JP2007115475A - Polymer electrolyte - Google Patents

Polymer electrolyte Download PDF

Info

Publication number
JP2007115475A
JP2007115475A JP2005304505A JP2005304505A JP2007115475A JP 2007115475 A JP2007115475 A JP 2007115475A JP 2005304505 A JP2005304505 A JP 2005304505A JP 2005304505 A JP2005304505 A JP 2005304505A JP 2007115475 A JP2007115475 A JP 2007115475A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
general formula
group
fuel cell
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005304505A
Other languages
Japanese (ja)
Other versions
JP4895570B2 (en
Inventor
Masahiro Tojo
正弘 東條
Takashi Fukuchi
崇史 福地
Yoshinori Yanagida
好徳 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2005304505A priority Critical patent/JP4895570B2/en
Publication of JP2007115475A publication Critical patent/JP2007115475A/en
Application granted granted Critical
Publication of JP4895570B2 publication Critical patent/JP4895570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new polymer electrolyte with high oxidation resistance, hardly generating desulfonation even at high temperature, with high proton conductivity, which can be easily manufactured, as one for a solid polymer fuel cell and a binder. <P>SOLUTION: The polymer electrolyte is composed of polymer sulfonic acid having a side chain of such a structure that aromatic rings are jointed by electron-attractive linking groups. The side chain may be a branched side chain or a non-branched side chain, but the branched side chain is preferable. The electron-attracting linking group is selected from -CO-, -CONH-, -C(CF<SB>2</SB>)p-, (p is an integer of 1 to 10), -C(CF<SB>3</SB>)<SB>2</SB>-, -COO-, -SO-, -SO<SB>2</SB>-. The primary chain has a sulfone group, but the side chain does not have a sulfonic group. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子形燃料電池の電解質膜およびバインダーとして有用な、新規高分子電解質およびその製造方法に関する。   The present invention relates to a novel polymer electrolyte useful as an electrolyte membrane and a binder for a polymer electrolyte fuel cell and a method for producing the same.

これまで、固体高分子形燃料電池用の電解質材料としては、(1)ナフィオン(デュポン社製)等のパーフルオロアルキルスルホン酸高分子(例えば、特許文献1参照)や、(2)ポリエーテルエーテルケトン等の耐熱性高分子の主鎖をスルホン化した高分子(例えば、特許文献2参照)、(3)スルホン酸化された側鎖を有する高分子(例えば、特許文献3、特許文献4、特許文献5参照)が知られている。しかしながら、これらの高分子は固体高分子形燃料電池用の電解質材料として、いずれも問題を有していた。すなわち、燃料電池の出力向上の点から100℃以上の運転温度が望まれているが、上記(1)のパーフルオロアルキルスルホン酸ポリマーはガラス転移点が約120℃と低いため、使用温度が100℃未満という制約がある。また、上記(2)および(3)の高分子は、脱スルホンが進行するため高い温度では使用できない。さらに、上記(2)および(3)の高分子は、耐酸化性が充分ではない。耐酸化性を向上させる方法としては、高分子電解質に酸化防止剤を添加する方法(例えば、特許文献6および特許文献7参照)が提案されている。しかしながら、この方法では高分子電解質そのものの耐酸化性を向上させているわけではないので、添加した酸化防止剤が消費されると、電解質膜の耐酸化性が低下してしまうと推定される。また、上記(2)のポリマーは、プロトン伝導性を向上すべくスルホン酸化率を高めると水溶性となる問題がある(例えば、非特許文献1参照)。さらに、上記(3)の高分子を製造するためには多くの工程を必要とするという問題があった。また、側鎖スルホン酸を有する高分子電解質として、芳香環が電子吸引性連結基で連なった側鎖構造を有する高分子電解質も用いられている。(例えば、特許文献8、特許文献9、特許文献10参照)   Up to now, electrolyte materials for polymer electrolyte fuel cells include (1) perfluoroalkylsulfonic acid polymers such as Nafion (manufactured by DuPont) (see, for example, Patent Document 1), and (2) polyether ether. Polymers obtained by sulfonating the main chain of a heat-resistant polymer such as ketone (for example, see Patent Document 2), (3) polymers having a sulfonated side chain (for example, Patent Document 3, Patent Document 4, Patent) Document 5) is known. However, these polymers all have problems as electrolyte materials for polymer electrolyte fuel cells. That is, an operating temperature of 100 ° C. or higher is desired from the viewpoint of improving the output of the fuel cell. However, since the perfluoroalkylsulfonic acid polymer (1) has a low glass transition point of about 120 ° C., the operating temperature is 100. There is a restriction of less than ℃. In addition, the polymers (2) and (3) cannot be used at high temperatures because desulfonation proceeds. Furthermore, the polymers (2) and (3) are not sufficient in oxidation resistance. As a method for improving the oxidation resistance, a method of adding an antioxidant to the polymer electrolyte (for example, see Patent Document 6 and Patent Document 7) has been proposed. However, since this method does not improve the oxidation resistance of the polymer electrolyte itself, it is presumed that when the added antioxidant is consumed, the oxidation resistance of the electrolyte membrane decreases. In addition, the polymer (2) has a problem of becoming water-soluble when the sulfonation rate is increased to improve proton conductivity (see, for example, Non-Patent Document 1). Furthermore, there is a problem that many steps are required to produce the polymer (3). Further, as a polymer electrolyte having a side chain sulfonic acid, a polymer electrolyte having a side chain structure in which aromatic rings are connected by an electron-withdrawing linking group is also used. (For example, see Patent Document 8, Patent Document 9, and Patent Document 10)

米国特許第3,282,875号明細書US Pat. No. 3,282,875 米国特許第5,795,496号明細書US Pat. No. 5,795,496 米国特許第5,403,675号明細書US Pat. No. 5,403,675 特開2001−329053号公報JP 2001-329053 A 特開2002−289222号公報JP 2002-289222 A 特開2003−201352号公報JP 2003-201352 A 特開2003−201403号公報JP 2003-201403 A 特開2004−256797号公報Japanese Patent Laid-Open No. 2004-256797 特開2005−82757号公報JP 2005-82757 A WO2005/076397号明細書WO2005 / 076397 specification Electrochemical and Solid−State Letters,Vol.6,No.11,p.A229−A231(2003)Electrochemical and Solid-State Letters, Vol. 6, no. 11, p. A229-A231 (2003)

本発明は、固体高分子形燃料電池の電解質膜およびバインダーとして、耐酸化性が高く、高温でも脱スルホンが起こりにくい、かつプロトン伝導性の高い、また容易に製造できる、新規な高分子電解質およびその製造方法を提供することを目的とするものである。   The present invention relates to a novel polymer electrolyte and a polymer electrolyte and a binder for a polymer electrolyte fuel cell, which have high oxidation resistance, are resistant to desulfurization even at high temperatures, have high proton conductivity, and can be easily produced. The object is to provide a manufacturing method thereof.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、電子吸引性連結基で
連なる特定構造のスルホン酸基非含有側鎖を有し、かつ主鎖にスルホン酸基を有する、高分子スルホン酸からなる高分子電解質がその目的に適合しうることを見いだし、この知見に基づいて本発明をなすに至った。
すなわち、本発明は、以下の通りである。
1.少なくとも下記一般式(1A)で表される繰り返し単位と下記一般式(1B)で表される繰り返し単位を有する事を特徴とする燃料電池用高分子電解質。
As a result of intensive research in order to solve the above problems, the present inventors have a sulfonic acid group-free side chain having a specific structure that is linked by an electron-withdrawing linking group, and has a sulfonic acid group in the main chain. The present inventors have found that a polymer electrolyte composed of a polymer sulfonic acid can be adapted to the purpose, and have made the present invention based on this finding.
That is, the present invention is as follows.
1. A polymer electrolyte for a fuel cell, comprising at least a repeating unit represented by the following general formula (1A) and a repeating unit represented by the following general formula (1B).

Figure 2007115475
Figure 2007115475

[Yは(k+2)価の芳香族残基を、Y’は(t+2)価の芳香族残基を表し、PおよびP’は −CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合、−CR−(Rは水素原子、アルキル基、またはアリール基)から選ばれる連結基であり、同一であっても異なっていても良く、kおよびtはそれぞれ独立に1〜4の整数であって、式中の側鎖部分Zは、下記一般式(2)で表される。
Z=−(XAr(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr) ・・・(2)
上記一般式(2)中のB〜Bn−1は、側鎖部分Zにおける分岐鎖を意味し、以下の式で表される。
=−〔(XAr(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr)〕
=−〔(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr)〕



n−1=−〔XAr
上記一般式(2)中
nは各々独立に1〜5の整数、
fは各々独立に0〜5の整数、
Ar〜Arは各々独立に芳香族残基であって、
〜Xは各々独立に−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−から選ばれる連結基である。
そして、Zは−SOH基が導入されていない。]
[Y represents a (k + 2) -valent aromatic residue, Y ′ represents a (t + 2) -valent aromatic residue, and P and P ′ represent —CO—, —O—, —S—, —SO—, -SO 2 -, - CONH -, - C (CF 3) 2 -, a single bond, -CR 2 - (R is a hydrogen atom, an alkyl group or an aryl group) a linking group selected from, a same And k and t are each independently an integer of 1 to 4, and the side chain portion Z in the formula is represented by the following general formula (2).
Z = - (X 1 Ar 1 (B 1)) - (X 2 Ar 2 (B 2)) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n ) (2)
B 1 ~B n-1 in the general formula (2) in means a branched chain in the side chain moiety Z, is expressed by the following equation.
B 1 = - [(X 2 Ar 2 (B 2 )) - (X 3 Ar 3 (B 3)) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n )] f
B 2 = - [(X 3 Ar 3 (B 3 )) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n) ] f



B n-1 = - [X n Ar n] f
In said general formula (2), n is an integer of 1-5 each independently,
f is each independently an integer of 0 to 5;
Ar 1 to Ar n is an aromatic residue independently,
X 1 to X n are each independently —CO—, —CONH—, — (CF 2 ) p — (p is an integer of 1 to 10), —C (CF 3 ) 2 —, —COO—, —SO—. , —SO 2 —.
In Z, a —SO 3 H group is not introduced. ]

2.PおよびP’が −CO−、−O−、−S−、−SO−、−C(CF−から選ばれる連結基であることを特徴とする前項1記載の燃料電池用高分子電解質。
3.kが1〜2の整数であり、fが各々独立に0〜2の整数であることを特徴とする前項1または2記載の燃料電池用高分子電解質。
4.少なくとも一つのfが1または2であることを特徴とする前項3記載の燃料電池用高分子電解質。
5.fが0または1であり、少なくとも一つのfが1であることを特徴とする前項3記載の燃料電池用高分子電解質。
2. 2. The fuel cell high element according to item 1, wherein P and P ′ are a linking group selected from —CO—, —O—, —S—, —SO 2 —, and —C (CF 3 ) 2 —. Molecular electrolyte.
3. 3. The polymer electrolyte for fuel cells according to 1 or 2 above, wherein k is an integer of 1 to 2 and f is independently an integer of 0 to 2.
4). 4. The polymer electrolyte for fuel cells as described in 3 above, wherein at least one f is 1 or 2.
5. 4. The polymer electrolyte for a fuel cell as described in 3 above, wherein f is 0 or 1, and at least one f is 1.

6.Zが下記式(3)であることを特徴とする、前項3記載の燃料電池用高分子電解質(
式中、フェニル基およびフェニレン基は電子吸引基で置換されていて良い。)。

Figure 2007115475
6). 3. The polymer electrolyte for fuel cells according to item 3 above, wherein Z is the following formula (3):
In the formula, the phenyl group and the phenylene group may be substituted with an electron withdrawing group. ).
Figure 2007115475

7.Zが下記式(4)であることを特徴とする、前項3記載の燃料電池用高分子電解質(式中、フェニル基およびフェニレン基は電子吸引基で置換されていて良い。)。

Figure 2007115475
7). 3. The polymer electrolyte for a fuel cell according to the item 3, wherein Z is the following formula (4) (wherein the phenyl group and the phenylene group may be substituted with an electron withdrawing group).
Figure 2007115475

8.高分子に側鎖導入剤を反応させることを特徴とする、前項1記載の一般式(1)で表される繰り返し単位を有する燃料電池用高分子電解質の製造方法
9.下記一般式(6A)で表される繰り返し単位を有する高分子と、下記一般式(6B)で表される側鎖導入剤を反応させることを特徴とする、前項8の燃料電池用高分子電解質の製造方法。
8). 8. A method for producing a polymer electrolyte for a fuel cell having a repeating unit represented by the general formula (1) described in item 1 above, wherein a polymer is reacted with a side chain introducing agent. The polymer electrolyte for fuel cells according to item 8 above, wherein a polymer having a repeating unit represented by the following general formula (6A) is reacted with a side chain introducing agent represented by the following general formula (6B): Manufacturing method.

Figure 2007115475
Figure 2007115475

[YおよびPは上記一般式(1A)に記載のものと同様であり、X’はハロゲン原子、OR(Rは水素原子、アルキル基、またはアリール基)、アルカリ金属、アルカリ土類金属から選ばれ、k’は1~4の整数である。Z’は、下記一般式(5)で表される。
Z’=−(Ar(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr) ・・・(5)
上記一般式(5)中、Ar〜Ar、B〜Bn-1、nは上記一般式(1A)に記載のものと同様であり、かつ、X〜Xは −S−、−CH−、−CX”−(X”は非フッ素ハロゲン原子)、−C(OR”)−(R”はアルキル基)、−C(OR”)−O−(R”はアルキル基)、−(C(OR”)−(R”はアルキル基)から選ばれる連結基前駆体、及び上記一般式(1)に記載の連結基から選ばれる。]
[Y and P are the same as those described in the general formula (1A), and X ′ is selected from a halogen atom, OR (R is a hydrogen atom, an alkyl group, or an aryl group), an alkali metal, and an alkaline earth metal. K ′ is an integer of 1 to 4. Z ′ is represented by the following general formula (5).
Z '= - (Ar 1 ( B 1)) - (X 2 Ar 2 (B 2)) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n (5)
In the general formula (5), Ar 1 to Ar n , B 1 to B n−1 , n are the same as those described in the general formula (1A), and X 1 to X n are —S—. , —CH 2 —, —CX ″ 2 — (X ″ is a non-fluorine halogen atom), —C (OR ″) 2 — (R ″ is an alkyl group), —C (OR ″) 2 —O— (R ″ Is an alkyl group), a linking group precursor selected from — (C (OR ″) 2 ) p — (R ″ is an alkyl group), and a linking group described in the general formula (1). ]

10.前記一般式(6A)で表される繰り返し単位を有する高分子と前記一般式(6B)で表される側鎖導入剤を反応させるに際し、側鎖導入剤のX〜Xが、電子供与性の連
結基前駆体であって、該高分子と反応後、続いて連結基前駆体を電子吸引性の連結基に変換することにより、上記一般式(1A)および(1B)で表される繰り返し単位を有する燃料電池用高分子電解質を得ることを特徴とする、請求項9記載の燃料電池用高分子電解質の製造方法。
11.スルホン酸基の代わりにスルホン酸前駆体を用い、その後にスルホン酸前駆体をスルホン酸に変換することにより上記一般式(1A)および(1B)で表される繰り返し単位を有する燃料電池用高分子電解質を得ることを特徴とする、前項8〜10のいずれかに記載の燃料電池用高分子電解質の製造方法。
10. When the polymer having the repeating unit represented by the general formula (6A) is reacted with the side chain introducing agent represented by the general formula (6B), X 1 to X n of the side chain introducing agent are electron donations. After the reaction with the polymer, the linking group precursor is converted into an electron-withdrawing linking group, and is represented by the above general formulas (1A) and (1B). The method for producing a polymer electrolyte for a fuel cell according to claim 9, wherein the polymer electrolyte for a fuel cell having a repeating unit is obtained.
11. A polymer for a fuel cell having a repeating unit represented by the above general formulas (1A) and (1B) by using a sulfonic acid precursor instead of a sulfonic acid group and then converting the sulfonic acid precursor into a sulfonic acid. 11. The method for producing a polymer electrolyte for fuel cells according to any one of items 8 to 10, wherein an electrolyte is obtained.

12.前項1〜7のいずれかに記載の高分子電解質を用いることを特徴とする燃料電池用高分子電解質膜。
13.前項8〜11のいずれかに記載の方法により製造された高分子電解質を用いることを特徴とする燃料電池用高分子電解質膜。
14.前項1〜7のいずれかに記載の高分子電解質を用いることを特徴とする燃料電池
15.前項8〜11のいずれかに記載の方法により製造された高分子電解質を用いることを特徴とする燃料電池。
12 8. A polymer electrolyte membrane for fuel cells, wherein the polymer electrolyte according to any one of items 1 to 7 is used.
13. A polymer electrolyte membrane for a fuel cell, characterized by using a polymer electrolyte produced by the method according to any one of items 8 to 11.
14 15. A fuel cell comprising the polymer electrolyte according to any one of 1 to 7 above. 12. A fuel cell using a polymer electrolyte produced by the method according to any one of items 8 to 11.

本発明の高分子電解質は、耐酸化性が高く、高温でも脱スルホンが起こりにくく、プロトン伝導性が高く、かつ、力学的性質にも優れた、新規な高分子電解質である。したがって、固体高分子形燃料電池の電解質膜およびバインダーとして好適に使用することができる。   The polymer electrolyte of the present invention is a novel polymer electrolyte having high oxidation resistance, hardly causing desulfonation even at high temperatures, high proton conductivity, and excellent mechanical properties. Therefore, it can be suitably used as an electrolyte membrane and a binder for a polymer electrolyte fuel cell.

以下、本発明について具体的に説明する。
本発明の高分子電解質は上記一般式(1A)および(1B)(以下、一般式(1)と総称することがある。)で表される繰り返し単位を有する。

Figure 2007115475
Hereinafter, the present invention will be specifically described.
The polymer electrolyte of the present invention has a repeating unit represented by the above general formulas (1A) and (1B) (hereinafter sometimes collectively referred to as general formula (1)).
Figure 2007115475

上記一般式(1)中、kおよびtはそれぞれ独立に、通常1〜4の整数であって、好ましくは1または2である。
上記一般式(1)中、Yは(k+2)価の芳香族残基を、Y’は(t+2)価の芳香族残基を表し、同一であっても異なっていても良く、例えば、下記一般式(7)に示す3価の芳香族残基、下記一般式(8)に示す4価の芳香族残基、下記一般式(9)に示す5価の芳香族残基などが挙げられる。これら芳香族残基の水素原子がアルキル基、ハロゲン原子、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、−CN、−NO2 、−COR、−COOR(Rは水素原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる。)、−CONRR’(R’はRと同様である。)、−SOR、−SO2 Rで置換されていてもよく、F、パーフルオロアルキル、−CN、−NO2 、−COR、−COOR、−CONRR’、−SOR、−SO2 R等の電子吸引基が置換していることが好ましい。
In the above general formula (1), k and t are each independently an integer of usually 1 to 4, preferably 1 or 2.
In the general formula (1), Y represents a (k + 2) -valent aromatic residue, Y ′ represents a (t + 2) -valent aromatic residue, which may be the same or different. Examples include trivalent aromatic residues represented by the general formula (7), tetravalent aromatic residues represented by the following general formula (8), and pentavalent aromatic residues represented by the following general formula (9). . The hydrogen atom of these aromatic residues is an alkyl group, a halogen atom, a halogenated alkyl group, an aryl group, a halogenated aryl group, —CN, —NO 2 , —COR, —COOR (where R is a hydrogen atom, an alkyl group, a halogen atom, alkyl group, selected from aryl group), -. CONRR '(R ' is the same as R), -. SOR, may be substituted by -SO 2 R, F, perfluoroalkyl, -CN , —NO 2 , —COR, —COOR, —CONRR ′, —SOR, —SO 2 R and the like are preferably substituted.

Figure 2007115475
Figure 2007115475

Figure 2007115475
Figure 2007115475

Figure 2007115475
Figure 2007115475

上記一般式(7)〜(9)における2価の基Qは−CO−、−COO−、−O−、−S−、−SO−、−SO2 −、−CCR1 2−(R1 は水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる)、単結合から選ばれ、好ましくは−CO−、−O−、−S−、−SO2 −から選ばれる。
上記一般式(1)中、Pは −CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、−CR−(Rは水素原子、アルキル基、またはアリール基)単結合から選ばれる連結基であり、好ましくは、−CO−、−O−、−S−、−SO−、−C(CF−から選ばれる連結基であり、さらに好ましくは−CO−、−O−、−S−、−SO−から選ばれる連結基である。
In the general formulas (7) to (9), the divalent group Q is —CO—, —COO—, —O—, —S—, —SO—, —SO 2 —, —CCR 1 2 — (R 1 Is selected from a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group and an aryl group) and a single bond, and preferably selected from —CO—, —O—, —S— and —SO 2 —.
In the general formula (1), P represents —CO—, —O—, —S—, —SO—, —SO 2 —, —CONH—, —C (CF 3 ) 2 —, —CR 2 — (R Is a hydrogen atom, an alkyl group, or an aryl group) and a linking group selected from a single bond, preferably from —CO—, —O—, —S—, —SO 2 —, —C (CF 3 ) 2 —. And a linking group selected from —CO—, —O—, —S—, and —SO 2 —.

上記一般式(1)中の側鎖部分Zは、下記一般式(2)で表される。
Z=−(XAr(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr) (2)
上記一般式(2)中のB〜Bn−1は、側鎖部分Zにおける分岐鎖を意味し、以下の式で表される。
=−〔(XAr(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr)〕
=−〔(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr)〕



n−1=−〔XAr
The side chain portion Z in the general formula (1) is represented by the following general formula (2).
Z = - (X 1 Ar 1 (B 1)) - (X 2 Ar 2 (B 2)) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n ) (2)
B 1 ~B n-1 in the general formula (2) in means a branched chain in the side chain moiety Z, is expressed by the following equation.
B 1 = - [(X 2 Ar 2 (B 2 )) - (X 3 Ar 3 (B 3)) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n )] f
B 2 = - [(X 3 Ar 3 (B 3 )) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n) ] f



B n-1 = - [X n Ar n] f

上記一般式(2)中nはそれぞれ独立に2〜5から選ばれる整数を表し、好ましくは2〜4から選ばれ、さらに好ましくは2〜3から選ばれる。fはそれぞれ独立に0〜5から選ばれる整数を表し、好ましくは0〜2から選ばれ、かつ、少なくとも一つのfが1または2であり、さらに好ましくは0〜1から選ばれ、かつ、少なくとも一つのfが1である。
上記一般式(2)において、fが1以上である場合、上記一般式(2)で表される側鎖は芳香族残基Ar〜Arn−1 において分岐構造をとるが、その際、各分岐鎖は各々異なった鎖長および分岐構造をとることもできる。すなわち、本発明の上記一般式(2)で表される側鎖は、例えば、下記一般式(10)に示す構造をとることができる。
In the general formula (2), each n independently represents an integer selected from 2 to 5, preferably selected from 2 to 4, and more preferably selected from 2 to 3. f represents an integer independently selected from 0 to 5, preferably from 0 to 2, and at least one f is 1 or 2, more preferably from 0 to 1, and at least One f is 1.
In the general formula (2), when f is 1 or more, the side chain represented by the general formula (2) has a branched structure in the aromatic residues Ar 1 to Ar n-1 . Each branched chain may have a different chain length and branched structure. That is, the side chain represented by the general formula (2) of the present invention can have a structure represented by the following general formula (10), for example.

Figure 2007115475
Figure 2007115475

上記一般式(2)におけるAr〜Arn-1は(f+2)価の芳香族残基を表し、例えば下記一般式(11)に示す2価の芳香族残基、上記一般式(7)に示す3価の芳香族残基、上記一般式(8)に示す4価の芳香族残基、上記一般式(9)に示す5価の芳香族残基などが挙げられる。これら芳香族残基の水素原子がアルキル基、ハロゲン原子、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、−CN、−NO2 、−COR、−COOR(Rは水素原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる。)、−CONRR’(R’はRと同様である。)、−SO3 R、−SOR、−SO2 Rで置換されていてもよく、F、パーフルオロアルキル、−CN、−NO2 、−COR、−COOR、−CONRR’、−SO3 R、−SOR、−SO2 R等の電子吸引基が置換し
ていることが好ましい。また、Ar〜Arn-1 は互いに同じであっても異なっていてもよい。
Ar 1 to Ar n-1 in the general formula (2) represent an (f + 2) -valent aromatic residue, for example, a divalent aromatic residue represented by the following general formula (11), the general formula (7) And a trivalent aromatic residue represented by the general formula (8), a pentavalent aromatic residue represented by the general formula (9), and the like. The hydrogen atom of these aromatic residues is an alkyl group, a halogen atom, a halogenated alkyl group, an aryl group, a halogenated aryl group, —CN, —NO 2 , —COR, —COOR (where R is a hydrogen atom, an alkyl group, a halogen atom, alkyl group, selected from aryl group), -. CONRR '(R ' is the same as R), -. SO 3 R , -SOR, may be substituted by -SO 2 R, F, par An electron withdrawing group such as fluoroalkyl, —CN, —NO 2 , —COR, —COOR, —CONRR ′, —SO 3 R, —SOR, —SO 2 R, etc. is preferably substituted. Ar 1 to Ar n-1 may be the same as or different from each other.

Figure 2007115475
Figure 2007115475

さらに上記一般式(1)におけるArは側鎖末端のアリール基を表し、例えば、下記一般式(12)に示すアリール基が挙げられ、当該アリール基の水素原子がアルキル基、ハロゲン原子、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、−CN、−NO2 、−COR、−COOR(Rは水素原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる。)、−CONRR’(R’はRと同様である。)、−SO3 R、−SOR、−SO2 Rで置換されていてもよく、Arは互いに同じであっても異なっていてもよい。 In addition, Ar n in the general formula (1) represents an aryl group at the end of the side chain, and examples thereof include an aryl group represented by the following general formula (12), and the hydrogen atom of the aryl group is an alkyl group, a halogen atom, a halogen atom. Alkyl group, aryl group, halogenated aryl group, —CN, —NO 2 , —COR, —COOR (R is selected from a hydrogen atom, an alkyl group, a halogenated alkyl group, and an aryl group), —CONRR ′ ( R ′ is the same as R.), —SO 3 R, —SOR, —SO 2 R may be substituted, and Ar n may be the same or different from each other.

Figure 2007115475
Figure 2007115475

また上記一般式(1)におけるX〜Xは2価の電子吸引基を表し、例えば、−CO−、−CONH−、−(CF2 p −(ここで、pは1〜10の整数である)、−C(CF3 2 −、−COO−、−SO−、−SO2 −などが挙げられ、好ましくは−CO−、−C(CF3 2 −、−SO−、−SO2 −さらに好ましくは−CO−、−SO−、−SO2 −などが用いられる。X〜Xは互いに同じであっても異なっていてもよい。本発明の上記一般式(1)中、Zで表される側鎖の具体例としては、例えば、下記式(13)の基が挙げられる。 The X 1 to X n in the general formula (1) represents a divalent electron withdrawing group, for example, -CO -, - CONH -, - (CF 2) p - ( wherein, p is from 1 to 10 is an integer), - C (CF 3) 2 -, - COO -, - SO -, - SO 2 - is like, preferably -CO -, - C (CF 3 ) 2 -, - SO-, -SO 2 - and more preferably -CO -, - SO -, - SO 2 - and the like are used. X 1 to X n may be the same as or different from each other. In the general formula (1) of the present invention, specific examples of the side chain represented by Z include a group of the following formula (13).

Figure 2007115475
Figure 2007115475

本発明では、通常、非分岐型側鎖、分岐型側鎖から選ばれる側鎖が用いられ、好ましくは分岐型側鎖が用いられる。
上記一般式(2)において、fが1以上である場合、上記一般式(2)で表される側鎖は芳香族残基Ar〜Arn−1 において分岐構造をとるが、その際、各分岐鎖は各々異なった鎖長および分岐構造をとることもできる。すなわち、本発明の上記一般式(2)で表される側鎖は、例えば、上記一般式(10)に示す構造をとることができる。
In the present invention, a side chain selected from an unbranched side chain and a branched side chain is usually used, and a branched side chain is preferably used.
In the general formula (2), when f is 1 or more, the side chain represented by the general formula (2) has a branched structure in the aromatic residues Ar 1 to Ar n-1 . Each branched chain may have a different chain length and branched structure. That is, the side chain represented by the general formula (2) of the present invention can have, for example, the structure represented by the general formula (10).

本発明の高分子電解質は、少なくとも上記一般式(1)で表される繰り返し単位(1A)および(1B)を有し、全体の繰り返し単位の合計100モル%に対し、通常、繰り返し単位(1A)を0.1〜50モル%および繰り返し単位(1B)を60〜1モル%含み、好ましくは繰り返し単位(1A)を1〜40モル%および繰り返し単位(1B)を40〜3モル%含み、さらに好ましくは繰り返し単位(1A)を2〜30モル%および繰り返し単位(1B)を30〜5モル%含む。但し、全体の繰り返し単位の合計100モル%に対し、繰り返し単位(1A)と繰り返し単位(1B)の含量の合計は通常1.1〜100モル%、好ましくは4〜80モル%、さらに好ましくは7〜60モル%である。
本発明の高分子電解質の重量平均分子量は、1000〜100万、好ましくは1万〜100万、さらに好ましくは2万〜80万、特に好ましくは3万〜40万の重合体である。
The polymer electrolyte of the present invention has at least the repeating units (1A) and (1B) represented by the general formula (1), and the repeating unit (1A) is generally used with respect to 100 mol% of the total repeating units. 0.1 to 50 mol% and 60 to 1 mol% of the repeating unit (1B), preferably 1 to 40 mol% of the repeating unit (1A) and 40 to 3 mol% of the repeating unit (1B), More preferably, it contains 2 to 30 mol% of the repeating unit (1A) and 30 to 5 mol% of the repeating unit (1B). However, the total content of the repeating unit (1A) and the repeating unit (1B) is usually 1.1 to 100 mol%, preferably 4 to 80 mol%, more preferably 100 mol% of the total repeating units. 7 to 60 mol%.
The polymer electrolyte of the present invention has a weight average molecular weight of 1,000 to 1,000,000, preferably 10,000 to 1,000,000, more preferably 20,000 to 800,000, particularly preferably 30,000 to 400,000.

本発明の高分子電解質は、従来の高分子電解質と比較して、プロトン伝導性が高い。その理由はおよそ次のように推定される。本発明の高分子電解質は、従来の高分子電解質[(イ)主鎖のみにスルホン酸を有する高分子電解質や、(ロ)側鎖スルホン酸型高分子電解質]と比較して、構造上大きな相違がある。すなわち、本発明の高分子電解質の側鎖には、スルホン酸基が存在せず、主鎖のみにスルホン酸が存在する。側鎖が存在することにより、主鎖スルホン酸と側鎖で構成される、比較的剛直な空隙からなる空間が形成され、この空間へ水が集積する結果、スルホン酸近傍の保水性が高くなり、プロトン伝導性が高くなると考えられる。特に、本発明において側鎖が分岐型である場合にプロトン伝導性が高いのは、分岐型側鎖の場合に側鎖の形状が嵩高くなるため、とりわけ高い保水性が得られものと考えられる。一方、従来の高分子電解質の場合、(イ)主鎖のみにスルホン酸を有する高分子電解質は側鎖を有しないために保水性が低く、したがって、プロトン伝導度が低く、(ロ)側鎖スルホン酸型高分子電解質も側鎖間の空間に保水し、その量がプロトン伝導性に影響を与えるものと考えられるが、側鎖の分子運動により当該空間のサイズは絶えず変動しそのため保水性は、本発明の高分子の方が高いものと推測される。
また、本発明の高分子電解質は、芳香環が電子吸引基で連結された側鎖構造を有しており、高い耐酸化性を有する。
また、本発明の高分子電解質は、側鎖前駆体に予めスルホン酸またはスルホン酸前駆体を導入する必要がない。したがって、従来の高分子電解質と比較して、より簡便な方法で製造することができる。
The polymer electrolyte of the present invention has high proton conductivity compared to conventional polymer electrolytes. The reason is estimated as follows. The polymer electrolyte of the present invention is structurally larger than conventional polymer electrolytes [(A) polymer electrolytes having sulfonic acid only in the main chain or (B) side chain sulfonic acid type polymer electrolyte]. There is a difference. That is, a sulfonic acid group does not exist in the side chain of the polymer electrolyte of the present invention, and sulfonic acid exists only in the main chain. Due to the presence of the side chain, a space composed of relatively rigid voids composed of the main chain sulfonic acid and the side chain is formed, and water accumulates in this space, resulting in an increase in water retention in the vicinity of the sulfonic acid. It is considered that proton conductivity is increased. In particular, in the present invention, when the side chain is branched, the proton conductivity is high because the shape of the side chain becomes bulky in the case of the branched side chain, so that it is considered that particularly high water retention is obtained. . On the other hand, in the case of a conventional polymer electrolyte, (a) a polymer electrolyte having a sulfonic acid only in the main chain does not have a side chain and thus has low water retention, and therefore has a low proton conductivity, and (b) a side chain. The sulfonic acid type polyelectrolyte also holds water in the space between the side chains, and the amount is thought to affect the proton conductivity, but the size of the space constantly fluctuates due to the molecular movement of the side chains, so the water retention is It is estimated that the polymer of the present invention is higher.
The polymer electrolyte of the present invention has a side chain structure in which aromatic rings are connected by an electron withdrawing group, and has high oxidation resistance.
Further, the polymer electrolyte of the present invention does not need to introduce a sulfonic acid or a sulfonic acid precursor into the side chain precursor in advance. Therefore, it can be produced by a simpler method as compared with conventional polymer electrolytes.

本発明の高分子電解質の製造方法は特に限定されるものではない。例えば、次に示す方法1、方法2などを用いることができる。
<方法1>少なくとも側鎖を有するモノマーを重合させて製造する方法:
(i)少なくとも,繰り返し単位(1A)に対応するモノマーおよび繰り返し単位(1B)に対応するモノマーを重合することによっても得られるし、
(ii)繰り返し単位(1A)に対応するモノマーおよび繰り返し単位(1B)に対応するモノマーおよび他の繰り返し単位に対応するモノマーからまずオリゴマーを合成し、次に当該オリゴマー同士または当該オリゴマーとモノマーを反応させることにより製造することもできるし、
(iii)繰り返し単位(1A)および繰り返し単位(1B)と一つのまたは複数の他の繰り返し単位が連結した構造に対応するモノマーを予め合成し、このものの単独重合や、このものと他の繰り返し構造に対応するモノマーとの重合によって製造することもできる
The method for producing the polymer electrolyte of the present invention is not particularly limited. For example, the following method 1, method 2, and the like can be used.
<Method 1> A method of polymerizing a monomer having at least a side chain:
(I) It can also be obtained by polymerizing at least the monomer corresponding to the repeating unit (1A) and the monomer corresponding to the repeating unit (1B),
(Ii) First, an oligomer is synthesized from a monomer corresponding to the repeating unit (1A), a monomer corresponding to the repeating unit (1B), and a monomer corresponding to another repeating unit, and then reacting the oligomers with each other or the oligomer and the monomers. Can also be manufactured,
(Iii) A monomer corresponding to a structure in which the repeating unit (1A) and the repeating unit (1B) are linked to one or more other repeating units is synthesized in advance, and homopolymerization of the monomer, or this and other repeating structures It can also be produced by polymerization with monomers corresponding to.

<方法2>高分子に側鎖導入剤を反応させて側鎖を導入する方法:例えば、
(i)一般式(1A)においてZが置換していない構造に相当する、−Y−P−(Yは2価の芳香族残基、Pは前記のとおり)および一般式(1B)を繰り返し単位として有する高分子へ側鎖導入剤を反応しZを導入させて製造しても良いし、
(ii)予め反応性の置換基を導入した−Y(U)−P−(Yは3価の芳香族残基、Uは反応性基、Pは前記のとおり)および一般式(1B)を繰り返し単位として有する高分子に、反応基Uと反応する側鎖導入剤を反応しZを導入させて製造しても良いし、
(iii)−Y(U’)−P−[U’はスルホン酸へ転化可能な反応性基、Yおよびは前記のとおり]と側鎖導入剤を反応させた後に未反応のU’をスルホン酸へ転化することによりZを導入させて製造することもできるし、
(iv)−Y−P−(YおよびPは前記のとおり)を繰り返し単位として有する高分子へ側鎖導入剤を反応させてZを導入させた後に、選択的に主鎖のみスルホン化することにより製造することもできる。
方法2の好ましい具体例を次に示す。すなわち、下記一般式(6A)で表される繰り返し単位を有する高分子と下記一般式(6B)で表される側鎖導入剤を反応させ、必要ならば加水分解することにより、上記一般式(1)で示される高分子電解質を製造することができる。なお、この場合には、上記一般式(2)におけるXは−SO−である。
<Method 2> Method of introducing a side chain by reacting a polymer with a side chain introducing agent:
(I) Repeating —Y—P— (Y is a divalent aromatic residue, P is as described above) and general formula (1B) corresponding to the structure in which Z is not substituted in general formula (1A) It may be produced by reacting a side chain introducing agent to a polymer having a unit and introducing Z,
(Ii) -Y (U) -P- (Y is a trivalent aromatic residue, U is a reactive group, P is as described above) and a general formula (1B) in which a reactive substituent is introduced in advance. The polymer having as a repeating unit may be produced by reacting a side chain introducing agent that reacts with the reactive group U and introducing Z,
(Iii) -Y (U ')-P- [U' is a reactive group convertible to sulfonic acid, Y and as described above] and a side chain introducing agent are reacted, and then unreacted U 'is converted to sulfone It can also be produced by introducing Z by conversion to an acid,
(Iv) After allowing Z to be introduced by reacting a side chain introducing agent with a polymer having -Y-P- (Y and P are as described above) as a repeating unit, only the main chain is sulfonated. Can also be manufactured.
A preferred specific example of Method 2 is shown below. That is, a polymer having a repeating unit represented by the following general formula (6A) and a side chain introducing agent represented by the following general formula (6B) are reacted, and if necessary, hydrolyzed to give the above general formula ( The polymer electrolyte represented by 1) can be produced. In this case, X 1 in the general formula (2) is —SO 2 —.

Figure 2007115475
上記一般式(6A)において、YおよびPは一般式(1)に記載のものと同様であり、X’はハロゲン原子、OR(Rは水素原子、アルキル基、またはアリール基)から選ばれる。
Figure 2007115475
In the general formula (6A), Y and P are the same as those described in the general formula (1), and X ′ is selected from a halogen atom and OR (R is a hydrogen atom, an alkyl group, or an aryl group).

Figure 2007115475
上記一般式(6B)のZ’は、下記一般式(5)で表される。
Z’=−(Ar(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr) (5)
Figure 2007115475
Z ′ in the general formula (6B) is represented by the following general formula (5).
Z '= - (Ar 1 ( B 1)) - (X 2 Ar 2 (B 2)) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n (5)

上記一般式(5)中、Ar、B、nは上記一般式(2)に記載のものと同様であり、Xを除くXは上記一般式(2)に記載の連結基及び連結基前駆体から選ばれる。)
連結基前駆体とは、連結基に変換することのできる基をいう。連結基前駆体を連結基に変換する方法としては公知の方法を用いることができる。表1に例を示す。
In the general formula (5), Ar, B, and n are the same as those described in the general formula (2), and X except for X 1 is a linking group and a linking group precursor described in the general formula (2). Chosen from the body. )
A linking group precursor refers to a group that can be converted to a linking group. As a method for converting the linking group precursor into a linking group, a known method can be used. Table 1 shows an example.

Figure 2007115475
Figure 2007115475

連結基前駆体を連結基に変換するのはいずれの時点でもよいが、好ましくは次の方法が用いられる。すなわち、前記一般式(6A)で表される繰り返し単位を有する高分子と前記一般式(6B)で表される側鎖導入剤を反応させるに際し、側鎖導入剤のXが、電子供与性の連結基前駆体であって、高分子と反応後、続いて連結基前駆体を電子吸引性の連結基に変換することにより、一般式(1)で表される繰り返し単位を有する燃料電池用高分子電解質を得る方法である。   The linking group precursor may be converted to the linking group at any point, but the following method is preferably used. That is, when the polymer having the repeating unit represented by the general formula (6A) and the side chain introducing agent represented by the general formula (6B) are reacted, X of the side chain introducing agent is an electron donating agent. A fuel cell for a fuel cell having a repeating unit represented by the general formula (1) by reacting with a polymer and then converting the linking group precursor into an electron-withdrawing linking group. This is a method for obtaining a molecular electrolyte.

本発明で使用する、上記一般式(6A)で表される繰り返し単位を有する高分子の例を以下に示す。
上記一般式(11)で示される残基から選ばれる2価芳香族残基と、−CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合から選ば
れる連結基Pの組み合わせからなる高分子に−SOX’を導入したものが通常用いられ、好ましくは、フェニレン、ナフチレン、ビフェニレンから選ばれる2価芳香族残基と−CO−、−O−、−S−、−SO−から選ばれる連結基Pの組み合わせの高分子に−SOX’を導入したものが用いられ、より好ましくはポリエーテルケトン、ポリエーテルスルホン、ポリチオエーテルケトン、ポリチオエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルエーテルケトンに−SOX’を導入したものが用いられ、さらに好ましくは、下記一般式(14)および(15)で表される高分子においてZが−SOX’のものが用いられる。
Examples of the polymer having a repeating unit represented by the general formula (6A) used in the present invention are shown below.
A divalent aromatic residue selected from the residues represented by the general formula (11), and —CO—, —O—, —S—, —SO—, —SO 2 —, —CONH—, —C ( CF 3 ) 2- , a polymer composed of a combination of linking groups P selected from single bonds, usually having -SO 2 X 'introduced therein, preferably a divalent aromatic selected from phenylene, naphthylene, and biphenylene residues and -CO -, - O -, - S -, - SO 2 - which was introduced -SO 2 X 'in the polymer combinations of the linking group P is selected from is used, more preferably polyether ketone , polyether sulfone, polythioether ketone, polythioether sulfone, polyether ether sulfone, which was introduced -SO 2 X 'polyether ether ketone is used, or more preferably, the following general (14) and Z in the polymer of the formula (15) include the -SO 2 X 'is used.

Figure 2007115475
Figure 2007115475

Figure 2007115475
Figure 2007115475

なお、−SOX’の導入には公知の導入方法を用いることができる。上記一般式(6A)のSOX’におけるX’は、通常、ハロゲン原子、OR(Rは水素原子、アルキル基、またはアリール基)から選ばれ、好ましくは、ハロゲン原子、水酸基から選ばれる。
上記一般式(6B)で表される側鎖導入剤Z’−Hの例を下記一般式(16)および式(17)に示す。
Note that the introduction of the -SO 2 X 'may be any known method for introducing. X ′ in SO 2 X ′ of the general formula (6A) is usually selected from a halogen atom and OR (R is a hydrogen atom, an alkyl group, or an aryl group), and preferably selected from a halogen atom and a hydroxyl group.
Examples of the side chain introducing agent Z′-H represented by the general formula (6B) are shown in the following general formula (16) and formula (17).

Figure 2007115475
Figure 2007115475

Figure 2007115475
上記一般式(16)中、ジフェニルスルフィドが、また上記一般式(17)中、トリスチオフェノキシベンゼンが特に好ましく用いられる。
Figure 2007115475
In the general formula (16), diphenyl sulfide is particularly preferably used, and in the general formula (17), tristhiophenoxybenzene is particularly preferably used.

高分子に側鎖導入剤を反応させる際の反応の種類は、特に制限されない。上記一般式(6A)で表される高分子と上記一般式(6B)で表される側鎖導入剤を反応させる際の好ましい方法としては、(i)ルイス酸を触媒として用いるフリーデル・クラフツ型スルホニル化反応や、(ii)五酸化二リン等の縮合剤を用いる(脱水)縮合反応等の、公知の反応を挙げることができる。
前記フリーデル・クラフツ型スルホニル化反応を用いる場合の通常の反応条件を次に述べる。AlCl、FeCl、硫酸、酸性ゼオライト等の酸触媒存在下、ハロゲン化炭化水素、ニトロベンゼン、スルホラン等の溶媒を用い、反応温度は特に制限はないが、通常、−60〜200℃、好ましくは−30〜150℃である。また、反応時間は、通常、0.5〜1,000時間、好ましくは1〜200時間である。
The type of reaction when the side chain introduction agent is reacted with the polymer is not particularly limited. As a preferable method for reacting the polymer represented by the general formula (6A) with the side chain introducing agent represented by the general formula (6B), (i) Friedel Crafts using Lewis acid as a catalyst. Well-known reactions such as type sulfonylation reactions and (ii) condensation reactions using a condensing agent such as diphosphorus pentoxide (dehydration) can be mentioned.
The usual reaction conditions when using the Friedel-Crafts type sulfonylation reaction are described below. In the presence of an acid catalyst such as AlCl 3 , FeCl 3 , sulfuric acid, acidic zeolite, etc., a solvent such as halogenated hydrocarbon, nitrobenzene, sulfolane is used, and the reaction temperature is not particularly limited, but is usually −60 to 200 ° C., preferably -30 to 150 ° C. Moreover, reaction time is 0.5 to 1,000 hours normally, Preferably it is 1 to 200 hours.

本発明の好ましい製造方法における上記一般式(6A)で表される高分子の製造方法は特に限定されないが、通常、−Y−P−(YおよびPは前記のとおり)を繰り返し単位として含む高分子を、(i)スルホン酸化(本発明において、スルホン酸化とは、−Hなる基の水素原子をSO3 Hで置換する反応を示す。)によりスルホン酸基を導入して、−Y(SOH)−P−(YおよびPは前記のとおり)を製造し、(ii)次に必要であればスルホン酸基を−SOX’基に変換することにより製造することができる。 The production method of the polymer represented by the general formula (6A) in the preferred production method of the present invention is not particularly limited, but is usually a high polymer containing —Y—P— (Y and P are as described above) as a repeating unit. The molecule is introduced with a sulfonic acid group by (i) sulfonation (in the present invention, sulfonation refers to a reaction of substituting the hydrogen atom of the group —H with SO 3 H) to produce —Y (SO 3 H) -P— (Y and P are as described above), and (ii) then, if necessary, can be prepared by converting sulfonic acid groups to —SO 2 X ′ groups.

高分子のスルホン酸化の反応方法としては公知の方法を用いることができ、通常、上記スルホン酸基を有しない高分子を、無溶剤下、あるいは溶剤存在下で、スルホン酸化剤(無水硫酸、発煙硫酸、クロルスルホン酸、硫酸、亜硫酸水素ナトリウム)と反応させる。溶剤としては、例えばn−ヘキサンなどの炭化水素系溶剤、テトラヒドロフラン、ジオキサンなどのエーテル系溶剤、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドのような非プロトン系極性溶剤のほか、テトラクロロエタン、ジクロロエタン、クロロホルム、塩化メチレンなどのハロゲン化炭化水素などが挙げられる。反応温度は特に制限はないが、通常、−50〜200℃、好ましくは−10〜100℃である。また、反応時間は、通常、0.5〜1,000時間、好ましくは1〜200時間である。
スルホン酸基の−SOX’基への変換方法としては、公知の方法を用いることができる。例えば、X’=Clの場合には、無溶剤下、あるいは溶剤存在下で五塩化リン、三塩化リン、塩化チオニル等と反応させることにより変換できる。反応温度は特に制限はないが、通常、−50〜200℃、好ましくは0〜100℃である。また、反応時間は、通常、0.5〜500時間、好ましくは1〜100時間である。
A known method can be used as a reaction method for sulfonation of the polymer. Usually, the polymer having no sulfonic acid group is treated with a sulfonated agent (anhydrous sulfuric acid, fuming) in the absence of a solvent or in the presence of a solvent. Sulfuric acid, chlorosulfonic acid, sulfuric acid, sodium hydrogen sulfite). Examples of the solvent include hydrocarbon solvents such as n-hexane, ether solvents such as tetrahydrofuran and dioxane, aprotic polar solvents such as dimethylacetamide, dimethylformamide, and dimethylsulfoxide, tetrachloroethane, dichloroethane, chloroform, And halogenated hydrocarbons such as methylene chloride. The reaction temperature is not particularly limited, but is usually −50 to 200 ° C., preferably −10 to 100 ° C. Moreover, reaction time is 0.5 to 1,000 hours normally, Preferably it is 1 to 200 hours.
As a method for converting a sulfonic acid group to a —SO 2 X ′ group, a known method can be used. For example, when X ′ = Cl, it can be converted by reacting with phosphorus pentachloride, phosphorus trichloride, thionyl chloride or the like in the absence of a solvent or in the presence of a solvent. Although reaction temperature does not have a restriction | limiting in particular, Usually, -50-200 degreeC, Preferably it is 0-100 degreeC. Moreover, reaction time is 0.5 to 500 hours normally, Preferably it is 1 to 100 hours.

本発明の高分子電解質の主鎖に含まれる芳香族残基は少なくとも一つの電子吸引基が結合していることが好ましい。この場合の電子吸引基は、例えば、−CO−、−CONH−、−(CF2 p −(ここで、pは1〜10の整数である)、−C(CF3 2 −、−COO−、−SO−、−SO−、−SO2 −などの2価の基;F、パーフルオロアルキル、−CN、−NO2 、−COR、−COO R(Rは水素、アルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基から選ばれる)、−CONRR’(R’は前記Rと同様の基である。)、−SO3 R、−SOR、−SO2 Rなどの1価の基が挙げられる。 The aromatic residue contained in the main chain of the polymer electrolyte of the present invention preferably has at least one electron withdrawing group bonded thereto. The electron withdrawing group in this case is, for example, —CO—, —CONH—, — (CF 2 ) p — (wherein p is an integer of 1 to 10), —C (CF 3 ) 2 —, — Divalent groups such as COO—, —SO—, —SO—, —SO 2 —; F, perfluoroalkyl, —CN, —NO 2 , —COR, —COO R (R is selected from hydrogen, an alkyl group, a halogenated alkyl group, an aryl group, and a halogenated aryl group), —CONRR ′ (R ′ is the same group as the above R), —SO 3 R, — And monovalent groups such as SOR and —SO 2 R.

本発明の高分子電解質の構造例を以下に示す。[式中、Zは上記一般式(1)で表される側鎖を示し、スルホン酸基は記載しないが、任意の芳香環に置換させることができる。]

Figure 2007115475
A structural example of the polymer electrolyte of the present invention is shown below. [In formula, Z shows the side chain represented by the said General formula (1), Although a sulfonic acid group is not described, it can be substituted by arbitrary aromatic rings. ]
Figure 2007115475

Figure 2007115475
Figure 2007115475

Figure 2007115475
Figure 2007115475

Figure 2007115475
Figure 2007115475

本発明の高分子電解質として特に好ましい構造の例として、ポリエーテルエーテルケトン(以下PEEKと略す)および/またはポリエーテルスルホンを含み、下記一般式(3)および/または下記一般式(4)で示される側鎖を有する高分子電解質が挙げられる。

Figure 2007115475
Examples of particularly preferable structures as the polymer electrolyte of the present invention include polyether ether ketone (hereinafter abbreviated as PEEK) and / or polyether sulfone, and are represented by the following general formula (3) and / or the following general formula (4). And a polymer electrolyte having a side chain.
Figure 2007115475

Figure 2007115475
Figure 2007115475

本発明の高分子電解質の代表的な製造方法の概要を、上記の特に好ましい構造を例とし
て以下に述べる。
(i)PEEKを濃硫酸でスルホン酸化してスルホン化PEEKを製造し、
(ii)スルホン化PEEKを塩化チオニルでクロロスルホニルPEEKへ変換し、
(iii)フリーデルクラフツ反応によりクロロスルホニルPEEKとトリスチオフェノキシベンゼンを反応させて、PEEK主鎖へ側鎖を導入し、
(iv)過酸化水素で側鎖のスルフィド基をスルホンに変換する。
An outline of a typical production method of the polymer electrolyte of the present invention will be described below by taking the above particularly preferred structure as an example.
(I) PEEK is sulfonated with concentrated sulfuric acid to produce sulfonated PEEK;
(Ii) converting sulfonated PEEK to chlorosulfonyl PEEK with thionyl chloride;
(Iii) Reacting chlorosulfonyl PEEK and tristhiophenoxybenzene by Friedel-Crafts reaction to introduce a side chain into the PEEK main chain,
(Iv) Convert the side chain sulfide group to sulfone with hydrogen peroxide.

本発明の高分子電解質のスルホン酸基含有重合体中のスルホン酸基量は、0.2〜5ミリグラム当量/g、好ましくは0.3〜4ミリグラム当量/g、さらに好ましくは0.4〜3ミリグラム当量/gである。低いスルホン酸基量では、プロトン伝導性が上がらず、一方、スルホン酸基量が高いと、親水性が向上し、構造によっては水溶性ポリマーとなってしまう。上記のスルホン酸基量は、反応条件(温度、時間)や仕込量(組成)により調整することができる。   The amount of sulfonic acid groups in the sulfonic acid group-containing polymer of the polymer electrolyte of the present invention is 0.2 to 5 milligram equivalent / g, preferably 0.3 to 4 milligram equivalent / g, more preferably 0.4 to 3 milligram equivalent / g. When the amount of sulfonic acid group is low, proton conductivity does not increase. On the other hand, when the amount of sulfonic acid group is high, hydrophilicity is improved, and depending on the structure, it becomes a water-soluble polymer. The amount of the sulfonic acid group can be adjusted by the reaction conditions (temperature, time) and the charged amount (composition).

また、このようにして得られる本発明の高分子電解質の、スルホン酸化前またはスルホン酸の前駆体のポリマーの分子量は、ポリスチレン換算重量平均分子量で、1000〜100万、好ましくは1万〜100万、さらに好ましくは2万〜80万、特に好ましくは3万〜40万である。1000未満では、成形フィルムが割れ易く、また強度的性質にも問題がある。一方、100万を超えると、溶解性が不充分となり、また溶液粘度が高く、加工性が不良になるなどの問題がある。
次に、本発明の高分子電解質は、上記スルホン酸基含有重合体からなるが、上記スルホン酸基含有重合体以外に、硫酸、リン酸などの無機酸、カルボン酸を含む有機酸、適量の水などを併用しても良い。
The molecular weight of the polymer electrolyte of the present invention thus obtained before sulfonation or sulfonic acid precursor is 1,000 to 1,000,000, preferably 10,000 to 1,000,000 in terms of polystyrene-converted weight average molecular weight. More preferably, it is 20,000 to 800,000, particularly preferably 30,000 to 400,000. If it is less than 1000, the molded film is liable to break, and there is also a problem in strength properties. On the other hand, when it exceeds 1,000,000, there are problems such as insufficient solubility, high solution viscosity, and poor processability.
Next, the polymer electrolyte of the present invention comprises the sulfonic acid group-containing polymer. In addition to the sulfonic acid group-containing polymer, an inorganic acid such as sulfuric acid and phosphoric acid, an organic acid containing a carboxylic acid, an appropriate amount You may use water together.

本発明の高分子電解質をフィルム化するには、例えば本発明のスルホン酸基含有重合体を溶剤に溶解したのち、塗布によりフィルム状に成形するキャスト法や、溶融成形法などが挙げられる。ここで、キャスト法における溶剤としては、ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシドなどの非プロトン系極性溶剤やメタノールなどのアルコール系溶剤などが挙げられる。
本発明の高分子電解質の構造は、例えば、赤外線吸収スペクトルや核磁気共鳴スペクトル(H−NMR、13C−NMR)により確認することができる。また、組成比は元素分析によっても測定でき、スルホン酸の含量は中和滴定によって測定することができる。
In order to form the polymer electrolyte of the present invention into a film, for example, a casting method in which the sulfonic acid group-containing polymer of the present invention is dissolved in a solvent and then formed into a film by coating, a melt molding method, or the like can be mentioned. Here, examples of the solvent in the casting method include aprotic polar solvents such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone, and dimethylsulfoxide, and alcohol solvents such as methanol.
The structure of the polymer electrolyte of the present invention can be confirmed by, for example, an infrared absorption spectrum or a nuclear magnetic resonance spectrum ( 1 H-NMR, 13 C-NMR). The composition ratio can also be measured by elemental analysis, and the sulfonic acid content can be measured by neutralization titration.

以下、実施例を挙げ本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の各種の測定項目は、下記のようにして求めた。
[重量平均分子量]スルホン酸化前の前駆体ポリマーの数平均分子量,重量平均分子量は、溶媒にテトラヒドロフラン(THF)を用い、ゲルパーミエーションクロマトグラフィー(GPC)によって、ポリスチレン換算の分子量を求めた。
[イオン交換容量]得られたポリマーの水洗水が中性になるまで充分に水洗し、乾燥後、所定量を秤量し、THF/水の混合溶剤に溶解し、フェノールフタレインを指示薬とし、NaOHの標準液にて滴定し、中和点から、イオン交換容量(スルホン酸化当量)を求めた。
[プロトン伝導度の測定]100%相対湿度下に置かれた厚み40〜60μmのフィルム状試料を、白金電極に挟み、複素インピーダンス測定を行い、プロトン伝導度を算出した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. In addition, various measurement items in the examples were obtained as follows.
[Weight Average Molecular Weight] The number average molecular weight and weight average molecular weight of the precursor polymer before sulfonation were determined by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
[Ion exchange capacity] The obtained polymer is sufficiently washed with water until it becomes neutral, dried, weighed in a predetermined amount, dissolved in a THF / water mixed solvent, phenolphthalein as an indicator, and NaOH. The ion exchange capacity (sulphonation equivalent) was determined from the neutralization point.
[Measurement of proton conductivity] A film sample having a thickness of 40 to 60 µm placed under 100% relative humidity was sandwiched between platinum electrodes, and complex impedance measurement was performed to calculate proton conductivity.

[フェントン試験]過酸化水素濃度が3重量%、かつ硫酸第2鉄・7水和物を鉄イオンの濃度が20ppmになるようにフェントン試薬を調製した。250ccのポリエチレン製
容器に200gのフェントン試薬を採取し、3cm×4cm、膜厚40〜60μmに切削した高分子電解膜を投入後、密栓後、50℃の恒温水槽に浸漬させ、6時間のフェントン試験を行った。フェントン試験後、フィルムを取り出し、イオン交換水にて水洗後、25℃・50%RH24時間保持して調湿を行い、重量測定を行った。フェントン試験における重量保持率は、下記の数式により算出した。
フェントン試験における重量保持率(%)=(フェントン試験後のフィルム重量/フェントン試験前のフィルム重量)×100
また、フェントン試験前後のイオン交換容量から、次式によりイオン交換容量保持率を求めた。このイオン交換容量保持率が高いほど脱SO性が低いことを示す。
フェントン試験におけるイオン交換容量保持率(%)=(フェントン試験前のイオン交換容量/フェントン試験後のイオン交換容量)×100
[Fenton test] A Fenton reagent was prepared so that the hydrogen peroxide concentration was 3% by weight and the ferric sulfate heptahydrate concentration was 20 ppm. 200 g of Fenton reagent was collected in a 250 cc polyethylene container, charged with a polymer electrolyte membrane cut to 3 cm × 4 cm and a film thickness of 40-60 μm, sealed, and then immersed in a constant temperature water bath at 50 ° C. for 6 hours. A test was conducted. After the Fenton test, the film was taken out, washed with ion-exchanged water, kept at 25 ° C. and 50% RH for 24 hours to adjust the humidity, and weighed. The weight retention rate in the Fenton test was calculated by the following mathematical formula.
Weight retention in Fenton test (%) = (film weight after Fenton test / film weight before Fenton test) × 100
Moreover, the ion exchange capacity retention rate was calculated | required by following Formula from the ion exchange capacity before and behind a Fenton test. Indicating that the higher the ion exchange capacity retention rate is low de-SO 3 properties.
Ion exchange capacity retention rate (%) in Fenton test = (ion exchange capacity before Fenton test / ion exchange capacity after Fenton test) × 100

[実施例1]
(1)高分子電解質の合成
(1−1)スルホン化ポリエーテルエーテルケトン[下記式(18)]の合成
ヴィクトレックス社製ポリエーテルエーテルケトン Victrex PEEK450PF10.0gを三口フラスコにとり、テフロン(登録商標)製羽根を備えたメカニカルスターラーで撹拌しながら97%硫酸100gをゆっくり注いで溶解し、室温にて96h撹拌した。撹拌した反応溶液をイオン交換水中に注ぎ、ポリマーを析出させた。このポリマーを水洗した。洗浄したポリマーを加熱真空乾燥し、10.8g(収率88%)のスルホン化ポリエーテルエーテルケトンを得た。H−NMRより、このポリマーのスルホン化率は83%であった。
[Example 1]
(1) Synthesis of polymer electrolyte (1-1) Synthesis of sulfonated polyetheretherketone [formula (18) below]
Victrex PEEK450PF (10.0 g) was taken into a three-necked flask, and 100 g of 97% sulfuric acid was slowly poured and stirred with a mechanical stirrer equipped with a Teflon (registered trademark) blade, and stirred at room temperature for 96 h. . The stirred reaction solution was poured into ion exchange water to precipitate a polymer. The polymer was washed with water. The washed polymer was heated and dried under vacuum to obtain 10.8 g (88% yield) of sulfonated polyetheretherketone. From 1 H-NMR, the sulfonation rate of this polymer was 83%.

Figure 2007115475
Figure 2007115475

(1−2)クロロスルホニルポリエーテルエーテルケトン[下記式(19)]の合成
上記(1)で得られたスルホン化ポリエーテルエーテルケトン4.27g(10mmol)を温度計、滴下ろうと、三方コックをつけた三口フラスコに入れ、窒素置換した。塩化チオニル50mlを滴下ろうとにて滴下し、70℃、3hで撹拌した。撹拌後、過剰の塩化チオニルを減圧留去し、赤褐色のポリマー4.45g(収率100%)を得た。IRスペクトルより、スルホン酸基がクロロスルホニル基に変換していることを確認した。
(1-2) Synthesis of chlorosulfonyl polyetheretherketone [the following formula (19)] 4.27 g (10 mmol) of the sulfonated polyetheretherketone obtained in the above (1) was added to a thermometer, a dropping funnel, and a three-way cock. The flask was placed in a three-necked flask and purged with nitrogen. 50 ml of thionyl chloride was added dropwise with a dropping funnel and stirred at 70 ° C. for 3 hours. After stirring, excess thionyl chloride was distilled off under reduced pressure to obtain 4.45 g (yield 100%) of a reddish brown polymer. From the IR spectrum, it was confirmed that the sulfonic acid group was converted to a chlorosulfonyl group.

Figure 2007115475
Figure 2007115475

(1−3)クロロスルホニルポリエーテルエーテルケトンへの1,3,5−トリスチオフェノキシベンゼンの導入反応
上記(1−2)で得られたクロロスルホニルポリエーテルエーテルケトン4.45g(10mmol)を温度計、滴下ろうと、三方コックをつけた三口フラスコに入れ、窒素置換した。脱水精製したスルホラン(テトラヒドロチオフェン−1,1−ジオキシド)200mlを注ぎ入れ、90℃で撹拌してポリマーを溶解した。この溶液に1,3,5−トリ
スチオフェノキシベンゼン20.1g(50mmol)を加えて溶解した後、塩化アルミニウム1.60g(12mmol)を少しずつ添加した。全ての塩化アルミニウムを添加した後、90℃、40h撹拌した。撹拌した反応混合物を1N塩酸水溶液に投入し、生成物を析出させた。この生成物を水洗し、さらにエタノールにて1回洗浄した後、2wt%アセチルアセトン/トルエン混合溶液で室温にて洗浄し、その後同様の混合溶液で80℃にて溶液の色が消えるまで洗浄を繰り返した。生成物を真空乾燥し、所望のポリマー[下記式(20)]6.02g(収率95%)を得た。
(1-3) Introduction reaction of 1,3,5-tristhiophenoxybenzene into chlorosulfonyl polyetheretherketone 4.45 g (10 mmol) of chlorosulfonylpolyetheretherketone obtained in (1-2) above was heated to a temperature. The total was placed in a three-necked flask equipped with a three-way cock with a dropping funnel, and the atmosphere was replaced with nitrogen. 200 ml of dehydrated and purified sulfolane (tetrahydrothiophene-1,1-dioxide) was poured and stirred at 90 ° C. to dissolve the polymer. To this solution, 20.1 g (50 mmol) of 1,3,5-tristhiophenoxybenzene was added and dissolved, and then 1.60 g (12 mmol) of aluminum chloride was added little by little. After all the aluminum chloride was added, the mixture was stirred at 90 ° C. for 40 hours. The stirred reaction mixture was poured into 1N aqueous hydrochloric acid solution to precipitate the product. This product is washed with water, then once with ethanol, then washed with a 2 wt% acetylacetone / toluene mixed solution at room temperature, and then repeatedly washed with the same mixed solution at 80 ° C. until the color of the solution disappears. It was. The product was vacuum-dried to obtain 6.02 g (yield 95%) of the desired polymer [the following formula (20)].

Figure 2007115475
Figure 2007115475

(1−4)側鎖スルフィドの酸化
上記(1−3)で得られたポリマー[上記式(20)]4.0gを2リットルのガラス反応容器へ入れ酢酸を0.2リットル、および34%過酸化水素水溶液40gを加え、攪拌しながら徐々に昇温し、90℃で6時間反応を続けた。反応後、放冷し、ポリマーを濾別水洗後、真空乾燥して、所望の高分子電解質[下記式(21)]3.9g(92%)を得た。構造解析により、スルフィド基がスルホン基へ変換されていることを確認した。このポリマーの中和滴定により算出したイオン交換容量は0.69ミリグラム当量/gであることから、スルホン酸あたりの1,3,5−トリスチオフェノキシベンゼンの導入率は53%であった。
(1-4) Oxidation of Side Chain Sulfide 4.0 g of the polymer obtained in (1-3) above [formula (20)] was put into a 2 liter glass reaction vessel and acetic acid was added in 0.2 liter and 34%. A hydrogen peroxide aqueous solution (40 g) was added, the temperature was gradually raised while stirring, and the reaction was continued at 90 ° C. for 6 hours. After the reaction, the mixture was allowed to cool, and the polymer was separated by filtration, washed with water, and then vacuum dried to obtain 3.9 g (92%) of a desired polymer electrolyte [following formula (21)]. Structural analysis confirmed that the sulfide group was converted to a sulfone group. Since the ion exchange capacity calculated by neutralization titration of this polymer was 0.69 milligram equivalent / g, the introduction ratio of 1,3,5-tristhiophenoxybenzene per sulfonic acid was 53%.

Figure 2007115475
Figure 2007115475

(2)高分子電解質膜としての評価
上記の高分子電解質の固形分量が10wt%となるように、高分子電解質10gおよびNMPをフラスコに入れて、攪拌しながら80℃で加熱溶解させてポリマーワニスを得た。バーコーター(200μm用)を用い、ガラス基板上に貼り付けたPET薄膜上に塗布後、乾燥器にて80℃、0.5時間予備乾燥させ、塗膜をPET薄膜から剥がした。剥がした塗膜を真空乾燥器で100℃、3時間乾燥した。さらに、塗膜重量の1,000倍量のイオン交換水中に室温で2日間浸漬させることで、NMPを除去したフィルムを得た。
次に、フィルムを25℃・50%RH環境に24時間静置することで調湿後、各種物性測定を行った。結果を表2に示す。得られた高分子電解質フィルムはフェントン試験に高い耐性を示し、高いプロトン伝導性を示した。この結果は、本発明の高分子電解質が、燃料電池用電解質材料として必要な、高い耐酸化性と高プロトン伝導性及び低脱SO性を兼ね備えていることを示す。
(2) Evaluation as a polymer electrolyte membrane 10 g of the polymer electrolyte and NMP are placed in a flask so that the solid content of the polymer electrolyte is 10 wt%, and the polymer varnish is dissolved by heating at 80 ° C. with stirring. Got. Using a bar coater (for 200 μm), after coating on a PET thin film affixed on a glass substrate, the coating film was peeled off from the PET thin film by preliminarily drying at 80 ° C. for 0.5 hours with a dryer. The peeled coating film was dried at 100 ° C. for 3 hours in a vacuum dryer. Furthermore, the film from which NMP was removed was obtained by immersing in ion-exchanged water of 1,000 times the coating weight at room temperature for 2 days.
Next, various physical properties were measured after humidity control by allowing the film to stand in an environment of 25 ° C. and 50% RH for 24 hours. The results are shown in Table 2. The obtained polymer electrolyte film showed high resistance to the Fenton test and high proton conductivity. This result shows that the polymer electrolyte of the present invention has high oxidation resistance, high proton conductivity, and low de-SO 3 property necessary as an electrolyte material for fuel cells.

[実施例2]
(1)高分子電解質の合成
反応温度を90℃とし、攪拌時間を80hとした他は、実施例1の(1−3)および(1−4)における方法と同様の方法にて高分子電解質を合成した。イオン交換容量は0.44ミリグラム当量/g、スルホン酸基あたりの1,3,5−トリスチオフェノキシベンゼン導入率は、75%であった。
(2)高分子電解質膜としての評価
上記で得た高分子電解質を用いたほかは実施例1と同様の方法を用い、調湿した高分子電解質フィルムを得、各種物性測定を行った。結果を表2に示す。得られた高分子電解質フィルムはフェントン試験に高い耐性を示し、高いプロトン伝導性及び低脱SO性を示した。
[Example 2]
(1) Synthesis of polymer electrolyte The polymer electrolyte was prepared in the same manner as in (1-3) and (1-4) of Example 1 except that the reaction temperature was 90 ° C. and the stirring time was 80 h. Was synthesized. The ion exchange capacity was 0.44 milligram equivalent / g, and the 1,3,5-tristhiophenoxybenzene introduction rate per sulfonic acid group was 75%.
(2) Evaluation as a polymer electrolyte membrane Using the same method as in Example 1 except that the polymer electrolyte obtained above was used, a conditioned polymer electrolyte film was obtained, and various physical properties were measured. The results are shown in Table 2. The obtained polymer electrolyte film exhibited high resistance to the Fenton test, and exhibited high proton conductivity and low de-SO 3 property.

[実施例3]
(1)高分子電解質の合成
加えた1,3,5−トリスチオフェノキシベンゼンの量を4.0g(10mmol)とし、反応温度を80℃とし、攪拌時間を20hとした他は、実施例1の(1−3)および(1−4)における方法と同様の方法にて高分子電解質を合成した。イオン交換容量は1.9ミリグラム当量/g、スルホン酸基あたりの1,3,5−トリスチオフェノキシベンゼン導入率は、10%であった。
(2)高分子電解質膜としての評価
上記で得た高分子電解質を用いたほかは実施例1と同様の方法を用い、調湿した高分子電解質フィルムを得、各種物性測定を行った。結果を表2に示す。得られた高分子電解質フィルムはフェントン試験に高い耐性を示し、高いプロトン伝導性及び低脱SO性を示した。
[Example 3]
(1) Synthesis of polymer electrolyte Example 1 except that the amount of 1,3,5-tristhiophenoxybenzene added was 4.0 g (10 mmol), the reaction temperature was 80 ° C., and the stirring time was 20 h. A polymer electrolyte was synthesized by the same method as in (1-3) and (1-4). The ion exchange capacity was 1.9 mg equivalent / g, and the 1,3,5-tristhiophenoxybenzene introduction rate per sulfonic acid group was 10%.
(2) Evaluation as a polymer electrolyte membrane Using the same method as in Example 1 except that the polymer electrolyte obtained above was used, a conditioned polymer electrolyte film was obtained, and various physical properties were measured. The results are shown in Table 2. The obtained polymer electrolyte film exhibited high resistance to the Fenton test, and exhibited high proton conductivity and low de-SO 3 property.

[実施例4]
(1)高分子電解質の合成
室温で24h撹拌したことの他は、実施例1の(1−1)と同様の方法でスルホン化ポリエーテルエーテルケトンを合成した。スルホン化率は37%であった。このスルホン化ポリエーテルエーテルケトンを用い、実施例1の(1−2)と同様の方法でクロロスルホニルポリエーテルエーテルケトンを合成した。このポリマーを用い、加えた1,3,5−トリスチオフェノキシベンゼンの量、反応温度および撹拌時間を実施例3と同様にした他は、実施例1の(1−3)および(1−4)における方法と同様の方法にて高分子電解質を合成した。イオン交換容量は0.47ミリグラム当量/g、スルホン酸基あたりの1,3,5−トリスチオフェノキシベンゼン導入率は、49%であった。
(2)高分子電解質膜としての評価
上記で得た高分子電解質を用いたほかは実施例1と同様の方法を用い、調湿した高分子電解質フィルムを得、各種物性測定を行った。結果を表2に示す。得られた高分子電解質フィルムはフェントン試験に高い耐性を示し、高いプロトン伝導性及び低脱SO性を示した。
[Example 4]
(1) Synthesis of polymer electrolyte A sulfonated polyetheretherketone was synthesized in the same manner as in (1-1) of Example 1 except that it was stirred at room temperature for 24 hours. The sulfonation rate was 37%. Using this sulfonated polyetheretherketone, chlorosulfonyl polyetheretherketone was synthesized in the same manner as in Example 1-2 (1-2). (1-3) and (1-4) of Example 1 except that the amount of 1,3,5-tristhiophenoxybenzene added, the reaction temperature, and the stirring time were the same as in Example 3. The polymer electrolyte was synthesized by the same method as in (1). The ion exchange capacity was 0.47 milligram equivalent / g, and the 1,3,5-tristhiophenoxybenzene introduction rate per sulfonic acid group was 49%.
(2) Evaluation as a polymer electrolyte membrane Using the same method as in Example 1 except that the polymer electrolyte obtained above was used, a conditioned polymer electrolyte film was obtained, and various physical properties were measured. The results are shown in Table 2. The obtained polymer electrolyte film exhibited high resistance to the Fenton test, and exhibited high proton conductivity and low de-SO 3 property.

[比較例1]
(1)高分子電解質の合成
反応温度を105℃とし、攪拌時間を100hとした他は、実施例1の(1−3)およ
び(1−4)における方法と同様の方法にて高分子電解質を合成した。イオン交換容量は0.03ミリグラム当量/g、スルホン酸基あたりの1,3,5−トリスチオフェノキシベンゼン導入率は89%であった。
(2)高分子電解質膜としての評価
上記で得た高分子電解質を用いたほかは実施例1と同様の方法を用い、調湿した高分子電解質フィルムを得、各種物性測定を行った。結果を表2に示す。この結果は、繰り返し構造単位が存在していても、スルホン酸基が0.6モル%と極めて少ない場合にはプロトン伝導性が低いことを示す。
[Comparative Example 1]
(1) Synthesis of polymer electrolyte The polymer electrolyte was prepared by the same method as in (1-3) and (1-4) of Example 1 except that the reaction temperature was 105 ° C. and the stirring time was 100 h. Was synthesized. The ion exchange capacity was 0.03 milligram equivalent / g, and the 1,3,5-tristhiophenoxybenzene introduction rate per sulfonic acid group was 89%.
(2) Evaluation as a polymer electrolyte membrane Using the same method as in Example 1 except that the polymer electrolyte obtained above was used, a conditioned polymer electrolyte film was obtained, and various physical properties were measured. The results are shown in Table 2. This result shows that proton conductivity is low when the number of sulfonic acid groups is as small as 0.6 mol% even when repeating structural units are present.

[比較例2]
実施例1で中間体として合成した、スルホン化ポリエーテルエーテルケトン[式(18)]の高分子電解質膜としての評価を行った。結果を表2に示す。この結果を実施例3と比較すると、本発明の高分子電解質は、繰り返し構造(1A)を有することにより、高いプロトン伝導度や高い酸化安定性を示すことがわかる。
[Comparative Example 2]
The sulfonated polyetheretherketone [Formula (18)] synthesized as an intermediate in Example 1 was evaluated as a polymer electrolyte membrane. The results are shown in Table 2. When this result is compared with Example 3, it turns out that the polymer electrolyte of this invention shows high proton conductivity and high oxidation stability by having a repeating structure (1A).

[実施例5]
(1)高分子電解質の合成
(1−1)クロロスルホニルポリエーテルエーテルケトンへのジフェニルスルフィドの導入反応
1,3,5−トリスチオフェノキシベンゼンの代わりにジフェニルスルフィド4.4 g(40mmol)を用いたほかは、実施例1の(1−3)と同様の方法を用いて目的物[式(22)]を収率86%で得た。NMRおよびIRスペクトルで構造を確認した。
[Example 5]
(1) Synthesis of polyelectrolyte (1-1) Introduction reaction of diphenyl sulfide into chlorosulfonyl polyetheretherketone Using 4.4 g (40 mmol) of diphenyl sulfide instead of 1,3,5-tristhiophenoxybenzene The target product [formula (22)] was obtained in a yield of 86% by using the same method as in (1-3) of Example 1. The structure was confirmed by NMR and IR spectra.

Figure 2007115475
Figure 2007115475

(1−2)側鎖スルフィドの酸化
上記で得たポリマー[式(22)]を用いたほかは、実施例1の(1−4)と同様の方法を用いて目的物[式(23)]を収率99%で得た。NMRおよびIRスペクトルで構造を確認した。イオン交換容量は1.2ミリグラム当量/g、スルホン酸基あたりのジフェニルスルフィド導入率は、38%であった。
(1-2) Oxidation of Side Chain Sulfide The target product [Formula (23) was used in the same manner as in (1-4) of Example 1 except that the polymer [Formula (22)] obtained above was used. Was obtained in a yield of 99%. The structure was confirmed by NMR and IR spectra. The ion exchange capacity was 1.2 milligram equivalent / g, and the introduction rate of diphenyl sulfide per sulfonic acid group was 38%.

Figure 2007115475
Figure 2007115475

(2)高分子電解質膜としての評価
上記で得た高分子電解質を用いたほかは実施例1と同様の方法を用い、調湿した高分子電解質フィルムを得、各種物性測定を行った。結果を表2に示す。得られた高分子電解質フィルムはフェントン試験に高い耐性を示し、高いプロトン伝導性及び低脱SO性を示した。
(2) Evaluation as a polymer electrolyte membrane Using the same method as in Example 1 except that the polymer electrolyte obtained above was used, a conditioned polymer electrolyte film was obtained, and various physical properties were measured. The results are shown in Table 2. The obtained polymer electrolyte film exhibited high resistance to the Fenton test, and exhibited high proton conductivity and low de-SO 3 property.

[比較例3]
特開2003−201403号公報の参考例2に記載の方法で下式(24)に示すポリマーBのスルホン酸化物を得、このものの高分子電解質膜としての評価を行った。結果を表2に示す。
[Comparative Example 3]
A sulfone oxide of polymer B represented by the following formula (24) was obtained by the method described in Reference Example 2 of JP-A-2003-201403, and this was evaluated as a polymer electrolyte membrane. The results are shown in Table 2.

Figure 2007115475
(但し、j/k=6.9であり、nは5.5である。)
Figure 2007115475
(However, j / k = 6.9 and n is 5.5.)

Figure 2007115475
Figure 2007115475

本発明は、固体高分子形燃料電池の電解質およびバインダーとして有用である。   The present invention is useful as an electrolyte and a binder for a polymer electrolyte fuel cell.

Claims (15)

少なくとも下記一般式(1A)で表される繰り返し単位と下記一般式(1B)で表される繰り返し単位を有する事を特徴とする燃料電池用高分子電解質。
Figure 2007115475
[Yは(k+2)価の芳香族残基を、Y’は(t+2)価の芳香族残基を表し、PおよびP’は −CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合、−CR−(Rは水素原子、アルキル基、またはアリール基)から選ばれる連結基であり、同一であっても異なっていても良く、kおよびtはそれぞれ独立に1〜4の整数であって、式中の側鎖部分Zは、下記一般式(2)で表される。
Z=−(XAr(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr) ・・・(2)
上記一般式(2)中のB〜Bn−1は、側鎖部分Zにおける分岐鎖を意味し、以下の式で表される。
=−〔(XAr(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr)〕

=−〔(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr)〕



n−1=−〔XAr
上記一般式(2)中
nは各々独立に1〜5の整数、
fは各々独立に0〜5の整数、
Ar〜Arは各々独立に芳香族残基であって、
〜Xは各々独立に−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−から選ばれる連結基である。
そして、Zは−SOH基が導入されていない。]
A polymer electrolyte for fuel cells, comprising at least a repeating unit represented by the following general formula (1A) and a repeating unit represented by the following general formula (1B).
Figure 2007115475
[Y represents a (k + 2) -valent aromatic residue, Y ′ represents a (t + 2) -valent aromatic residue, and P and P ′ represent —CO—, —O—, —S—, —SO—, -SO 2 -, - CONH -, - C (CF 3) 2 -, a single bond, -CR 2 - (R is a hydrogen atom, an alkyl group or an aryl group) a linking group selected from, a same And k and t are each independently an integer of 1 to 4, and the side chain portion Z in the formula is represented by the following general formula (2).
Z = - (X 1 Ar 1 (B 1)) - (X 2 Ar 2 (B 2)) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n ) (2)
B 1 ~B n-1 in the general formula (2) in means a branched chain in the side chain moiety Z, is expressed by the following equation.
B 1 = - [(X 2 Ar 2 (B 2 )) - (X 3 Ar 3 (B 3)) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n )] f

B 2 = - [(X 3 Ar 3 (B 3 )) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n) ] f



B n-1 = - [X n Ar n] f
In the general formula (2), each n is independently an integer of 1 to 5,
f is each independently an integer of 0 to 5;
Ar 1 to Ar n is an aromatic residue independently,
X 1 to X n are each independently —CO—, —CONH—, — (CF 2 ) p — (p is an integer of 1 to 10), —C (CF 3 ) 2 —, —COO—, —SO—. , —SO 2 —.
In Z, a —SO 3 H group is not introduced. ]
PおよびP’が −CO−、−O−、−S−、−SO−、−C(CF−から選ばれる連結基であることを特徴とする請求項1記載の燃料電池用高分子電解質。 2. The fuel cell according to claim 1, wherein P and P ′ are a linking group selected from —CO—, —O—, —S—, —SO 2 —, —C (CF 3 ) 2 —. Polymer electrolyte. kが1〜2の整数であり、fが各々独立に0〜2の整数であることを特徴とする請求項1または2記載の燃料電池用高分子電解質。   3. The polymer electrolyte for fuel cells according to claim 1, wherein k is an integer of 1 to 2, and f is an integer of 0 to 2 each independently. 少なくとも一つのfが1または2であることを特徴とする請求項3記載の燃料電池用高分子電解質。   4. The polymer electrolyte for fuel cells according to claim 3, wherein at least one f is 1 or 2. fが0または1であり、少なくとも一つのfが1であることを特徴とする請求項3記載の燃料電池用高分子電解質。   4. The polymer electrolyte for a fuel cell according to claim 3, wherein f is 0 or 1, and at least one f is 1. Zが下記式(3)であることを特徴とする、請求項3記載の燃料電池用高分子電解質(式中、フェニル基およびフェニレン基は電子吸引基で置換されていて良い。)。
Figure 2007115475
The polymer electrolyte for a fuel cell according to claim 3, wherein Z is the following formula (3) (wherein the phenyl group and the phenylene group may be substituted with an electron withdrawing group).
Figure 2007115475
Zが下記式(4)であることを特徴とする、請求項3記載の燃料電池用高分子電解質(式中、フェニル基およびフェニレン基は電子吸引基で置換されていて良い。)。
Figure 2007115475
The polymer electrolyte for a fuel cell according to claim 3, wherein Z is the following formula (4) (wherein the phenyl group and the phenylene group may be substituted with an electron withdrawing group).
Figure 2007115475
高分子に側鎖導入剤を反応させることを特徴とする、請求項1記載の燃料電池用高分子電解質の製造方法。   2. The method for producing a polymer electrolyte for a fuel cell according to claim 1, wherein a side chain introducing agent is reacted with the polymer. 下記一般式(6A)で表される繰り返し単位を有する高分子と、下記一般式(6B)で表される側鎖導入剤を反応させることを特徴とする、請求項8記載の燃料電池用高分子電解質の製造方法。
Figure 2007115475
[YおよびPは上記一般式(1A)に記載のものと同様であり、X’はハロゲン原子、OR(Rは水素原子、アルキル基、またはアリール基)、アルカリ金属、アルカリ土類金属から選ばれ、k’は1~4の整数である。
Z’は、下記一般式(5)で表される。
Z’=−(Ar(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr) ・・・(5)
上記一般式(5)中、Ar〜Ar、B〜Bn-1、nは上記一般式(1)に記載のものと同様であり、かつ、X〜Xは −S−、−CH−、−CX”−(X”は非フッ素ハロゲン原子)、−C(OR”)−(R”はアルキル基)、−C(OR”)−O−(R”はアルキル基)、−(C(OR”)−(R”はアルキル基)から選ばれる連結基前駆体、及び上記一般式(1)に記載の連結基から選ばれる。]
The high fuel cell fuel cell according to claim 8, wherein a polymer having a repeating unit represented by the following general formula (6A) is reacted with a side chain introducing agent represented by the following general formula (6B). A method for producing a molecular electrolyte.
Figure 2007115475
[Y and P are the same as those described in the general formula (1A), and X ′ is selected from a halogen atom, OR (R is a hydrogen atom, an alkyl group, or an aryl group), an alkali metal, and an alkaline earth metal. K ′ is an integer of 1 to 4.
Z ′ is represented by the following general formula (5).
Z '= - (Ar 1 ( B 1)) - (X 2 Ar 2 (B 2)) - ··· - (X n-1 Ar n-1 (B n-1)) - (X n Ar n (5)
In the general formula (5), Ar 1 to Ar n , B 1 to B n−1 , n are the same as those described in the general formula (1), and X 1 to X n are —S—. , —CH 2 —, —CX ″ 2 — (X ″ is a non-fluorine halogen atom), —C (OR ″) 2 — (R ″ is an alkyl group), —C (OR ″) 2 —O— (R ″ Is an alkyl group), a linking group precursor selected from — (C (OR ″) 2 ) p — (R ″ is an alkyl group), and a linking group described in the general formula (1). ]
前記一般式(6A)で表される繰り返し単位を有する高分子と前記一般式(6B)で表される側鎖導入剤を反応させるに際し、側鎖導入剤のX〜Xが、電子供与性の連結基前駆体であって、該高分子と反応後、続いて連結基前駆体を電子吸引性の連結基に変換することにより、上記一般式(1A)および(1B)で表される繰り返し単位を有する燃料電池用高分子電解質を得ることを特徴とする、請求項9記載の燃料電池用高分子電解質の製造方法。 When the polymer having the repeating unit represented by the general formula (6A) is reacted with the side chain introducing agent represented by the general formula (6B), X 1 to X n of the side chain introducing agent are electron donations. After the reaction with the polymer, the linking group precursor is converted into an electron-withdrawing linking group, and is represented by the above general formulas (1A) and (1B). The method for producing a polymer electrolyte for a fuel cell according to claim 9, wherein the polymer electrolyte for a fuel cell having a repeating unit is obtained. スルホン酸基の代わりにスルホン酸前駆体を用い、その後にスルホン酸前駆体をスルホン酸に変換することにより上記一般式(1A)および(1B)で表される繰り返し単位を有する燃料電池用高分子電解質を得ることを特徴とする、請求項8〜10のいずれかに記載の燃料電池用高分子電解質の製造方法。   A polymer for a fuel cell having a repeating unit represented by the above general formulas (1A) and (1B) by using a sulfonic acid precursor instead of a sulfonic acid group and then converting the sulfonic acid precursor into a sulfonic acid. The method for producing a polymer electrolyte for a fuel cell according to any one of claims 8 to 10, wherein an electrolyte is obtained. 請求項1〜7のいずれかに記載の高分子電解質を用いることを特徴とする燃料電池用高分子電解質膜。   A polymer electrolyte membrane for a fuel cell, comprising the polymer electrolyte according to claim 1. 請求項8〜11のいずれかに記載の方法により製造された高分子電解質を用いることを特徴とする燃料電池用高分子電解質膜。   A polymer electrolyte membrane for a fuel cell, comprising the polymer electrolyte produced by the method according to claim 8. 請求項1〜7のいずれかに記載の高分子電解質を用いることを特徴とする燃料電池。   A fuel cell using the polymer electrolyte according to claim 1. 請求項8〜11のいずれかに記載の方法により製造された高分子電解質を用いることを特徴とする燃料電池。
A fuel cell using the polymer electrolyte produced by the method according to claim 8.
JP2005304505A 2005-10-19 2005-10-19 Polymer electrolyte Expired - Fee Related JP4895570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304505A JP4895570B2 (en) 2005-10-19 2005-10-19 Polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304505A JP4895570B2 (en) 2005-10-19 2005-10-19 Polymer electrolyte

Publications (2)

Publication Number Publication Date
JP2007115475A true JP2007115475A (en) 2007-05-10
JP4895570B2 JP4895570B2 (en) 2012-03-14

Family

ID=38097479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304505A Expired - Fee Related JP4895570B2 (en) 2005-10-19 2005-10-19 Polymer electrolyte

Country Status (1)

Country Link
JP (1) JP4895570B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229418A (en) * 2011-04-14 2012-11-22 Kaneka Corp Polymer electrolyte and use thereof
WO2013153696A1 (en) * 2012-04-13 2013-10-17 株式会社カネカ High-molecular-weight electrolyte and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216799A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Composite polymer electrolyte membrane and fuel cell using the same
JP2003327674A (en) * 2002-05-10 2003-11-19 Jsr Corp Novel phosphorus-containing aromatic dihalogeno compound, polyarylene polymer, sulfonated polyarylene polymer, their production methods, and proton conductive membrane
JP2005139432A (en) * 2003-10-17 2005-06-02 Sumitomo Chemical Co Ltd Block copolymer and use thereof
WO2005076397A1 (en) * 2004-02-06 2005-08-18 Asahikasei Kabushikikaisha Electrolyte for fuel cell and method for producing same
JP2005534787A (en) * 2002-08-06 2005-11-17 コミツサリア タ レネルジー アトミーク POLYPHENYLENE TYPE POLYMER, METHOD FOR PREPARING THE SAME, MEMBRANE, AND FUEL CELL DEVICE INCLUDING THE MEMBRANE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216799A (en) * 2001-01-19 2002-08-02 Honda Motor Co Ltd Composite polymer electrolyte membrane and fuel cell using the same
JP2003327674A (en) * 2002-05-10 2003-11-19 Jsr Corp Novel phosphorus-containing aromatic dihalogeno compound, polyarylene polymer, sulfonated polyarylene polymer, their production methods, and proton conductive membrane
JP2005534787A (en) * 2002-08-06 2005-11-17 コミツサリア タ レネルジー アトミーク POLYPHENYLENE TYPE POLYMER, METHOD FOR PREPARING THE SAME, MEMBRANE, AND FUEL CELL DEVICE INCLUDING THE MEMBRANE
JP2005139432A (en) * 2003-10-17 2005-06-02 Sumitomo Chemical Co Ltd Block copolymer and use thereof
WO2005076397A1 (en) * 2004-02-06 2005-08-18 Asahikasei Kabushikikaisha Electrolyte for fuel cell and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229418A (en) * 2011-04-14 2012-11-22 Kaneka Corp Polymer electrolyte and use thereof
US9985309B2 (en) 2011-04-14 2018-05-29 Kaneka Corporation High-molecular-weight electrolyte and use thereof
WO2013153696A1 (en) * 2012-04-13 2013-10-17 株式会社カネカ High-molecular-weight electrolyte and use thereof

Also Published As

Publication number Publication date
JP4895570B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
KR101546816B1 (en) Ion conducting polymer comprising partially branched multiblock copolymer and use thereof
US7897691B2 (en) Proton exchange membranes for fuel cell applications
KR20020077169A (en) Monomer having Electrowithdrawing Group and Electrodonating Group, Copolymer thereof, and Proton-Conductive Membrane
US7473714B2 (en) Materials for use as proton conducting membranes for fuel cells
JP2008533225A (en) Sulfonated poly (arylene) as a hydrolytically and thermally oxidatively stable polymer
KR101532306B1 (en) Ion-conducting polymer comprising phenyl pendant substituted with at least two sulfonated aromatic groups
JP4706023B2 (en) Sulfonated aromatic polyether, method for producing the same, and electrolyte membrane
JP2010070750A (en) Polymer, polymer electrolyte, and use of same
KR100911970B1 (en) Halogenated Aromatic Compound, Copolymer Thereof, and Proton-Conductive Membrane Comprising the Copolymer
KR101798499B1 (en) Branched sulfonated polyphenylene polymer and polymer electrolyte membrane for fuel cell comprising the same
WO2005063854A1 (en) Polymer electrolyte and use thereof
JP4993910B2 (en) Fuel cell electrolyte and method for producing the same
KR102195258B1 (en) Sulfonimide based poly(phenylene benzophenone) polymer for proton exchange membrane fuel and and process for preparing the same by carbon-carbon coupling polymerization
JP4657055B2 (en) Manufacturing method of electrolyte membrane
KR102142566B1 (en) Novel polymer comprising partially fluorinated sulfonimide, process for the preparation thereof and proton exchange membrane comprising the same
KR101649204B1 (en) Sulfonated polyphenylene containing benzophenone moiety via nickel catalyzed polymerization
JP4895570B2 (en) Polymer electrolyte
Pang et al. Polymer electrolyte membranes based on poly (arylene ether) s with flexible disulfophenyl pendant
JP3852108B2 (en) Polyarylene polymer and proton conducting membrane
JP4836539B2 (en) Fuel cell electrolyte
JP2004244517A (en) Polyarylene copolymer, its preparation method and proton conducting membrane
JP4841193B2 (en) Composite ion exchange membrane for fuel cells
JP4841194B2 (en) Polymer electrolyte membrane for fuel cells
JP4841195B2 (en) Electrolyte membrane for fuel cell
JP2007045848A (en) Electrolyte for ion exchange resin and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees