JP2006294277A - Electrodeless discharge lamp and electrodeless discharge lamp device - Google Patents

Electrodeless discharge lamp and electrodeless discharge lamp device Download PDF

Info

Publication number
JP2006294277A
JP2006294277A JP2005109385A JP2005109385A JP2006294277A JP 2006294277 A JP2006294277 A JP 2006294277A JP 2005109385 A JP2005109385 A JP 2005109385A JP 2005109385 A JP2005109385 A JP 2005109385A JP 2006294277 A JP2006294277 A JP 2006294277A
Authority
JP
Japan
Prior art keywords
conductor
discharge lamp
discharge tube
electrodeless discharge
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005109385A
Other languages
Japanese (ja)
Inventor
Takuya Serita
卓也 芹田
Masaya Shito
雅也 志藤
Masashi Shindo
正士 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2005109385A priority Critical patent/JP2006294277A/en
Publication of JP2006294277A publication Critical patent/JP2006294277A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing structure and a fixing structure of a discharge lamp that are effective for improving efficiency in an electrodeless discharge lamp and a lighting device using it. <P>SOLUTION: The electrodeless discharge lamp 8 has a sealing section 10 at least at one edge, and a discharge lamp 3A for emitting light without any electrodes. The electrodeless discharge lamp 8 has an electromagnetic wave irradiation section 4A having an excitor for introducing electromagnetic waves to the discharge lamp 3A, and a waveguide 5 including a conductor for transmitting electromagnetic waves to the electromagnetic wave irradiation section 4A. The sealing section 10 is arranged in the waveguide 5A, and the influence to emitted light by the sealing section is eliminated, thus fixing the discharge lamp easily and reliably. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放電管(発光管)内に電極を有さない無電極放電灯において、放電管の封止及び固定のための技術に関する。   The present invention relates to a technique for sealing and fixing a discharge tube in an electrodeless discharge lamp having no electrode in the discharge tube (arc tube).

放電空間内に電極を持たない無電極放電灯が知られており、フィラメントや電極の消耗によるランプ寿命の制限を受けず、また、電極からの熱損失がないことや、放電管内の封入物と電極材料との反応を考慮する必要がなく、効率向上に好適な発光物質を使用することができる。   There are known electrodeless discharge lamps that do not have electrodes in the discharge space, and are not subject to lamp life limitations due to exhaustion of filaments or electrodes, there is no heat loss from the electrodes, and there are no enclosures in the discharge tube. It is not necessary to consider the reaction with the electrode material, and a luminescent substance suitable for improving efficiency can be used.

ところで、自動車用灯具照明等のように配光制御を必要とし、かつ小型の光源を実現するには実用化に向けて解決すべき困難な問題がある。例えば、空洞共振器を用いた方法では、マグネトロンでマイクロ波を発振させ、導波管を介して空洞共振器中の無電極放電管を発光させる場合に、該空洞共振器の最小寸法が電磁波の周波数によって原理的に決定されてしまう。   By the way, there is a difficult problem to be solved for practical use in order to realize a small light source that requires light distribution control, such as lighting for automobiles. For example, in a method using a cavity resonator, when a microwave is oscillated by a magnetron and an electrodeless discharge tube in the cavity resonator is caused to emit light via a waveguide, the minimum dimension of the cavity resonator is an electromagnetic wave. It is determined in principle by the frequency.

また、高周波電流の使用に付随して発生する電磁波ノイズの問題を解決することが必要とされ、電磁波遮蔽手段(例えば、金網等)を設置する方法では効率低下や配光性能の悪化等への影響が懸念される。つまり、放電管の周囲に光を遮るようなシールドやコイル等を配置しないことが望ましい。   In addition, it is necessary to solve the problem of electromagnetic noise generated accompanying the use of high-frequency current, and the method of installing an electromagnetic shielding means (for example, a wire mesh etc.) reduces efficiency and deteriorates light distribution performance. There are concerns about the impact. That is, it is desirable not to arrange a shield, a coil or the like that blocks light around the discharge tube.

そのような要請に応じた小型で高効率の無電極放電灯の構成として、放電管内の発光物質を励起するために、同軸管の端部に形成されたスリットから、局所的に強い高周波電界を発生させ、これによって励起された表面波プラズマを利用して電磁波の遮蔽効果が得られるようにした灯具が知られている(例えば、特許文献1参照)。同軸管は周波数による寸法上の制限を受けない(遮断周波数が無いともいう。)ために、該同軸管の直径とほぼ同寸法の放電管を用いることができる。   In order to excite the luminescent material in the discharge tube, a small, high-efficiency electrodeless discharge lamp that meets such demands has a locally strong high-frequency electric field from a slit formed at the end of the coaxial tube. There has been known a lamp that generates a shielding effect of electromagnetic waves using surface wave plasma that is generated and excited thereby (see, for example, Patent Document 1). Since the coaxial tube is not limited in size by frequency (also referred to as having no cut-off frequency), a discharge tube having the same size as the diameter of the coaxial tube can be used.

特開2003−197156号公報JP 2003-197156 A

ところで、無電極放電灯では、放電管に対して電磁波を照射する電磁波照射部において放電管の封止構造や放電灯の固定又は支持のための構造が問題とされる。つまり、この部位での構造が複雑化すると、光利用効率を低下させる原因となる。例えば、放電管を石英ガラス等のガラス材料で形成する場合に、先ず、放電管の一部に穴を空けておくか又はガラス細管をつないでおき、そこからアルゴンやキセノン等の封入ガスと沃化物ペレットを入れ、最後にシュリンクシールやピンチシール工法を用いて、バーナーで上記の穴やガラス細管を封止する工程が行われる。その封止部の形成に関して、上記ガスやペレットを封入しながら、かつそれらに影響を及ぼさないようにバーナーで封止する必要があり、放電灯には必須であって、その構造が複雑となる。従って、封止部は、放電管内から外部に出射する光を阻害し、その結果、効率低下に繋がる。   By the way, in the electrodeless discharge lamp, there is a problem in the sealing structure of the discharge tube and the structure for fixing or supporting the discharge lamp in the electromagnetic wave irradiation portion that irradiates the discharge tube with electromagnetic waves. That is, if the structure at this part becomes complicated, it may cause a reduction in light utilization efficiency. For example, when the discharge tube is formed of a glass material such as quartz glass, first, a hole is formed in a part of the discharge tube or a glass thin tube is connected, and then an enclosed gas such as argon or xenon and iodine are added. The chemical pellets are put, and finally the step of sealing the above holes and glass capillaries with a burner is performed using a shrink seal or pinch seal method. Regarding the formation of the sealing portion, it is necessary to seal the gas and pellets with a burner so as not to affect the gas and pellets, which is essential for a discharge lamp, and the structure becomes complicated. . Therefore, the sealing portion inhibits light emitted from the inside of the discharge tube to the outside, and as a result, efficiency is reduced.

尚、このことはセラミック材料で放電管を製造する場合でも同様である。つまり、セラミック材料を用いる場合において、放電管の一部に封入ガスと沃化物ペレットを入れるための導入管を一体成型により形成しておき、それらを導入管から入れた後に、導入管の先端を低融点ガラス等で封止する工程が行われる。この場合にもその封止部は放電管において必須であって構造が複雑となり、封止部が放電管から外部に出射する光を阻害することが問題となる。   This also applies to the case where the discharge tube is manufactured from a ceramic material. That is, in the case of using a ceramic material, an introduction tube for containing the sealed gas and iodide pellets is formed in a part of the discharge tube by integral molding, and after inserting them from the introduction tube, the tip of the introduction tube is A step of sealing with low melting point glass or the like is performed. Also in this case, the sealing portion is essential in the discharge tube and the structure becomes complicated, and it becomes a problem that the sealing portion obstructs light emitted from the discharge tube to the outside.

また、導波管を構成する外部導体と内部導体との間にスリット(スロットアンテナ部)を有する形態において、当該部位での沿面距離が短い場合には、異常放電の発生が問題となる。   Further, in the form having a slit (slot antenna portion) between the outer conductor and the inner conductor constituting the waveguide, when the creeping distance at the part is short, the occurrence of abnormal discharge becomes a problem.

そこで、本発明は、無電極放電灯及びこれを用いた点灯装置において、効率向上に有効な放電管の封止構造及び固定構造の提供を課題とする。   Accordingly, an object of the present invention is to provide a discharge tube sealing structure and a fixing structure that are effective in improving efficiency in an electrodeless discharge lamp and a lighting device using the same.

本発明は、少なくとも一端部に封止部を有し、無電極で発光する放電管を用いた無電極放電灯及び無電極放電灯装置において、放電管に電磁波を導入するための励起子を有する電磁波照射部と、電磁波照射部に電磁波を伝送するために第1及び第2の導体を含む導波管とを備え、封止部又は封止部を形成するための封止用延長部が導波管の内部に配置された構成を有する。   The present invention has an exciton for introducing an electromagnetic wave into a discharge tube in an electrodeless discharge lamp and an electrodeless discharge lamp apparatus using a discharge tube that has a sealing portion at least at one end and emits light without an electrode. An electromagnetic wave irradiation part and a waveguide including first and second conductors for transmitting electromagnetic waves to the electromagnetic wave irradiation part, and a sealing extension or a sealing extension for forming the sealing part are guided. It has the structure arrange | positioned inside the wave tube.

従って、本発明では、封止部又は封止用延長部を、出射光に影響を及ぼす虞のない導波管内部、例えば、上記第1の導体又は第2の導体よりも内側に配置した構成を採用することより、放電管の有効発光面積を増加させ、出射効率を高めることができる。そして、封止部又は封止用延長部を導波管内に導入して、導波管端部の電磁波照射部に一体化された構成とすることにより、放電管の固定を容易にかつ確実に行うことができる。   Accordingly, in the present invention, the sealing portion or the sealing extension portion is disposed inside the waveguide that does not have a possibility of affecting the emitted light, for example, inside the first conductor or the second conductor. By adopting, the effective light emission area of the discharge tube can be increased and the emission efficiency can be increased. Then, by introducing a sealing portion or a sealing extension into the waveguide and integrating the electromagnetic wave irradiation portion at the end of the waveguide, the discharge tube can be fixed easily and reliably. It can be carried out.

本発明によれば、放電管の封止部による出射光への影響をなくすことで光利用効率を高めるとともに、放電管の導波管への固定構造の簡素化及び容易化に有効である。そして、封止部又は封止用延長部が放電灯の外観に露呈しないという隠蔽効果が得られる。   According to the present invention, the light utilization efficiency is improved by eliminating the influence on the emitted light by the sealing portion of the discharge tube, and it is effective for simplifying and facilitating the structure for fixing the discharge tube to the waveguide. And the concealment effect that the sealing part or the extension part for sealing is not exposed to the external appearance of a discharge lamp is acquired.

励起子が第1の導体と第2の導体との間のスリットにより形成された構成形態において、放電管と一体に形成された突部を、該スリット内に位置させることにより、第1の導体と第2の導体との沿面距離を充分に確保することができる。つまり、励起子において導体同士が近接した配置では放電が発生し易いが、放電管と一体に形成された突部をスリット内に介在させ、導体間における放電を遮断することで異常放電の防止効果が得られ、放電管本来の発光を確実に行うことができる。   In the configuration in which the excitons are formed by the slit between the first conductor and the second conductor, the protrusion formed integrally with the discharge tube is positioned in the slit to thereby form the first conductor. And a sufficient creeping distance between the second conductor and the second conductor can be secured. In other words, discharge is likely to occur when the conductors are close to each other in the exciton, but the projection formed integrally with the discharge tube is interposed in the slit, and the discharge between the conductors is cut off to prevent abnormal discharge. Thus, the original light emission of the discharge tube can be reliably performed.

また、導波管にセラミック製の管状部材を用いた形態では、該管状部材の外周面を第1の導体によって被覆するとともに、該管状部材の内周面を第2の導体によって被覆するか又は封止用延長部の外周面に被覆された導体が上記第2の導体の一部をなすように構成することが好ましい。つまり、被覆導体の間に熱伝導率の低いセラミック製の管状部材を介在させた構成では、金属材料を使用した場合に比して、放電管の効率向上に有効である。また、セラミック材料を使用することにより、放電灯の形状設計上の自由度を高めることが可能となる。   Further, in the form using the ceramic tubular member for the waveguide, the outer peripheral surface of the tubular member is covered with the first conductor, and the inner peripheral surface of the tubular member is covered with the second conductor, or It is preferable that the conductor covered on the outer peripheral surface of the sealing extension portion is configured to form a part of the second conductor. That is, a configuration in which a ceramic tubular member having a low thermal conductivity is interposed between the coated conductors is effective in improving the efficiency of the discharge tube as compared with the case where a metal material is used. Further, by using a ceramic material, it is possible to increase the degree of freedom in designing the shape of the discharge lamp.

放電灯の取付や通電の容易性を考慮した場合には、導波管内部に挿入される封止用延長部の外周面に導電性被膜を形成し、接続部材を介して導電性被膜を第2の導体(内部導体)に電気的に接続した構成が好ましい。   When considering the ease of mounting and energization of the discharge lamp, a conductive coating is formed on the outer peripheral surface of the sealing extension inserted into the waveguide, and the conductive coating is applied through the connecting member. The structure electrically connected to the two conductors (inner conductors) is preferable.

また、放電管が石英ガラスで形成された無電極放電灯においては、封止部から筒状に延びる封止用延長部を、筒状の第1の導体と、該第1の導体の中心軸に沿って位置される第2の導体との間に配置した構成が好ましい。つまり、第1の導体と第2の導体との間に封止用延長部を介在させることによって、導体間での放電を確実に防止することができる。また、石英ガラスの使用は、その誘電率の低さ故に、マイクロ波を用いる場合の効率向上に有効である。   In an electrodeless discharge lamp in which the discharge tube is made of quartz glass, a sealing extension extending in a cylindrical shape from the sealing portion includes a cylindrical first conductor and a central axis of the first conductor. The structure arrange | positioned between the 2nd conductors located along is preferable. That is, by interposing the sealing extension between the first conductor and the second conductor, discharge between the conductors can be reliably prevented. Also, the use of quartz glass is effective in improving the efficiency when using microwaves because of its low dielectric constant.

本発明は、配光制御を必要とする各種の光源に適用することができる。例えば、車両用前照灯や標識灯の光源、道路照明や信号機等の光源、あるいは店舗ディスプレイ照明、プロジェクタ装置用光源等において、発光部の小サイズ化、高輝度化、輝度分布の均一化等が求められる場合に好適であり、円筒状又は球状等の小型光源であって、その周囲に光を遮蔽し又は拡散させる部材を配置しない構成を提供することができる。   The present invention can be applied to various light sources that require light distribution control. For example, in light sources for vehicle headlights and beacon lights, light sources for road lighting, traffic lights, etc., store display lighting, light sources for projector devices, etc. Can be provided, and it is a small light source such as a cylindrical shape or a spherical shape, and a configuration in which a member that shields or diffuses light is not disposed around the light source can be provided.

図1は、本発明に係る無電極放電灯装置の基本構成例を示した説明図である。   FIG. 1 is an explanatory view showing a basic configuration example of an electrodeless discharge lamp device according to the present invention.

無電極放電灯装置1は、電磁波発生用の電源部2、放電により無電極で発光する放電管3と、放電管3に電磁波を導入するための励起子を含む電磁波照射部4を備えている。   The electrodeless discharge lamp device 1 includes a power supply unit 2 for generating electromagnetic waves, a discharge tube 3 that emits light without electrodes by discharge, and an electromagnetic wave irradiation unit 4 that includes excitons for introducing electromagnetic waves into the discharge tube 3. .

電源部2には、例えば、マイクロ波帯(1乃至100GHz)の電磁波を発生する発振部が含まれ、マグネトロンが使用されるが、これに限らず、半導体スイッチング素子(FETやバイポーラトランジスタ等)を用いて構成される高周波アンプ装置等の使用が可能である。   The power supply unit 2 includes, for example, an oscillation unit that generates electromagnetic waves in the microwave band (1 to 100 GHz) and uses a magnetron. However, the present invention is not limited to this, and a semiconductor switching element (such as an FET or a bipolar transistor) is used. It is possible to use a high-frequency amplifier device or the like that is used.

放電管3については、例えば、セラミックや石英ガラス等を用いて中空円筒状に形成され、管内には所定の封入物質(キセノンやアルゴン等のガス、NaIやScI等の金属沃化物、金属臭化物等)が充填されている。また、必要に応じて放電管の内面又は外面に蛍光体を塗布する形態が可能である。尚、中心孔を有するトーラス形状や2重管構造又は円筒形状の中央に凹部を形成した構造等を用いても良いが、同軸管や同軸ケーブルの先端部に放電管を付設する場合には、円筒管のように、放電管の外径を小さくして小型化が可能な形状が好ましい。 The discharge tube 3, for example, formed in a hollow cylindrical shape with a ceramic or quartz glass or the like, a gas such as given encapsulating material (xenon or argon into the tube, NaI and ScI metal iodide such as 3, metal bromide Etc.) are filled. Moreover, the form which apply | coats a fluorescent substance to the inner surface or outer surface of a discharge tube as needed is possible. In addition, although a torus shape having a center hole, a double tube structure, or a structure in which a concave portion is formed in the center of a cylindrical shape may be used, when a discharge tube is attached to the tip of a coaxial tube or a coaxial cable, A shape that can be reduced in size by reducing the outer diameter of the discharge tube, such as a cylindrical tube, is preferable.

電磁波照射部4は放電管3に電磁波を導入するためのランチャーとしての機能を有し、電磁波照射部4の端部に放電管3が取り付けられる。電磁波照射部4と電源部2とを繋ぐ導波管5には、例えば、同軸管や同軸ケーブルが用いられる。尚、配置上の自由度を考慮した場合には可撓性に富む素材を用いることが好ましい。   The electromagnetic wave irradiation unit 4 has a function as a launcher for introducing electromagnetic waves into the discharge tube 3, and the discharge tube 3 is attached to the end of the electromagnetic wave irradiation unit 4. For the waveguide 5 that connects the electromagnetic wave irradiation unit 4 and the power supply unit 2, for example, a coaxial tube or a coaxial cable is used. In consideration of the degree of freedom in arrangement, it is preferable to use a material having high flexibility.

導波管5上には反射波検出手段6が設けられており、放電管3から電源部2側へと伝播する反射波を検波する。そして、その計測結果が出力制御手段7に送出される。   Reflected wave detection means 6 is provided on the waveguide 5 to detect a reflected wave propagating from the discharge tube 3 to the power supply unit 2 side. Then, the measurement result is sent to the output control means 7.

出力制御手段7は反射波検出手段6からの計測情報に基づいてインピーダンスマッチングの調整により反射損失を最小にすべく電源部2の出力を制御する。つまり、同軸管や同軸ケーブルを用いて電源部2と電磁波照射部4を接続した構成において、高周波の場合にそのままでは反射波のレベルが大きくなり放電管3に効率良く電力供給を行えないかあるいは電力損失の増加が問題となる。そこで、電源部2と放電管3との間でインピーダンスマッチングをとるための装置(例えば、スリースタブチューナ等を用いたマッチング装置)を使って反射波を抑制することで放電管3への電力供給を効率良く行うことができる。具体的には、反射波の検波情報に基づいて導波回路のLC成分(L:誘導性成分、C:容量性成分)を調整して反射損失が最小となるように(反射波を充分に低減させる。)、電源部2の出力インピーダンスと放電管3のインピーダンスとの間で整合をとる。   The output control means 7 controls the output of the power supply unit 2 to minimize the reflection loss by adjusting the impedance matching based on the measurement information from the reflected wave detection means 6. In other words, in a configuration in which the power supply unit 2 and the electromagnetic wave irradiation unit 4 are connected using a coaxial tube or a coaxial cable, the level of the reflected wave becomes large as it is in the case of a high frequency, and power cannot be efficiently supplied to the discharge tube 3. An increase in power loss becomes a problem. Therefore, power is supplied to the discharge tube 3 by suppressing reflected waves using a device for impedance matching between the power supply unit 2 and the discharge tube 3 (for example, a matching device using a sleeving tuner or the like). Can be performed efficiently. Specifically, the LC component of the waveguide circuit (L: inductive component, C: capacitive component) is adjusted based on the detection information of the reflected wave so that the reflection loss is minimized (the reflected wave is sufficiently reduced). Matching is performed between the output impedance of the power supply unit 2 and the impedance of the discharge tube 3.

例えば、マグネトロンから、アイソレータ、減衰器、方向性結合器、スリースタブチューナ、同軸導波管変換器、同軸管を順に経て励起子から放電管へと繋がる構成形態では、同軸管の先端にスロットアンテナが位置し(その部分を「励起子」と呼ぶ。)、これに放電管が固定される。尚、アイソレータはマグネトロンに反射波が戻らないようにする役目を有し、方向性結合器は電磁波を一方向にしか進めないようにするための装置である。   For example, in a configuration in which an exciter is connected to a discharge tube through a magnetron, an isolator, an attenuator, a directional coupler, a slew tab tuner, a coaxial waveguide converter, and a coaxial tube in this order, a slot antenna is provided at the end of the coaxial tube. Is located (this part is called “exciton”), and the discharge tube is fixed to this. The isolator serves to prevent the reflected wave from returning to the magnetron, and the directional coupler is a device for allowing the electromagnetic wave to travel only in one direction.

強い高周波電界によって放電管内に高密度のプラズマが生成されて点灯状態へと移行し、同軸管からの高周波電界が進行波となって放電管に導入されて点灯が持続する。   A strong high-frequency electric field generates high-density plasma in the discharge tube and shifts to a lighting state, and the high-frequency electric field from the coaxial tube becomes a traveling wave and is introduced into the discharge tube to continue lighting.

高密度のプラズマ内には高周波電界の進入が許されないため(このときの密度を「遮断密度」と呼ぶ。)、高周波電界は誘電体である放電管とプラズマの間を表面波モードとなってプラズマを生成しながら伝搬する(これを「表面波プラズマ」と呼ぶ。)。   Since a high-frequency electric field is not allowed to enter the high-density plasma (the density at this time is referred to as “blocking density”), the high-frequency electric field becomes a surface wave mode between the dielectric discharge tube and the plasma. It propagates while generating plasma (this is called "surface wave plasma").

放電管の一部にしか高周波電界を印加しない場合であっても、表面波プラズマにより放電管内にプラズマが一様に生じるため、放電管を配光制御上で要求される形状に規定すれば該形状全体での発光が可能となる(即ち、配光制御に適した光源を実現できる。)。   Even when a high frequency electric field is applied only to a part of the discharge tube, the plasma is uniformly generated in the discharge tube by the surface wave plasma. Therefore, if the discharge tube is defined in a shape required for light distribution control, Light emission in the entire shape is possible (that is, a light source suitable for light distribution control can be realized).

また、電極を有する通常の放電管では、温度の低い部分(電極の根元部分や放電管の下部等)によって発光物質の蒸気圧、延いては発光量が決定されてしまう結果、効率の限界が自ずと規定されるが、表面波プラズマを利用した形態では放電管内でプラズマが一様に発生し、放電管内の温度分布が均一となり、効率の向上に寄与する。   Moreover, in a normal discharge tube having an electrode, the vapor pressure of the luminescent material, and hence the amount of luminescence, is determined by the low-temperature part (the base part of the electrode, the lower part of the discharge tube, etc.), so that the efficiency limit is limited. Naturally, in the form using surface wave plasma, plasma is uniformly generated in the discharge tube, and the temperature distribution in the discharge tube becomes uniform, contributing to the improvement of efficiency.

電磁波の検出には、ダイオード等の半導体素子が用いられ、その検出電流によって入射波や反射波を測定することができる。例えば、方向性結合器に入射用及び反射用の各検出素子を取り付け、それらの検出結果に基づいてインピーダンスマッチングの調整を行うことにより、放電管の点灯開始から定常点灯に至るまでの過渡期において損失無く放電管に電力を投入することができる。また、経年変化や寿命等に起因する特性変化に対して反射損失を抑えて効率の良い安定な点灯を実現できる。   A semiconductor element such as a diode is used to detect electromagnetic waves, and incident waves and reflected waves can be measured by the detected current. For example, in the transition period from the start of lighting of the discharge tube to the steady lighting by attaching each detecting element for incident and reflection to the directional coupler and adjusting the impedance matching based on the detection result Electric power can be supplied to the discharge tube without loss. In addition, it is possible to realize efficient and stable lighting by suppressing reflection loss with respect to characteristic changes caused by aging and life.

尚、図1の例では電源部2と出力制御手段7とを別個に示しているが、これに限らず、出力制御手段7が電源部に含まれるようにした形態(つまり、電源部自体が出力制御機能を有する。)でも構わない。   In the example of FIG. 1, the power supply unit 2 and the output control unit 7 are shown separately. However, the present invention is not limited to this, and the configuration in which the output control unit 7 is included in the power supply unit (that is, the power supply unit itself is It has an output control function).

次に、無電極放電灯に係る下記の構成形態について、図2乃至図6を用いて説明する。   Next, the following configuration of the electrodeless discharge lamp will be described with reference to FIGS.

(I)放電管の封止部及び封止用延長部を導波管内に配置した構成
(II)放電管の封止用延長部を導波管内に配置した構成
(I) Configuration in which discharge tube sealing portion and sealing extension are arranged in the waveguide (II) Configuration in which discharge tube sealing extension is arranged in the waveguide

無電極放電管の材質には、例えば、セラミック又は石英ガラスが使用される。セラミックの場合に上記(I)が採用され、石英ガラスの場合に上記(II)が採用されるが、いずれの構成でも、放電管の封止部による出射光への影響を排除することができる。   For example, ceramic or quartz glass is used as the material of the electrodeless discharge tube. In the case of ceramic, the above (I) is adopted, and in the case of quartz glass, the above (II) is adopted. However, in any configuration, the influence on the emitted light by the sealing portion of the discharge tube can be eliminated. .

図2乃至図4は、放電管に透明セラミック材料を用いた構成例を示している。   2 to 4 show configuration examples using a transparent ceramic material for the discharge tube.

図2に示す無電極放電灯8は、放電管3Aが導波管5Aに対して固定された構造をもち、導波管5Aは同軸ケーブル等を経て図示しない電源部に接続される。   The electrodeless discharge lamp 8 shown in FIG. 2 has a structure in which the discharge tube 3A is fixed to the waveguide 5A, and the waveguide 5A is connected to a power source (not shown) via a coaxial cable or the like.

放電管3Aは、その外径が導波管5Aの外径と同程度とされる円筒管9と、その一端部に封止部10を有する。封止部10は、円筒管9よりも小径の封止用延長部(あるいは封止用脚部)11内に、棒状部材12を挿入した状態で、封止用延長部11の端部(図の下端部)を低融点ガラス11aで封止することにより形成される。尚、円筒管9内の放電空間には、所定の物質が封入されているが、セラミック製の棒状部材12のうち、低融点ガラス11aで封止された端部とは反対側の端部が放電空間内に入り込まない位置に規定されており、棒状部材12と封止用延長部11との間に形成される隙間(クリアランス)を狭めることで、消灯時に封入物質の進入を拒んで該物質が溜まらないように防止する機能をもたせている。   The discharge tube 3A has a cylindrical tube 9 whose outer diameter is approximately the same as the outer diameter of the waveguide 5A, and a sealing portion 10 at one end thereof. The sealing portion 10 is an end portion of the sealing extension portion 11 in a state where the rod-like member 12 is inserted into the sealing extension portion (or sealing leg portion) 11 having a smaller diameter than the cylindrical tube 9 (see FIG. Is formed by sealing the lower end portion of the substrate with a low melting point glass 11a. The discharge space in the cylindrical tube 9 is filled with a predetermined substance. Of the rod-shaped member 12 made of ceramic, the end opposite to the end sealed with the low melting point glass 11a is formed. It is defined at a position where it does not enter the discharge space, and by narrowing the gap (clearance) formed between the rod-like member 12 and the sealing extension 11, the substance is refused from entering when the light is extinguished. It has a function to prevent the water from accumulating.

本例では、円筒状をした封止用延長部11の外周面に被覆された導体11b(導電性被膜)が被覆されており、封止用延長部11の端部寄りの位置には、その他の部分に比べて外径の小さい小径部11cが形成されている。また、円筒管9のうち、封止用延長部11の付け根部分の近傍には円環状の突部9a(あるいはリブ)が一体に形成されている。   In this example, the conductor 11b (conductive film) coated on the outer peripheral surface of the cylindrical sealing extension 11 is coated, and other positions are provided near the end of the sealing extension 11. A small-diameter portion 11c having a smaller outer diameter than that of the portion is formed. Further, in the cylindrical tube 9, an annular protrusion 9 a (or rib) is integrally formed in the vicinity of the base portion of the sealing extension 11.

励起子を有する電磁波照射部4Aに対して、電磁波を伝送するために第1及び第2の導体を含む導波管5Aが用いられており、封止部10や封止用延長部11が導波管5Aの内部に配置されている。   For the electromagnetic wave irradiation unit 4A having excitons, a waveguide 5A including first and second conductors is used to transmit electromagnetic waves, and the sealing unit 10 and the sealing extension 11 are guided. Arranged inside the wave tube 5A.

導波管5Aは、誘電体及び対をなす導体を用いて構成される。本例では、セラミック製の管状部材13が外管として使用され、その外周面に第1の導体(外部導体)14が被覆されており、管状部材13の空洞内には内部導体を構成する第2の導体15が設けられている。第2の導体15については、例えば、誘電体の外周面に導電性被膜を形成した形態や導電性材料による中空パイプを用いた形態等が挙げられる。   The waveguide 5A is configured using a dielectric and a pair of conductors. In this example, a ceramic tubular member 13 is used as an outer tube, and an outer peripheral surface thereof is covered with a first conductor (outer conductor) 14, and the inner conductor is formed in the cavity of the tubular member 13. Two conductors 15 are provided. Examples of the second conductor 15 include a form in which a conductive film is formed on the outer peripheral surface of the dielectric, a form using a hollow pipe made of a conductive material, and the like.

第2の導体15の端部15aは、金属等の導電性材料で形成された接続部材16を介して上記導体11bと電気的に接続されており、これによって、封止用延長部11の外周面に被覆された導体11bが内部導体の一部を構成している。第2の導体15がコネクタ等の接続部材16を介して封止用延長部11の付け根まで延長される。   The end 15a of the second conductor 15 is electrically connected to the conductor 11b via a connecting member 16 formed of a conductive material such as metal, and thereby the outer periphery of the sealing extension 11 The conductor 11b coated on the surface constitutes a part of the inner conductor. The second conductor 15 is extended to the root of the sealing extension 11 through a connection member 16 such as a connector.

励起子は、第1の導体14の端部と、導体11bの端部との間に形成されるスリット17によりスロットアンテナ部として形成されており、放電管3Aの突部9aがスリット17内に位置される。管状部材13の端部には段差13aが形成されており、突部9aの端部(図の下端部)が段差13aに当接した状態で放電管3Aが支持される。このように、導体14と導体11bとの間に、放電管と同じ材質(誘電体)の突部9aを介在させて沿面距離を十分に確保することで導体間の異常放電防止の効果を得ることができる。   The excitons are formed as a slot antenna portion by a slit 17 formed between the end portion of the first conductor 14 and the end portion of the conductor 11b, and the protrusion 9a of the discharge tube 3A is formed in the slit 17. Be positioned. A step 13a is formed at the end of the tubular member 13, and the discharge tube 3A is supported in a state where the end of the protrusion 9a (lower end in the figure) is in contact with the step 13a. As described above, the protrusions 9a made of the same material (dielectric material) as the discharge tube are interposed between the conductor 14 and the conductor 11b, so that a sufficient creeping distance is ensured, thereby obtaining an effect of preventing abnormal discharge between the conductors. be able to.

上記のように、放電管3Aの封止用延長部11に被覆された導体11bを内部導体の一部として一体化させることにより、放電管を固定するとともに、導波管5A内に封止部10及び封止用延長部11を配置させて、これらが光利用効率に悪影響を及ぼさないようにすることができる。   As described above, the conductor 11b covered with the sealing extension 11 of the discharge tube 3A is integrated as a part of the inner conductor to fix the discharge tube and to seal the sealing portion in the waveguide 5A. 10 and the sealing extension 11 can be arranged so that they do not adversely affect the light utilization efficiency.

本例では、封止用延長部11の外周面に導電性被膜を形成し、該導電性被膜が接続部材16を介して第2の導体15と電気的に接続され、かつ封止用延長部11が接続部材16で保持されるように構成することにより、放電管3Aの取付や交換、通電を簡易に行えるようにしたが、本発明の適用においては、封止用延長部11を内部導体の基材(誘電体)にガラスや接着剤で接着するか、あるいは、封止用延長部11にネジ等の締結部を形成して内部導体又はその基材に取り付ける方法等、各種形態での実施が可能である。   In this example, a conductive coating is formed on the outer peripheral surface of the sealing extension 11, the conductive coating is electrically connected to the second conductor 15 through the connection member 16, and the sealing extension 11 is configured to be held by the connecting member 16 so that the discharge tube 3A can be easily attached, replaced, and energized. However, in the application of the present invention, the sealing extension 11 is used as the internal conductor. In various forms, such as attaching to the base material (dielectric material) with glass or an adhesive, or forming a fastening portion such as a screw on the sealing extension 11 and attaching it to the internal conductor or the base material. Implementation is possible.

また、図3に示す構成例のように、放電管3Aの突部9aの外周面にネジ部18を形成し、管状部材13の端部の内周面に、ネジ部18に対応する螺溝19を形成することによって、放電管3Aを管状部材13に取り付ける際に、突部9aがスリット17内に位置される状態で、ネジ部18を螺溝19に螺合させた構成でも構わない。   Further, as in the configuration example shown in FIG. 3, a screw portion 18 is formed on the outer peripheral surface of the protrusion 9 a of the discharge tube 3 A, and a screw groove corresponding to the screw portion 18 is formed on the inner peripheral surface of the end portion of the tubular member 13. When the discharge tube 3 </ b> A is attached to the tubular member 13 by forming 19, the screw portion 18 may be screwed into the screw groove 19 in a state where the protrusion 9 a is positioned in the slit 17.

あるいは、突部9aを導波管の端部に対して接着し、又は圧入や嵌合により固定する形態、あるいはコネクタや口金等の仲介部材又は係合部材を用いて固定する形態等、各種の構成が挙げられるが、放電管の交換や保守性等を考慮した場合には、螺合や係合等による取付形態が好ましい。   Alternatively, the protrusion 9a is bonded to the end of the waveguide, or fixed by press-fitting or fitting, or fixed using an intermediate member such as a connector or a base or an engaging member. A configuration may be mentioned, but in consideration of replacement of the discharge tube, maintainability, and the like, a mounting form by screwing or engagement is preferable.

図2や図3に示す例では、放電管3Aの封止用延長部11に導体を被覆した構成とされたが、これに限らず、図4に示す無電極放電灯20のように、管状部材13の内周面に内部導体を形成した構成も可能である。つまり、上記した構成との相違点は、下記の通りである。   In the example shown in FIGS. 2 and 3, the sealing extension 11 of the discharge tube 3 </ b> A is covered with a conductor. However, the configuration is not limited to this, and a tubular shape like the electrodeless discharge lamp 20 shown in FIG. 4 is used. A configuration in which an inner conductor is formed on the inner peripheral surface of the member 13 is also possible. That is, the difference from the above-described configuration is as follows.

・第2の導体15が管状部材13の内周面に被覆されていること。
・放電管3Bを構成する封止用延長部11の外周面には導体が被覆されておらず、また、小径部11cがなく、接続部材16が不要であること。
・導波管5Bを構成する管状部材13の端部には、放電管3Bの突部9aに対応した、環状凹部13bが形成されていること。
The second conductor 15 is coated on the inner peripheral surface of the tubular member 13.
-The outer peripheral surface of the sealing extension 11 constituting the discharge tube 3B is not covered with a conductor, has no small diameter portion 11c, and does not require the connecting member 16.
An annular recess 13b corresponding to the protrusion 9a of the discharge tube 3B is formed at the end of the tubular member 13 constituting the waveguide 5B.

本例では、管状部材13において、その外周面が導体14で被覆されるとともに、その内周面が導体15で被覆された導波管5Bが使用される。導体14は、その一端部が管状部材13の端面の外周縁にまで及んでおり、また、導体15は、その一端部が管状部材13の端面の内周縁にまで及んでおり、いずれも導電性被膜として形成される。   In this example, in the tubular member 13, a waveguide 5 </ b> B whose outer peripheral surface is covered with a conductor 14 and whose inner peripheral surface is covered with a conductor 15 is used. One end of the conductor 14 extends to the outer peripheral edge of the end surface of the tubular member 13, and one end of the conductor 15 extends to the inner peripheral edge of the end surface of the tubular member 13, both of which are conductive. It is formed as a film.

そして、管状部材13の端部において導体14と導体15との間には、電磁波照射部4Bを構成するスリット17が形成され、これがスロットアンテナ部に用いられる。放電管3Bの突部9aを、環状凹部13bに対して圧入し又は嵌合するか接着等で固定し、導体14と15との間の沿面距離を十分に確保することにより、導体間の異常放電防止の効果が得られる。また、突部9aを環状凹部13bに対して位置合わせすることで放電管の位置決めがなされる。   And the slit 17 which comprises the electromagnetic wave irradiation part 4B is formed between the conductor 14 and the conductor 15 in the edge part of the tubular member 13, and this is used for a slot antenna part. The protrusion 9a of the discharge tube 3B is press-fitted into or fitted into the annular recess 13b or fixed by bonding or the like, and a sufficient creepage distance between the conductors 14 and 15 is secured, so that there is an abnormality between the conductors. The effect of preventing discharge is obtained. Further, the discharge tube is positioned by aligning the protrusion 9a with the annular recess 13b.

尚、管状部材13の内部には、その中心軸に沿って誘電体で形成された部材21が設けられており、例えば、該部材に封止部をネジ等で締結し、又は接着等で固定する構成形態が挙げられる。   The tubular member 13 is provided with a member 21 formed of a dielectric material along its central axis. For example, a sealing portion is fastened to the member with a screw or the like, or is fixed by bonding or the like. The structure form to do is mentioned.

放電管をセラミック材料で形成する場合には、封止用延長部の端部を低融点ガラスで封止する方法が採られるが、放電管を石英ガラスで形成する場合には、図5や図6に示すように、シュリンクシールやピンチシール工法等によって封止した構造をもつ。   When the discharge tube is formed of a ceramic material, a method of sealing the end of the sealing extension with low-melting glass is employed. However, when the discharge tube is formed of quartz glass, FIG. As shown in FIG. 6, it has a structure sealed by a shrink seal, a pinch seal method or the like.

図5は、無電極放電灯22の構成例を示すものである。   FIG. 5 shows a configuration example of the electrodeless discharge lamp 22.

放電管3Cは、その外径が導波管5Cの外径と同程度とされる円筒管23を有し、その一端部には、シュリンクシール等によって封止部24が形成されている。   The discharge tube 3C has a cylindrical tube 23 whose outer diameter is approximately the same as the outer diameter of the waveguide 5C, and a sealing portion 24 is formed at one end thereof by a shrink seal or the like.

封止部24から筒状に延びる封止用延長部25は、導波管5Cを構成する第1の導体26と第2の導体27との間に形成されるスリット28(電磁波照射部4Cを構成する。)から導波管5Cの内部に導入される。本例では、筒状をした第1の導体26が外部導体とされ、例えば、導電性材料を用いた中空パイプが用いられ、その端部断面をL字状に形成している。該導体26の中心軸に沿って位置される第2の導体27が内部導体とされ、該導体には、例えば、金属棒や金属パイプ、あるいは、石英ガラス製の基材に導電性被膜を形成した部材等が用いられる。尚、導波管5Cは同軸ケーブル等を経て図示しない電源部に接続される。   A sealing extension 25 extending in a cylindrical shape from the sealing portion 24 is provided with a slit 28 (an electromagnetic wave irradiation portion 4C formed between the first conductor 26 and the second conductor 27 constituting the waveguide 5C. To the inside of the waveguide 5C. In this example, the cylindrical first conductor 26 is used as an external conductor, and for example, a hollow pipe using a conductive material is used, and its end section is formed in an L shape. The second conductor 27 positioned along the central axis of the conductor 26 is used as an inner conductor, and a conductive film is formed on the conductor, for example, on a metal rod, a metal pipe, or a quartz glass substrate. The member etc. which were done are used. The waveguide 5C is connected to a power supply unit (not shown) via a coaxial cable or the like.

放電管3Cの封止部24は、導波管5Cの端面近傍に位置しており、封止部24から延びる封止用延長部25が、導体26と導体27との間のスリット28から導波管5C内に導入されて両導体の間に介在されることで、導体間の沿面距離を十分に確保し、異常放電の発生を防止することができる。   The sealing portion 24 of the discharge tube 3C is located in the vicinity of the end face of the waveguide 5C, and the sealing extension 25 extending from the sealing portion 24 is guided from the slit 28 between the conductor 26 and the conductor 27. By being introduced into the wave tube 5C and interposed between the two conductors, a sufficient creepage distance between the conductors can be secured, and abnormal discharge can be prevented.

放電管3Cの固定及び支持構造としては、例えば、図6に示す無電極放電灯29のように、支持部材30を導波管5Cの端部に取り付けて、放電管3Cの封止用延長部25を保持するようにした例が挙げられる(無電極放電灯22の各部と機能的に同様の部分には同じ符号を用いて説明する。)。   As the fixing and supporting structure of the discharge tube 3C, for example, as in an electrodeless discharge lamp 29 shown in FIG. 6, a support member 30 is attached to the end of the waveguide 5C, and a sealing extension of the discharge tube 3C is provided. An example in which 25 is held is given (the same reference numerals are used for the same functional parts as the respective parts of the electrodeless discharge lamp 22).

本例では、支持部材30として金属製口金が使用され、第1の導体26に外嵌される部分30aと、該導体26に内嵌される部分30bとが一体に形成されており、該部分30bの内側に挿通孔30cが形成されている。   In this example, a metal base is used as the support member 30, and a portion 30 a that is externally fitted to the first conductor 26 and a portion 30 b that is internally fitted to the conductor 26 are integrally formed. An insertion hole 30c is formed inside 30b.

封止用延長部25の外周面には、係合突部25aが形成されており、上記部分30bには該係合突部25aに対応した係合孔31が形成されている。   An engagement protrusion 25a is formed on the outer peripheral surface of the sealing extension 25, and an engagement hole 31 corresponding to the engagement protrusion 25a is formed in the portion 30b.

導波管5Cの端部に支持部材30を取り付けた後、放電管3Cの封止用延長部25を挿通孔30cから導波管5C内に挿入することにより、導体26と導体27との間に封止用延長部25が配置される。   After attaching the support member 30 to the end of the waveguide 5C, the sealing extension 25 of the discharge tube 3C is inserted into the waveguide 5C from the insertion hole 30c, so that the gap between the conductor 26 and the conductor 27 is increased. The sealing extension 25 is disposed on the surface.

尚、封止用延長部25の固定及び支持については、本例に限らず、支持部材30の上記部分30bに支持用の突部を形成して封止用延長部25に当接させた構成、あるいは、支持部材を用いることなく、接着剤やガラス等により封止用延長部を導体や固定用部材に接着するといった、各種形態での実施が可能である。   The fixing and supporting of the sealing extension 25 is not limited to this example, and a configuration in which a supporting protrusion is formed on the portion 30b of the support member 30 and is brought into contact with the sealing extension 25. Alternatively, the present invention can be implemented in various forms such as bonding the sealing extension to the conductor or the fixing member with an adhesive or glass without using a support member.

また、放電管の断熱に適した電磁波照射部の構造に関して、例えば、下記に示す形態が挙げられる。   Moreover, regarding the structure of the electromagnetic wave irradiation unit suitable for heat insulation of the discharge tube, for example, the following forms can be given.

・内部導体に、耐熱性があって、かつ熱伝導率の低い絶縁体(ガラスやセラミック等)を使用し、その外周面に金属箔板又は金属膜を形成した構成
・外部導体に、耐熱性があって、かつ熱伝導率の低い絶縁体(ガラスやセラミック等)を使用し、その外周面又は内周面に金属箔板又は金属膜を形成した構成。
・ Internal conductor with heat resistance and low thermal conductivity insulator (glass, ceramic, etc.), metal foil plate or metal film formed on the outer peripheral surface ・ Heat resistance on external conductor A structure in which an insulator (such as glass or ceramic) having low thermal conductivity is used and a metal foil plate or a metal film is formed on the outer peripheral surface or inner peripheral surface thereof.

以上に説明した無電極放電灯は、出射効率の向上や放電管の固定、異常放電の防止、放電管の断熱による効率の向上に有効であり、例えば、下記に示す利点が得られる。   The electrodeless discharge lamp described above is effective in improving the emission efficiency, fixing the discharge tube, preventing abnormal discharge, and improving the efficiency by insulating the discharge tube. For example, the following advantages are obtained.

・導波管端部の電磁波照射部に対する放電管の固定が容易になり、放電管に形成された突部(9a)によって、電磁波照射部への位置決めを行えること。
・放電管に形成された突部を、電磁波照射部のスリット内に位置させることにより、該スリットでの放電を防止できること。
・封止部又は封止用延長部を導波管内に配置することによって、電磁波照射部とは反対側の放電管端面に封止部を設けない構成が可能となり、光の取り出し効率が良いこと。
・導波管を構成する導体間に、セラミックパイプのような、熱伝導率の低い材料(誘電体)を設けることで、放電管の効率が良くなること。
・誘電率の低い石英管を用いた構成において、封止用延長部を外部導体と内部導体との間に介在させることにより絶縁を充分に図り、両導体間の放電を防止できること。
-The discharge tube can be easily fixed to the electromagnetic wave irradiation portion at the end of the waveguide, and positioning to the electromagnetic wave irradiation portion can be performed by the protrusion (9a) formed on the discharge tube.
-It is possible to prevent discharge at the slit by positioning the protrusion formed on the discharge tube within the slit of the electromagnetic wave irradiation unit.
-By arranging the sealing part or sealing extension in the waveguide, it is possible to have a structure in which no sealing part is provided on the end face of the discharge tube opposite to the electromagnetic wave irradiation part, and the light extraction efficiency is good. .
-The efficiency of the discharge tube should be improved by providing a material (dielectric) having a low thermal conductivity such as a ceramic pipe between the conductors constituting the waveguide.
-In a configuration using a quartz tube having a low dielectric constant, a sealing extension is interposed between the outer conductor and the inner conductor to sufficiently insulate and prevent discharge between the two conductors.

本発明に係る無電極放電灯装置の基本構成例を示す説明図である。It is explanatory drawing which shows the basic structural example of the electrodeless discharge lamp apparatus which concerns on this invention. 本発明に係る無電極放電灯の断面構成例を示す図である。It is a figure which shows the cross-sectional structural example of the electrodeless discharge lamp which concerns on this invention. 放電管を導波管端部に取り付ける場合の一例を示す図である。It is a figure which shows an example in the case of attaching a discharge tube to the waveguide edge part. 本発明に係る無電極放電灯の別例を示す図である。It is a figure which shows another example of the electrodeless discharge lamp which concerns on this invention. 本発明に係る無電極放電灯のさらに別例を示す図である。It is a figure which shows another example of the electrodeless discharge lamp which concerns on this invention. 放電管の導波管端部への取り付け例を示す図である。It is a figure which shows the example of attachment to the waveguide edge part of a discharge tube.

符号の説明Explanation of symbols

1…無電極放電灯装置、2…電源部、3、3A、3B、3C…放電管、4、4A、4B、4C…電磁波照射部、5、5A、5B、5C…導波管、8…無電極放電灯、9a…突部、10…封止部、11…封止用延長部、11b…封止用延長部の外周面に被覆された導体、13…管状部材、14…第1の導体、15…第2の導体、16…接続部材、17…スリット、20…無電極放電灯、22…無電極放電灯、24…封止部、25…封止用延長部、26…第1の導体、27…第2の導体、28…スリット、29…無電極放電灯   DESCRIPTION OF SYMBOLS 1 ... Electrodeless discharge lamp apparatus, 2 ... Power supply part 3, 3A, 3B, 3C ... Discharge tube 4, 4A, 4B, 4C ... Electromagnetic wave irradiation part 5, 5A, 5B, 5C ... Waveguide, 8 ... Electrodeless discharge lamp, 9a ... projection, 10 ... sealing portion, 11 ... sealing extension, 11b ... conductor covered on outer peripheral surface of sealing extension, 13 ... tubular member, 14 ... first Conductor, 15 ... second conductor, 16 ... connecting member, 17 ... slit, 20 ... electrodeless discharge lamp, 22 ... electrodeless discharge lamp, 24 ... sealing part, 25 ... extension part for sealing, 26 ... first 27 ... second conductor 28 ... slit 29 ... electrodeless discharge lamp

Claims (6)

少なくとも一端部に封止部を有し、無電極で発光する放電管を用いた無電極放電灯において、
上記放電管に電磁波を導入するための励起子を有する電磁波照射部と、
上記電磁波照射部に電磁波を伝送するために第1及び第2の導体を含む導波管とを備え、
上記封止部又は封止部を形成するための封止用延長部が上記導波管の内部に配置されている
ことを特徴とする無電極放電灯。
In an electrodeless discharge lamp having a sealing part at least at one end and using a discharge tube that emits light without an electrode,
An electromagnetic wave irradiation unit having excitons for introducing electromagnetic waves into the discharge tube;
A waveguide including first and second conductors for transmitting electromagnetic waves to the electromagnetic wave irradiation unit,
The electrodeless discharge lamp, wherein the sealing portion or a sealing extension for forming the sealing portion is disposed inside the waveguide.
請求項1に記載した無電極放電灯において、
上記励起子が上記第1の導体及び第2の導体との間のスリットにより形成され、
上記放電管と一体に形成された突部が上記スリット内に位置される
ことを特徴とする無電極放電灯。
In the electrodeless discharge lamp according to claim 1,
The excitons are formed by a slit between the first conductor and the second conductor;
An electrodeless discharge lamp, wherein a protrusion formed integrally with the discharge tube is positioned in the slit.
請求項1又は請求項2に記載した無電極放電灯において、
上記導波管にセラミック製の管状部材が用いられ、該管状部材の外周面が上記第1の導体によって被覆されるとともに、該管状部材の内周面が上記第2の導体によって被覆され又は上記封止用延長部の外周面に被覆された導体が上記第2の導体の一部を構成している
ことを特徴とする無電極放電灯。
In the electrodeless discharge lamp according to claim 1 or 2,
A ceramic tubular member is used for the waveguide, and an outer peripheral surface of the tubular member is covered with the first conductor, and an inner peripheral surface of the tubular member is covered with the second conductor. An electrodeless discharge lamp, wherein a conductor covered on an outer peripheral surface of a sealing extension portion constitutes a part of the second conductor.
請求項1又は請求項2に記載した無電極放電灯において、
上記導波管内に挿入された上記封止用延長部の外周面に導電性被膜が形成され、かつ該導電性被膜が接続部材を介して上記第2の導体と電気的に接続されている
ことを特徴とする無電極放電灯。
In the electrodeless discharge lamp according to claim 1 or 2,
A conductive coating is formed on the outer peripheral surface of the sealing extension inserted into the waveguide, and the conductive coating is electrically connected to the second conductor via a connecting member. An electrodeless discharge lamp characterized by
請求項1に記載した無電極放電灯において、
上記放電管が石英ガラスで形成されており、上記封止部から筒状に延びる封止用延長部が、筒状の上記第1の導体と、該第1の導体の中心軸に沿って位置される上記第2の導体との間に配置されている
ことを特徴とする無電極放電灯。
In the electrodeless discharge lamp according to claim 1,
The discharge tube is made of quartz glass, and a sealing extension extending in a cylindrical shape from the sealing portion is positioned along the cylindrical first conductor and the central axis of the first conductor An electrodeless discharge lamp, wherein the electrodeless discharge lamp is disposed between the second conductor and the second conductor.
電磁波発生用の電源部と、少なくとも一端部に封止部を有し無電極で発光する放電管と、該放電管に電磁波を導入するための励起子を含む電磁波照射部と、該電磁波照射部に電磁波を伝送するための導波管とを備えた無電極放電灯装置において、
上記封止部又は封止部を形成するための封止用延長部が上記導波管の内部に配置されている
ことを特徴とする無電極放電灯装置。
A power source for generating electromagnetic waves, a discharge tube having a sealing portion at least at one end and emitting light without electrodes, an electromagnetic wave irradiation unit including excitons for introducing electromagnetic waves into the discharge tube, and the electromagnetic wave irradiation unit In an electrodeless discharge lamp device comprising a waveguide for transmitting electromagnetic waves to
An electrodeless discharge lamp device, wherein the sealing portion or a sealing extension for forming the sealing portion is disposed inside the waveguide.
JP2005109385A 2005-04-06 2005-04-06 Electrodeless discharge lamp and electrodeless discharge lamp device Pending JP2006294277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109385A JP2006294277A (en) 2005-04-06 2005-04-06 Electrodeless discharge lamp and electrodeless discharge lamp device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109385A JP2006294277A (en) 2005-04-06 2005-04-06 Electrodeless discharge lamp and electrodeless discharge lamp device

Publications (1)

Publication Number Publication Date
JP2006294277A true JP2006294277A (en) 2006-10-26

Family

ID=37414637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109385A Pending JP2006294277A (en) 2005-04-06 2005-04-06 Electrodeless discharge lamp and electrodeless discharge lamp device

Country Status (1)

Country Link
JP (1) JP2006294277A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070633A (en) * 2007-09-11 2009-04-02 Md Luminous Kk Coaxial waveguide with plug-in part
JP2009094331A (en) * 2007-10-10 2009-04-30 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2009181762A (en) * 2008-01-30 2009-08-13 Iwasaki Electric Co Ltd Microwave discharge lamp
JP2009181828A (en) * 2008-01-31 2009-08-13 Seiko Epson Corp Light source device and projector with the same
JP2010135171A (en) * 2008-12-04 2010-06-17 Orc Mfg Co Ltd Microwave discharge lamp
CN101980354A (en) * 2010-10-14 2011-02-23 潮州市晨歌电光源有限公司 Electric arc tube of ceramic electrodeless lamp
WO2014166934A1 (en) * 2013-04-11 2014-10-16 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Hf lamp having a dielectric waveguide
EP2721631B1 (en) * 2011-06-15 2016-08-24 Lumartix S.A. Electrodeless lamp
KR20170082729A (en) * 2016-01-07 2017-07-17 현대모비스 주식회사 Light guide apparatus of vehicle
KR102054759B1 (en) * 2018-10-10 2019-12-11 (주)디앤지라이텍 SSPA Driven Plasma Lamp System

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255726A (en) * 1997-03-06 1998-09-25 New Japan Radio Co Ltd Surface wave plasma emission device
JP2000353495A (en) * 1999-05-12 2000-12-19 Fusion Lighting Inc High-luminance microwave lamp
JP2003197156A (en) * 2001-12-27 2003-07-11 Koito Mfg Co Ltd Electrodeless discharge lamp and luminaire
JP2003217522A (en) * 2002-01-17 2003-07-31 Lg Electronics Inc Electrodeless lighting device, and bulb used for the same
JP2004185856A (en) * 2002-11-29 2004-07-02 Matsushita Electric Ind Co Ltd Electrodeless lamp device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255726A (en) * 1997-03-06 1998-09-25 New Japan Radio Co Ltd Surface wave plasma emission device
JP2000353495A (en) * 1999-05-12 2000-12-19 Fusion Lighting Inc High-luminance microwave lamp
JP2003197156A (en) * 2001-12-27 2003-07-11 Koito Mfg Co Ltd Electrodeless discharge lamp and luminaire
JP2003217522A (en) * 2002-01-17 2003-07-31 Lg Electronics Inc Electrodeless lighting device, and bulb used for the same
JP2004185856A (en) * 2002-11-29 2004-07-02 Matsushita Electric Ind Co Ltd Electrodeless lamp device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070633A (en) * 2007-09-11 2009-04-02 Md Luminous Kk Coaxial waveguide with plug-in part
JP2009094331A (en) * 2007-10-10 2009-04-30 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2009181762A (en) * 2008-01-30 2009-08-13 Iwasaki Electric Co Ltd Microwave discharge lamp
JP2009181828A (en) * 2008-01-31 2009-08-13 Seiko Epson Corp Light source device and projector with the same
JP2010135171A (en) * 2008-12-04 2010-06-17 Orc Mfg Co Ltd Microwave discharge lamp
CN101980354A (en) * 2010-10-14 2011-02-23 潮州市晨歌电光源有限公司 Electric arc tube of ceramic electrodeless lamp
EP2721631B1 (en) * 2011-06-15 2016-08-24 Lumartix S.A. Electrodeless lamp
WO2014166934A1 (en) * 2013-04-11 2014-10-16 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Hf lamp having a dielectric waveguide
KR20170082729A (en) * 2016-01-07 2017-07-17 현대모비스 주식회사 Light guide apparatus of vehicle
KR102469469B1 (en) 2016-01-07 2022-11-24 현대모비스 주식회사 Light guide apparatus of vehicle
KR102054759B1 (en) * 2018-10-10 2019-12-11 (주)디앤지라이텍 SSPA Driven Plasma Lamp System

Similar Documents

Publication Publication Date Title
JP4761244B2 (en) Discharge lamp and light source device
JP2006294277A (en) Electrodeless discharge lamp and electrodeless discharge lamp device
JP4714868B2 (en) Discharge lamp equipment
US8294382B2 (en) Low frequency electrodeless plasma lamp
JP2004505429A (en) Plasma lamp having dielectric waveguide and light emitting method thereof
JP5095447B2 (en) Light source device with auxiliary light source
JP2006516804A (en) Microwave force plasma lamp with dielectric waveguide
KR20110025189A (en) Electrodeless lamps with externally-grounded probes and improved bulb assemblies
US7750569B2 (en) High-frequency discharge lamp incorporating an auxiliary starting electrode and lamp attachment to a coaxial waveguide
US7598676B2 (en) Discharge lamp
KR20020093102A (en) External electrode type fluorescent lamp
US8525430B2 (en) Helical structure and method for plasma lamp
KR100417342B1 (en) Electrodeless high intensity discharge lamp having field symmetrizing aid
KR20070095403A (en) Lamp assembly comprising a uv-enhancer
JP5493101B2 (en) Microwave discharge lamp
JP2006147454A (en) Electrodeless discharge lamp device
JP2009123487A (en) High frequency discharge lamp system
JP3906517B2 (en) Electrodeless discharge lamp lighting device
JP5191765B2 (en) High frequency discharge lamp system
JP2011090851A (en) Electrodeless plasma lamp, and method of generating light with use of electrodeless plasma lamp
KR20050099458A (en) Gas discharge tube
JP4725499B2 (en) Microwave electrodeless lamp, lighting device, projector
JP3753332B2 (en) Inductively coupled electrodeless discharge lamp and lighting device using the same
JPH0544136B2 (en)
JPH1092387A (en) Electrodeless discharge lamp device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100805