JP2006147454A - Electrodeless discharge lamp device - Google Patents

Electrodeless discharge lamp device Download PDF

Info

Publication number
JP2006147454A
JP2006147454A JP2004338873A JP2004338873A JP2006147454A JP 2006147454 A JP2006147454 A JP 2006147454A JP 2004338873 A JP2004338873 A JP 2004338873A JP 2004338873 A JP2004338873 A JP 2004338873A JP 2006147454 A JP2006147454 A JP 2006147454A
Authority
JP
Japan
Prior art keywords
arc tube
power supply
discharge lamp
electrodeless discharge
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004338873A
Other languages
Japanese (ja)
Inventor
Takuya Serita
卓也 芹田
Masaya Shito
雅也 志藤
Masashi Shindo
正士 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2004338873A priority Critical patent/JP2006147454A/en
Publication of JP2006147454A publication Critical patent/JP2006147454A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently carry out electric power supply to an arc tube, and improve performances for a practical usage including starting characteristics and controllability in an electrodeless discharge lamp device. <P>SOLUTION: The electrodeless discharge lamp device 1 is provided with a power supply part 2 for generating an electromagnetic wave, an arc tube 3 to emit light by electrodeless discharge light emission, and an electromagnetic wave irradiation part 4 including an exciter for introducing the electromagnetic wave into the arc tube. A reflective wave detecting means 6 to connect the power supply part 2 and the electromagnetic wave irradiation part 4 by using a coaxial tube or a coaxial cable and to wave-detect the reflected wave which spreads from the arc tube 3 to the power supply part 2 side, and an output adjusting means 7 to adjust the output of the power supply part 2 in order to minimize a reflection loss based on measurement information from the reflective wave detecting means 6 are installed. Efficiency is enhanced by reducing the reflection loss, and rising characteristics of a luminous flux can be made superior. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光管内に電極を有さない無電極放電灯装置において、高効率化や点灯性等の向上を図るための技術に関する。   The present invention relates to a technique for improving efficiency, lighting performance, and the like in an electrodeless discharge lamp apparatus having no electrode in an arc tube.

放電空間内に電極を持たない無電極放電灯が知られており、高効率、長寿命等の特徴をもち、高輝度放電灯としての研究開発が近年盛んに行われている。   An electrodeless discharge lamp having no electrode in the discharge space is known, and has features such as high efficiency and long life, and research and development as a high-intensity discharge lamp has been actively conducted in recent years.

無電極放電灯の場合、フィラメントや電極の消耗によるランプ寿命の制限を受けず、また、電極からの熱損失がないことや、発光管内の封入物に係る制限がなく(封入物と電極材料との反応を考慮する必要がない。)、効率向上に好適な発光物質を使用することができる。   In the case of an electrodeless discharge lamp, there is no limitation on the lamp life due to exhaustion of the filament or electrode, there is no heat loss from the electrode, and there is no limitation on the enclosure in the arc tube (the enclosure and electrode material). It is not necessary to consider this reaction.), And a light-emitting substance suitable for improving efficiency can be used.

無電極放電灯の点灯方法、即ち、電磁波を発光管内に導入する方法としては、例えば、空洞共振器を用いた方法や、誘導結合を用いた方法、表面波を用いた方法等が挙げられる。   Examples of a method for lighting an electrodeless discharge lamp, that is, a method for introducing electromagnetic waves into an arc tube include a method using a cavity resonator, a method using inductive coupling, and a method using surface waves.

ところで、自動車用灯具照明等のように配光制御を必要とし、かつ小型の光源を実現するには実用化に向けて解決すべき困難な問題がある。例えば、空洞共振器を用いた方法では、マグネトロンで電磁波(マイクロ波)を発振させ、導波管を介して空洞共振器中の無電極放電管を発光させる場合に、該空洞共振器の最小寸法が電磁波の周波数によって原理的に決定されてしまう(例えば、2.45GHzの周波数(波長122mm)では空洞共振器長が1/2波長に相当する61mmとなり、安定した放電維持が可能な放電管の長さは15mm以上となる。)。   By the way, there is a difficult problem to be solved for practical use in order to realize a small light source that requires light distribution control, such as lighting for automobiles. For example, in a method using a cavity resonator, when an electromagnetic wave (microwave) is oscillated by a magnetron and an electrodeless discharge tube in the cavity resonator is caused to emit light through a waveguide, the minimum dimension of the cavity resonator is used. Is determined in principle by the frequency of electromagnetic waves (for example, at a frequency of 2.45 GHz (wavelength 122 mm), the cavity length is 61 mm, which corresponds to a half wavelength, and the discharge tube is capable of maintaining stable discharge. The length is 15 mm or more).

また、高周波電流の使用に付随して発生する電磁波ノイズの問題を解決することが必要とされ、電磁波遮蔽手段(例えば、金網等)を設置する方法では効率低下や配光性能の悪化等への影響が懸念される。つまり、放電管の周囲に光を遮るようなシールドやコイル等を配置しないことが望ましい。   In addition, it is necessary to solve the problem of electromagnetic noise generated accompanying the use of high-frequency current, and the method of installing an electromagnetic shielding means (for example, a wire mesh etc.) reduces efficiency and deteriorates light distribution performance. There are concerns about the impact. That is, it is desirable not to arrange a shield, a coil, or the like that blocks light around the discharge tube.

そのような要請に応じた小型で高効率の無電極放電灯の構成として、発光管内の発光物質を励起するために、同軸管の端部に形成されたスリットから、局所的に強い高周波電界を発生させ、これによって励起された表面波プラズマを利用して電磁波の遮蔽効果が得られるようにした灯具が知られている(例えば、特許文献1参照)。同軸管は周波数による寸法上の制限を受けない(遮断周波数が無いともいう。)ために、該同軸管の直径とほぼ同寸法の発光管を用いることができる。   In order to excite the luminescent material in the arc tube, as a configuration of a small and highly efficient electrodeless discharge lamp that meets such requirements, a locally strong high-frequency electric field is applied from the slit formed at the end of the coaxial tube. There has been known a lamp that generates a shielding effect of electromagnetic waves using surface wave plasma that is generated and excited thereby (see, for example, Patent Document 1). Since the coaxial tube is not limited in size by frequency (also referred to as having no cutoff frequency), an arc tube having the same size as the diameter of the coaxial tube can be used.

特開2003−197156号公報JP 2003-197156 A

しかしながら、従来の構成では発光管に対して電力を効率良く供給するための手段が充分に講じられていないことが問題とされる。例えば、電磁波の反射損失が大きい場合に下記のような不具合が生じる。   However, a problem with the conventional configuration is that sufficient measures are not taken to efficiently supply power to the arc tube. For example, the following problems occur when the reflection loss of electromagnetic waves is large.

・発光管の定常点灯状態に合わせてインピーダンスマッチングを固定した設定状態にした場合に、光束の立ち上がり時に反射が大きいと、立ち上がりに時間がかかってしまうこと(始動性の悪化)
・発光管の経時変化や特性変化等によって、初期設定状態でのインピーダンスマッチングから外れてしまった場合に、反射損失が増加して効率が低下すること。
・ When the impedance matching is fixed according to the steady lighting state of the arc tube, if the reflection is large when the luminous flux rises, it takes time to rise (deterioration of startability)
-When the arc tube deviates from the impedance matching in the initial setting state due to the change with time or characteristic of the arc tube, the reflection loss increases and the efficiency decreases.

尚、「インピーダンスマッチング」とは、電源の出力インピーダンスと発光管のインピーダンスを合わせることを意味し、適切な整合状態の調整により反射波を低減させることができる。   Note that “impedance matching” means that the output impedance of the power source and the impedance of the arc tube are matched, and the reflected wave can be reduced by adjusting the matching state appropriately.

また、無電極放電灯の実用化において、例えば、ランプの立ち消えや点灯の失敗等を検知することができない場合に、電源出力を停止させることができないといった問題がある。   Further, in the practical application of electrodeless discharge lamps, there is a problem that power output cannot be stopped when it is impossible to detect, for example, lamp extinction or lighting failure.

そこで、本発明は、無電極放電灯装置において、発光管に対する電力供給を効率良く行い、始動性や制御性を含めた実用化のための性能向上を課題とする。   Therefore, an object of the present invention is to efficiently supply power to the arc tube in an electrodeless discharge lamp device, and to improve performance for practical use including startability and controllability.

本発明は、電磁波発生用の電源部と、放電発光により無電極で発光する発光管と、該発光管に電磁波を導入するための励起子を含む電磁波照射部とを備え、同軸管又は同軸ケーブルを用いて電源部と電磁波照射部を接続した構成において、発光管から電源部側へと伝播する反射波を検波する反射波検出手段と、該反射波検出手段からの計測情報に基づいて反射損失を最小にすべく電源部の出力を調整する出力調整手段とを設けたものである。   The present invention includes a power source for generating electromagnetic waves, an arc tube that emits light without electrode by discharge light emission, and an electromagnetic wave irradiation unit that includes excitons for introducing electromagnetic waves into the arc tube, and a coaxial tube or coaxial cable In the configuration in which the power supply unit and the electromagnetic wave irradiation unit are connected using the reflection wave detecting means for detecting the reflected wave propagating from the arc tube to the power supply part side, and the reflection loss based on the measurement information from the reflected wave detecting means Output adjusting means for adjusting the output of the power supply unit to minimize the power.

従って、本発明では、反射波を検出して反射損失を最小限に低減させることで、発光管に対して効率良く電力供給を行うことができる。   Therefore, in the present invention, it is possible to efficiently supply power to the arc tube by detecting the reflected wave and reducing the reflection loss to the minimum.

本発明によれば、配光制御が容易で効率が高く、しかも電磁波ノイズの輻射や電磁干渉等の問題がない小型光源を提供することができ、始動性や制御性を含めた性能の向上及び点灯の安定化等に有効である。   According to the present invention, it is possible to provide a small light source that is easy to control light distribution, has high efficiency, and has no problems such as electromagnetic noise radiation and electromagnetic interference, and has improved performance including startability and controllability. This is effective for stabilizing lighting.

また、同軸管又は同軸ケーブルと電磁波照射部を含めた部分の長さが、電源出力に係る発振波長の4分の1の整数倍又はその近傍値となるように規定することにより、発光管が点灯していない状態で励起子先端にかかる電界が最大値又はほぼ最大値となり、起動手段の規模縮小に寄与し又は該手段の廃止を実現できる。   In addition, by defining that the length of the portion including the coaxial tube or the coaxial cable and the electromagnetic wave irradiation portion is an integral multiple of a quarter of the oscillation wavelength related to the power output or a value close thereto, the arc tube The electric field applied to the exciton tip in a state where it is not lit becomes a maximum value or a substantially maximum value, which contributes to a reduction in the size of the starting means or can be eliminated.

車両用灯具照明等への適用において、光束の立ち上がり時間を短縮するには、パルス発振による電源出力のデューティー比を立ち上がり時に高めるとともに、光出力の上昇につれて該デューティー比を低減させて定常点灯状態へと移行させる制御が好ましい。   In order to shorten the rise time of the luminous flux in application to vehicle lamp lighting, etc., the duty ratio of the power supply output by pulse oscillation is increased at the time of rise, and the duty ratio is reduced as the light output rises so that the steady lighting state is achieved. Control to shift to is preferable.

また、発光管が点灯した後に、反射波検出手段によって反射波の発生又は増加が検出された場合に電源部による電力供給を停止させる構成にすれば、反射波の変化に基づいて立ち消え等を検出して電源のシャットダウンが可能となり、無駄な電源投入動作の継続を回避できる。そして、マイクロ波等の電磁波の漏れ時間を最小にし、人体等への影響を最小限に抑えることができる。   In addition, when the reflected wave detection means detects the generation or increase of the reflected wave after the arc tube is lit, the power supply unit stops the power supply. Thus, the power supply can be shut down, and the continuation of useless power-on operation can be avoided. And the leakage time of electromagnetic waves, such as a microwave, can be minimized, and the influence on a human body etc. can be suppressed to the minimum.

本発明は、目的とする特定の方向に向けた照明用光源、つまり、配光制御を必要とする用途の光源に適用することができる。例えば、車両用前照灯や標識灯の光源、道路照明や信号機等の光源、あるいは店舗ディスプレイ照明、プロジェクタ装置用光源等において、発光部の小サイズ化、高輝度化、輝度分布の均一化等が求められる場合に好適であり、円筒状又は点状(あるいは球状)等の小型光源であって、周囲に光を遮蔽したり拡散させる部材を配置しない構成を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to an illumination light source directed in a specific target direction, that is, a light source for uses that require light distribution control. For example, in light sources for vehicle headlamps and sign lights, light sources such as road lighting and traffic lights, store display lighting, light sources for projector devices, etc., the size of the light emitting part is reduced, the luminance is increased, the luminance distribution is made uniform, etc. Can be provided, and it is possible to provide a configuration that is a small light source such as a cylinder or a dot (or a sphere), and does not include a member that shields or diffuses light around the light source.

図1は、本発明に係る無電極放電灯装置の基本構成例を示した説明図である。   FIG. 1 is an explanatory view showing a basic configuration example of an electrodeless discharge lamp device according to the present invention.

無電極放電灯装置1は、電磁波発生用の電源部2、放電発光により無電極で発光する発光管3、該発光管に電磁波を導入するための励起子を含む電磁波照射部4を備えている。   The electrodeless discharge lamp device 1 includes a power supply unit 2 for generating electromagnetic waves, an arc tube 3 that emits light without electrodes by discharge light emission, and an electromagnetic wave irradiation unit 4 including excitons for introducing electromagnetic waves into the arc tube. .

電源部2には、例えば、マイクロ波帯(1乃至100GHz)の電磁波を発生する発振部が含まれ、マグネトロンが使用されるが、これに限らず、半導体スイッチング素子(FETやバイポーラトランジスタ等)を用いて構成される高周波アンプ装置等の使用が可能である。   The power supply unit 2 includes, for example, an oscillation unit that generates electromagnetic waves in the microwave band (1 to 100 GHz) and uses a magnetron. However, the present invention is not limited to this, and a semiconductor switching element (such as an FET or a bipolar transistor) is used. It is possible to use a high-frequency amplifier device or the like that is used.

発光管3については、例えば、石英等を用いて中空円筒状に形成され、その内部には所定の封入物質(キセノンやアルゴン等のガス、NaIやScI3等の金属沃化物、金属臭化物等)が充填されている。また、必要に応じて発光管内面に蛍光体を塗布する形態が可能である。 The arc tube 3 is formed in a hollow cylindrical shape using, for example, quartz, and a predetermined encapsulating substance (a gas such as xenon or argon, a metal iodide such as NaI or ScI 3 , a metal bromide, or the like) is contained therein. Is filled. Moreover, the form which apply | coats a fluorescent substance to the arc_tube | light_emitting_tube inner surface as needed is possible.

電磁波照射部4は発光管3に電磁波を導入するためのランチャーとしての機能を有し、電磁波照射部4の端部に発光管3が取り付けられる。電磁波照射部4と電源部2とを繋ぐ導波接続手段5には同軸管又は同軸ケーブルが用いられ、例えば、配置上の自由度を考慮した場合には可撓性に富む素材を用いることが好ましい。   The electromagnetic wave irradiation unit 4 has a function as a launcher for introducing electromagnetic waves into the arc tube 3, and the arc tube 3 is attached to the end of the electromagnetic wave irradiation unit 4. A coaxial tube or a coaxial cable is used for the waveguide connection means 5 that connects the electromagnetic wave irradiation unit 4 and the power supply unit 2. For example, when flexibility in arrangement is taken into consideration, a flexible material may be used. preferable.

同軸線路上には反射波検出手段6が設けられており、発光管3から電源部2側へと伝播する反射波を検波する。そして、その計測結果が出力調整手段7に送出される。   A reflected wave detecting means 6 is provided on the coaxial line, and detects a reflected wave propagating from the arc tube 3 to the power supply unit 2 side. Then, the measurement result is sent to the output adjustment means 7.

出力調整手段7は反射波検出手段6からの計測情報に基づいてインピーダンスマッチングの調整により反射損失を最小にすべく電源部2の出力を調整する。つまり、同軸管や同軸ケーブルを用いて電源部2と電磁波照射部4を接続した構成において、高周波の場合にそのままでは反射波のレベルが大きくなり発光管3に効率良く電力供給を行えないかあるいは電力損失の増加が問題となる。そこで、電源部2と発光管3との間でインピーダンスマッチングをとるための装置(例えば、スリースタブチューナ等を用いたマッチング装置)を使って反射波を抑制することで発光管3への電力供給を効率良く行うことができる。具体的には、反射波の検波情報に基づいて導波回路のLC成分(L:誘導性成分、C:容量性成分)を調整して反射損失が最小となるように(反射波を充分に低減させる。)、電源部2の出力インピーダンスと発光管3のインピーダンスとの間で整合をとる。   The output adjusting means 7 adjusts the output of the power supply unit 2 to minimize the reflection loss by adjusting the impedance matching based on the measurement information from the reflected wave detecting means 6. In other words, in the configuration in which the power supply unit 2 and the electromagnetic wave irradiation unit 4 are connected using a coaxial tube or a coaxial cable, the level of the reflected wave becomes large as it is in the case of a high frequency, and the luminous tube 3 cannot be efficiently supplied with power. An increase in power loss becomes a problem. Therefore, power is supplied to the arc tube 3 by suppressing reflected waves using a device for impedance matching between the power supply unit 2 and the arc tube 3 (for example, a matching device using a sleeving tuner or the like). Can be performed efficiently. Specifically, the LC component of the waveguide circuit (L: inductive component, C: capacitive component) is adjusted based on the detection information of the reflected wave so that the reflection loss is minimized (the reflected wave is sufficiently reduced). Matching is made between the output impedance of the power supply unit 2 and the impedance of the arc tube 3.

例えば、マグネトロンから、アイソレータ、減衰器、方向性結合器、スリースタブチューナ、同軸同波管変換器、同軸管を順に経て励起子から発光管へと繋がる構成形態では、同軸管の先端にスロットアンテナが位置し(その部分を「励起子」と呼ぶ。)、これに発光管が固定される。尚、アイソレータはマグネトロンに反射波が戻らないようにする役目を有し、方向性結合器は電磁波を一方向にしか進めないようにするための装置である。   For example, in a configuration in which an exciter is connected to an arc tube through a magnetron, an isolator, an attenuator, a directional coupler, a sli tab tuner, a coaxial waveguide converter, and a coaxial tube in this order, a slot antenna is provided at the end of the coaxial tube. Is located (this portion is called “exciton”), and the arc tube is fixed thereto. The isolator serves to prevent the reflected wave from returning to the magnetron, and the directional coupler is a device for allowing the electromagnetic wave to travel only in one direction.

強い高周波電界によって発光管内に高密度のプラズマが生成されて点灯状態へと移行し、同軸管からの高周波電界が進行波となって発光管に導入されて点灯が持続する。   A strong high-frequency electric field generates high-density plasma in the arc tube and shifts to a lighting state, and the high-frequency electric field from the coaxial tube becomes a traveling wave and is introduced into the arc tube, so that lighting continues.

高密度のプラズマ内には高周波電界の進入が許されないため(このときの密度を「遮断密度」と呼ぶ。)、高周波電界は誘電体である発光管とプラズマの間を表面波モードとなってプラズマを生成しながら伝搬する(これを「表面波プラズマ」と呼ぶ。)。   Since a high-frequency electric field is not allowed to enter the high-density plasma (the density at this time is called “blocking density”), the high-frequency electric field becomes a surface wave mode between the arc tube, which is a dielectric, and the plasma. It propagates while generating plasma (this is called "surface wave plasma").

発光管の一部にしか高周波電界を印加しない場合であっても、表面波プラズマにより発光管内にプラズマが一様に生じるため、発光管を配光制御上で要求される形状に規定すれば該形状全体での発光が可能となる。即ち、配光制御に適した光源が得られる。   Even when a high-frequency electric field is applied only to a part of the arc tube, plasma is uniformly generated in the arc tube by surface wave plasma. Therefore, if the arc tube is defined in a shape required for light distribution control, the plasma is generated. Light emission in the entire shape is possible. That is, a light source suitable for light distribution control is obtained.

また、電極を有する通常の放電管では、温度の低い部分(電極の根元部分や発光管の下部等)によって発光物質の蒸気圧、延いては発光量が決定されてしまう結果、効率の限界が自ずと規定されるが、表面波プラズマを利用した形態では発光管内でプラズマが一様に発生し、発光管内の温度分布が均一となり、効率の向上に寄与する。   Moreover, in a normal discharge tube having an electrode, the vapor pressure of the luminescent material and thus the amount of luminescence is determined by the low temperature part (the base part of the electrode, the lower part of the arc tube, etc.), so that the efficiency limit is limited. Naturally, in the form using surface wave plasma, plasma is uniformly generated in the arc tube, and the temperature distribution in the arc tube becomes uniform, contributing to the improvement of efficiency.

同軸線路における電磁波の検出には、ダイオード等の半導体素子が用いられ、その検出電流によって入射波や反射波を測定することができる。例えば、方向性結合器に入射用及び反射用の各検出素子を取り付け、それらの検出結果に基づいてインピーダンスマッチングの調整を行うことにより、発光管の点灯開始から定常点灯に至るまでの過渡期において損失無く発光管に電力を投入することができる。また、経年変化や寿命等に起因する特性変化に対して反射損失を抑えて効率の良い安定な点灯を実現できる。   A semiconductor element such as a diode is used to detect electromagnetic waves in the coaxial line, and incident waves and reflected waves can be measured by the detected current. For example, each detector element for incident and reflection is attached to a directional coupler, and impedance matching is adjusted based on the detection result, so that in a transition period from the start of lighting of the arc tube to steady lighting. Electric power can be supplied to the arc tube without loss. In addition, it is possible to realize efficient and stable lighting by suppressing reflection loss with respect to characteristic changes caused by aging and life.

尚、図1の例では電源部2と出力調整手段7とを別個に示しているが、これに限らず、出力調整手段7が電源部に含まれるようにした形態(つまり、電源部自体が出力の調整や制御機能を有する。)でも構わない。   In the example of FIG. 1, the power supply unit 2 and the output adjustment unit 7 are illustrated separately. However, the present invention is not limited to this, and the configuration in which the output adjustment unit 7 is included in the power supply unit (that is, the power supply unit itself is included). It has an output adjustment and control function).

例えば、図2に示す構成例1Aでは、同軸ケーブル8を用いて励起子9と電源部2とが繋がれており、電源部2内に出力調整部10(インピーダンスマッチング部を含む。)が設けられている。そして、励起子9の近くに位置された反射波検波器11からの計測情報が出力調整部10に送出される。   For example, in the configuration example 1A shown in FIG. 2, the exciter 9 and the power supply unit 2 are connected using the coaxial cable 8, and the output adjustment unit 10 (including the impedance matching unit) is provided in the power supply unit 2. It has been. Then, measurement information from the reflected wave detector 11 located near the exciton 9 is sent to the output adjustment unit 10.

このように励起子付近に反射波の検出手段を設けるか、あるいは励起子と反射波検波器を一体化した構成形態においては、検出精度を充分に保証することが可能である。   Thus, in the configuration in which the reflected wave detection means is provided in the vicinity of the excitons or the excitons and the reflected wave detector are integrated, the detection accuracy can be sufficiently ensured.

また、図3に示すように、電源部2と反射波検波器11とを一体化させた構成例1Bでは、励起子9の近くに反射波検波器を配置させる必要がなくなり、光源部の配置上の自由度が高い。あるいは、必要に応じて同軸管や同軸ケーブル上の途中位置に単数又は複数の反射波検波器を配置するといった各種形態での実施が可能である。   Further, as shown in FIG. 3, in the configuration example 1B in which the power supply unit 2 and the reflected wave detector 11 are integrated, it is not necessary to arrange the reflected wave detector near the exciter 9, and the arrangement of the light source unit is eliminated. High degree of freedom. Alternatively, it is possible to implement in various forms such as arranging one or a plurality of reflected wave detectors at intermediate positions on the coaxial tube or the coaxial cable as necessary.

車両用前照灯等への適用においては、光束の立ち上がり時間を短くすることが要求されるが、反射波検波器11を用いて、立ち上がり時の反射損失を極力低減させるように制御することが好ましい。   In application to a vehicle headlamp or the like, it is required to shorten the rise time of the light beam. However, the reflected wave detector 11 can be used to control the reflection loss at the time of rise as much as possible. preferable.

また、電極を有する放電灯の点灯回路では昇圧トランスを含む起動手段(所謂スターター)が設けられるが、回路規模の大型化やコスト上昇等の原因となるため、該手段の規模縮小又は廃止が求められる。   In addition, a starting circuit (so-called starter) including a step-up transformer is provided in a lighting circuit for a discharge lamp having an electrode. However, since the circuit scale is increased and costs are increased, it is required to reduce or eliminate the scale of the means. It is done.

そこで、点灯前の状態において、発光管と電磁波照射部との境界で電界が最大となるように、同軸線路の長さを規定することが好ましい。   Therefore, it is preferable to define the length of the coaxial line so that the electric field is maximized at the boundary between the arc tube and the electromagnetic wave irradiation unit in a state before lighting.

図4において、上側の図は横軸に同軸線路上の位置をとり、縦軸に電界をとって両者の関係を示したものであり、「λ/2」が定在波の波長を示す(「λ」が発振波長を示す。)。そして、下側の図には、同軸ケーブル8(又は同軸管)と、電磁波照射部4、発光管3を示している。   In FIG. 4, the upper diagram shows the relationship between the horizontal axis with the position on the coaxial line and the vertical axis with the electric field, and “λ / 2” indicates the wavelength of the standing wave ( “Λ” indicates the oscillation wavelength.) And in the lower figure, the coaxial cable 8 (or coaxial tube), the electromagnetic wave irradiation part 4, and the arc tube 3 are shown.

同軸管又は同軸ケーブルと電磁波照射部を含めた部分の長さを「L」と記すとき、「L=(λ/4)・m」(但し、mは自然数変数である。m=1、2、…)の関係を満たせば、励起子と発光管との境界位置において電界が最大振幅値を示す(定在波の腹)。つまり、発振波長の4分の1の整数倍又はその近傍値となるように長さLを規定すれば、発光管が点灯していない状態で励起子の先端にかかる電界が最大値又はほぼ最大値となる。   When the length of the portion including the coaxial tube or the coaxial cable and the electromagnetic wave irradiation portion is denoted as “L”, “L = (λ / 4) · m” (where m is a natural number variable, m = 1, 2). If the relationship of... Is satisfied, the electric field shows the maximum amplitude value at the boundary position between the exciton and the arc tube (standing wave antinode). That is, if the length L is defined so as to be an integral multiple of one quarter of the oscillation wavelength or a value close to it, the electric field applied to the tip of the exciton when the arc tube is not lit is maximized or almost maximized. Value.

このような設計により起動手段の規模縮小又は廃止が可能となり、構成の簡素化やコスト低減を実現できる。   With such a design, it is possible to reduce or eliminate the scale of the starting means, and it is possible to simplify the configuration and reduce the cost.

無電極放電灯の起動時において光束の立ち上がり時間を短縮するには、電源部のパルス発振においてそのデューティー比(あるいはデューティーサイクル)を変化させて、立ち上がり時の投入電力を制御することが好ましい。   In order to shorten the rise time of the luminous flux at the time of starting the electrodeless discharge lamp, it is preferable to change the duty ratio (or duty cycle) in the pulse oscillation of the power supply unit to control the input power at the rise.

図5は、(A)図にデューティー比を制御した場合の立ち上がり特性を概略的に示し、(B)図にデューティー比を固定した場合(電力一定での制御)の立ち上がり特性を概略的に示したものである。尚、各図において横軸には時間(t)をとり、縦軸については左側に光出力、右側にデューティー比をとっている。また、「ta」や「tb」は光出力が定格値又は定常値を基準として予め決められた範囲内に達したときの時刻を示している(「ta<tb」)。   5A schematically shows the rising characteristics when the duty ratio is controlled in FIG. 5A, and FIG. 5B schematically shows the rising characteristics when the duty ratio is fixed (control with constant power). It is a thing. In each figure, the horizontal axis represents time (t), and the vertical axis represents the light output on the left side and the duty ratio on the right side. “Ta” and “tb” indicate times when the optical output reaches a predetermined range with reference to the rated value or steady value (“ta <tb”).

(A)図では、パルス発振による電源出力のデューティー比を立ち上がり時において一時的に高めた後、光出力の上昇につれて該デューティー比を低減させて定常点灯状態へと移行させる制御が、所定の出力制御手段(PWM(パルス幅変調)回路等を含む。)により行われる。よって、期間「0≦t<ta」では光出力が速やかに上昇し、taを過ぎたあたりから光出力が一定値に漸近して飽和する。   (A) In the figure, after the duty ratio of the power supply output by pulse oscillation is temporarily increased at the time of start-up, the duty ratio is decreased as the light output increases, and the control for shifting to the steady lighting state is performed according to the predetermined output. This is performed by control means (including a PWM (pulse width modulation) circuit and the like). Therefore, in the period “0 ≦ t <ta”, the light output rapidly rises, and the light output gradually approaches a constant value and saturates after the time ta is exceeded.

これに対して、(B)図に示すように、起動開始から投入電力を一定値(定格値又は定常値)で制御する場合には、期間「0≦t<tb」において光出力の上昇に時間がかかり、よって、光束の立ち上がりが遅くなってしまう。   On the other hand, as shown in FIG. 5B, when the input power is controlled at a constant value (rated value or steady value) from the start of startup, the light output increases during the period “0 ≦ t <tb”. It takes time, so the rise of the luminous flux is delayed.

図6は、横軸にデューティー比をとり、縦軸に光出力の相対値(デューティー比が100%の場合を100とした百分率で表した値)をとって両者の関係を例示したグラフ図である。デューティー比の増加に伴って光出力が上昇していく様子が分かる。   FIG. 6 is a graph illustrating the relationship between the duty ratio on the horizontal axis and the relative value of light output (value expressed as a percentage when the duty ratio is 100% as 100) on the vertical axis. is there. It can be seen that the light output increases as the duty ratio increases.

このような特性を利用して上記のように立ち上がり特性を向上させたり、あるいは定常点灯状態での調光等を行うことができる。   Such characteristics can be used to improve the rising characteristics as described above, or to perform dimming in a steady lighting state.

図7は、電源出力や光出力の時間的変化を例示したものである。   FIG. 7 exemplifies changes in power output and optical output over time.

デューティー比は、オン期間(あるいは電力投入期間)の長さを「Ton」と記し、オフ期間(あるいは投入停止期間)の長さを「Toff」と記すとき、「(Ton/(Ton+Toff))×100」により百分率として表されるが、Toffについては上限値の存在に注意を要する。つまり、Toffの値をプラズマのアフターグロー(電源遮断後もプラズマが維持される現象)の寿命である1ミリ秒以下にしないと光出力の変動によるちらつきの原因となる(図7の大円枠内に拡大して示すように、Toffが長いと変化量「Δ」が大きくなってしまう。)。   The duty ratio is expressed as “(Ton / (Ton + Toff)) × when the length of the on-period (or the power-on period) is denoted as“ Ton ”and the length of the off-period (or the power-off period) is denoted as“ Toff ”. It is expressed as a percentage by “100”, but attention should be paid to the existence of an upper limit value for Toff. That is, if the value of Toff is not less than 1 millisecond, which is the lifetime of plasma afterglow (a phenomenon in which plasma is maintained even after the power is shut off), it will cause flickering due to fluctuations in the light output (the large circle frame in FIG. 7). As shown in the enlarged view, the amount of change “Δ” increases when Toff is long.)

尚、デューティー比の可変制御は、経年変化や寿命等に起因する発光特性の変化に対しても有効である。   Note that the variable control of the duty ratio is also effective for changes in light emission characteristics due to aging, lifespan, and the like.

また、反射波を検出することによって反射損失の少ない電源出力制御を行うことで光束の立ち上がり時間を短縮することができるが、立ち消え時や点灯の失敗等が生じた場合には、速やかに電源供給を遮断することが望ましい。   In addition, it is possible to reduce the rise time of the luminous flux by controlling the power output with little reflection loss by detecting the reflected wave. It is desirable to shut off.

図8は電源出力、反射波検出量、光出力についての時間的変化を概略的に例示したものである。   FIG. 8 schematically illustrates temporal changes in power output, reflected wave detection amount, and optical output.

図中の時刻「t0」が電源投入時点、「t1」が点灯時点、「t2」が立ち消え発生時点、「t3」が電源遮断時点をそれぞれ示している。   In the figure, time “t0” indicates the time when the power is turned on, “t1” indicates the time when the light is turned on, “t2” indicates the time when the extinction occurs, and “t3” indicates the time when the power is shut off.

電源投入後の点灯時点「t1」で反射波が減少し又は検出されなくなり、その後に立ち消えが発生した時点「t2」で反射波の発生又は増加が検出される。該検出結果を受けて出力制御手段により電源のシャットダウンが行われる。   The reflected wave decreases or is not detected at the lighting time “t1” after the power is turned on, and the generation or increase of the reflected wave is detected at the time “t2” when the extinction occurs thereafter. In response to the detection result, the output control means shuts down the power supply.

このように、発光管が点灯した後で前記反射波検出手段により反射波の発生又は増加が検出された場合には、電源部の出力停止へと移行させることが安全性やノイズ対策、節電等の面で好ましい。   As described above, when the reflected wave detection means detects the occurrence or increase of the reflected wave after the arc tube is turned on, it is possible to shift to the output stop of the power supply unit for safety, noise countermeasures, power saving, etc. It is preferable in terms of

図9、図11、図12は発光管や励起子の形状例を示したものである。   9, FIG. 11 and FIG. 12 show examples of the shape of the arc tube and excitons.

図9及び図11に示すように、発光管3は石英ガラス等を用いて円筒状に形成されている。図9において「L」が発光管3の中心軸方向における長さを示し(例えば、「L≦7(mm)」)、「M」が外径を示している(例えば、「M≦5(mm)」)。   As shown in FIGS. 9 and 11, the arc tube 3 is formed in a cylindrical shape using quartz glass or the like. In FIG. 9, “L” indicates the length of the arc tube 3 in the central axis direction (for example, “L ≦ 7 (mm)”), and “M” indicates the outer diameter (for example, “M ≦ 5 ( mm) ").

励起子先端に設けられる円環状のスリット12は、同軸管又は同軸ケーブルに延設される内部導体13と外部導体14との間に形成され(図9の「d」がスリット12の外径を示す。)は、該スリットを通して発光管3に電磁波が照射される。つまり、スリット12の形成部分がスロットアンテナとして機能し、放射された電磁波によって、発光管内には直射波によるプラズマや、壁際の表面波プラズマが発生し、封入物質の励起発光が行われる(プラズマ中の励起原子に係るエネルギー準位間遷移に拠る。)。尚、高密度プラズマ自体の有する遮蔽効果によって不要電磁波(ノイズ)を充分に低減させることができる。   An annular slit 12 provided at the tip of the exciton is formed between an inner conductor 13 and an outer conductor 14 extending in a coaxial tube or a coaxial cable (“d” in FIG. 9 indicates the outer diameter of the slit 12). ) Shows that the arc tube 3 is irradiated with electromagnetic waves through the slit. That is, a portion where the slit 12 is formed functions as a slot antenna, and the radiated electromagnetic wave generates direct wave plasma or surface wave plasma near the wall in the arc tube, and excitation light emission of the encapsulated material is performed (in the plasma). This depends on the transition between the energy levels of the excited atoms.) Note that unnecessary electromagnetic waves (noise) can be sufficiently reduced by the shielding effect of the high-density plasma itself.

但し、スリット12と発光管3との位置関係が適切でない場合には電磁波の漏洩が大きくなったり、あるいは発光効率の低下をもたらす虞があることに注意を要する。   However, it should be noted that when the positional relationship between the slit 12 and the arc tube 3 is not appropriate, leakage of electromagnetic waves may increase or the luminous efficiency may be reduced.

つまり、発光管は接着等で先端部(励起子を含む。)に取り付けられるが、両者の位置関係を適正に保つことが重要である。具体的には、発光管内径を「D」と記し、スリット外径を「d」と記すとき、両者の値ができるだけ近い値であることが好ましい。   In other words, the arc tube is attached to the tip (including excitons) by bonding or the like, but it is important to maintain the positional relationship between them appropriately. Specifically, when the inner diameter of the arc tube is denoted as “D” and the outer diameter of the slit is denoted as “d”, it is preferable that both values are as close as possible.

図10は横軸に寸法差「D−d」をとり、縦軸については左側にマイクロ波のリーク量(任意単位)をとり、右側に発光効率(任意単位)をとった場合の特性を例示したグラフ図である。   FIG. 10 illustrates characteristics when the horizontal axis indicates the dimensional difference “D−d”, the vertical axis indicates the microwave leakage amount (arbitrary unit) on the left side, and the luminous efficiency (arbitrary unit) on the right side. FIG.

マイクロ波のリーク量については、グラフ曲線「ξ」に示すように、「D−d」が負領域において大きいこと及び「D−d」がゼロ又は正値の領域において充分に低減されることが分かる。   As shown in the graph curve “ξ”, the microwave leakage amount is large in the negative region and sufficiently reduced in the region where “Dd” is zero or positive. I understand.

他方、発光効率については、グラフ曲線「η」に示すように、「D=d」の中心近傍領域において大きく、「D−d」が負値又は正値の領域において原点から離れるにつれて次第に低下することが分かる。   On the other hand, as shown by the graph curve “η”, the luminous efficiency is large in the region near the center of “D = d”, and gradually decreases as “D−d” moves away from the origin in the negative value or positive value region. I understand that.

従って、発光管内径Dとスリット外径dとが等しい値であるか又は充分に近い値であれば、発光効率を高くし、かつマイクロ波のリーク量を充分に小さくすることができる。   Therefore, if the arc tube inner diameter D and the slit outer diameter d are equal or sufficiently close, the luminous efficiency can be increased and the microwave leakage amount can be sufficiently decreased.

発光管内径Dとスリット12の内径との関係については、D値をスリット内径よりも大きくする必要がある。図9に矢印「α」で示すように電磁波には放電空間に直接的に放出されるものと、両向き矢印「β」で示すように発光管壁を伝わるものの2種類があり、発光管内径がスリット内径よりも小さい場合には直射電磁波が放電空間に入れなくなる。また、発光管外径がスリット外径よりも小さいと電磁波が発光管外に直接放出されてしまうために、「発光管外径>スリット外径」の条件を満たす必要がある。   Regarding the relationship between the inner diameter D of the arc tube and the inner diameter of the slit 12, it is necessary to make the D value larger than the inner diameter of the slit. As shown by an arrow “α” in FIG. 9, there are two types of electromagnetic waves that are emitted directly into the discharge space and those that travel along the arc tube wall as indicated by a double-headed arrow “β”. Is smaller than the inner diameter of the slit, direct electromagnetic waves cannot enter the discharge space. Further, if the outer diameter of the arc tube is smaller than the outer diameter of the slit, electromagnetic waves are directly emitted to the outside of the arc tube, so that the condition of “outer diameter of arc tube> outer diameter of slit” needs to be satisfied.

尚、発光管を励起子端部に取り付ける場合には発光管からの伝熱に対する断熱対策が必要とされ、熱的な絶縁材料を使用することが好ましい。   When the arc tube is attached to the exciton end, it is necessary to take heat insulation measures against heat transfer from the arc tube, and it is preferable to use a thermal insulating material.

例えば、図12の構成例15に示すように、実際の励起子では、内部導体13が同軸管又は同軸ケーブル8の一方の導体(中心導体)8aに接続され、外部導体14が同軸管又は同軸ケーブル8の他方の導体(外側導体)8bに接続されている。尚、中心導体と外側導体との間には誘電体16(ポリエチレンやガラス繊維等)が充填されている。   For example, as shown in configuration example 15 of FIG. 12, in an actual exciton, the inner conductor 13 is connected to one conductor (center conductor) 8a of the coaxial tube or the coaxial cable 8, and the outer conductor 14 is coaxial or coaxial. The other conductor (outer conductor) 8b of the cable 8 is connected. A dielectric 16 (polyethylene, glass fiber or the like) is filled between the center conductor and the outer conductor.

円筒状をした内部導体13については、例えば、ガラスやセラミック等のように耐熱性に優れかつ熱伝導率の低い誘電体17を用いて円筒状に形成した基部の外周面に金属薄板若しくは箔板(銅箔等)を付設するか又は金属膜を形成する。尚、内部導体13の一端部13aは外側に屈曲されたフランジ状に形成されている。   For the cylindrical inner conductor 13, for example, a metal thin plate or foil plate on the outer peripheral surface of the base formed in a cylindrical shape using a dielectric 17 having excellent heat resistance and low thermal conductivity such as glass or ceramic. (Copper foil or the like) is attached or a metal film is formed. The one end portion 13a of the inner conductor 13 is formed in a flange shape bent outward.

また、円筒状をした外部導体14については、その外径が内部導体13よりも大きくされており、例えば、ガラスやセラミック等のように耐熱性に優れかつ熱伝導率の低い誘電体18を用いてリング状に形成した部材の外周面に金属薄板若しくは箔板(銅箔等)を付設するか又は金属膜を形成する。尚、外部導体14の一端部14aは内側に屈曲されている。   In addition, the outer conductor 14 having a cylindrical shape has an outer diameter larger than that of the inner conductor 13. For example, a dielectric 18 having excellent heat resistance and low thermal conductivity such as glass or ceramic is used. Then, a metal thin plate or a foil plate (copper foil or the like) is attached to the outer peripheral surface of the ring-shaped member, or a metal film is formed. Note that one end portion 14a of the outer conductor 14 is bent inward.

そして、内部導体13の一端部13aと外部導体14の一端部14aとの間にスリット12が形成される。   A slit 12 is formed between one end 13 a of the inner conductor 13 and one end 14 a of the outer conductor 14.

尚、本例に限らず、下記に示す構成形態を採用しても構わない。   In addition, you may employ | adopt not only this example but the structure shown below.

・誘電体18のみを用いた構成において、その外周面側に金属箔板又は金属膜をつけて外部導体を形成するとともに、内周面側に金属箔板又は金属膜をつけて内部導体を形成する形態
・誘電体17のみを用いた構成において、その外周面側に金属箔板又は金属膜をつけて内部導体を形成するとともに、外部導体については金属薄板を用いて形成する形態
・誘電体17、18を用いることなく、外部導体及び内部導体を金属薄板で形成する形態。
In a configuration using only the dielectric 18, a metal foil plate or a metal film is formed on the outer peripheral surface side to form an external conductor, and an inner conductor is formed by attaching a metal foil plate or a metal film to the inner peripheral surface side. Form in which the inner conductor is formed by attaching a metal foil plate or metal film to the outer peripheral surface side in the configuration using only the dielectric 17 and the outer conductor is formed using a thin metal plate. Dielectric 17 , 18 without using the outer conductor and the inner conductor with a thin metal plate.

また、上記した例では、円筒状の発光管を用いて、その中心軸方向の一端部と励起子とを結合した構成を示したが、これに限らず、該発光管の外周面に励起子を結合させた構成等でも構わない。また、中心孔を有するトーラス形状等の2重管構造又は円筒形状の中央に凹部を形成した構造等を用いても良いが、同軸管や同軸ケーブルの先端部に発光管を付設する場合には、円筒直管のように、発光管の直径を小さくして小型サイズ化が可能な形状が好ましい。   Moreover, in the above-described example, a configuration in which one end portion in the central axis direction is coupled to an exciton using a cylindrical arc tube is shown, but the present invention is not limited thereto, and an exciton is formed on the outer peripheral surface of the arc tube. The structure etc. which couple | bonded these may be sufficient. In addition, a double tube structure such as a torus shape having a central hole or a structure in which a concave portion is formed in the center of a cylindrical shape may be used. However, when an arc tube is attached to the tip of a coaxial tube or a coaxial cable, A shape that can be reduced in size by reducing the diameter of the arc tube, such as a cylindrical straight tube, is preferable.

本発明に係る基本構成例の説明図である。It is explanatory drawing of the basic structural example which concerns on this invention. 本発明に係る構成形態の一例を示す図である。It is a figure which shows an example of the structure form which concerns on this invention. 本発明に係る構成形態の別例を示す図である。It is a figure which shows another example of the structural form which concerns on this invention. 励起子を含めた同軸線路の長さと波長との関係について説明するための図である。It is a figure for demonstrating the relationship between the length of a coaxial line including an exciton, and a wavelength. 電源供給に係るデューティー比の制御について説明するための図である。It is a figure for demonstrating control of the duty ratio which concerns on power supply. デューティー比と光出力の関係を例示したグラフ図である。It is the graph which illustrated the relation between duty ratio and light output. 電源出力及び光出力の時間的変化を示した図である。It is the figure which showed the time change of a power supply output and an optical output. 電源出力及び反射波検出量及び光出力に係る時間的関係を例示した図である。It is the figure which illustrated the temporal relationship which concerns on a power supply output, reflected wave detection amount, and an optical output. 発光管及び励起子を示す概略断面図である。It is a schematic sectional drawing which shows an arc tube and an exciton. 発光管内径とスリット外径との間の寸法差を変化させた場合におけるマイクロ波リーク量及び発光効率の変化を示すグラフ図である。It is a graph which shows the change of the amount of microwave leaks, and luminous efficiency at the time of changing the dimensional difference between an arc_tube | light_emitting_tube inner diameter and a slit outer diameter. 発光管及び励起子を示す斜視図である。It is a perspective view which shows an arc tube and an exciton. 同軸線路の端部構造を例示した概略断面図である。It is the schematic sectional drawing which illustrated the end part structure of a coaxial track.

符号の説明Explanation of symbols

1、1A、1B…無電極放電灯装置、2…電源部、3…発光管、4…電磁波照射部、5…同軸管又は同軸ケーブル、6…反射波検出手段、7…出力調整手段、8…同軸ケーブル、9…励起子   DESCRIPTION OF SYMBOLS 1, 1A, 1B ... Electrodeless discharge lamp apparatus, 2 ... Power supply part, 3 ... Light-emitting tube, 4 ... Electromagnetic wave irradiation part, 5 ... Coaxial tube or coaxial cable, 6 ... Reflected wave detection means, 7 ... Output adjustment means, 8 ... coaxial cable, 9 ... exciton

Claims (4)

電磁波発生用の電源部と、放電発光により無電極で発光する発光管と、該発光管に電磁波を導入するための励起子を含む電磁波照射部とを備え、同軸管又は同軸ケーブルを用いて上記電源部と上記電磁波照射部を接続した構成を有する無電極放電灯装置において、
上記発光管から電源部側へと伝播する反射波を検波するための反射波検出手段と、
上記反射波検出手段からの計測情報に基づいて反射損失を最小にすべく上記電源部の出力を調整する出力調整手段とを設けた
ことを特徴とする無電極放電灯装置。
A power supply unit for generating electromagnetic waves, an arc tube that emits light without electrode by discharge light emission, and an electromagnetic wave irradiation unit that includes excitons for introducing electromagnetic waves into the arc tube, and using a coaxial tube or a coaxial cable In an electrodeless discharge lamp device having a configuration in which a power supply unit and the electromagnetic wave irradiation unit are connected,
A reflected wave detection means for detecting a reflected wave propagating from the arc tube to the power supply unit side;
An electrodeless discharge lamp apparatus comprising: an output adjusting unit that adjusts an output of the power source unit so as to minimize a reflection loss based on measurement information from the reflected wave detecting unit.
請求項1に記載した無電極放電灯装置において、
上記同軸管又は同軸ケーブルと上記電磁波照射部を含めた部分の長さが、電源出力に係る発振波長の4分の1の整数倍又はその近傍値となるように規定し、上記発光管が点灯していない状態で上記励起子の先端にかかる電界が最大値又はほぼ最大値となるようにした
ことを特徴とする無電極放電灯装置。
In the electrodeless discharge lamp device according to claim 1,
The length of the portion including the coaxial tube or the coaxial cable and the electromagnetic wave irradiation unit is specified to be an integral multiple of one-fourth of the oscillation wavelength related to the power output or a value close thereto, and the arc tube is turned on. An electrodeless discharge lamp apparatus characterized in that the electric field applied to the tip of the exciton becomes a maximum value or a substantially maximum value in a state where the excitons are not formed.
請求項1又は請求項2に記載した無電極放電灯装置において、
上記出力調整手段が、パルス発振による電源出力のデューティー比を立ち上がり時に高めるとともに、光出力の上昇につれて該デューティー比を低減させて定常点灯状態へと移行させる
ことを特徴とする無電極放電灯装置。
In the electrodeless discharge lamp device according to claim 1 or 2,
An electrodeless discharge lamp device characterized in that the output adjusting means increases the duty ratio of power supply output by pulse oscillation at the time of rising, and reduces the duty ratio as the light output increases to shift to a steady lighting state.
請求項1又は請求項2又は請求項3に記載した無電極放電灯装置において、
上記発光管が点灯した後で上記反射波検出手段によって反射波の発生又は増加が検出された場合に上記電源部による電力供給を停止させる
ことを特徴とする無電極放電灯装置。
In the electrodeless discharge lamp device according to claim 1 or claim 2 or claim 3,
The electrodeless discharge lamp device according to claim 1, wherein when the generation or increase of the reflected wave is detected by the reflected wave detection means after the arc tube is turned on, the power supply by the power supply unit is stopped.
JP2004338873A 2004-11-24 2004-11-24 Electrodeless discharge lamp device Pending JP2006147454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338873A JP2006147454A (en) 2004-11-24 2004-11-24 Electrodeless discharge lamp device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338873A JP2006147454A (en) 2004-11-24 2004-11-24 Electrodeless discharge lamp device

Publications (1)

Publication Number Publication Date
JP2006147454A true JP2006147454A (en) 2006-06-08

Family

ID=36626884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338873A Pending JP2006147454A (en) 2004-11-24 2004-11-24 Electrodeless discharge lamp device

Country Status (1)

Country Link
JP (1) JP2006147454A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220457A (en) * 2006-02-16 2007-08-30 Toppan Printing Co Ltd Plasma light-emitting device
JP2008288041A (en) * 2007-05-17 2008-11-27 Ushio Inc Microwave-excited discharge lamp apparatus
JP2010177010A (en) * 2009-01-29 2010-08-12 Seiko Epson Corp Light source device, and projector
KR20120027312A (en) * 2009-05-08 2012-03-21 세라비젼 리미티드 Light source powered by microwaves
JP2013501335A (en) * 2009-08-05 2013-01-10 セラビジョン・リミテッド light source
KR101803484B1 (en) * 2016-10-21 2017-11-30 김기중 High efficiency plasma lighting system unsing micro wave
KR102054759B1 (en) * 2018-10-10 2019-12-11 (주)디앤지라이텍 SSPA Driven Plasma Lamp System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676971A (en) * 1992-08-31 1994-03-18 Toshiba Lighting & Technol Corp Inverter circuit and electrodeless discharge lamp lighting device using the circuit
JPH0875636A (en) * 1994-09-01 1996-03-22 Hitachi Ltd Electrodeless discharge lamp lighting apparatus for atomic absorptiometer
JPH09285139A (en) * 1996-04-12 1997-10-31 Toshiba Lighting & Technol Corp Power supply, no-electrode gas discharge lamp turning-on device, lighting equipment and battery charger
JP2002184592A (en) * 1992-06-30 2002-06-28 Toshiba Lighting & Technology Corp High-frequency powder unit and electrodeless discharge lamp lighting device equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184592A (en) * 1992-06-30 2002-06-28 Toshiba Lighting & Technology Corp High-frequency powder unit and electrodeless discharge lamp lighting device equipped with the same
JPH0676971A (en) * 1992-08-31 1994-03-18 Toshiba Lighting & Technol Corp Inverter circuit and electrodeless discharge lamp lighting device using the circuit
JPH0875636A (en) * 1994-09-01 1996-03-22 Hitachi Ltd Electrodeless discharge lamp lighting apparatus for atomic absorptiometer
JPH09285139A (en) * 1996-04-12 1997-10-31 Toshiba Lighting & Technol Corp Power supply, no-electrode gas discharge lamp turning-on device, lighting equipment and battery charger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220457A (en) * 2006-02-16 2007-08-30 Toppan Printing Co Ltd Plasma light-emitting device
JP2008288041A (en) * 2007-05-17 2008-11-27 Ushio Inc Microwave-excited discharge lamp apparatus
JP2010177010A (en) * 2009-01-29 2010-08-12 Seiko Epson Corp Light source device, and projector
KR20120027312A (en) * 2009-05-08 2012-03-21 세라비젼 리미티드 Light source powered by microwaves
KR101716130B1 (en) * 2009-05-08 2017-03-14 세라비젼 리미티드 Light source powered by microwaves
JP2013501335A (en) * 2009-08-05 2013-01-10 セラビジョン・リミテッド light source
KR101803484B1 (en) * 2016-10-21 2017-11-30 김기중 High efficiency plasma lighting system unsing micro wave
KR102054759B1 (en) * 2018-10-10 2019-12-11 (주)디앤지라이텍 SSPA Driven Plasma Lamp System

Similar Documents

Publication Publication Date Title
JP4714868B2 (en) Discharge lamp equipment
US8188662B2 (en) Plasma lamp having tunable frequency dielectric waveguide with stabilized permittivity
JP4761244B2 (en) Discharge lamp and light source device
JP2004505429A (en) Plasma lamp having dielectric waveguide and light emitting method thereof
JP2006294277A (en) Electrodeless discharge lamp and electrodeless discharge lamp device
KR101065793B1 (en) Plasma lighting system
JP2006147454A (en) Electrodeless discharge lamp device
JP2006269229A (en) Electrodeless discharge lamp and luminaire equipped with same
JP4215107B2 (en) Light source device, projector
KR20040036369A (en) Reluminescence acceleration apparatus for plasma lighting system
US6670759B1 (en) Electrodeless discharge lamp
JP4793238B2 (en) Microwave electrodeless lamp, lighting device, projector
JP2011086383A (en) Light source device and projection display device
KR100464058B1 (en) Plasma lighting system
JP2011090851A (en) Electrodeless plasma lamp, and method of generating light with use of electrodeless plasma lamp
JP5056044B2 (en) Light emitting device and projector
JP4725499B2 (en) Microwave electrodeless lamp, lighting device, projector
JP4581834B2 (en) Electrodeless discharge lamp and lighting apparatus equipped with the same
JP2009181771A (en) Light source apparatus, light emission control method for the light source apparatus, and projector
JP2008288025A (en) Microwave discharge lamp device
JP2010080156A (en) Electrodeless discharge lamp device and lighting fixture
KR100556788B1 (en) Bulb of plasma lamp system
JPH10149803A (en) Microwave discharge lamp
KR100867625B1 (en) Streetlight type plasma lighting system
JP2555080B2 (en) Electrodeless discharge lamp lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100408

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100415

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100812