JP2007113920A - Heater controller of exhaust gas sensor - Google Patents

Heater controller of exhaust gas sensor Download PDF

Info

Publication number
JP2007113920A
JP2007113920A JP2005302436A JP2005302436A JP2007113920A JP 2007113920 A JP2007113920 A JP 2007113920A JP 2005302436 A JP2005302436 A JP 2005302436A JP 2005302436 A JP2005302436 A JP 2005302436A JP 2007113920 A JP2007113920 A JP 2007113920A
Authority
JP
Japan
Prior art keywords
temperature
moisture
exhaust gas
heater
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005302436A
Other languages
Japanese (ja)
Other versions
JP4621984B2 (en
Inventor
Yasushi Shoda
裕史 荘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005302436A priority Critical patent/JP4621984B2/en
Publication of JP2007113920A publication Critical patent/JP2007113920A/en
Application granted granted Critical
Publication of JP4621984B2 publication Critical patent/JP4621984B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To early activate an air-fuel ratio sensor while preventing an element crack from being caused in the air-fuel ratio sensor by adhesion of moisture in an exhaust pipe, and to reduce the cost and the load on a controller. <P>SOLUTION: The heater controller determines whether the exhaust pipe temperature is increased to a temperature providing a moisture non-occurring state where moisture does not cause dew condensation in the exhaust pipe, based on whether or not the element resistance R of the air-fuel ratio sensor is a predetermined value R0 or lower. In a period when the element resistance R is higher than the predetermined value R0 immediately after engine start (moisture does not cause dew condensation in the exhaust pipe), energization to the heater is forbidden to prevent the element crack of the air-fuel ratio sensor, and the ignition timing of the engine is delayed to forcibly increase the temperature of the exhaust gas to rapidly increase the temperature of the exhaust pipe. Then, at the time when the element resistance R becomes the predetermined value R0 or lower (moisture non-occurring state is provided), the energization to the heater is started and is controlled so that the element temperature is rapidly increased to an activation temperature, and the delay control of the ignition timing is finished. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排出ガスセンサのセンサ素子を加熱するヒータを制御して該センサ素子の温度を制御する排出ガスセンサのヒータ制御装置に関するものである。   The present invention relates to a heater control device for an exhaust gas sensor that controls a heater for heating a sensor element of an exhaust gas sensor to control the temperature of the sensor element.

近年の電子制御化された内燃機関では、排気管に排出ガスの空燃比やリッチ/リーン等を検出する排出ガスセンサ(空燃比センサ、酸素センサ等)を設け、この排出ガスセンサの出力に基づいて実空燃比を目標空燃比に一致させるように燃料噴射量や吸入空気量等をフィードバック制御するようにしている。一般に、排出ガスセンサは、センサ素子の温度が活性温度まで昇温しないと検出精度が悪いため、排出ガスセンサにヒータを内蔵し、内燃機関の始動時からセンサ素子をヒータで加熱して排出ガスセンサの活性化を促進するようにしている。   In an electronically controlled internal combustion engine in recent years, an exhaust gas sensor (an air-fuel ratio sensor, an oxygen sensor, etc.) that detects an air-fuel ratio, rich / lean, etc. of exhaust gas is provided in an exhaust pipe, and an actual operation is performed based on the output of the exhaust gas sensor. The fuel injection amount, the intake air amount, and the like are feedback-controlled so that the air-fuel ratio matches the target air-fuel ratio. Generally, an exhaust gas sensor has poor detection accuracy unless the temperature of the sensor element is raised to the activation temperature. Therefore, a heater is incorporated in the exhaust gas sensor, and the sensor element is heated by the heater from the start of the internal combustion engine to activate the exhaust gas sensor. To promote

ところで、内燃機関の排出ガスには、燃料と空気の燃焼反応によって生成された水蒸気が含まれており、内燃機関の始動直後で排気管温度が低いときには、水蒸気を含んだ排出ガスが排気管内で冷やされるため、排気管内で排出ガス中の水蒸気が凝縮して凝縮水が生じることがある。このため、始動直後に排気管内で生じた凝縮水が排出ガスセンサのセンサ素子に付着する可能性があり、始動直後からセンサ素子をヒータで加熱すると、ヒータで加熱された高温のセンサ素子が凝縮水の付着による局所冷却(熱歪み)によって割れてしまう“素子割れ”が発生することがある。   By the way, the exhaust gas of the internal combustion engine contains water vapor generated by the combustion reaction of fuel and air. When the exhaust pipe temperature is low immediately after the start of the internal combustion engine, the exhaust gas containing water vapor is contained in the exhaust pipe. Since it is cooled, the water vapor in the exhaust gas may condense in the exhaust pipe, resulting in condensed water. For this reason, there is a possibility that the condensed water generated in the exhaust pipe immediately after the start adheres to the sensor element of the exhaust gas sensor. When the sensor element is heated with the heater immediately after the start, the high temperature sensor element heated by the heater is condensed water. “Element cracking” may occur due to local cooling (thermal strain) due to the adhesion of silicon.

この対策として、特許文献1(特公平6−90167号公報)に記載されているように、排気管に温度センサを取り付け、この温度センサで検出した排気管温度が所定温度以下のときには、排気管内に凝縮水が存在すると判断して、ヒータによる排出ガスセンサの加熱を禁止するようにしたものがある。   As a countermeasure, as described in Patent Document 1 (Japanese Patent Publication No. 6-90167), when a temperature sensor is attached to the exhaust pipe and the exhaust pipe temperature detected by this temperature sensor is equal to or lower than a predetermined temperature, In some cases, it is determined that condensed water is present and heating of the exhaust gas sensor by the heater is prohibited.

また、特許文献2(特開2002−48749号公報)に記載されているように、内燃機関の運転状態に基づいて排出ガス熱量(又は排出ガス温度)を算出し、この排出ガス熱量(又は排出ガス温度)と、排出ガスと排気管との間の熱伝達及び排気管と外気との間の熱伝達を数学的にモデル化した熱伝達モデルとに基づいて排気管温度を推定して、この排気管温度が排気管内で水分が結露しない温度まで上昇したときに、ヒータによる排出ガスセンサの加熱を開始するようにしたものがある。
特公平6−90167号公報(第1頁等) 特開2002−48749号公報(第2頁等)
Further, as described in Patent Document 2 (Japanese Patent Laid-Open No. 2002-48749), an exhaust gas calorific value (or exhaust gas temperature) is calculated based on the operating state of the internal combustion engine, and this exhaust gas calorific value (or exhaust gas) is calculated. The temperature of the exhaust pipe and the heat transfer model that mathematically models the heat transfer between the exhaust gas and the exhaust pipe and the heat transfer between the exhaust pipe and the outside air. There is one in which heating of an exhaust gas sensor by a heater is started when the exhaust pipe temperature rises to a temperature at which moisture does not condense in the exhaust pipe.
Japanese Patent Publication No. 6-90167 (first page, etc.) JP 2002-48749 A (2nd page, etc.)

しかし、上記特許文献1,2の技術では、内燃機関の始動後に排気管が暖機されて排気管温度が排気管内で水分が結露しない温度(つまり、水分の付着による排出ガスセンサの素子割れが発生しない温度)に昇温するのを待ってからヒータによる排出ガスセンサの加熱を開始するため、排出ガスセンサの活性化が遅れてしまい、その分、空燃比フィードバック制御の開始が遅れて、排気エミッションが悪化するという問題がある。   However, in the techniques disclosed in Patent Documents 1 and 2, the exhaust pipe is warmed up after the internal combustion engine is started, and the exhaust pipe temperature is a temperature at which moisture does not condense in the exhaust pipe (that is, element cracking of the exhaust gas sensor occurs due to adhesion of moisture). The exhaust gas sensor is heated by the heater after waiting for the temperature to rise, and the activation of the exhaust gas sensor is delayed, and the start of air-fuel ratio feedback control is delayed by that amount, resulting in worse exhaust emissions. There is a problem of doing.

しかも、上記特許文献1の技術では、排気管温度を検出する温度センサを新たに設ける必要があり、その分、コストアップするという欠点もある。また、上記特許文献2の技術では、内燃機関の運転状態に基づいて排出ガス熱量(又は排出ガス温度)を算出すると共に、この排出ガス熱量(又は排出ガス温度)と熱伝達モデルとを用いて排気管温度を算出する必要があるため、排気管温度の演算処理が複雑化して制御装置の演算負荷が増大するという欠点もある。   In addition, the technique disclosed in Patent Document 1 requires a new temperature sensor for detecting the exhaust pipe temperature, and there is a disadvantage that the cost increases accordingly. In the technique of Patent Document 2, the exhaust gas heat quantity (or exhaust gas temperature) is calculated based on the operating state of the internal combustion engine, and the exhaust gas heat quantity (or exhaust gas temperature) and a heat transfer model are used. Since it is necessary to calculate the exhaust pipe temperature, there is a disadvantage that the calculation process of the exhaust pipe temperature becomes complicated and the calculation load of the control device increases.

本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、排気通路内の水分の付着による排出ガスセンサの素子割れを防止しながら、排出ガスセンサを早期に活性化することができると共に、低コスト化及び制御装置の負荷軽減の要求を満たすことができる排出ガスセンサのヒータ制御装置を提供することにある。   The present invention has been made in view of these circumstances. Therefore, the object of the present invention is to activate the exhaust gas sensor early while preventing element cracking of the exhaust gas sensor due to adhesion of moisture in the exhaust passage. Another object of the present invention is to provide a heater control device for an exhaust gas sensor that can satisfy the demands for cost reduction and load reduction of the control device.

上記目的を達成するために、請求項1に係る発明は、内燃機関の排気通路に設けられた排出ガスセンサのセンサ素子を加熱するヒータを制御して該センサ素子の温度を制御する排出ガスセンサのヒータ制御装置において、排気通路内で水分が結露する状態のときに排出ガス温度上昇制御手段によって内燃機関の排出ガスの温度を上昇させ、判定手段によってセンサ素子の抵抗値(インピーダンス)に基づいて排気通路内で水分が結露しない状態(以下「水分不発生状態」という)であるか否かを判定し、水分不発生状態であると判定されたときにヒータ制御手段によってセンサ素子の温度を活性温度まで昇温させるようにヒータを制御するようにしたものである。   In order to achieve the above object, the invention according to claim 1 is directed to a heater for an exhaust gas sensor that controls a heater for heating a sensor element of an exhaust gas sensor provided in an exhaust passage of an internal combustion engine to control the temperature of the sensor element. In the control device, the exhaust gas temperature rise control means raises the temperature of the exhaust gas of the internal combustion engine when moisture is condensed in the exhaust passage, and the judgment means makes the exhaust passage based on the resistance value (impedance) of the sensor element. It is determined whether or not moisture is not condensed (hereinafter referred to as “moisture-free” state), and when it is determined that moisture is not generated, the temperature of the sensor element is increased to the activation temperature by the heater control means. The heater is controlled to raise the temperature.

この構成では、内燃機関の始動直後で排気通路温度が低くて排気通路内で水分が結露する状態のときに、内燃機関の排出ガスの温度を強制的に上昇させることができるため、排出ガスの熱で速やかに排気通路の温度を昇温させて排気通路内の結露水を速やかに蒸発させることができると共に、水分不発生状態になるまでの時間を短縮することができる。そして、水分不発生状態であると判定されたときに、センサ素子の温度を活性温度まで昇温させるようにヒータを制御するため、排気通路内の水分の付着による排出ガスセンサの素子割れを防止しながら、センサ素子の温度を活性温度まで昇温させるヒータ制御を従来よりも早く開始することができ、排出ガスセンサを早期に活性化することができる。   In this configuration, the temperature of the exhaust gas of the internal combustion engine can be forcibly raised immediately after the start of the internal combustion engine when the exhaust passage temperature is low and moisture is condensed in the exhaust passage. The temperature of the exhaust passage can be quickly raised by heat to quickly evaporate the condensed water in the exhaust passage, and the time until a moisture-free state can be shortened. When it is determined that the moisture is not generated, the heater is controlled so as to raise the temperature of the sensor element to the activation temperature, thereby preventing the element of the exhaust gas sensor from being cracked due to adhesion of moisture in the exhaust passage. However, heater control for raising the temperature of the sensor element to the activation temperature can be started earlier than before, and the exhaust gas sensor can be activated earlier.

また、内燃機関の始動後に排気通路内を流れる排出ガスの熱によって排気通路とセンサ素子とが加熱されて排気通路の温度とセンサ素子の温度とが同じように上昇し、このセンサ素子の温度上昇に応じてセンサ素子の抵抗値が変化するため、センサ素子の抵抗値は排気通路の温度を反映した情報となる。従って、本発明のように、センサ素子の抵抗値を監視すれば、排気通路の温度が水分不発生状態となる温度まで昇温されたか否かを精度良く判定することができる。しかも、センサ素子の抵抗値に基づいて水分不発生状態であるか否かを判定すれば、排気通路温度を検出する温度センサを新たに設ける必要がなく、抵コスト化できると共に、排気通路温度を算出するための複雑な演算処理を行う必要もなく、制御装置の演算負荷を軽減することができる。   Further, after the internal combustion engine is started, the exhaust passage and the sensor element are heated by the heat of the exhaust gas flowing in the exhaust passage, and the temperature of the exhaust passage and the temperature of the sensor element rise in the same way. Since the resistance value of the sensor element changes according to the above, the resistance value of the sensor element is information reflecting the temperature of the exhaust passage. Therefore, if the resistance value of the sensor element is monitored as in the present invention, it can be accurately determined whether or not the temperature of the exhaust passage has been raised to a temperature at which moisture does not occur. In addition, if it is determined whether or not moisture is not generated based on the resistance value of the sensor element, there is no need to newly provide a temperature sensor for detecting the exhaust passage temperature, the cost can be reduced, and the exhaust passage temperature can be reduced. It is not necessary to perform complicated calculation processing for calculation, and the calculation load of the control device can be reduced.

この場合、請求項2のように、センサ素子の抵抗値または該抵抗値から変換された温度に基づいて前記水分不発生状態であるか否かを判定するようにしても良い。このようにすれば、センサ素子の抵抗値(つまりセンサ素子の温度)によって、排気通路の温度が水分不発生状態となる温度まで昇温されたか否かを判定することができる。   In this case, as in claim 2, it may be determined whether or not the moisture is not generated based on a resistance value of the sensor element or a temperature converted from the resistance value. In this way, it is possible to determine whether or not the temperature of the exhaust passage has been raised to a temperature at which moisture does not occur based on the resistance value of the sensor element (that is, the temperature of the sensor element).

ところで、本発明は、内燃機関の始動から水分不発生状態になるまでの期間に、水分の付着による素子割れが発生しない温度範囲内でヒータに通電してセンサ素子を予熱するようにしても良いが、センサ素子をヒータで予熱する場合は、センサ素子の温度がヒータによる予熱分だけ排気通路の温度よりも高くなって、排気通路の温度とセンサ素子の抵抗値(センサ素子の温度)との関係がずれてしまうため、センサ素子の抵抗値に基づく水分不発生状態の判定精度が低下する。この場合でも、ヒータによる予熱分に応じてセンサ素子の抵抗値の検出値や判定条件を補正すれば、センサ素子の抵抗値に基づく水分不発生状態の判定精度を確保できるが、ヒータによる予熱分の補正処理が必要になってくる。   In the meantime, in the present invention, the sensor element may be preheated by energizing the heater within a temperature range in which element cracking due to moisture adhesion does not occur during the period from the start of the internal combustion engine to the absence of moisture. However, when the sensor element is preheated by the heater, the temperature of the sensor element becomes higher than the temperature of the exhaust passage by the amount preheated by the heater, and the temperature of the exhaust passage and the resistance value of the sensor element (temperature of the sensor element) Since the relationship is shifted, the determination accuracy of the moisture non-occurrence state based on the resistance value of the sensor element is lowered. Even in this case, if the detection value or determination condition of the resistance value of the sensor element is corrected according to the preheated amount by the heater, the determination accuracy of the moisture non-occurrence state based on the resistance value of the sensor element can be secured. Correction processing becomes necessary.

そこで、請求項3のように、水分不発生状態であると判定されるまでヒータによるセンサ素子の加熱を禁止するようにすると良い。このようにすれば、センサ素子の抵抗値に基づいて水分不発生状態であると判定される前に、ヒータによるセンサ素子の加熱によって排気通路の温度とセンサ素子の抵抗値(センサ素子の温度)との関係がずれることを防止できて、センサ素子の抵抗値に基づいて水分不発生状態であるか否かを精度良く判定することができると共に、ヒータによる予熱分の補正処理が不要で、演算負荷を軽減できる利点がある。しかも、水分不発生状態であると判定されるまでヒータによるセンサ素子の加熱を禁止することで、水分の付着による排出ガスセンサの素子割れをより確実に防止することができる。   Therefore, as described in claim 3, it is preferable to prohibit the heating of the sensor element by the heater until it is determined that the moisture is not generated. In this way, the exhaust passage temperature and the resistance value of the sensor element (the temperature of the sensor element) are determined by heating the sensor element by the heater before it is determined that the moisture is not generated based on the resistance value of the sensor element. Can be accurately determined whether moisture is not generated based on the resistance value of the sensor element, and there is no need for preheating correction processing by the heater. There is an advantage that the load can be reduced. In addition, by prohibiting heating of the sensor element by the heater until it is determined that the moisture is not generated, it is possible to more reliably prevent the element of the exhaust gas sensor from being cracked due to adhesion of moisture.

また、排出ガスの温度を上昇させる具体的な方法としては、請求項4のように、内燃機関の点火時期を遅角して排出ガスの温度を上昇させるようにすると良い。このように、点火時期を遅角すれば、筒内混合気の燃焼タイミングを遅くして排気バルブの開弁タイミングに近付けることができ、排出ガスの温度を効率良く上昇させることができる。   Further, as a specific method for raising the temperature of the exhaust gas, it is preferable to retard the ignition timing of the internal combustion engine and raise the temperature of the exhaust gas as in claim 4. Thus, if the ignition timing is retarded, the combustion timing of the in-cylinder mixture can be delayed to approach the valve opening timing of the exhaust valve, and the temperature of the exhaust gas can be increased efficiently.

以下、本発明の一実施例を図面に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18には、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 for introducing air into each cylinder of the engine 11, and a fuel injection valve 21 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 20 of each cylinder. Yes. An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each ignition plug 22.

一方、エンジン11の排気管23(排気通路)には、排出ガスの空燃比を検出する空燃比センサ24(排出ガスセンサ)が設けられ、この空燃比センサ24には、センサ素子を加熱するヒータ(図示せず)が内蔵されている(又は外付けされている)。この空燃比センサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。   On the other hand, the exhaust pipe 23 (exhaust passage) of the engine 11 is provided with an air-fuel ratio sensor 24 (exhaust gas sensor) for detecting the air-fuel ratio of the exhaust gas. The air-fuel ratio sensor 24 includes a heater (heater for heating the sensor element). (Not shown) is built-in (or externally attached). A catalyst 25 such as a three-way catalyst for purifying exhaust gas is provided on the downstream side of the air-fuel ratio sensor 24.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、エンジン11のクランク軸27が所定クランク角回転する毎にクランク角信号(パルス信号)を出力するクランク角センサ28が取り付けられている。このクランク角センサ28のクランク角信号に基づいてクランク角やエンジン回転速度が検出される。   The cylinder block of the engine 11 includes a coolant temperature sensor 26 that detects the coolant temperature, and a crank angle sensor 28 that outputs a crank angle signal (pulse signal) every time the crankshaft 27 of the engine 11 rotates a predetermined crank angle. It is attached. Based on the crank angle signal of the crank angle sensor 28, the crank angle and the engine speed are detected.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)29に入力される。このECU29は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 29. The ECU 29 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 21 according to the engine operating state. The ignition timing of the spark plug 22 is controlled.

その際、ECU29は、空燃比センサ24の出力に基づいて排出ガスの空燃比を検出し、その検出空燃比が目標空燃比に一致するように燃料噴射量等をフィードバック制御する。また、空燃比センサ24は、センサ素子の温度(以下「素子温度」という)が活性温度(例えば750℃)まで昇温しないと検出精度が悪いため、ECU29は、センサ素子の抵抗値(以下「素子抵抗値」という)に基づいて素子温度を検出し、その素子温度が活性温度になるようにヒータの通電を制御してセンサ素子を加熱する。   At that time, the ECU 29 detects the air-fuel ratio of the exhaust gas based on the output of the air-fuel ratio sensor 24, and feedback-controls the fuel injection amount so that the detected air-fuel ratio matches the target air-fuel ratio. The air-fuel ratio sensor 24 has poor detection accuracy unless the temperature of the sensor element (hereinafter referred to as “element temperature”) rises to the activation temperature (for example, 750 ° C.). The element temperature is detected based on the element resistance value), and the sensor element is heated by controlling the energization of the heater so that the element temperature becomes the activation temperature.

ところで、エンジン始動後に排気管23内を流れる排出ガスの熱によって排気管23と空燃比センサ24のセンサ素子とが加熱されて排気管23の温度とセンサ素子の温度とが同じように上昇し、このセンサ素子の温度上昇に応じてその素子抵抗値が変化するため、素子抵抗値は排気管23の温度を反映した情報となる。従って、素子抵抗値を監視すれば、排気管23の温度が排気管23内で水分が結露しない水分不発生状態となる温度まで昇温されたか否かを精度良く判定することができる。   By the way, the exhaust pipe 23 and the sensor element of the air-fuel ratio sensor 24 are heated by the heat of the exhaust gas flowing through the exhaust pipe 23 after the engine is started, and the temperature of the exhaust pipe 23 and the temperature of the sensor element rise in the same way. Since the element resistance value changes according to the temperature rise of the sensor element, the element resistance value is information reflecting the temperature of the exhaust pipe 23. Therefore, if the element resistance value is monitored, it can be accurately determined whether or not the temperature of the exhaust pipe 23 has been raised to a temperature at which no moisture is condensed in the exhaust pipe 23.

この点に着目して、ECU29は、後述する図2のヒータ制御プログラムを実行することで、空燃比センサ24の素子抵抗値Rが所定値R0 以下であるか否かによって、排気管23の温度が排気管23内で水分が結露しない水分不発生状態となる温度まで昇温されたか否かを判定する。一般に、空燃比センサ24は、図3に示すように、素子温度が高くなるほど素子抵抗値が低くなるという特性があるため、素子抵抗値Rが所定値R0 以下であるか否か(つまり素子温度が所定温度以上であるか否か)によって、排気管23の温度が水分不発生状態となる温度まで昇温されたか否かを判定することができる。   Focusing on this point, the ECU 29 executes a heater control program shown in FIG. 2 to be described later, so that the temperature of the exhaust pipe 23 depends on whether the element resistance value R of the air-fuel ratio sensor 24 is equal to or less than a predetermined value R0. It is determined whether or not the temperature has been raised to a temperature at which no moisture is condensed in the exhaust pipe 23. Generally, as shown in FIG. 3, the air-fuel ratio sensor 24 has a characteristic that the element resistance value decreases as the element temperature increases. Therefore, whether or not the element resistance value R is equal to or less than a predetermined value R0 (that is, the element temperature). It is possible to determine whether or not the temperature of the exhaust pipe 23 has been raised to a temperature at which no moisture is generated.

そして、図4のタイムチャートに示すように、エンジン始動直後で空燃比センサ24の素子抵抗値Rが所定値R0 よりも大きい期間、つまり、排気管23の温度が水分不発生状態となる温度まで昇温されていない期間(排気管23内で水分が結露する期間)は、ヒータの通電を禁止する。これにより、ヒータによるセンサ素子の加熱を禁止して、排気管23内の水分の付着による空燃比センサ24の素子割れを防止する。更に、エンジン11の点火時期を遅角して筒内混合気の燃焼タイミングを遅くして排気バルブの開弁タイミングに近付けることで排出ガスの温度を強制的に上昇させる。これにより、排出ガスの熱で速やかに排気管23の温度を昇温させて排気管23内の結露水を蒸発させると共に、排気管23内で水分が結露しない水分不発生状態になるまでの時間を短縮する。   Then, as shown in the time chart of FIG. 4, immediately after the engine is started, until the element resistance value R of the air-fuel ratio sensor 24 is greater than a predetermined value R0, that is, until the temperature of the exhaust pipe 23 is in a moisture-free state. During a period when the temperature is not raised (a period during which moisture is condensed in the exhaust pipe 23), energization of the heater is prohibited. Accordingly, heating of the sensor element by the heater is prohibited, and element cracking of the air-fuel ratio sensor 24 due to adhesion of moisture in the exhaust pipe 23 is prevented. Further, the temperature of the exhaust gas is forcibly raised by retarding the ignition timing of the engine 11 and delaying the combustion timing of the in-cylinder mixture so as to approach the valve opening timing of the exhaust valve. As a result, the temperature of the exhaust pipe 23 is quickly raised by the heat of the exhaust gas to evaporate the condensed water in the exhaust pipe 23, and the time until a moisture-free state in which no moisture is condensed in the exhaust pipe 23 is reached. To shorten.

その後、空燃比センサ24の素子抵抗値Rが所定値R0 以下になった時点t1 、つまり、排気管23の温度が水分不発生状態となる温度まで昇温した時点で、ヒータへの通電を開始して、素子温度を活性温度まで速やかに昇温させるようにヒータの通電を制御すると共に、点火時期の遅角制御を終了して、点火時期を通常値に戻す。   Thereafter, energization of the heater is started when the element resistance value R of the air-fuel ratio sensor 24 becomes equal to or less than the predetermined value R0, that is, when the temperature of the exhaust pipe 23 is raised to a temperature at which no moisture is generated. Then, the energization of the heater is controlled so that the element temperature is quickly raised to the activation temperature, the ignition timing retarding control is terminated, and the ignition timing is returned to the normal value.

以下、ECU29が実行する図2のヒータ制御プログラムの処理内容を説明する。図2に示すヒータ制御プログラムは、ECU29の電源オン中に所定周期で実行され、特許請求の範囲でいうヒータ制御手段としての役割を果たす。   Hereinafter, the processing content of the heater control program of FIG. 2 executed by the ECU 29 will be described. The heater control program shown in FIG. 2 is executed at a predetermined cycle while the ECU 29 is turned on, and serves as a heater control means in the claims.

本プログラムが起動されると、まず、ステップ101で、空燃比センサ24の素子抵抗値Rが所定値R0 以下であるか否かによって、排気管23の温度が水分不発生状態となる温度まで昇温されたか否かを判定する。ここで、所定値R0 は、水分不発生状態となるのに必要な排気管23の最低温度又はそれよりも少し高い温度に相当する素子抵抗値に設定されている。このステップ101の処理が特許請求の範囲でいう判定手段としての役割を果たす。   When this program is started, first, in step 101, the temperature of the exhaust pipe 23 rises to a temperature at which no moisture is generated depending on whether the element resistance value R of the air-fuel ratio sensor 24 is equal to or less than a predetermined value R0. Determine if it has been warmed. Here, the predetermined value R0 is set to an element resistance value corresponding to the minimum temperature of the exhaust pipe 23 necessary for a moisture-free state or a temperature slightly higher than that. The process of step 101 serves as a determination means in the claims.

このステップ101で、空燃比センサ24の素子抵抗値が所定値R0 よりも大きい、つまり、水分不発生状態ではない(排気管23内で水分が結露する状態である)と判定された場合には、ステップ102に進み、ヒータの通電を禁止してヒータによるセンサ素子の加熱を禁止することで、排気管23内の水分の付着による空燃比センサ24の素子割れを防止する。このステップ102の処理が特許請求の範囲でいうヒータ禁止手段としての役割を果たす。   If it is determined in step 101 that the element resistance value of the air-fuel ratio sensor 24 is greater than the predetermined value R0, that is, it is not in a moisture-free state (moisture is condensed in the exhaust pipe 23). Then, the process proceeds to Step 102, where energization of the heater is prohibited and heating of the sensor element by the heater is prohibited, thereby preventing element cracking of the air-fuel ratio sensor 24 due to adhesion of moisture in the exhaust pipe 23. The process of step 102 serves as a heater prohibiting means in the claims.

この後、ステップ103に進み、エンジン11の点火時期を遅角して排出ガスの温度を強制的に上昇させる。これにより、排出ガスの熱で速やかに排気管23の温度を昇温させて排気管23内の結露水を蒸発させると共に、排気管23内で水分が結露しない水分不発生状態になるまでの時間を短縮する。このステップ103の処理が特許請求の範囲でいう排出ガス温度上昇制御手段としての役割を果たす。   Thereafter, the routine proceeds to step 103 where the ignition timing of the engine 11 is retarded and the temperature of the exhaust gas is forcibly increased. As a result, the temperature of the exhaust pipe 23 is quickly raised by the heat of the exhaust gas to evaporate the condensed water in the exhaust pipe 23, and the time until a moisture-free state in which no moisture is condensed in the exhaust pipe 23 is reached. To shorten. The processing in step 103 serves as exhaust gas temperature rise control means in the claims.

その後、上記ステップ101で、空燃比センサ24の素子抵抗値Rが所定値R0 以下である、つまり、水分不発生状態であると判定されたときに、ステップ104に進み、ヒータの通電を許可して、素子温度を活性温度まで速やかに昇温させるようにヒータの通電を制御する。この後、ステップ105に進み、点火時期の遅角制御を終了して、点火時期を通常値に戻す。   Thereafter, in step 101, when it is determined that the element resistance value R of the air-fuel ratio sensor 24 is equal to or less than the predetermined value R0, that is, in a moisture-free state, the routine proceeds to step 104, where energization of the heater is permitted. Thus, energization of the heater is controlled so that the element temperature is quickly raised to the activation temperature. Thereafter, the routine proceeds to step 105, where the ignition timing retarding control is terminated, and the ignition timing is returned to the normal value.

以上説明した本実施例では、エンジン始動直後で排気管23の温度が低くて排気管23内で水分が結露する状態のときに、エンジン11の排出ガスの温度を点火時期の遅角制御により強制的に上昇させるようにしたので、排出ガスの熱で速やかに排気管23の温度を昇温させて排気管23内の結露水を速やかに蒸発させることができると共に、排気管23内で水分が結露しない水分不発生状態になるまでの時間を短縮することができる。そして、水分不発生状態であると判定されたときに、ヒータへの通電を開始して、素子温度を活性温度まで速やかに昇温させるようにヒータを制御するため、排気管23内の水分の付着による空燃比センサ24の素子割れを防止しながら、素子温度を活性温度まで昇温させるヒータ制御を従来よりも早く開始することができ、空燃比センサを早期に活性化して早期に空燃比フィードバック制御を開始することができ、排気エミッションを向上させることができる。   In the present embodiment described above, when the temperature of the exhaust pipe 23 is low immediately after the engine is started and moisture is condensed in the exhaust pipe 23, the exhaust gas temperature of the engine 11 is forcibly controlled by retarding the ignition timing. Therefore, the temperature of the exhaust pipe 23 can be quickly raised by the heat of the exhaust gas to quickly evaporate the condensed water in the exhaust pipe 23, and moisture in the exhaust pipe 23 can be evaporated. It is possible to shorten the time until a moisture-free state where no condensation occurs. Then, when it is determined that the moisture is not generated, energization of the heater is started, and the heater is controlled so as to quickly raise the element temperature to the activation temperature. Heater control that raises the element temperature to the activation temperature can be started earlier than before while preventing the element cracking of the air-fuel ratio sensor 24 due to adhesion, and the air-fuel ratio sensor is activated earlier so that the air-fuel ratio feedback is achieved earlier. Control can be started and exhaust emission can be improved.

しかも、空燃比センサ24の素子抵抗値に基づいて水分不発生状態であるか否かを判定するようにしたので、排気管温度を検出する温度センサを新たに設ける必要がなく、抵コスト化できると共に、排気管温度を算出するための複雑な演算処理を行う必要もなく、ECU29の演算負荷を軽減することができるという利点もある。   In addition, since it is determined whether or not moisture is not generated based on the element resistance value of the air-fuel ratio sensor 24, it is not necessary to newly provide a temperature sensor for detecting the exhaust pipe temperature, and the cost can be reduced. In addition, there is an advantage that it is not necessary to perform a complicated calculation process for calculating the exhaust pipe temperature, and the calculation load on the ECU 29 can be reduced.

ところで、本発明は、エンジン始動から水分不発生状態になるまでの期間に、水分の付着による素子割れが発生しない温度範囲内でヒータに通電してセンサ素子を予熱するようにしても良いが、センサ素子をヒータで予熱する場合は、センサ素子の温度がヒータによる予熱分だけ排気通路の温度よりも高くなって、排気管23の温度と空燃比センサ24の素子抵抗値(センサ素子の温度)との関係がずれてしまうため、素子抵抗値に基づく水分不発生状態の判定精度が低下する。この場合でも、素子抵抗値の検出値をヒータによる予熱分に応じて素子抵抗値の検出値R又は判定値R0 を補正すれば、素子抵抗値に基づく水分不発生状態の判定精度を確保できるが、ヒータによる予熱分の補正処理が必要になってくる。   By the way, in the present invention, the sensor element may be preheated by energizing the heater within a temperature range in which element cracking due to moisture adhesion does not occur during the period from the start of the engine to the absence of moisture, When the sensor element is preheated by the heater, the temperature of the sensor element becomes higher than the temperature of the exhaust passage by the amount preheated by the heater, and the temperature of the exhaust pipe 23 and the element resistance value of the air-fuel ratio sensor 24 (temperature of the sensor element). Therefore, the determination accuracy of the moisture non-occurrence state based on the element resistance value is lowered. Even in this case, if the detection value R or the determination value R0 of the element resistance value is corrected according to the preheated amount by the heater, the determination accuracy of the moisture non-occurrence state based on the element resistance value can be secured. Therefore, it is necessary to correct the preheating by the heater.

この点を考慮して、本実施例では、素子抵抗値に基づいて水分不発生状態であると判定されるまでヒータによるセンサ素子の加熱を禁止するようにしたので、素子抵抗値に基づいて水分不発生状態であると判定される前に、ヒータによるセンサ素子の加熱によって排気管23の温度と素子抵抗値(素子温度)との関係がずれることを防止できて、素子抵抗値に基づいて水分不発生状態であるか否かを精度良く判定することができると共に、ヒータによる予熱分の補正処理が不要で、演算負荷を軽減できる利点がある。しかも、水分不発生状態であると判定されるまでヒータによるセンサ素子の加熱を禁止することで、水分の付着による空燃比センサ23の素子割れをより確実に防止することができる。   In consideration of this point, in this embodiment, since the heater is prohibited from heating the sensor element until it is determined that the moisture is not generated based on the element resistance value, the moisture content is determined based on the element resistance value. Before it is determined that the state does not occur, it is possible to prevent the relationship between the temperature of the exhaust pipe 23 and the element resistance value (element temperature) due to heating of the sensor element by the heater, and moisture based on the element resistance value. It is possible to accurately determine whether or not it is a non-occurring state, and there is an advantage that a calculation process can be reduced because a preheating correction process by a heater is unnecessary. In addition, by prohibiting heating of the sensor element by the heater until it is determined that the moisture is not generated, it is possible to more reliably prevent element cracking of the air-fuel ratio sensor 23 due to moisture adhesion.

また、上記実施例では、エンジン始動時に、空燃比センサ24の素子抵抗値に基づいて水分不発生状態ではない(排気管23内で水分が結露する状態である)と判定されたときに排出ガスの温度を上昇させるようにしたが、冷却水温、油温、吸気温、外気温等のうちの少なくとも1つの温度情報に基づいて水分不発生状態ではない(排気管23内で水分が結露する状態である)と判定されたときに排出ガスの温度を上昇させるようにしても良い。   Further, in the above embodiment, when the engine is started, the exhaust gas is determined when it is determined that the moisture is not generated (the moisture is condensed in the exhaust pipe 23) based on the element resistance value of the air-fuel ratio sensor 24. However, it is not in a water-free state based on temperature information of at least one of the cooling water temperature, the oil temperature, the intake air temperature, the outside air temperature, etc. (a state in which moisture is condensed in the exhaust pipe 23) It is also possible to raise the temperature of the exhaust gas when it is determined.

また、上記実施例では、エンジン始動から水分不発生状態になるまでの期間に、点火時期を遅角制御して排出ガスの温度を上昇させるようにしたが、燃料噴射量、空燃比、排気管に導入される二次空気導入量等を制御して排気管を流れる排出ガスの温度を上昇させるようにしても良い。   In the above embodiment, the ignition timing is retarded to raise the temperature of the exhaust gas during the period from the start of the engine to the absence of moisture, but the fuel injection amount, air-fuel ratio, exhaust pipe The temperature of exhaust gas flowing through the exhaust pipe may be raised by controlling the amount of secondary air introduced into the exhaust pipe.

その他、本発明の適用範囲は、排出ガスの空燃比を検出する空燃比センサのヒータ制御に限定されず、例えば、排出ガスのリッチ/リーンを検出する酸素センサ等、他の排出ガスセンサのヒータ制御に本発明を適用しても良い。   In addition, the application range of the present invention is not limited to the heater control of the air-fuel ratio sensor that detects the air-fuel ratio of the exhaust gas. For example, the heater control of other exhaust gas sensors such as an oxygen sensor that detects rich / lean of the exhaust gas The present invention may be applied to.

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. ヒータ制御プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a heater control program. 空燃比センサの素子温度と素子抵抗値との関係を示す特性図である。It is a characteristic view showing the relationship between the element temperature of the air-fuel ratio sensor and the element resistance value. ヒータ制御の実行例を示すタイムチャートである。It is a time chart which shows the example of execution of heater control.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、23…排気管(排気通路)、24…空燃比センサ(排出ガスセンサ)、29…ECU(排出ガス温度上昇制御手段,判定手段,ヒータ制御手段,ヒータ禁止手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 21 ... Fuel injection valve, 22 ... Spark plug, 23 ... Exhaust pipe (exhaust passage), 24 ... Air-fuel ratio sensor (exhaust gas sensor), 29 ... ECU (exhaust gas temperature rise control means, determination means, heater control means, heater prohibition means)

Claims (4)

内燃機関の排気通路に設けられた排出ガスセンサのセンサ素子を加熱するヒータを制御して該センサ素子の温度を制御する排出ガスセンサのヒータ制御装置において、
前記排気通路内で水分が結露する状態のときに内燃機関の排出ガスの温度を上昇させる排出ガス温度上昇制御手段と、
前記センサ素子の抵抗値に基づいて前記排気通路内で水分が結露しない状態(以下「水分不発生状態」という)であるか否かを判定する判定手段と、
前記判定手段により前記水分不発生状態であると判定されたときに前記センサ素子の温度を活性温度まで昇温させるように前記ヒータを制御するヒータ制御手段と
を備えていることを特徴とする排出ガスセンサのヒータ制御装置。
In a heater control device for an exhaust gas sensor that controls a heater for heating a sensor element of an exhaust gas sensor provided in an exhaust passage of an internal combustion engine to control the temperature of the sensor element.
Exhaust gas temperature increase control means for increasing the temperature of the exhaust gas of the internal combustion engine when moisture is condensed in the exhaust passage;
Determination means for determining whether or not moisture is not condensed in the exhaust passage based on a resistance value of the sensor element (hereinafter referred to as “moisture-free state”);
And a heater control means for controlling the heater so as to raise the temperature of the sensor element to an activation temperature when it is determined by the determination means that the moisture is not generated. Gas sensor heater control device.
前記判定手段は、前記センサ素子の抵抗値または該抵抗値から変換された温度に基づいて前記水分不発生状態であるか否かを判定することを特徴とする請求項1に記載の排出ガスセンサのヒータ制御装置。   2. The exhaust gas sensor according to claim 1, wherein the determination unit determines whether or not the moisture is not generated based on a resistance value of the sensor element or a temperature converted from the resistance value. Heater control device. 前記判定手段により前記水分不発生状態であると判定されるまで前記ヒータによる前記センサ素子の加熱を禁止するヒータ禁止手段を備えていることを特徴とする請求項1又は2に記載の排出ガスセンサのヒータ制御装置。   3. The exhaust gas sensor according to claim 1, further comprising a heater prohibiting unit that prohibits heating of the sensor element by the heater until the determination unit determines that the moisture is not generated. Heater control device. 前記排出ガス温度上昇制御手段は、内燃機関の点火時期を遅角して排出ガスの温度を上昇させることを特徴とする請求項1乃至3のいずれかに記載の排出ガスセンサのヒータ制御装置。   The heater control apparatus for an exhaust gas sensor according to any one of claims 1 to 3, wherein the exhaust gas temperature increase control means retards the ignition timing of the internal combustion engine to increase the temperature of the exhaust gas.
JP2005302436A 2005-10-18 2005-10-18 Exhaust gas sensor heater control device Expired - Fee Related JP4621984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005302436A JP4621984B2 (en) 2005-10-18 2005-10-18 Exhaust gas sensor heater control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302436A JP4621984B2 (en) 2005-10-18 2005-10-18 Exhaust gas sensor heater control device

Publications (2)

Publication Number Publication Date
JP2007113920A true JP2007113920A (en) 2007-05-10
JP4621984B2 JP4621984B2 (en) 2011-02-02

Family

ID=38096262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302436A Expired - Fee Related JP4621984B2 (en) 2005-10-18 2005-10-18 Exhaust gas sensor heater control device

Country Status (1)

Country Link
JP (1) JP4621984B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142955A1 (en) * 2007-05-18 2008-11-27 Toyota Jidosha Kabushiki Kaisha Heater control device for exhaust gas sensor
JP2009168759A (en) * 2008-01-18 2009-07-30 Denso Corp Heater control device of exhaust gas sensor
US8362405B2 (en) 2008-01-18 2013-01-29 Denso Corporation Heater controller of exhaust gas sensor
JP2014100928A (en) * 2012-11-16 2014-06-05 Toyota Motor Corp Hybrid car
JPWO2016189919A1 (en) * 2015-05-26 2017-09-28 株式会社Ihi Heat treatment equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183431A (en) * 1997-12-25 1999-07-09 Denso Corp Gas component concentration measuring device
JP2000292407A (en) * 1999-04-01 2000-10-20 Toyota Motor Corp Heater controller of air/fuel ratio sensor
JP2001041923A (en) * 1999-08-03 2001-02-16 Toyota Motor Corp Oxygen concentration detector
JP2002048749A (en) * 2000-08-03 2002-02-15 Toyota Motor Corp Power control unit for raising sensor temperature
JP2004360563A (en) * 2003-06-04 2004-12-24 Toyota Motor Corp Exhaust gas detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183431A (en) * 1997-12-25 1999-07-09 Denso Corp Gas component concentration measuring device
JP2000292407A (en) * 1999-04-01 2000-10-20 Toyota Motor Corp Heater controller of air/fuel ratio sensor
JP2001041923A (en) * 1999-08-03 2001-02-16 Toyota Motor Corp Oxygen concentration detector
JP2002048749A (en) * 2000-08-03 2002-02-15 Toyota Motor Corp Power control unit for raising sensor temperature
JP2004360563A (en) * 2003-06-04 2004-12-24 Toyota Motor Corp Exhaust gas detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142955A1 (en) * 2007-05-18 2008-11-27 Toyota Jidosha Kabushiki Kaisha Heater control device for exhaust gas sensor
JP2009168759A (en) * 2008-01-18 2009-07-30 Denso Corp Heater control device of exhaust gas sensor
US8362405B2 (en) 2008-01-18 2013-01-29 Denso Corporation Heater controller of exhaust gas sensor
JP2014100928A (en) * 2012-11-16 2014-06-05 Toyota Motor Corp Hybrid car
JPWO2016189919A1 (en) * 2015-05-26 2017-09-28 株式会社Ihi Heat treatment equipment

Also Published As

Publication number Publication date
JP4621984B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US7805928B2 (en) System for controlling exhaust gas sensor having heater
JP4395099B2 (en) Control device for an internal combustion engine with a supercharger
US8362405B2 (en) Heater controller of exhaust gas sensor
JP4023487B2 (en) Start control device and start control method for internal combustion engine
JP2009299631A (en) Control device for internal combustion engine
JP4621984B2 (en) Exhaust gas sensor heater control device
JP2015212668A (en) Exhaust gas sensor heater control device
JP4706928B2 (en) Exhaust gas sensor heater control device
JP4893499B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP4802577B2 (en) Exhaust sensor heater control device
US8000883B2 (en) Control apparatus and method for air-fuel ratio sensor
JP4475207B2 (en) Control device for internal combustion engine
JP4993314B2 (en) Exhaust gas sensor heater control device
JP2008138579A (en) Variable valve timing control device for internal combustion engine
JP5041341B2 (en) Exhaust gas sensor heater control device
JP2008267294A (en) Control system of internal combustion engine
JP5373827B2 (en) In-vehicle engine control system
JP2009168769A (en) Heater control device of exhaust gas sensor
JP4573047B2 (en) Control device for internal combustion engine
JP4872793B2 (en) Control device for internal combustion engine
JP2007002685A (en) Ignition timing control device for internal combustion engine
JP5375800B2 (en) Heating control device for internal combustion engine
JP4899772B2 (en) Control device for internal combustion engine
JP2009079546A (en) Air-fuel ratio control device for internal combustion engine
JP2009002174A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101017

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees