fine bubbles into the disposer tank 2 by operating the fine bubble generating device 5 simultaneously with the garbage crushing operation in the crushing unit 10 as shown in FIG. Then, simultaneously with the end of the crushing operation of the garbage in the crushing unit 10, the liquid useful component mixing means 44 is operated, the surfactant is mixed into the tank water to remove the oil on the inner surface of the disposer tank 2, and the liquid useful component mixing means After the operation of 44, the gas useful component mixing means 43 is operated so that the inner surface of the disposer tank 2 can exert a bactericidal / sterilizing effect. That. When crushing garbage in the disposer tank 2 by the crushing unit 10, the garbage may move as the movable blade 10 a of the crushing unit 10 is driven and the garbage smell rises from the disposer tank 2. When the fine bubbles are supplied into the disposer tank 2 from the start of the operation of the section 10 (before the crushing section 10 is operated), the disposer tank 2 is filled with the fine bubbles and the disperser tank 2 is filled with the fine bubbles. This is preferable because it can cover and suppress the spread (rise) of bad odor due to the operation of the disposer 1. In particular, it is preferable that the aroma component is contained in the tank water by a gas useful component supply means or the like because the aroma component can be diffused (increased). Moreover, when ozone is contained in the tank water by the gas useful component mixing means 43 or the like at the end of the operation of the disposer 1 as described above, the disinfecting tank 2 can exhibit bactericidal and sterilizing effects, and the disposer tank 2 It is preferable that the remaining garbage can be prevented from growing bacteria. In addition, when the disposer 1 is further provided with the bubble diameter adjustment means 13 and the gas mixing amount adjustment means 11, the control part 9 can also control to change the bubble diameter of fine bubbles with the time when garbage is crushed. It is.

また、上記実施形態では、シンク3の排水経路3bの途中にディスポーザー槽2を配設したタイプのディスポーザー1を例示したが、たとえば図21のように台所用のキャビネット6の上面カウンター6aにディスポーザー槽2の上方開口を開口させるようにしてにシンク3とは別個に配置したり、また槽用水給水経路4の出口4aもディスポーザー槽2の上方開口の上方位置に位置させてディスポーザー槽2に臨ませるようにするのも好ましい。   Moreover, although the disposer 1 of the type which arrange | positioned the disposer tank 2 in the middle of the drainage path 3b of the sink 3 was illustrated in the said embodiment, the disposer tank is shown in the upper surface counter 6a of the cabinet 6 for kitchens, for example like FIG. 2 is arranged separately from the sink 3 so as to open the upper opening, and the outlet 4a of the tank water supply path 4 is also positioned above the upper opening of the disposer tank 2 so as to face the disposer tank 2. It is also preferable to do so.

本発明の実施の形態の例のディスポーザーであって、(a)はディスポーザーの配置を説明する台所の斜視図であり、(b)はディスポーザーの要部の側断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a disposer of the example of embodiment of this invention, Comprising: (a) is a perspective view of the kitchen explaining the arrangement | positioning of a disposer, (b) is a sectional side view of the principal part of a disposer. 同上のディスポーザー装置の概略構成図である。It is a schematic block diagram of a disposer apparatus same as the above. (a)は気体導入部の要部の側断面図であり、(b)は溶解タンクの側断面図であり、(c)は微細気泡発生ノズルの側断面図である。(A) is a sectional side view of the principal part of a gas introduction part, (b) is a sectional side view of a dissolution tank, (c) is a sectional side view of a fine bubble generating nozzle. 本発明の実施の形態の他例のディスポーザーであって、(a)はディスポーザーの概略構成図であり、(b)は溶解管の断面図であり、(c)は溶解管の機能を説明する説明図である。It is the disposer of the other example of embodiment of this invention, Comprising: (a) is a schematic block diagram of a disposer, (b) is sectional drawing of a dissolution tube, (c) demonstrates the function of a dissolution tube It is explanatory drawing. 本発明の実施の形態の更に他例のディスポーザーであって、(a)はディスポーザーの概略構成図であり、(b)は微細気泡発生装置の要部の断面図である。It is the disposer of the further another example of embodiment of this invention, Comprising: (a) is a schematic block diagram of a disposer, (b) is sectional drawing of the principal part of a microbubble generator. 本発明の実施の形態の更に他例のディスポーザーにおける、微細気泡発生装置の要部の断面図である。It is sectional drawing of the principal part of the microbubble generator in the disposer of the further another example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーの概略構成図である。It is a schematic block diagram of the disposer of the further another example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーにおける、槽用水給水経路の要部の概略構成図である。It is a schematic block diagram of the principal part of the water supply path for tanks in the disposer of the further another example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーにおける、微細気泡発生装置の要部の概略側断面図である。It is a schematic sectional side view of the principal part of the microbubble generator in the disposer of the other example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーにおける、微細気泡発生装置の要部の概略側断面図である。It is a schematic sectional side view of the principal part of the microbubble generator in the disposer of the other example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーにおける泡径調整手段であり、(a)は正面断面図であり、(b)は側面図である。It is a bubble diameter adjustment means in the disposer of the further another example of embodiment of this invention, (a) is front sectional drawing, (b) is a side view. 本発明の実施の形態の更に他例のディスポーザーにおける、微細気泡発生装置の要部の概略側断面図である。It is a schematic sectional side view of the principal part of the microbubble generator in the disposer of the other example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーにおける、槽用水給水経路の要部の概略構成図である。It is a schematic block diagram of the principal part of the water supply path for tanks in the disposer of the further another example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーにおける、槽用水給水経路の要部の概略構成図である。It is a schematic block diagram of the principal part of the water supply path for tanks in the disposer of the further another example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーにおける、槽用水給水経路の要部の概略構成図である。It is a schematic block diagram of the principal part of the water supply path for tanks in the disposer of the further another example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーにおける、槽用水給水経路の要部の概略構成図である。It is a schematic block diagram of the principal part of the water supply path for tanks in the disposer of the further another example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーにおける、槽用水給水経路の要部の概略構成図である。It is a schematic block diagram of the principal part of the water supply path for tanks in the disposer of the further another example of embodiment of this invention. 本発明の実施の形態の更に他例のディスポーザーであって、(a)は泡径調整手段の分解斜視図であり、(b)は同泡径調整手段の動作説明図である。It is a disposer of the further another example of embodiment of this invention, Comprising: (a) is a disassembled perspective view of a bubble diameter adjustment means, (b) is operation | movement explanatory drawing of the bubble diameter adjustment means. 泡径調整手段の他例であり、動作説明図である。It is another example of a bubble diameter adjustment means, and is operation | movement explanatory drawing. 本発明の実施の形態の更に他例のディスポーザーであって、制御部による制御の一例を示すタイムチャートである。It is a disposer of other example of embodiment of this invention, Comprising: It is a time chart which shows an example of control by a control part. 本発明の実施の形態の更に他例のディスポーザーの要部の側断面図である。It is side sectional drawing of the principal part of the disposer of the further another example of embodiment of this invention.

符号の説明Explanation of symbols

1 ディスポーザー
2 ディスポーザー槽
4 槽用水給水経路
4a 出口
5 微細気泡発生装置
6 キャビネット
7 シンク下空間
8 排水経路
9 制御部
10 破砕部
11 気体混入量調整手段
13 泡径調整手段
15 気体混入部
19 気体供給流路
43 気体有用成分混入手段
44 液体有用成分混入手段
45 固体有用成分混入手段
DESCRIPTION OF SYMBOLS 1 Disposer 2 Disposer tank 4 Water supply path for tanks 4a Outlet 5 Microbubble generator 6 Cabinet 7 Space under sink 8 Drainage path 9 Control part 10 Crushing part 11 Gas mixing amount adjusting means 13 Bubble diameter adjusting means 15 Gas mixing part 19 Gas supply Channel 43 Gas useful component mixing means 44 Liquid useful component mixing means 45 Solid useful component mixing means

Claims (13)

収納した生ごみを破砕処理するディスポーザー槽と、ディスポーザー槽に出口を臨ませた槽用水給水経路と、槽用水給水経路の出口からディスポーザー槽内に吐水される槽用水に微細気泡を発生させる微細気泡発生装置とを備えたことを特徴とするディスポーザー。 Disposer tank that crushes stored garbage, tank water supply path that faces the disposer tank, and fine bubbles that generate fine bubbles in the tank water discharged into the disposer tank from the outlet of the tank water supply path Disposer characterized by comprising a generator. 微細気泡発生装置で泡径0.1〜1000μmの微細気泡を発生させるようにしたことを特徴とする請求項1に記載のディスポーザー。 2. The disposer according to claim 1, wherein fine bubbles having a bubble diameter of 0.1 to 1000 [mu] m are generated by a fine bubble generator. 微細気泡発生装置に槽用水給水経路に気体を混入させる気体混入部を備え、この気体混入部に気体の槽用水への混入量を調整する気体混入量調整手段を設けたことを特徴とする請求項1または請求項2に記載のディスポーザー。 The fine bubble generating device is provided with a gas mixing part for mixing gas into the tank water supply path, and the gas mixing part is provided with gas mixing amount adjusting means for adjusting the mixing amount of the gas into the tank water. The disposer according to claim 1 or 2. 微細気泡発生装置に、発生させる微細気泡の泡径を調整する泡径調整手段を設けたことを特徴とする請求項1乃至3のいずれかに記載のディスポーザー。 The disposer according to any one of claims 1 to 3, wherein a bubble diameter adjusting means for adjusting a bubble diameter of the generated fine bubbles is provided in the fine bubble generator. 槽用水給水経路に、気体有用成分混入手段を設けたことを特徴とする請求項1乃至4のいずれかに記載のディスポーザー。 The disposer according to any one of claims 1 to 4, wherein gas useful component mixing means is provided in the tank water supply path. 槽用水給水経路に、液体有用成分混入手段を設けたことを特徴とする請求項1乃至5のいずれかに記載のディスポーザー。 The disposer according to any one of claims 1 to 5, wherein means for mixing liquid useful components is provided in the tank water supply path. 槽用水給水経路に、固体有用成分混入手段を設けたことを特徴とする請求項1乃至6のいずれかに記載のディスポーザー。 The disposer according to any one of claims 1 to 6, characterized in that solid useful component mixing means is provided in the tank water supply path. 気体有用成分を、酸素、オゾン、芳香成分の少なくとも1つで構成したことを特徴とする請求項5に記載のディスポーザー。 The disposer according to claim 5, wherein the gas useful component is composed of at least one of oxygen, ozone, and a fragrance component. 気体混入部に気体供給流路を槽用水給水経路に至るように設け、この気体供給流路の途中にオゾンを発生させる高電圧放電部を設けたことを特徴とする請求項8に記載のディスポーザー。 9. The disposer according to claim 8, wherein a gas supply passage is provided in the gas mixing portion so as to reach the tank water supply passage, and a high voltage discharge portion for generating ozone is provided in the middle of the gas supply passage. . 液体有用成分を、界面活性剤、芳香成分の少なくとも1つで構成したことを特徴とする請求項6に記載のディスポーザー。 The disposer according to claim 6, wherein the liquid useful component is composed of at least one of a surfactant and an aromatic component. 固体有用成分を芳香成分で構成したことを特徴とする請求項7に記載のディスポーザー。 The disposer according to claim 7, wherein the solid useful component is composed of an aromatic component. ディスポーザーの運転前からディスポーザー槽内に微細気泡を含んだ槽用水を供給させる制御部を設けたことを特徴とする請求項1乃至11のいずれかに記載のディスポーザー。 The disposer according to any one of claims 1 to 11, further comprising a control unit configured to supply tank water containing fine bubbles into the disposer tank before the disposer is operated. ディスポーザーの運転後にディスポーザー槽内に微細気泡を含んだ槽用水を供給させる制御部を設けたことを特徴とする請求項1乃至12のいずれかに記載のディスポーザー。 The disposer according to any one of claims 1 to 12, further comprising a control unit configured to supply tank water containing fine bubbles into the disposer tank after the disposer is operated.
JP2005312017A 2005-10-26 2005-10-26 disposer Expired - Fee Related JP5249496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312017A JP5249496B2 (en) 2005-10-26 2005-10-26 disposer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312017A JP5249496B2 (en) 2005-10-26 2005-10-26 disposer

Publications (2)

Publication Number Publication Date
JP2007117854A true JP2007117854A (en) 2007-05-17
JP5249496B2 JP5249496B2 (en) 2013-07-31

Family

ID=38142279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312017A Expired - Fee Related JP5249496B2 (en) 2005-10-26 2005-10-26 disposer

Country Status (1)

Country Link
JP (1) JP5249496B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006397A (en) * 2006-06-30 2008-01-17 Aisin Seiki Co Ltd Microbubble generation apparatus
JP2008307511A (en) * 2007-06-18 2008-12-25 Panasonic Electric Works Co Ltd Apparatus for generating microbubble
JP2009112964A (en) * 2007-11-07 2009-05-28 Sharp Corp Fine bubble generator
JP2012148243A (en) * 2011-01-19 2012-08-09 Panasonic Corp Liquid conveyance apparatus
JP2016137494A (en) * 2016-05-09 2016-08-04 パナソニック株式会社 Fine bubble generation method, engineering method of fine bubble generator, and fine bubble generator
CN106381907A (en) * 2016-09-06 2017-02-08 安庆建金智能科技有限公司 Multifunctional water trough with microbubble water machine
WO2020158486A1 (en) * 2019-01-30 2020-08-06 安永エアポンプ株式会社 Disposer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025060A (en) * 1973-07-07 1975-03-17
JPS61212318A (en) * 1985-03-19 1986-09-20 Jinzo Nagahiro Generating method for fine air foam
JPH04114442U (en) * 1991-03-15 1992-10-08 三機工業株式会社 Kitchen waste crushing equipment
JPH11137882A (en) * 1997-11-12 1999-05-25 Hitachi Ltd Home washer
JP2000301169A (en) * 1999-04-23 2000-10-31 Techno Excel Co Ltd Diffusion type chemical agent adding device
JP2002143658A (en) * 2000-11-13 2002-05-21 Teruji Sasaki Bubble water manufacturing device
JP2003230527A (en) * 2002-02-07 2003-08-19 Nidec Shibaura Corp Pump and washing device
JP2004223463A (en) * 2003-01-24 2004-08-12 Masayasu Miyazaki Garbage disposal system
JP2005211588A (en) * 2004-02-02 2005-08-11 Sharp Corp Dishwasher

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025060A (en) * 1973-07-07 1975-03-17
JPS61212318A (en) * 1985-03-19 1986-09-20 Jinzo Nagahiro Generating method for fine air foam
JPH04114442U (en) * 1991-03-15 1992-10-08 三機工業株式会社 Kitchen waste crushing equipment
JPH11137882A (en) * 1997-11-12 1999-05-25 Hitachi Ltd Home washer
JP2000301169A (en) * 1999-04-23 2000-10-31 Techno Excel Co Ltd Diffusion type chemical agent adding device
JP2002143658A (en) * 2000-11-13 2002-05-21 Teruji Sasaki Bubble water manufacturing device
JP2003230527A (en) * 2002-02-07 2003-08-19 Nidec Shibaura Corp Pump and washing device
JP2004223463A (en) * 2003-01-24 2004-08-12 Masayasu Miyazaki Garbage disposal system
JP2005211588A (en) * 2004-02-02 2005-08-11 Sharp Corp Dishwasher

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006397A (en) * 2006-06-30 2008-01-17 Aisin Seiki Co Ltd Microbubble generation apparatus
JP2008307511A (en) * 2007-06-18 2008-12-25 Panasonic Electric Works Co Ltd Apparatus for generating microbubble
JP2009112964A (en) * 2007-11-07 2009-05-28 Sharp Corp Fine bubble generator
JP2012148243A (en) * 2011-01-19 2012-08-09 Panasonic Corp Liquid conveyance apparatus
JP2016137494A (en) * 2016-05-09 2016-08-04 パナソニック株式会社 Fine bubble generation method, engineering method of fine bubble generator, and fine bubble generator
CN106381907A (en) * 2016-09-06 2017-02-08 安庆建金智能科技有限公司 Multifunctional water trough with microbubble water machine
WO2020158486A1 (en) * 2019-01-30 2020-08-06 安永エアポンプ株式会社 Disposer
JP2020121266A (en) * 2019-01-30 2020-08-13 安永エアポンプ株式会社 Disposer

Also Published As

Publication number Publication date
JP5249496B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP4736672B2 (en) Shower equipment
JP4915641B2 (en) Kitchen sink
US8099802B2 (en) Flush toilet equipment
JP4925310B2 (en) Shower equipment
JP5249496B2 (en) disposer
KR101614906B1 (en) Air cleaning apparatus for using microbubble
JP4577186B2 (en) Dishwasher
JP2009082903A (en) Microbubble generator
JP4915901B2 (en) Bathroom vanity
WO1999009265A1 (en) Cleaning water discharge apparatus
JP2009136864A (en) Microbubble generator
JP2008138420A (en) Micro-bubble generator and flush toilet stool device using it
KR101088145B1 (en) Apparatus for generating micro bubbles
JP5276254B2 (en) Flush toilet equipment
JP2008237996A (en) Fine air bubble producer, and washing device, showering device, and fish preserve using the same
JP4710517B2 (en) Shower equipment
KR101051936B1 (en) Screw press having air bubble inject type cleaning device
KR20080101047A (en) Micro bubble occurrence nozzle
JP2014113553A (en) Fine bubble generation nozzle
KR20110138659A (en) Water-saving shower generating bubbles
JP2008114099A (en) Microbubble generation device and bubble fining implement
JP2006068631A (en) Washing apparatus and bubble generation nozzle used therein
KR101168330B1 (en) Device for making ozonic nano buble with applying pressure
JP4965509B2 (en) Micro bubble generator
JP6473839B1 (en) Deodorizing device for flush toilet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120403

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees