JP2007115547A - Discharge lamp and light source device - Google Patents

Discharge lamp and light source device Download PDF

Info

Publication number
JP2007115547A
JP2007115547A JP2005306309A JP2005306309A JP2007115547A JP 2007115547 A JP2007115547 A JP 2007115547A JP 2005306309 A JP2005306309 A JP 2005306309A JP 2005306309 A JP2005306309 A JP 2005306309A JP 2007115547 A JP2007115547 A JP 2007115547A
Authority
JP
Japan
Prior art keywords
discharge
conductor
tube
discharge tube
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005306309A
Other languages
Japanese (ja)
Other versions
JP4761244B2 (en
Inventor
Takuya Serita
卓也 芹田
Masaya Shito
雅也 志藤
Masashi Shindo
正士 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Shizuoka University NUC
Original Assignee
Koito Manufacturing Co Ltd
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd, Shizuoka University NUC filed Critical Koito Manufacturing Co Ltd
Priority to JP2005306309A priority Critical patent/JP4761244B2/en
Publication of JP2007115547A publication Critical patent/JP2007115547A/en
Application granted granted Critical
Publication of JP4761244B2 publication Critical patent/JP4761244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode structure of a discharge light emitting lamp using plasma discharge and a light emitting device using the same which are effective in improving light emitting efficiency. <P>SOLUTION: This discharge light emitting lamp comprises a discharge bulb 3 for generating discharge light emission using plasma discharge which is generated by receiving high frequency electromagnetic waves, and a wave guide 4 having an outer conductor 4a and an inner conductor 4b for transmitting the electromagnetic waves into the discharge bulb 3. The top 5 of the inner conductor 4b is made to protrude into a discharge space of the discharge bulb 3, thereby directly conducting the electromagnetic waves into the discharge space. In the case of application to an electrodeless lamp, the electromagnetic waves are effectively conducted into the discharge bulb by making the top of the inner conductor protrude into the inside space or up to near the inside wall of the discharge bulb. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放電管(発光管)内に電磁波導入用電極を有する放電灯や、放電管内に電極を有さない無電極放電灯において、高効率化を図るための技術に関する。   The present invention relates to a technique for increasing the efficiency of a discharge lamp having an electrode for introducing an electromagnetic wave in a discharge tube (arc tube) or an electrodeless discharge lamp having no electrode in the discharge tube.

放電空間内に電極を持たない無電極放電灯が知られており、フィラメントや電極の消耗によるランプ寿命の制限を受けず、また、電極からの熱損失がないことや、放電管内の封入物と電極材料との反応を考慮する必要がなく、効率向上に好適な発光物質を使用することができる。   There are known electrodeless discharge lamps that do not have electrodes in the discharge space, and are not subject to lamp life limitations due to exhaustion of filaments or electrodes, there is no heat loss from the electrodes, and there are no enclosures in the discharge tube. It is not necessary to consider the reaction with the electrode material, and a luminescent substance suitable for improving efficiency can be used.

ところで、自動車用灯具照明等のように配光制御を必要とし、かつ小型の光源を実現するには実用化に向けて解決すべき困難な問題がある。例えば、空洞共振器を用いた方法では、マグネトロンでマイクロ波を発振させ、導波管を介して空洞共振器中の無電極放電管を発光させる場合に、該空洞共振器の最小寸法が電磁波の周波数によって原理的に決定されてしまう。   By the way, there is a difficult problem to be solved for practical use in order to realize a small light source that requires light distribution control, such as lighting for automobiles. For example, in a method using a cavity resonator, when a microwave is oscillated by a magnetron and an electrodeless discharge tube in the cavity resonator is caused to emit light via a waveguide, the minimum dimension of the cavity resonator is an electromagnetic wave. It is determined in principle by the frequency.

また、高周波電流の使用に付随して発生する電磁波ノイズの問題を解決することが必要とされ、電磁波遮蔽手段(例えば、金網等)を設置する方法では効率低下や配光性能の悪化等への影響が懸念される。つまり、放電管の周囲に光を遮るようなシールドやコイル等を配置しないことが望ましい。   In addition, it is necessary to solve the problem of electromagnetic noise generated accompanying the use of high-frequency current, and the method of installing an electromagnetic shielding means (for example, a wire mesh etc.) reduces efficiency and deteriorates light distribution performance. There are concerns about the impact. That is, it is desirable not to arrange a shield, a coil or the like that blocks light around the discharge tube.

そのような要請に応じた小型無電極放電灯の構成として、放電管を同軸管の端部に配置して、高周波の電磁波により放電管内の発光物質を励起するようにした灯具が知られている(例えば、特許文献1参照)。つまり、同軸管の端部に形成されたスリットから、局所的に強い高周波電界を発生させ、これによって励起された表面波プラズマを利用して電磁波の遮蔽効果が得られるようにした構成では、同軸管は周波数による寸法上の制限を受けない(遮断周波数が無いともいう。)ために、該同軸管の直径とほぼ同寸法の放電管を用いることができる。   As a configuration of a small electrodeless discharge lamp in response to such a request, there is known a lamp in which a discharge tube is arranged at the end of a coaxial tube and a luminescent substance in the discharge tube is excited by high-frequency electromagnetic waves. (For example, refer to Patent Document 1). In other words, a configuration in which a strong radio frequency electric field is generated locally from the slit formed at the end of the coaxial tube and an electromagnetic wave shielding effect is obtained using the surface wave plasma excited thereby is coaxial. Since the tube is not limited in size by frequency (also referred to as having no cut-off frequency), a discharge tube having the same size as the diameter of the coaxial tube can be used.

特開2003−197156号公報JP 2003-197156 A

ところで、従来の無電極放電灯において、さらに発光効率を高めるためには下記に示す問題の解決が必要であることが分かっている。   By the way, in the conventional electrodeless discharge lamp, it has been found that the following problems need to be solved in order to further increase the luminous efficiency.

(1)従来の放電管では、その管底面を通して電磁波を導入させるため、ジュール損失が大きいこと(放電管にはセラミックや石英ガラス等の材料が用いられ、導波管側の管底面での熱損失が問題とされる。)
(2)放電管と、熱容量の大きな導体部(外部導体や内部導体)との接触面積が大きいと、熱伝導による損失が大きくなること
(3)従来の放電灯では放電アークが管壁に沿っており、プラズマ中の電子が拡散や再結合で失われ易く、アーク温度が上がり難いこと(即ち、高効率化、高輝度化に支障を来たす原因となる。)
(4)発光効率を高めるには、放電管内に電磁波を効率良く導入する必要があること。
(1) In conventional discharge tubes, electromagnetic waves are introduced through the bottom surface of the tube, so joule loss is large (a material such as ceramic or quartz glass is used for the discharge tube, and heat is generated at the bottom surface of the tube on the waveguide side. Loss is a problem.)
(2) Loss due to heat conduction increases when the contact area between the discharge tube and a conductor portion (external conductor or internal conductor) having a large heat capacity is large. (3) In a conventional discharge lamp, the discharge arc runs along the tube wall. The electrons in the plasma are easily lost due to diffusion and recombination, and the arc temperature is difficult to increase (that is, the high efficiency and high brightness are hindered).
(4) To increase luminous efficiency, it is necessary to efficiently introduce electromagnetic waves into the discharge tube.

そこで、本発明は、プラズマによる放電発光を利用した放電灯及びこれを用いた光源装置において、発光効率の向上に有効な電極構造の提供を課題とする。   Therefore, an object of the present invention is to provide an electrode structure that is effective for improving luminous efficiency in a discharge lamp using discharge luminescence by plasma and a light source device using the same.

本発明の第1のものは、高周波の電磁波を受けて生成されるプラズマにより放電発光する放電管と、電磁波を伝送するための外部導体及び内部導体を有する導波管を用いた放電灯において、内部導体の先端部が上記放電管の放電空間内に突出されるとともに、内部導体が、放電管に一体化された第一の導電性部材と、導波管内に設けられた第二の導電性部材から構成され、放電管が上記導波管の端部に取り付けられた状態で、第一の導電性部材と第二の導電性部材とが部分的に近接して配置された構成を有するものである。   The first of the present invention is a discharge lamp using a discharge tube that discharges and emits light by plasma generated by receiving high-frequency electromagnetic waves, and a waveguide having an outer conductor and an inner conductor for transmitting electromagnetic waves. The tip of the inner conductor protrudes into the discharge space of the discharge tube, and the inner conductor is integrated with the first conductive member integrated with the discharge tube and the second conductive member provided in the waveguide. The first conductive member and the second conductive member are arranged in close proximity to each other with the discharge tube attached to the end of the waveguide. It is.

また、本発明の第2のものは、高周波の電磁波を受けて生成されるプラズマにより放電発光する放電管と、電磁波を伝送するための外部導体及び内部導体を有する導波管を用いた放電灯において、内部導体の先端部が放電管の内部空間又は管壁に近接した位置まで突出されるとともに、該先端部と外部導体との間には、放電管と一体に形成された突部が介在されたものである。   The second aspect of the present invention is a discharge lamp using a discharge tube that discharges light by plasma generated by receiving high-frequency electromagnetic waves, and a waveguide having an outer conductor and an inner conductor for transmitting the electromagnetic waves. , The tip of the inner conductor protrudes to a position close to the inner space or tube wall of the discharge tube, and a protrusion formed integrally with the discharge tube is interposed between the tip and the outer conductor. It has been done.

従って、これらの本発明では、内部導体の端部から効率良く電磁波を放電空間に導入することができるため、従来の構成に比して発光効率を高めることができる。   Therefore, in these present inventions, electromagnetic waves can be efficiently introduced into the discharge space from the end portion of the inner conductor, so that the light emission efficiency can be increased as compared with the conventional configuration.

本発明によれば、放電管の発光効率を高めることにより、高輝度化又は小型化に有効である。   According to the present invention, increasing the luminous efficiency of the discharge tube is effective for increasing the brightness or reducing the size.

例えば、内部導体の先端部を放電管内に突出させた構成では、電磁波を放電管内に直接的に導入することができ、放電管の管壁(底面)から電磁波を導入する形態に比してジュール損失を低減させることができる。   For example, in the configuration in which the tip portion of the inner conductor protrudes into the discharge tube, electromagnetic waves can be directly introduced into the discharge tube, and compared with a mode in which electromagnetic waves are introduced from the tube wall (bottom surface) of the discharge tube. Loss can be reduced.

また、内部導体(第一の導電性部材)の先端部が露出した状態で放電空間内に位置される構成によれば、放電アークの位置が固定されて安定化するため、配光設計等の面で好ましい性質が得られる。また、放電アークと管壁との距離が一定に保たれる結果、効率や寿命等の面で有利となる。つまり、従来の構成や一般的な空洞共振器型の無電極放電灯等において問題とされるのは、アーク位置が不安定化して管壁に近くなることに起因する効率の低下(つまり、プラズマ中の電子の管壁への拡散や管壁での再結合によるアーク密度の低下)や、短寿命化であるが、本発明ではそのような問題を克服し、安定性及び長寿命を保証することができる。   In addition, according to the configuration in which the tip of the inner conductor (first conductive member) is exposed and positioned in the discharge space, the position of the discharge arc is fixed and stabilized. A desirable property in terms of surface is obtained. In addition, the distance between the discharge arc and the tube wall is kept constant, which is advantageous in terms of efficiency and life. In other words, the problem with conventional configurations and general cavity resonator type electrodeless discharge lamps is that the efficiency decreases due to the arc position becoming unstable and close to the tube wall (that is, plasma In the present invention, this problem is overcome, and stability and long life are ensured. be able to.

放電管内の封入物質と内部導体との反応を回避することの必要性から内部導体の材料選択の範囲が狭くなるという点に関しては、内部導体の先端部が放電管の管壁に埋設された状態、つまり、管材料により被覆された状態で放電空間内に位置される構成を採用すれば良い。   Regarding the point that the range of material selection for the inner conductor is narrowed due to the necessity of avoiding the reaction between the enclosed substance in the discharge tube and the inner conductor, the state where the tip of the inner conductor is embedded in the tube wall of the discharge tube In other words, it is only necessary to adopt a configuration that is positioned in the discharge space while being covered with the tube material.

また、伝熱による損失を低減するためには、内部導体に複数の導電性部材を用いた構成において、内部導体の先端部の外径を小さくすることによって、放電管から内部導体への熱伝導による損失を減らすことが好ましい。   In addition, in order to reduce the loss due to heat transfer, in a configuration using a plurality of conductive members for the inner conductor, the heat conduction from the discharge tube to the inner conductor is reduced by reducing the outer diameter of the tip of the inner conductor. It is preferable to reduce the loss due to.

内部導体を、放電管に一体化された第一の導電性部材と、導波管内に設けられた第二の導電性部材で構成した形態において、放電管が導波管の端部に取り付けられた状態では、第一の導電性部材と第二の導電性部材とが部分的に近接して配置させる。これにより、第一の導電性部材から第二の導電性部材への直接的な伝熱による損失を減少させることができる。また、第一の導電性部材を放電管に一体化させた構成によって、放電管内への電磁波の導入を効率良く行うことができる。   In the form in which the inner conductor is composed of the first conductive member integrated with the discharge tube and the second conductive member provided in the waveguide, the discharge tube is attached to the end of the waveguide. In this state, the first conductive member and the second conductive member are arranged in close proximity to each other. Thereby, the loss by the direct heat transfer from the 1st conductive member to the 2nd conductive member can be reduced. Moreover, the structure which integrated the 1st electroconductive member with the discharge tube can introduce | transduce electromagnetic waves into a discharge tube efficiently.

上記構成において発光効率をさらに高めるには、放電管の管壁のうち、内部導体の先端部に対向する位置に別の導体を補助電極として付設することが好ましく、該導体の一端部が露出された状態又は放電管の管壁に埋設された状態で放電空間内に位置されるように構成すれば良い。例えば、この導体を始動用電極として流用すれば、放電管への電界印加により放電管の始動が容易になる等の利点が得られる。   In order to further increase the luminous efficiency in the above configuration, it is preferable to attach another conductor as an auxiliary electrode at a position facing the tip of the inner conductor in the tube wall of the discharge tube, and one end of the conductor is exposed. What is necessary is just to comprise so that it may be located in a discharge space in the state which was buried or the state embed | buried under the tube wall of the discharge tube. For example, if this conductor is used as a starting electrode, advantages such as easy starting of the discharge tube by applying an electric field to the discharge tube can be obtained.

内部導体の先端部を、放電管の内部空間又は管壁に近接した位置まで突出させた構成は、無電極放電灯に好適であって、内部導体の先端部と外部導体との間に、放電管と一体に形成された突部を介在させることにより、内部導体と外部導体との沿面距離を充分に確保することができる。つまり、導体同士が近接した配置では放電が発生し易いが、放電管と一体に形成された突部を導体間に介在させて放電を遮断することで異常放電の防止効果が得られ、放電管本来の発光を確実に行うことができる。   The configuration in which the tip of the inner conductor protrudes to a position close to the inner space or tube wall of the discharge tube is suitable for an electrodeless discharge lamp, and the discharge is between the tip of the inner conductor and the outer conductor. By interposing a protrusion formed integrally with the tube, a sufficient creepage distance between the inner conductor and the outer conductor can be secured. In other words, discharge is likely to occur in the arrangement where the conductors are close to each other, but the effect of preventing abnormal discharge can be obtained by interrupting the discharge by interposing a protrusion formed integrally with the discharge tube between the conductors. Original light emission can be performed reliably.

電磁波発生用の電源部と、電磁波を放電管に伝送するための導波管とを備えた光源装置への適用において、放電管内に電磁波導入用の電極を設けた放電灯や、放電管内に電極を設けない無電極放電灯の発光効率の向上に有効である。即ち、放電灯の高輝度化を実現することができ、あるいは従来と同程度の輝度を得る場合において電力の低減や小型化を実現することができる。   In application to a light source device including a power source for generating electromagnetic waves and a waveguide for transmitting electromagnetic waves to a discharge tube, a discharge lamp having an electrode for introducing electromagnetic waves in the discharge tube, or an electrode in the discharge tube This is effective in improving the light emission efficiency of an electrodeless discharge lamp that does not have a light source. That is, it is possible to increase the brightness of the discharge lamp, or it is possible to reduce the power and reduce the size in the case where the brightness comparable to the conventional one is obtained.

本発明は、配光制御を必要とする各種の光源に適用することができる。例えば、車両用前照灯や標識灯の光源、道路照明や信号機等の光源、あるいは店舗ディスプレイ照明、プロジェクタ装置用光源等において、発光部の小サイズ化、高輝度化、輝度分布の均一化等が求められる場合に好適であり、円筒状又は球状等の小型光源であって、その周囲に光を遮蔽し又は拡散させる部材を配置しない構成を提供することができる。   The present invention can be applied to various light sources that require light distribution control. For example, in light sources for vehicle headlamps and sign lights, light sources such as road lighting and traffic lights, store display lighting, light sources for projector devices, etc., the size of the light emitting part is reduced, the luminance is increased, the luminance distribution is made uniform, etc. Can be provided, and it is a small light source such as a cylindrical shape or a spherical shape, and a configuration in which a member that shields or diffuses light is not disposed around the light source can be provided.

図1は、本発明に係る放電灯を用いた光源装置の基本構成例を示した説明図である。   FIG. 1 is an explanatory view showing a basic configuration example of a light source device using a discharge lamp according to the present invention.

光源装置1は、電源部2、放電管3、電磁波を伝送するための導波管4を備えている。   The light source device 1 includes a power supply unit 2, a discharge tube 3, and a waveguide 4 for transmitting electromagnetic waves.

電源部2と放電管3とを繋ぐ導波管4は、外部導体4a及び内部導体4bを有しており、例えば、内部導体4bを中心導体として該導体の外周に外部導体4aを配置した同軸管や同軸ケーブルが用いられる。尚、配置上の自由度を考慮した場合には可撓性に富む素材を用いることが好ましい。   The waveguide 4 connecting the power supply unit 2 and the discharge tube 3 has an outer conductor 4a and an inner conductor 4b. For example, a coaxial in which the outer conductor 4a is arranged on the outer periphery of the conductor with the inner conductor 4b as a central conductor. Tubes and coaxial cables are used. In consideration of the degree of freedom in arrangement, it is preferable to use a material having high flexibility.

高周波の電磁波発生用の電源部2には、例えば、マイクロ波帯(1乃至100GHz)の電磁波を発生する発振部が含まれ、マグネトロンが使用されるが、これに限らず、半導体スイッチング素子(FETやバイポーラトランジスタ等)を用いて構成される高周波アンプ装置等の使用が可能である。   The power supply unit 2 for generating high-frequency electromagnetic waves includes, for example, an oscillation unit that generates electromagnetic waves in a microwave band (1 to 100 GHz), and uses a magnetron. It is possible to use a high-frequency amplifier device configured by using a bipolar transistor or the like.

放電管3については、例えば、セラミックや合成石英ガラス等の透明材料を用いて中空円筒状に形成され、管内には所定の封入物質(キセノンやアルゴン等のガス、NaIやScI3等の金属沃化物、金属臭化物等)が充填されている。また、必要に応じて放電管の内面又は外面に蛍光体を塗布する形態が可能である。尚、中心孔を有するトーラス形状や2重管構造又は円筒形状の中央に凹部を形成した構造等を用いても良いが、同軸管や同軸ケーブルの先端部に放電管を付設する場合には、円筒管や中空球のように、放電管の外径を小さくすることができて小型化が可能な形状が好ましい。   The discharge tube 3 is formed in a hollow cylindrical shape using a transparent material such as ceramic or synthetic quartz glass, for example, and a predetermined encapsulated substance (a gas such as xenon or argon, a metal iodide such as NaI or ScI3) is contained in the tube , Metal bromide, etc.). Moreover, the form which apply | coats a fluorescent substance to the inner surface or outer surface of a discharge tube as needed is possible. In addition, although a torus shape having a center hole, a double tube structure, or a structure in which a concave portion is formed in the center of a cylindrical shape may be used, when a discharge tube is attached to the tip of a coaxial tube or a coaxial cable, A shape that can reduce the outer diameter of the discharge tube and can be miniaturized, such as a cylindrical tube or a hollow sphere, is preferable.

本構成例では、内部導体4bの先端部5が放電管3の放電空間内に突出されており、外部導体4aの端部とともに電磁波照射部を構成している。つまり、放電管3が取り付けられる、導波管4の端部は、放電管3に電磁波を導入するためのランチャーとしての機能を有する。   In this configuration example, the tip 5 of the inner conductor 4b protrudes into the discharge space of the discharge tube 3, and constitutes an electromagnetic wave irradiation unit together with the end of the outer conductor 4a. That is, the end of the waveguide 4 to which the discharge tube 3 is attached has a function as a launcher for introducing electromagnetic waves into the discharge tube 3.

導波管4上には反射波検出手段6が設けられており、放電管3から電源部2側へと伝播する反射波を検波する。そして、その計測結果が出力制御手段7に送出される。   Reflected wave detection means 6 is provided on the waveguide 4 to detect a reflected wave propagating from the discharge tube 3 to the power supply unit 2 side. Then, the measurement result is sent to the output control means 7.

出力制御手段7は反射波検出手段6からの計測情報に基づいてインピーダンスマッチングの調整により反射損失を最小にすべく電源部2の出力を制御する。つまり、同軸管や同軸ケーブルを用いて電源部2から放電管3に電磁波を伝送する構成において、高周波の場合にそのままでは反射波のレベルが大きくなり放電管3に効率良く電力供給を行えないかあるいは電力損失の増加が問題となる。そこで、電源部2と放電管3との間でインピーダンスマッチングをとるための装置(例えば、スリースタブチューナ等を用いたマッチング装置)を使って反射波を抑制することで放電管3への電力供給を効率良く行うことができる。具体的には、反射波の検波情報に基づいて導波回路のLC成分(L:誘導性成分、C:容量性成分)を調整して反射損失が最小となるように(反射波を充分に低減させる。)、電源部2の出力インピーダンスと放電管3のインピーダンスとの間で整合をとる。   The output control means 7 controls the output of the power supply unit 2 to minimize the reflection loss by adjusting the impedance matching based on the measurement information from the reflected wave detection means 6. That is, in a configuration in which electromagnetic waves are transmitted from the power supply unit 2 to the discharge tube 3 using a coaxial tube or a coaxial cable, the level of the reflected wave becomes large as it is in the case of a high frequency, so that the discharge tube 3 can be efficiently supplied with power. Or the increase in power loss becomes a problem. Therefore, power is supplied to the discharge tube 3 by suppressing reflected waves using a device for impedance matching between the power supply unit 2 and the discharge tube 3 (for example, a matching device using a sleeving tuner or the like). Can be performed efficiently. Specifically, the LC component of the waveguide circuit (L: inductive component, C: capacitive component) is adjusted based on the detection information of the reflected wave so that the reflection loss is minimized (the reflected wave is sufficiently reduced). Matching is performed between the output impedance of the power supply unit 2 and the impedance of the discharge tube 3.

例えば、マグネトロンから、アイソレータ、減衰器、方向性結合器、スリースタブチューナ、同軸導波管変換器、同軸管を順に経て放電管へと繋がる構成形態では、同軸管の先端部がアンテナとして機能する。尚、アイソレータはマグネトロンに反射波が戻らないようにする役目を有し、方向性結合器は電磁波を一方向にしか進めないようにするための装置である。   For example, in a configuration in which a magnetron, an isolator, an attenuator, a directional coupler, a sleeving tuner, a coaxial waveguide converter, and a coaxial tube are sequentially connected to the discharge tube, the tip of the coaxial tube functions as an antenna . The isolator serves to prevent the reflected wave from returning to the magnetron, and the directional coupler is a device for allowing the electromagnetic wave to travel only in one direction.

強い高周波電界によって放電管内に高密度のプラズマが生成されて点灯状態へと移行し、同軸管からの高周波電界が進行波となって放電管に導入されて点灯が持続する。   A strong high-frequency electric field generates high-density plasma in the discharge tube and shifts to a lighting state, and the high-frequency electric field from the coaxial tube becomes a traveling wave and is introduced into the discharge tube to continue lighting.

高密度のプラズマ内には高周波電界の進入が許されないため(このときの密度を「遮断密度」と呼ぶ。)、高周波電界は誘電体である放電管とプラズマの間を表面波モードとなってプラズマを生成しながら伝搬する(これを「表面波プラズマ」と呼ぶ。)。   Since a high-frequency electric field is not allowed to enter the high-density plasma (the density at this time is referred to as “blocking density”), the high-frequency electric field becomes a surface wave mode between the dielectric discharge tube and the plasma. It propagates while generating plasma (this is called "surface wave plasma").

放電管の一部にしか高周波電界を印加しない場合であっても、表面波プラズマにより放電管内にプラズマが一様に生じるため、放電管の形状を配光制御上で要求される形状に規定すれば該形状全体での発光が可能となる(即ち、配光制御に適した光源を実現できる。)。   Even when a high-frequency electric field is applied only to a part of the discharge tube, the plasma is uniformly generated in the discharge tube by the surface wave plasma. Therefore, the shape of the discharge tube is regulated to the shape required for light distribution control. For example, the entire shape can emit light (that is, a light source suitable for light distribution control can be realized).

また、表面波プラズマを利用した形態では放電管内でプラズマが一様に発生し、放電管内の温度分布が均一となり、効率の向上に寄与する。   In the form using surface wave plasma, plasma is uniformly generated in the discharge tube, and the temperature distribution in the discharge tube becomes uniform, which contributes to improvement in efficiency.

電磁波の検出には、ダイオード等の半導体素子が用いられ、その検出電流によって入射波や反射波を測定することができる。例えば、方向性結合器に入射用及び反射用の各検出素子を取り付け、それらの検出結果に基づいてインピーダンスマッチングの調整を行うことにより、放電管の点灯開始から定常点灯に至るまでの過渡期において損失無く放電管に電力を投入することができる。また、経年変化や寿命等に起因する特性変化に対して反射損失を抑えて効率の良い安定な点灯を実現できる。   A semiconductor element such as a diode is used to detect electromagnetic waves, and incident waves and reflected waves can be measured by the detected current. For example, in the transition period from the start of lighting of the discharge tube to the steady lighting by attaching each detecting element for incident and reflection to the directional coupler and adjusting the impedance matching based on the detection result Electric power can be supplied to the discharge tube without loss. In addition, it is possible to realize efficient and stable lighting by suppressing reflection loss with respect to characteristic changes caused by aging and life.

尚、本例では電源部2と出力制御手段7とを別個に示しているが、これに限らず、出力制御手段7が電源部に含まれるように一体化させた形態(つまり、電源部自体が出力制御機能を有する。)でも構わない。   In this example, the power supply unit 2 and the output control means 7 are shown separately. However, the present invention is not limited thereto, and the output control means 7 is integrated so as to be included in the power supply part (that is, the power supply unit itself). May have an output control function).

本発明に係る放電灯については、下記に示す構成形態が挙げられる。   About the discharge lamp which concerns on this invention, the structure form shown below is mentioned.

(I)内部導体の先端部を放電管の放電空間(内部空間)に突出させた構成
(II)内部導体の先端部を放電管の内部空間又は管壁に近接した位置まで突出させた構成。
(I) Configuration in which the tip of the inner conductor protrudes into the discharge space (internal space) of the discharge tube (II) Configuration in which the tip of the inner conductor protrudes to a position close to the inner space of the discharge tube or the tube wall.

放電管の材質には、例えば、石英ガラスやセラミックが使用されるが、以下では、先ず、石英ガラスを用いた構成例について、図2乃至図8に従って説明する。   For example, quartz glass or ceramic is used as the material of the discharge tube. First, a configuration example using quartz glass will be described with reference to FIGS. 2 to 8.

図2は、上記構成(I)の放電灯を例示した要部の断面図である。   FIG. 2 is a cross-sectional view of a main part illustrating the discharge lamp having the configuration (I).

放電灯8は、その放電管3Aが導波管4Aの端部に取り付けられ、導波管4Aは同軸ケーブル等を経て図示しない電源部に接続される。   The discharge lamp 8 has a discharge tube 3A attached to the end of the waveguide 4A, and the waveguide 4A is connected to a power source (not shown) via a coaxial cable or the like.

放電管3Aは、その外径が導波管4Aの外径と同程度か又はそれよりも小径とされ、本例では、円筒管9とされていて、その一端部には管壁から延長されて外方に突出された円柱状の封止部10を有する。管材料に石英ガラスを使用する場合には、シュリンクシール工法やピンチシール工法により封止部10が形成される。   The outer diameter of the discharge tube 3A is the same as or smaller than the outer diameter of the waveguide 4A. In this example, the discharge tube 3A is a cylindrical tube 9, and one end thereof is extended from the tube wall. And a cylindrical sealing portion 10 protruding outward. When quartz glass is used as the tube material, the sealing portion 10 is formed by a shrink seal method or a pinch seal method.

封止部10には、導電性部材11が部分的に埋設されており、その一端部が放電管3Aの内部空間(放電空間)12内に位置されている。導電性部材11は、後述の導電性部材(14)とともに内部導体13を構成しており、本例では、外径0.2乃至0.4ミリメートル程度の細線状導体(金属棒等)とされ、その先端寄りの部分11aが前記した先端部5に相当し、電磁波を管内に導入するためのアンテナの役目を有する(つまり、従来の電極付放電灯のような、電流通路としての電極とは異なる。)。   A conductive member 11 is partially embedded in the sealing portion 10, and one end thereof is located in the internal space (discharge space) 12 of the discharge tube 3 </ b> A. The conductive member 11 constitutes an inner conductor 13 together with a later-described conductive member (14). In this example, the conductive member 11 is a thin wire conductor (metal rod or the like) having an outer diameter of about 0.2 to 0.4 mm. The portion 11a closer to the tip corresponds to the tip 5 described above, and serves as an antenna for introducing electromagnetic waves into the tube (that is, an electrode as a current path such as a conventional discharge lamp with an electrode) Different.)

内部導体13を構成する別の導電性部材14には、例えば、金属棒又は金属パイプ、あるいは石英ガラスの内周面に導電性膜を形成した部材等が使用される。本例では、バルク材を用いた導電性部材14の一端部に凹部14aが形成されており、該凹部14a内に封止部10の一端部が挿合された状態で取り付けられている。   As another conductive member 14 constituting the internal conductor 13, for example, a metal rod or metal pipe, or a member in which a conductive film is formed on the inner peripheral surface of quartz glass is used. In this example, a concave portion 14a is formed at one end portion of the conductive member 14 using a bulk material, and the conductive member 14 is attached in a state where one end portion of the sealing portion 10 is inserted into the concave portion 14a.

導波管4Aを構成する外部導体15には、金属材料又は石英ガラスの外周面に導電性膜を形成した部材等が使用される。本例では、バルク材を用いて円筒状に形成された外部導体15の端部15aが内側に向けて屈曲された構成を有し、図中に寸法「d」の突出量で示すように、端部15aに対して導電性部材11の部分11aの先端が放電管3A側に突出している。   As the outer conductor 15 constituting the waveguide 4A, a member or the like in which a conductive film is formed on the outer peripheral surface of a metal material or quartz glass is used. In this example, the end portion 15a of the outer conductor 15 formed into a cylindrical shape using a bulk material has a configuration bent inward, and as shown by a protruding amount of a dimension "d" in the drawing, The tip of the portion 11a of the conductive member 11 protrudes toward the discharge tube 3A with respect to the end 15a.

内部導体13と外部導体15との間には、例えば、石英ガラスやセラミックパイプ等を用いた誘電体16が介在されており、導体間を絶縁している。尚、誘電体16には、熱伝導率の低い材料を用いることが効率向上の面で好ましい。   A dielectric 16 using, for example, quartz glass or a ceramic pipe is interposed between the inner conductor 13 and the outer conductor 15 to insulate the conductors. Note that it is preferable to use a material having low thermal conductivity for the dielectric 16 in terms of improving efficiency.

本例では、内部導体13を構成する導電性部材11の先端部が露出した状態で放電空間12内に位置されており、アーク放電の位置が固定されて安定化するため、自動車用前照灯等のように配光性能を要求される光源に適用する場合に有用である。但し、管内に封入される物質(Na、Sc等)と、導電性部材11の使用材料との間で反応が起こらないようにする必要性から後者の材料選択の範囲が制限される。そこで、図3に示すように、内部導体の先端部を管材料により被覆された状態にすることによって、電極の使用材料を任意に選択できるようになる。   In this example, since the front end of the conductive member 11 constituting the inner conductor 13 is exposed and positioned in the discharge space 12 and the position of arc discharge is fixed and stabilized, the automotive headlamp It is useful when applied to a light source that requires a light distribution performance as described above. However, the range of the latter material selection is limited because it is necessary to prevent the reaction between the substance (Na, Sc, etc.) enclosed in the tube and the material used for the conductive member 11. Therefore, as shown in FIG. 3, the material used for the electrode can be arbitrarily selected by making the tip of the inner conductor covered with the tube material.

つまり、図3に示す放電灯17が、図2に示す放電灯8と相違する点は、内部導体の先端部11aが放電管3Bの管壁18の一部(突出部18a参照)に埋設された状態で放電空間12内に位置されていることである。   That is, the discharge lamp 17 shown in FIG. 3 is different from the discharge lamp 8 shown in FIG. 2 in that the tip 11a of the internal conductor is embedded in a part of the tube wall 18 of the discharge tube 3B (see the protruding portion 18a). It is located in the discharge space 12 in a state where

導電性部材11が管材料で完全に被覆されることにより保護され、発光物質等との反応による劣化や変色等の影響を受けないといった利点が得られる。   The conductive member 11 is protected by being completely covered with the tube material, and there is an advantage that the conductive member 11 is not affected by deterioration, discoloration, or the like due to the reaction with the luminescent material.

尚、本例においても、内部導体13が複数の導電性部材(11、14)を用いて構成されており、導電性部材(11)の先端部の外径が、他の導電性部材(14)の外径よりも小径とされている。つまり、先端部の径を細くすることで、他の導電性部材へと逃げる熱量を低減させることが可能である。   Also in this example, the inner conductor 13 is constituted by using a plurality of conductive members (11, 14), and the outer diameter of the tip of the conductive member (11) is different from that of the other conductive members (14). ) Is smaller than the outer diameter. That is, it is possible to reduce the amount of heat that escapes to another conductive member by reducing the diameter of the tip.

また、上記のように、内部導体13が第一の導電性部材11と第二の導電性部材14とを有する構成形態において、第一の導電性部材11と第二の導電性部材14とを分離し、両部材を部分的に近接して配置させることで、導電性部材11から導電性部材14に伝わる熱を遮断し又は低減させることが好ましい。つまり、導電性部材11と14とが電気的にも熱的にも接続された構成の場合には、導電性部材11の先端部から熱が導電性部材14へと直接的に伝わってしまうが、上記したように導電性部材11と14とを分離することにより、伝熱の影響を抑えることが可能となる。上記の例では、導電性部材11の端部(図の下端部)が導電性部材14の凹部14aに受け入れられた状態で近接して配置されており、両部材の間に封止部10の管材料(本例では、石英ガラスとされ、熱伝導率が低い。)が介在されている。電磁波については両部材が物理的に繋がっていなくても支障なく導電性部材14から導電性部材11へと伝播するが、両部材同士は熱的にほぼ絶縁された状態とされ、伝熱の影響を遮断している。   As described above, in the configuration in which the internal conductor 13 includes the first conductive member 11 and the second conductive member 14, the first conductive member 11 and the second conductive member 14 are It is preferable that the heat transmitted from the conductive member 11 to the conductive member 14 is cut off or reduced by separating and arranging both members in close proximity. That is, in the case where the conductive members 11 and 14 are electrically and thermally connected, heat is directly transmitted from the tip of the conductive member 11 to the conductive member 14. By separating the conductive members 11 and 14 as described above, it becomes possible to suppress the influence of heat transfer. In the above example, the end portion of the conductive member 11 (the lower end portion in the figure) is disposed adjacent to the concave portion 14a of the conductive member 14, and the sealing portion 10 is interposed between the two members. A tube material (in this example, quartz glass is used and has low thermal conductivity) is interposed. The electromagnetic wave propagates from the conductive member 14 to the conductive member 11 without any trouble even if the two members are not physically connected, but the two members are thermally insulated from each other, and the influence of heat transfer Is shut off.

このような内部導体に関する断熱構造によって熱伝導による損失が低減される結果、効率を向上させることができる。   As a result of the heat conduction loss being reduced by such a heat insulating structure related to the inner conductor, the efficiency can be improved.

尚、導電性部材11を含む封止部10と、導電性部材14との結合方法については、挿合や係合による方法に限らず、その一方に螺溝を形成し、他方のネジ部を形成して両者を締結させる方法等が挙げられ、あるいは、接着等により取り外し不能な状態で固定しても構わない。   In addition, about the coupling | bonding method of the sealing part 10 containing the electroconductive member 11, and the electroconductive member 14, it is not restricted to the method by insertion or engagement, A screw groove is formed in the one, and the other screw part is attached. For example, a method of forming and fastening both of them may be used, or they may be fixed in a non-removable state by adhesion or the like.

さらに発光効率を高めるには、図4乃至図6に示すように、放電管の管壁において、内部導体の先端部に対向する位置に、別の導体を補助電極として付設することが有効である。   In order to further increase the luminous efficiency, it is effective to attach another conductor as an auxiliary electrode at the position facing the tip of the inner conductor on the tube wall of the discharge tube as shown in FIGS. .

図4は、図2に示す構成において、放電管3Cの端部、つまり、導電性部材11の先端部11aに対峙する位置に導体21を設けた例を示している。   FIG. 4 shows an example in which the conductor 21 is provided at a position facing the end of the discharge tube 3 </ b> C, that is, the tip 11 a of the conductive member 11 in the configuration shown in FIG. 2.

放電灯19において、その放電管上部の管壁20から放電空間12内に突出された導体21の一部が露出された状態とされ、該導体21が導電性部材11の中心軸と同軸上に位置されている。   In the discharge lamp 19, a part of the conductor 21 protruding into the discharge space 12 from the tube wall 20 above the discharge tube is exposed, and the conductor 21 is coaxial with the central axis of the conductive member 11. Is located.

尚、図中に示す寸法「D」は、導体21の上端位置と、外部導体15との間の距離を示している。   The dimension “D” shown in the figure indicates the distance between the upper end position of the conductor 21 and the outer conductor 15.

図5は、図3に示す構成において、放電管3Dの端部、つまり、導電性部材11の先端部11aに対峙する位置に導体24を設けた例を示している。   FIG. 5 shows an example in which the conductor 24 is provided at a position facing the end of the discharge tube 3D, that is, the tip 11a of the conductive member 11 in the configuration shown in FIG.

本例に示す放電灯22でも放電管上部の管壁23から放電空間12内に突出された導体24の一部が露出された状態とされ、該導体24が導電性部材11の中心軸と同軸上に位置されている。   Also in the discharge lamp 22 shown in this example, a part of the conductor 24 protruding into the discharge space 12 from the tube wall 23 at the top of the discharge tube is exposed, and the conductor 24 is coaxial with the central axis of the conductive member 11. Located on the top.

図6は、図3に示す構成において、放電管3Eの端部、つまり、導電性部材11の先端部11aに対峙する位置に導体27を設けた例を示している。   FIG. 6 shows an example in which the conductor 27 is provided at a position facing the end of the discharge tube 3E, that is, the tip 11a of the conductive member 11 in the configuration shown in FIG.

本例に示す放電灯25では、放電管上部の管壁26から放電空間12内に突出された導体27が管壁26の一部26aに埋設された状態とされ、該導体27が導電性部材11の中心軸と同軸上に位置されている。つまり、導体27が管材料で完全に被覆されることにより保護され、封入物質との反応による影響を受けないという利点が得られる。   In the discharge lamp 25 shown in this example, a conductor 27 protruding into the discharge space 12 from the tube wall 26 at the top of the discharge tube is embedded in a part 26a of the tube wall 26, and the conductor 27 is a conductive member. 11 is located coaxially with the central axis. That is, the conductor 27 is protected by being completely covered with the pipe material, and an advantage is obtained that the conductor 27 is not affected by the reaction with the encapsulated substance.

図4乃至図6に示す構成において、放電空間12内に突出された導体(21、24、27)を始動用電極として利用すれば、放電管内に強い電界を印加できるために、放電管を容易に始動させることができる。つまり、始動時にテスラーコイル等を外部から放電管に当てる必要がなくなる。尚、本発明の適用においては、上記した構成例に限らず、例えば、内部導体を放電管内に貫通させた構成等、各種形態での実施が可能である。   4 to 6, if the conductors (21, 24, 27) protruding into the discharge space 12 are used as starting electrodes, a strong electric field can be applied to the discharge tube. Can be started. That is, it is not necessary to apply a Tessler coil or the like to the discharge tube from the outside at the start. The application of the present invention is not limited to the above-described configuration example, and can be implemented in various forms such as a configuration in which an internal conductor is penetrated into the discharge tube.

次に、石英ガラスを用いる場合の上記(II)の構成例について、図7及び図8を用いて説明する。   Next, a configuration example (II) in the case of using quartz glass will be described with reference to FIGS.

図7は、無電極放電灯において、導波管を構成する内部導体の先端部が放電管3Fの管壁に近接した位置まで突出された構成を例示したものである。   FIG. 7 illustrates an example of the electrodeless discharge lamp in which the tip of the inner conductor constituting the waveguide protrudes to a position close to the tube wall of the discharge tube 3F.

放電灯28では、放電管3Fの管壁29の一部分29aが放電空間12側に突出されることで、導波管4Bの側から見た場合に当該部分が窪んでいる。そして、その周囲に形成された筒状の突部(あるいは脚部)29bが導波管4B側に突出されている。   In the discharge lamp 28, a portion 29a of the tube wall 29 of the discharge tube 3F protrudes toward the discharge space 12 so that the portion is depressed when viewed from the waveguide 4B side. And the cylindrical protrusion (or leg part) 29b formed in the circumference | surroundings protrudes to the waveguide 4B side.

導波管4Bは、内部導体30と外部導体31を有しており、両者の間には石英ガラス等の誘電体32が介在されている。   The waveguide 4B has an inner conductor 30 and an outer conductor 31, and a dielectric 32 such as quartz glass is interposed between them.

内部導体30には、金属棒や金属パイプ、あるいは石英ガラス等の表面に導電性膜を形成した部材等が用いられる。本例では、バルク材が用いられており、その先端寄りの部分30aが、その他の部分30bよりも小径とされ、上記部分29a及び突部29b、誘電体32により囲まれて形成される空間内に位置している。つまり、本構成では、内部導体30の先端寄りの部分30aが放電空間12側に突出されてはいるが、該空間外に位置しており、当該部分30aと外部導体31との間に突部29bが介在されることで、沿面距離が十分に確保され、導体30と31との間の異常放電防止の効果が得られる。   For the internal conductor 30, a member such as a metal rod, a metal pipe, or a member having a conductive film formed on the surface thereof such as quartz glass is used. In this example, a bulk material is used, and a portion 30a near the tip has a smaller diameter than the other portion 30b, and the space 29 is formed by being surrounded by the portion 29a, the protrusion 29b, and the dielectric 32. Is located. That is, in this configuration, the portion 30a near the tip of the inner conductor 30 protrudes toward the discharge space 12 but is located outside the space, and the protrusion is between the portion 30a and the outer conductor 31. By interposing 29b, the creepage distance is sufficiently secured, and the effect of preventing abnormal discharge between the conductors 30 and 31 is obtained.

外部導体31は、金属材料又は石英ガラスの外周面に導電性膜を形成した部材等が使用される。本例では、バルク材を用いて円筒状に形成された外部導体31の端部31aが内側に向けて屈曲されており、図中に寸法「d」で示すように、端部31aに対して内部導体30の先端部が放電管3F側に突出されていて、放電空間12に近接している。   As the outer conductor 31, a member having a conductive film formed on the outer peripheral surface of a metal material or quartz glass is used. In this example, the end 31a of the outer conductor 31 formed into a cylindrical shape using a bulk material is bent inward, and as shown by a dimension “d” in the drawing, the end 31a is bent with respect to the end 31a. A tip portion of the inner conductor 30 protrudes toward the discharge tube 3F and is close to the discharge space 12.

尚、図8に示す放電灯33のように、内部導体30の先端部に対向する管壁位置に導体34を補助電極として設け、該導体34が放電管3Gの管壁29の一部29cに埋設された状態で放電空間12内に位置されるように構成すれば、発光効率をさらに高めることができる。あるいは、図示は省略するが、図4や図5に示した例と同様に、導体34の一端部が露出された状態で該導体を放電空間12内に位置させた構成でも構わない。   In addition, like the discharge lamp 33 shown in FIG. 8, the conductor 34 is provided as an auxiliary electrode at the tube wall position facing the tip of the internal conductor 30, and the conductor 34 is formed on a part 29c of the tube wall 29 of the discharge tube 3G. Luminous efficiency can be further improved by configuring the discharge space 12 so as to be buried. Or although illustration is abbreviate | omitted, the structure which located this conductor in the discharge space 12 in the state which the one end part of the conductor 34 was exposed similarly to the example shown in FIG.4 and FIG.5 may be sufficient.

次に、放電管に透明セラミック材料を用いた構成例について、図9乃至図11に従って説明する。   Next, structural examples using a transparent ceramic material for the discharge tube will be described with reference to FIGS.

放電管をセラミック材料で形成する場合には、放電管と一体に形成される封止用延長部(あるいは封止用脚部)の端部を低融点ガラスで封止する方法が採られる。   When the discharge tube is formed of a ceramic material, a method of sealing the end portion of the sealing extension (or the sealing leg) formed integrally with the discharge tube with low-melting glass is employed.

図9は、上記構成(I)の放電灯について構成の一例を示しており、放電空間に内部導体が突出されている。   FIG. 9 shows an example of the configuration of the discharge lamp having the above configuration (I), and an internal conductor protrudes into the discharge space.

放電灯35は、放電管3Hが導波管4Cに対して固定された構造をもち、導波管4Cは同軸ケーブル等を経て図示しない電源部に接続される。   The discharge lamp 35 has a structure in which the discharge tube 3H is fixed to the waveguide 4C, and the waveguide 4C is connected to a power source (not shown) via a coaxial cable or the like.

放電管3Hは、その外径が導波管4Cの外径と同程度とされる円筒管36及び封止部37を有する。   The discharge tube 3H includes a cylindrical tube 36 and a sealing portion 37 whose outer diameter is approximately the same as the outer diameter of the waveguide 4C.

封止部37は、円筒管36よりも小径の封止用延長部38内に、導電性部材39(棒状導体)を挿入した状態で、封止用延長部38の端部のうち先細りとされる端部(図の下端部)を低融点ガラス40で封止することにより形成される。尚、円筒管36内の放電空間41には、所定の物質が封入されているが、導電性部材39のうち、低融点ガラス40で封止された端部とは反対側の端部39a(先端寄りの部分)が放電空間41内に位置している。   The sealing portion 37 is tapered at the end of the sealing extension portion 38 in a state where the conductive member 39 (rod-like conductor) is inserted into the sealing extension portion 38 having a smaller diameter than the cylindrical tube 36. It is formed by sealing the edge part (lower end part of a figure) with the low melting glass 40. FIG. Although a predetermined substance is sealed in the discharge space 41 in the cylindrical tube 36, the end 39 a (on the side opposite to the end sealed with the low melting point glass 40 of the conductive member 39 ( The portion near the tip is located in the discharge space 41.

導電性部材42は、上記導電性部材39とともに内部導体43を構成しており、本例では金属等のバルク材が使用されてその一端部に凹部42aが形成されている。この凹部42aには、封止用延長部38の端部(低融点ガラス40で封止された部分)が受け入れられ、この状態で導電性部材39の一端部と導電性部材42の端部が近接している。つまり、内部導体43は、第一の導電性部材39と第二の導電性部材42を有しており、両部材が分離され、かつ両者の間に封止用延長部38の一部が介在されることで熱的にほぼ絶縁されている。そして、両部材が部分的に近接して配置されることで導電性部材42から導電性部材39への電磁波の伝播に支障を来たさない構成となっている。   The conductive member 42 constitutes an internal conductor 43 together with the conductive member 39. In this example, a bulk material such as metal is used and a recess 42a is formed at one end thereof. The recess 42a receives the end of the sealing extension 38 (the portion sealed with the low-melting glass 40). In this state, the one end of the conductive member 39 and the end of the conductive member 42 are connected to each other. It is close. That is, the inner conductor 43 has the first conductive member 39 and the second conductive member 42, both members are separated, and a part of the sealing extension 38 is interposed between the two members. So that it is almost thermally insulated. And it has the structure which does not interfere with the propagation of the electromagnetic waves from the conductive member 42 to the conductive member 39 by arranging both members in close proximity.

導波管4Cを構成する外部導体44は、セラミック又は石英ガラス製の管状部材45(外管)の外周面に被覆されている。つまり、管状部材45の空洞内には、導電性部材42や封止用延長部38が位置されており、管状部材45の外表面に被覆された外部導体44が該部材45の先端部及びその端面の周縁部にまで及んでいる。   The outer conductor 44 constituting the waveguide 4C is coated on the outer peripheral surface of a tubular member 45 (outer tube) made of ceramic or quartz glass. That is, the conductive member 42 and the sealing extension 38 are positioned in the cavity of the tubular member 45, and the outer conductor 44 covered on the outer surface of the tubular member 45 is connected to the distal end portion of the member 45 and its end portion. It extends to the peripheral edge of the end face.

管状部材45の端部には凹部45aが形成されており、放電管3Hに形成された環状の突部46が、凹部45aに受け入れられた状態で放電管3Hが導波管4Cの端部に支持される。   A recess 45a is formed at the end of the tubular member 45, and the discharge tube 3H is formed at the end of the waveguide 4C in a state where the annular protrusion 46 formed in the discharge tube 3H is received in the recess 45a. Supported.

図中に示す寸法「d」は、導電性部材39の先端部と、外部導体44の端部との間の距離を示しており、導電性部材39と外部導体44との間に、突部46(誘電体)を介在させることで沿面距離を十分に確保し、導体間の異常放電防止の効果を得ることができる。   The dimension “d” shown in the drawing indicates the distance between the tip of the conductive member 39 and the end of the external conductor 44, and a protrusion is provided between the conductive member 39 and the external conductor 44. By interposing 46 (dielectric material), a sufficient creeping distance can be secured, and an effect of preventing abnormal discharge between conductors can be obtained.

図10は、上記構成(II)の放電灯について構成の一例を示しており、内部導体が放電管の内部空間に近接した位置まで突出されるとともに、内部導体の先端部と外部導体との間には、放電管と一体に形成された突部が介在されている。   FIG. 10 shows an example of the configuration of the discharge lamp having the above-described configuration (II). The inner conductor protrudes to a position close to the inner space of the discharge tube, and between the tip of the inner conductor and the outer conductor. There is a protrusion formed integrally with the discharge tube.

本例に示す放電灯(無電極放電灯)47が、図9に示す放電灯35と構成上相違する点は下記の通りである。   The discharge lamp (electrodeless discharge lamp) 47 shown in this example is structurally different from the discharge lamp 35 shown in FIG. 9 as follows.

・導電性部材39の代わりに、セラミック製の棒状部材48が用いられていること
・封止用延長部38の外周面に導電性被覆が施されることで内部導体49が形成されており、該導体の先端部が放電空間41の近くまで突出していること
・内部導体を構成する別の導電性部材50がバルク材ではなく、セラミックや石英ガラスを基材としてその外周面に導電性被覆が施された部材であること。
A ceramic rod-like member 48 is used instead of the conductive member 39. An inner conductor 49 is formed by applying a conductive coating to the outer peripheral surface of the sealing extension 38. The tip of the conductor protrudes to the vicinity of the discharge space 41. Another conductive member 50 constituting the inner conductor is not a bulk material, and a ceramic or quartz glass is used as a base material and a conductive coating is provided on the outer peripheral surface thereof. Being a given member.

・外部導体51が被覆された管状部材52の端部には段差52aが形成されており、放電管3Iに形成された突部46が該段差52aに当接した状態で放電管3Iが導波管4Dの端部に支持されていること。   A step 52a is formed at the end of the tubular member 52 covered with the outer conductor 51, and the discharge tube 3I is guided in a state where the protrusion 46 formed on the discharge tube 3I is in contact with the step 52a. It is supported at the end of the tube 4D.

本例では、円筒状をした封止用延長部38の外周面に被覆された導体49(導電性被膜)が内部導体を構成しており、該導体49は封止用延長部38の端部寄りの部分(小径部)に及んでいる。そして、当該部分は、内部導体を構成する別の導電性部材50の端部に形成された凹部50aに挿合されている。   In this example, a conductor 49 (conductive film) coated on the outer peripheral surface of the cylindrical sealing extension 38 constitutes an inner conductor, and the conductor 49 is an end of the sealing extension 38. It extends to the close part (small diameter part). And the said part is inserted by the recessed part 50a formed in the edge part of another electroconductive member 50 which comprises an internal conductor.

導電性部材50の外周面には、導体50b(導電性被膜)が形成されており、その端部寄りの導体部分が、封止用延長部38の外周面に被覆された導体49の一部に近接して配置されている。即ち、内部導体は、分離された複数の導体を用いて構成されることで、熱的に絶縁されるとともに、それらの端部同士が近接して配置されることで電磁波の伝播に支障を来たさないように構成されている。   A conductor 50 b (conductive film) is formed on the outer peripheral surface of the conductive member 50, and a part of the conductor 49 in which the conductor portion near the end is covered with the outer peripheral surface of the sealing extension 38. It is arranged close to. In other words, the inner conductor is composed of a plurality of separated conductors, so that the inner conductor is thermally insulated, and the end portions thereof are arranged close to each other, thereby hindering the propagation of electromagnetic waves. It is configured not to play.

尚、封止用延長部38内にはセラミック製の棒状部材48が挿入されており、その端部(図の下端部)が低融点ガラス40で封止される。放電管3I内には所定の物質が封入されるが、棒状部材48のうち、低融点ガラス40で封止された端部とは反対側の端部48aが放電空間41内に入り込まない位置に規定されており、棒状部材48と封止用延長部38との間に形成される隙間(クリアランス)を狭めることで、消灯時に封入物質の進入を拒んで該物質が溜まらないように防止する機能をもたせている。   A ceramic rod-like member 48 is inserted into the sealing extension 38, and its end (the lower end in the figure) is sealed with the low melting point glass 40. Although a predetermined substance is sealed in the discharge tube 3I, the end 48a of the rod-shaped member 48 opposite to the end sealed with the low-melting glass 40 does not enter the discharge space 41. A function that regulates and prevents the material from accumulating by rejecting the entry of the encapsulated material at the time of extinction by narrowing the gap (clearance) formed between the rod-shaped member 48 and the sealing extension 38. Is given.

導体49は封止用延長部38の付け根部分にまで達しており、その近傍には円環状の突部46(あるいはリブ)が一体に形成されている。   The conductor 49 reaches the base of the sealing extension 38, and an annular protrusion 46 (or rib) is integrally formed in the vicinity thereof.

外部導体51が被覆された管状部材52の端部には段差52aが形成されており、この段差52aに上記突部46が当接された状態において、図中の寸法「d」に示すように、内部導体の先端部(導体49の端部)が外部導体51の端部よりも放電空間41側に突出された状態で電磁波が放電空間41内に導入される。   A step 52a is formed at the end of the tubular member 52 covered with the outer conductor 51, and the protrusion 46 is in contact with the step 52a as shown in the dimension "d" in the drawing. The electromagnetic wave is introduced into the discharge space 41 in a state in which the front end portion of the inner conductor (the end portion of the conductor 49) protrudes toward the discharge space 41 than the end portion of the outer conductor 51.

導体49と導体51との間に、放電管3Iと同じ材質(誘電体)の突部46を介在させ、沿面距離を十分に確保することで導体間の異常放電防止の効果を得ることができる。   By providing a protrusion 46 made of the same material (dielectric material) as that of the discharge tube 3I between the conductor 49 and the conductor 51 and securing a sufficient creepage distance, an effect of preventing abnormal discharge between the conductors can be obtained. .

本例では、内部導体を構成する導体49及び導体50bがいずれも導電性被膜として形成されており、熱容量を小さくすることが効率の向上に寄与している。   In this example, the conductor 49 and the conductor 50b constituting the inner conductor are both formed as conductive films, and reducing the heat capacity contributes to the improvement of efficiency.

尚、上記した例では、封止用延長部38の端部を、内部導体の構成部材に挿合又は係合させる方法を採っているが、本発明の適用においては、封止用延長部を内部導体の基材(誘電体)にガラスや接着剤で接着するか、あるいは、封止用延長部にネジ等の締結部を形成して内部導体又はその基材に取り付ける方法等、各種形態での実施が可能である。あるいは、放電管の突部46のネジ部を形成し、管状部材52の端部にネジ部に対応した螺溝を形成することによって、螺合により締結する方法や、コネクタや口金等の仲介部材又は係合部材を用いて固定する形態等を採用しても構わない(放電管の交換や保守性等を考慮した場合には、放電管の取り付けや取り外しの作業が容易な取付形態が好ましい。)。   In the above example, the end of the sealing extension 38 is inserted or engaged with the constituent member of the inner conductor. However, in the application of the present invention, the sealing extension is used. In various forms, such as bonding to the base material (dielectric) of the inner conductor with glass or adhesive, or forming a fastening portion such as a screw in the sealing extension and attaching it to the inner conductor or the base material Can be implemented. Alternatively, a screw portion of the discharge tube projection 46 is formed, and a screw groove corresponding to the screw portion is formed at the end portion of the tubular member 52, so that it is fastened by screwing, or an intermediate member such as a connector or a base. Alternatively, a form that is fixed by using an engaging member may be adopted (in consideration of replacement of the discharge tube, maintainability, etc., an attachment form in which the discharge tube can be easily attached or detached is preferable. ).

また、セラミック材料を用いた放電管においても、その管壁のうち、内部導体の先端部に対向する位置に別の導体を補助電極として付設した構成が可能である。   Also, a discharge tube using a ceramic material can have a configuration in which another conductor is provided as an auxiliary electrode at a position facing the tip of the internal conductor in the tube wall.

例えば、図11に示す放電灯53のように、図9に示した構成例において、導体54を管壁に設けて該導体の端部が放電空間41内の導電性部材39の端部39aと対峙するようにすれば良く、これにより、発光効率をさらに高めることができる。   For example, like the discharge lamp 53 shown in FIG. 11, in the configuration example shown in FIG. 9, the conductor 54 is provided on the tube wall, and the end of the conductor is connected to the end 39 a of the conductive member 39 in the discharge space 41. What is necessary is just to make it confront, and by this, luminous efficiency can be raised further.

以上に説明した構成によれば、下記に示す利点が得られる。   According to the configuration described above, the following advantages can be obtained.

・発光効率の向上(例えば、110lm/W以上)を実現できること
・内部導体を放電管の内部に突出させて、中心導体としての該内部導体を放電空間まで延長することにより効率の向上に寄与すること及び放電アークと管壁との距離が保たれることでアーク位置が固定化され、従来問題視されていた効率低下や短寿命化等を伴わないこと(図2乃至図6、図9、図11参照)
・内部導体を放電管と一体化し、かつ内部導体の先端部を放電管内に突出させた構成を採用することにより、電磁波を放電管内に直接的に導入できるようになり、放電管底面でのジュール損失(熱損失)を低減できること(図2乃至図6、図9、図11参照)
・内部導体の端部を放電管の管壁まで近接させた構成を採用することにより、導体材料と放電管内の封入物質との反応を回避することができ、また、内部導体を放電空間に対して近づけることにより電磁波を放電管内に効率的に導入できること(図7、図8、図10参照)
・放電管内の内部導体を管壁と同じ材料で被覆する構成を採用すれば、導体材料と放電管内の封入物質との反応を回避することができ、しかも、内部導体を放電空間に対して極力近づけることにより電磁波を放電管内に効率的に導入できること(図3、図5、図6参照)
・内部導体を複数の導電性部材により構成し、導波管端部に位置する導電性部材の外径を細くするとともに、他の導電性部材に対して断熱することにより、熱伝導損失が低減されること(図2乃至図6、図9、図11参照)
・外部導体と放電管とが接触しない構成の採用により、放電管から外部導体への熱伝導による損失を低減できること(図2乃至図6参照)
・放電管に補助電極を付設した構成(図4乃至図6、図8、図11参照)により、効率がさらに高められること(電磁波とプラズマとの結合が良好となるものと推定される。但し、補助電極による遮光の影響を考慮する必要がある。)
・放電管に付設された補助電極を始動用電極として用いることによって(図4乃至図6、図8、図11参照)、放電管に強電界を印加でき、テスラーコイル等を用いることなく、放電灯の始動を容易に行えるようになること
・導波管端部への放電管の固定や取り付けが容易になり、また放電管に一体形成された突部(図7、図8、図9乃至図11参照)を利用して位置決めを行えること及びこの突部を外部導体と内部導体との間に位置させることにより、導体間の異常放電を防止できること
・封止部や封止用延長部を導波管内に配置することによって、導波管の端部とは反対側の放電管端面に封止部を設けない構成が可能となり、光の取り出し効率が良いこと(図2乃至図11参照)。
・ Improvement in luminous efficiency (for example, 110 lm / W or more) ・ Contributes to improvement in efficiency by projecting the inner conductor into the discharge tube and extending the inner conductor as a central conductor to the discharge space In addition, the arc position is fixed by maintaining the distance between the discharge arc and the tube wall, and there is no reduction in efficiency or shortening of the life that has been regarded as a problem in the past (FIGS. 2 to 6, FIG. 9, (See Fig. 11)
-By adopting a configuration in which the inner conductor is integrated with the discharge tube and the tip of the inner conductor protrudes into the discharge tube, electromagnetic waves can be introduced directly into the discharge tube, and the joule at the bottom of the discharge tube can be introduced. Loss (heat loss) can be reduced (see FIGS. 2 to 6, 9, and 11).
-By adopting a configuration in which the end of the inner conductor is close to the tube wall of the discharge tube, reaction between the conductor material and the enclosed substance in the discharge tube can be avoided, and the inner conductor can be placed against the discharge space. The electromagnetic wave can be efficiently introduced into the discharge tube by bringing them closer to each other (see FIGS. 7, 8, and 10).
・ If the internal conductor in the discharge tube is covered with the same material as the tube wall, the reaction between the conductive material and the encapsulated material in the discharge tube can be avoided, and the internal conductor is made as small as possible with respect to the discharge space. Electromagnetic waves can be efficiently introduced into the discharge tube by bringing them closer (see FIGS. 3, 5, and 6).
-The internal conductor is composed of a plurality of conductive members, the outer diameter of the conductive member located at the end of the waveguide is reduced, and heat insulation loss is reduced by insulating against other conductive members. (See FIGS. 2 to 6, 9, and 11)
-By adopting a configuration in which the outer conductor does not contact the discharge tube, loss due to heat conduction from the discharge tube to the outer conductor can be reduced (see FIGS. 2 to 6).
The configuration in which the auxiliary electrode is attached to the discharge tube (see FIGS. 4 to 6, 8, and 11) further increases the efficiency (provided that the coupling between the electromagnetic wave and the plasma is improved). It is necessary to consider the influence of light shielding by the auxiliary electrode.)
-By using the auxiliary electrode attached to the discharge tube as a starting electrode (see FIGS. 4 to 6, 8, and 11), a strong electric field can be applied to the discharge tube, and the discharge can be performed without using a Tessler coil or the like. The electric lamp can be easily started.-The discharge tube can be easily fixed and attached to the end portion of the waveguide, and the protrusion formed integrally with the discharge tube (FIGS. 7, 8, and 9 to 9). (See Fig. 11) Positioning can be performed using this and the protrusion is positioned between the outer conductor and the inner conductor, thereby preventing abnormal discharge between the conductors. By disposing in the waveguide, it becomes possible to have a structure in which no sealing portion is provided on the end surface of the discharge tube opposite to the end portion of the waveguide, and the light extraction efficiency is good (see FIGS. 2 to 11). .

尚、本発明は、放電管の形状、アーク形成の位置や方向等の如何を問うことなく各種形態の放電灯に幅広く適用することができ、また、電磁波の周波数に関してマイクロ波帯に限らないことは勿論である。   The present invention can be widely applied to various types of discharge lamps regardless of the shape of the discharge tube, the position and direction of arc formation, and the frequency of electromagnetic waves is not limited to the microwave band. Of course.

本発明に係る光源装置の基本構成例を示す説明図である。It is explanatory drawing which shows the basic structural example of the light source device which concerns on this invention. 石英ガラスを用いた放電灯の断面構成例を示す図である。It is a figure which shows the cross-sectional structural example of the discharge lamp using quartz glass. 石英ガラスを用いた放電灯の断面構成の別例を示す図である。It is a figure which shows another example of the cross-sectional structure of the discharge lamp using quartz glass. 図2の構成において、放電空間内で内部導体に対峙する位置に導体を付設した例を示す図である。FIG. 3 is a diagram illustrating an example in which a conductor is provided at a position facing the internal conductor in the discharge space in the configuration of FIG. 2. 図3の構成において、放電空間内で内部導体に対峙する位置に導体を付設した例を示す図である。FIG. 4 is a diagram showing an example in which a conductor is provided at a position facing the internal conductor in the discharge space in the configuration of FIG. 3. 図3の構成において、放電空間内で内部導体に対峙する位置に導体を付設した別例を示す図である。FIG. 4 is a diagram showing another example in which a conductor is provided at a position facing the internal conductor in the discharge space in the configuration of FIG. 3. 石英ガラスを用いた放電灯の断面構成について、さらに別例を示す図である。It is a figure which shows another example about the cross-sectional structure of the discharge lamp using quartz glass. 図7の構成において、放電空間内で内部導体に対峙する位置に導体を付設した例を示す図である。FIG. 8 is a diagram showing an example in which a conductor is provided at a position facing the internal conductor in the discharge space in the configuration of FIG. 7. セラミック材料を用いた放電灯の断面構成例を示す図である。It is a figure which shows the cross-sectional structural example of the discharge lamp using a ceramic material. セラミック材料を用いた放電灯の断面構成の別例を示す図である。It is a figure which shows another example of the cross-sectional structure of the discharge lamp using a ceramic material. 図9の構成において、放電空間内で内部導体に対峙する位置に導体を付設した例を示す図である。FIG. 10 is a diagram illustrating an example in which a conductor is provided at a position facing the internal conductor in the discharge space in the configuration of FIG. 9.

符号の説明Explanation of symbols

1…光源装置、2…電源部、3、3A、3B、3C、3D、3E、3F、3G、3H、3I…放電管、4、4A、4B、4C、4D…導波管、4a…外部導体、4b…内部導体、5…先端部、8…放電灯、11…導電性部材、12…放電空間、13…内部導体、14…導電性部材、15…外部導体、17…放電灯、18…管壁、19…放電灯、20…管壁、21…導体、22…放電灯、23…管壁、24…導体、25…放電灯、26…管壁、27…導体、28…放電灯、29…管壁、29b…突部、30…内部導体、31…外部導体、33…放電灯、34…導体、35…放電灯、39…導電性部材、41…放電空間、42…導電性部材、43…内部導体、44…外部導体、46…突部、47…放電灯、49、50b…内部導体、51…外部導体、53…放電灯、54…導体   DESCRIPTION OF SYMBOLS 1 ... Light source device, 2 ... Power supply part 3, 3A, 3B, 3C, 3D, 3E, 3F, 3G, 3H, 3I ... Discharge tube 4, 4A, 4B, 4C, 4D ... Waveguide, 4a ... External Conductor, 4b ... internal conductor, 5 ... tip, 8 ... discharge lamp, 11 ... conductive member, 12 ... discharge space, 13 ... internal conductor, 14 ... conductive member, 15 ... external conductor, 17 ... discharge lamp, 18 DESCRIPTION OF SYMBOLS ... Tube wall, 19 ... Discharge lamp, 20 ... Tube wall, 21 ... Conductor, 22 ... Discharge lamp, 23 ... Tube wall, 24 ... Conductor, 25 ... Discharge lamp, 26 ... Tube wall, 27 ... Conductor, 28 ... Discharge lamp 29 ... Tube wall, 29b ... Projection, 30 ... Inner conductor, 31 ... Outer conductor, 33 ... Discharge lamp, 34 ... Conductor, 35 ... Discharge lamp, 39 ... Conductive member, 41 ... Discharge space, 42 ... Conductivity Member, 43 ... Internal conductor, 44 ... External conductor, 46 ... Projection, 47 ... Discharge lamp, 49, 50b ... Internal conductor, 51 ... External conductor , 53 ... discharge lamp, 54 ... conductor

Claims (11)

高周波の電磁波を受けて生成されるプラズマにより放電発光する放電管と、該電磁波を伝送するための外部導体及び内部導体を有する導波管を用いた放電灯において、
上記内部導体の先端部が上記放電管の放電空間内に突出されるとともに、上記内部導体が、上記放電管に一体化された第一の導電性部材と、上記導波管内に設けられた第二の導電性部材から構成され、
上記放電管が上記導波管の端部に取り付けられた状態で、上記第一の導電性部材と上記第二の導電性部材とが部分的に近接して配置されている
ことを特徴とする放電灯。
In a discharge lamp using a discharge tube that emits light by plasma generated by receiving high-frequency electromagnetic waves, and a waveguide having an outer conductor and an inner conductor for transmitting the electromagnetic waves,
A tip portion of the inner conductor protrudes into the discharge space of the discharge tube, and the inner conductor is integrated with the first conductive member integrated with the discharge tube, and a first electrode provided in the waveguide. Composed of two conductive members,
The first conductive member and the second conductive member are arranged in close proximity to each other in a state where the discharge tube is attached to an end of the waveguide. Discharge lamp.
請求項1に記載した放電灯において、
上記第一の導電性部材の先端部が露出した状態で上記放電空間内に位置されている
ことを特徴とする放電灯。
In the discharge lamp according to claim 1,
A discharge lamp characterized by being positioned in the discharge space in a state in which a tip portion of the first conductive member is exposed.
請求項1に記載した放電灯において、
上記第一の導電性部材の先端部が上記放電管の管壁に埋設された状態で上記放電空間内に位置されている
ことを特徴とする放電灯。
In the discharge lamp according to claim 1,
The discharge lamp according to claim 1, wherein a tip portion of the first conductive member is positioned in the discharge space in a state of being embedded in a tube wall of the discharge tube.
請求項1、請求項2又は請求項3に記載した放電灯において、
上記第一の導電性部材の外径が上記第二の導電性部材の外径よりも小径とされている
ことを特徴とする放電灯。
In the discharge lamp according to claim 1, claim 2 or claim 3,
The discharge lamp according to claim 1, wherein an outer diameter of the first conductive member is smaller than an outer diameter of the second conductive member.
請求項1、請求項2、請求項3又は請求項4に記載した放電灯において、
上記放電管の管壁には、上記第一の導電性部材の先端部に対向する位置に別の導体が付設されている
ことを特徴とする放電灯。
In the discharge lamp according to claim 1, claim 2, claim 3 or claim 4,
The discharge lamp is characterized in that another conductor is attached to the tube wall of the discharge tube at a position facing the tip of the first conductive member.
請求項5に記載した放電灯において、
上記別の導体の一端部が露出された状態又は上記放電管の管壁に埋設された状態で上記放電空間内に位置されている
ことを特徴とする放電灯。
In the discharge lamp according to claim 5,
A discharge lamp characterized by being positioned in the discharge space in a state where one end portion of the another conductor is exposed or embedded in a tube wall of the discharge tube.
高周波の電磁波を受けて生成されるプラズマにより放電発光する放電管と、該電磁波を伝送するための外部導体及び内部導体を有する導波管を用いた放電灯において、
上記内部導体の先端部が上記放電管の放電空間又は管壁に近接した位置まで突出されるとともに、該先端部と上記外部導体との間には、上記放電管と一体に形成された突部が介在されている
ことを特徴とする放電灯。
In a discharge lamp using a discharge tube that emits light by plasma generated by receiving high-frequency electromagnetic waves, and a waveguide having an outer conductor and an inner conductor for transmitting the electromagnetic waves,
The tip of the inner conductor protrudes to a position close to the discharge space or tube wall of the discharge tube, and a protrusion formed integrally with the discharge tube between the tip and the outer conductor A discharge lamp characterized by interposing.
請求項7に記載した放電灯において、
上記放電管の管壁には、上記内部導体の先端部に対向する位置に別の導体が付設されている
ことを特徴とする放電灯。
In the discharge lamp according to claim 7,
A discharge lamp characterized in that another conductor is attached to the tube wall of the discharge tube at a position facing the tip of the internal conductor.
請求項8に記載した放電灯において、
上記別の導体の一端部が露出された状態又は上記放電管の管壁に埋設された状態で上記放電空間内に位置されている
ことを特徴とする放電灯。
The discharge lamp according to claim 8,
A discharge lamp characterized by being positioned in the discharge space in a state where one end portion of the another conductor is exposed or embedded in a tube wall of the discharge tube.
電磁波発生用の電源部と、該電源部からの高周波の電磁波を受けて生成されるプラズマにより放電発光する放電管と、電磁波を放電管に伝送するための導波管を備えた光源装置において、
上記導波管が外部導体及び内部導体を有し、該内部導体の先端部が上記放電管の放電空間内に突出されている
ことを特徴とする光源装置。
In a light source device including a power source for generating electromagnetic waves, a discharge tube that discharges and emits light by plasma generated by receiving high-frequency electromagnetic waves from the power source, and a waveguide for transmitting electromagnetic waves to the discharge tube,
The light guide device, wherein the waveguide has an outer conductor and an inner conductor, and a tip portion of the inner conductor protrudes into a discharge space of the discharge tube.
電磁波発生用の電源部と、該電源部からの高周波の電磁波を受けて生成されるプラズマにより放電発光する放電管と、電磁波を放電管に伝送するための導波管を備えた光源装置において、
上記導波管が外部導体及び内部導体を有し、該内部導体の先端部が上記放電管の放電空間又は管壁に近接した位置まで突出されるとともに、該先端部と上記外部導体との間には、上記放電管と一体に形成された突部が介在されている
ことを特徴とする光源装置。
In a light source device including a power source for generating electromagnetic waves, a discharge tube that discharges and emits light by plasma generated by receiving high-frequency electromagnetic waves from the power source, and a waveguide for transmitting electromagnetic waves to the discharge tube,
The waveguide has an outer conductor and an inner conductor, and the tip of the inner conductor protrudes to a position close to the discharge space or the tube wall of the discharge tube, and between the tip and the outer conductor. In the light source device, a projection formed integrally with the discharge tube is interposed.
JP2005306309A 2005-10-20 2005-10-20 Discharge lamp and light source device Expired - Fee Related JP4761244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306309A JP4761244B2 (en) 2005-10-20 2005-10-20 Discharge lamp and light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306309A JP4761244B2 (en) 2005-10-20 2005-10-20 Discharge lamp and light source device

Publications (2)

Publication Number Publication Date
JP2007115547A true JP2007115547A (en) 2007-05-10
JP4761244B2 JP4761244B2 (en) 2011-08-31

Family

ID=38097543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306309A Expired - Fee Related JP4761244B2 (en) 2005-10-20 2005-10-20 Discharge lamp and light source device

Country Status (1)

Country Link
JP (1) JP4761244B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220531A (en) * 2006-02-17 2007-08-30 Koito Mfg Co Ltd Discharge lamp
JP2008288041A (en) * 2007-05-17 2008-11-27 Ushio Inc Microwave-excited discharge lamp apparatus
US7554054B2 (en) 2004-10-01 2009-06-30 Seiko Epson Corporation High-frequency heating device, semiconductor manufacturing device, and light source device
JP2009158100A (en) * 2007-12-25 2009-07-16 Md Luminous Kk Igniting arrangement for antenna-exciting microwave discharge lamp
JP2009181762A (en) * 2008-01-30 2009-08-13 Iwasaki Electric Co Ltd Microwave discharge lamp
JP2009181828A (en) * 2008-01-31 2009-08-13 Seiko Epson Corp Light source device and projector with the same
JP2009230974A (en) * 2008-03-21 2009-10-08 Koito Mfg Co Ltd High frequency discharge lamp system
WO2012095081A1 (en) * 2010-12-27 2012-07-19 Karlsruher Institut für Technologie Lighting means and method for operating same
US8310168B2 (en) 2009-01-29 2012-11-13 Seiko Epson Corporation Light source device and projector
JP2015530694A (en) * 2012-07-11 2015-10-15 ユニヴェルシテ ジョセフ フーリエ−グレノーブル アンUniversite Joseph Fourier−Grenoble 1 Surface wave applicator for plasma generation
JP2018190665A (en) * 2017-05-10 2018-11-29 イマジニアリング株式会社 Electrodeless lamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146338A (en) * 2002-10-24 2004-05-20 Lg Electronics Inc Electrodeless lighting system and its bulb
JP2004273412A (en) * 2003-03-11 2004-09-30 Lg Electronics Inc Electrodeless lighting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146338A (en) * 2002-10-24 2004-05-20 Lg Electronics Inc Electrodeless lighting system and its bulb
JP2004273412A (en) * 2003-03-11 2004-09-30 Lg Electronics Inc Electrodeless lighting system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554054B2 (en) 2004-10-01 2009-06-30 Seiko Epson Corporation High-frequency heating device, semiconductor manufacturing device, and light source device
JP2007220531A (en) * 2006-02-17 2007-08-30 Koito Mfg Co Ltd Discharge lamp
JP2008288041A (en) * 2007-05-17 2008-11-27 Ushio Inc Microwave-excited discharge lamp apparatus
JP2009158100A (en) * 2007-12-25 2009-07-16 Md Luminous Kk Igniting arrangement for antenna-exciting microwave discharge lamp
JP2009181762A (en) * 2008-01-30 2009-08-13 Iwasaki Electric Co Ltd Microwave discharge lamp
JP2009181828A (en) * 2008-01-31 2009-08-13 Seiko Epson Corp Light source device and projector with the same
JP2009230974A (en) * 2008-03-21 2009-10-08 Koito Mfg Co Ltd High frequency discharge lamp system
US8310168B2 (en) 2009-01-29 2012-11-13 Seiko Epson Corporation Light source device and projector
WO2012095081A1 (en) * 2010-12-27 2012-07-19 Karlsruher Institut für Technologie Lighting means and method for operating same
RU2604643C2 (en) * 2010-12-27 2016-12-10 Карлсруэр Институт Фюр Технологи Lighting means and method for operating same
US9589784B2 (en) 2010-12-27 2017-03-07 Karlsruher Institut for Technologie Illuminant and operating method therefor
JP2015530694A (en) * 2012-07-11 2015-10-15 ユニヴェルシテ ジョセフ フーリエ−グレノーブル アンUniversite Joseph Fourier−Grenoble 1 Surface wave applicator for plasma generation
JP2018190665A (en) * 2017-05-10 2018-11-29 イマジニアリング株式会社 Electrodeless lamp

Also Published As

Publication number Publication date
JP4761244B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4761244B2 (en) Discharge lamp and light source device
JP2006294277A (en) Electrodeless discharge lamp and electrodeless discharge lamp device
JP4546455B2 (en) Microwave force plasma lamp with dielectric waveguide
US8294382B2 (en) Low frequency electrodeless plasma lamp
JP2004505429A (en) Plasma lamp having dielectric waveguide and light emitting method thereof
KR20110025189A (en) Electrodeless lamps with externally-grounded probes and improved bulb assemblies
JP2007115534A (en) Discharge lamp device, discharge lamp and discharge lamp lighting device
US7750569B2 (en) High-frequency discharge lamp incorporating an auxiliary starting electrode and lamp attachment to a coaxial waveguide
US7598676B2 (en) Discharge lamp
JP3462306B2 (en) Cold cathode discharge lamp, lamp lighting device, and lighting device
US8525430B2 (en) Helical structure and method for plasma lamp
JP3691591B2 (en) Electrode-less high-intensity discharge lamp with device for symmetric electric field
US8384300B2 (en) Integrated RF electrodeless plasma lamp device and methods
JP5493101B2 (en) Microwave discharge lamp
JP2004146338A (en) Electrodeless lighting system and its bulb
JP2006147454A (en) Electrodeless discharge lamp device
US20110085147A1 (en) Light source device and projection display device
JP2009123487A (en) High frequency discharge lamp system
JP2011233311A (en) Microwave discharge lamp device and method of manufacturing microwave discharge lamp
JP3906517B2 (en) Electrodeless discharge lamp lighting device
JP5191765B2 (en) High frequency discharge lamp system
JP2011090851A (en) Electrodeless plasma lamp, and method of generating light with use of electrodeless plasma lamp
US11705321B2 (en) Electrodeless plasma lamps, transmission lines and radio frequency systems
JP2008288025A (en) Microwave discharge lamp device
JP4725499B2 (en) Microwave electrodeless lamp, lighting device, projector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees