JP2007109989A - Cmp method - Google Patents

Cmp method Download PDF

Info

Publication number
JP2007109989A
JP2007109989A JP2005301181A JP2005301181A JP2007109989A JP 2007109989 A JP2007109989 A JP 2007109989A JP 2005301181 A JP2005301181 A JP 2005301181A JP 2005301181 A JP2005301181 A JP 2005301181A JP 2007109989 A JP2007109989 A JP 2007109989A
Authority
JP
Japan
Prior art keywords
polishing
cmp
polishing rate
condition
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005301181A
Other languages
Japanese (ja)
Inventor
Takenori Narita
武憲 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CONSORTIUM ADVANCED SEMICONDUCTOR MATERIALS & RELATED TECHNOLOGIES
CONSORTIUM FOR ADVANCED SEMICONDUCTOR MATERIALS &RELATED TECHNOLOGIES
Consortium for Advanced Semiconductor Materials and Related Technologies
Original Assignee
CONSORTIUM ADVANCED SEMICONDUCTOR MATERIALS & RELATED TECHNOLOGIES
CONSORTIUM FOR ADVANCED SEMICONDUCTOR MATERIALS &RELATED TECHNOLOGIES
Consortium for Advanced Semiconductor Materials and Related Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CONSORTIUM ADVANCED SEMICONDUCTOR MATERIALS & RELATED TECHNOLOGIES, CONSORTIUM FOR ADVANCED SEMICONDUCTOR MATERIALS &RELATED TECHNOLOGIES, Consortium for Advanced Semiconductor Materials and Related Technologies filed Critical CONSORTIUM ADVANCED SEMICONDUCTOR MATERIALS & RELATED TECHNOLOGIES
Priority to JP2005301181A priority Critical patent/JP2007109989A/en
Publication of JP2007109989A publication Critical patent/JP2007109989A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost method for both reducing dishing after a CMP of a Cu wiring film and removing residual Cu. <P>SOLUTION: This CMP method comprises a first step of conducting the CMP under the condition of a ratio (V1/V2) between a polishing speed V1 in a concavo-convex region, and a polishing speed V2 in a flat region, in a CMP initial stage with large surface irregularity ranging from 0.8 to 1.1; and a second step after the first step for conducting the CMP under the condition of the ratio (V1/V2) between the polishing speed V1 in the concavo-convex region and the polishing speed V2, in the flat region ranging not less than 1.2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はCMP方法に関する。特に、半導体装置の配線膜構造(ダマシン配線膜構造)の形成に用いられるCMP方法に関する。更には、研磨領域部において優れた平坦性とCu残り除去性とを共に満たしたCuダマシン配線構造を有する半導体装置を低廉なコストで提供できるCMP方法に関する。   The present invention relates to a CMP method. In particular, the present invention relates to a CMP method used for forming a wiring film structure (damascene wiring film structure) of a semiconductor device. Furthermore, the present invention relates to a CMP method capable of providing a semiconductor device having a Cu damascene wiring structure satisfying both excellent flatness and Cu remaining removal performance in a polished region at a low cost.

LSIの多層配線形成に用いられるCu及びバリア膜のCMP(Chemical Mechanical Polishing)プロセスでは、0.1μm以下の微細配線から100μm程度のグローバル配線までの広い範囲に渡って、Cu配線膜の膜厚を一定に制御することが求められている。すなわち、CMPプロセスで生じるCu及びバリア膜のディッシングやエロージョンは、Cu配線膜厚の重要な変動要因である為、これらの量を小さくするCMP技術が必要となる。   In the CMP (Chemical Mechanical Polishing) process for Cu and barrier film used in the formation of LSI multilayer wiring, the film thickness of the Cu wiring film is increased over a wide range from fine wiring of 0.1 μm or less to global wiring of about 100 μm. There is a demand for constant control. That is, the dishing and erosion of Cu and the barrier film generated in the CMP process are important fluctuation factors of the Cu wiring film thickness, and therefore a CMP technique for reducing these amounts is required.

さて、Cu配線膜形成プロセスでは、配線溝を形成した基板にCu拡散バリア膜を設け、次いでCuシード膜を成膜し、続いてメッキ法によりCu膜を配線溝深さの1.5〜3倍程度の厚さ形成している。そして、この後、CMP技術を用いてCu配線膜が形成される。このCMP工程は、始めに、Cu用のスラリーを用いて配線となる部分以外のCu膜を研磨して除去し、下層のバリア膜が露出した時点で研磨を一旦停止し、次いでCu用とは異なるスラリーを用いてバリア膜を研磨して除去する方法が一般的である。このようなCMP技術では、Cu膜を除去し、バリア膜が露出した段階で、ディッシング、エロージョンによる平坦性の劣化が小さく、かつ、配線となる部分以外の余分なCuが完全に除去されていることが重要である。   In the Cu wiring film forming process, a Cu diffusion barrier film is provided on the substrate on which the wiring groove is formed, and then a Cu seed film is formed. Subsequently, the Cu film is formed by a plating method to a wiring groove depth of 1.5-3. It is about twice as thick. Thereafter, a Cu wiring film is formed using a CMP technique. In this CMP step, the Cu film other than the portion that becomes the wiring is first polished and removed using a slurry for Cu, and once the lower barrier film is exposed, the polishing is temporarily stopped. A method of polishing and removing the barrier film using a different slurry is common. In such a CMP technique, when the Cu film is removed and the barrier film is exposed, the deterioration of flatness due to dishing and erosion is small, and excess Cu other than the portion that becomes the wiring is completely removed. This is very important.

尚、Cu研磨後の状態で、Cu膜を部分的に残し、バリア研磨の際に残ったCu膜を同時に研磨する方法が提案されているものの、この場合、バリア膜とCu膜の研磨速度を1:1にする必要があり、バリア研磨時のCu研磨量が大きくなり、平坦性の悪化、配線抵抗の増大を招いている。   Although a method has been proposed in which the Cu film is partially left in the state after Cu polishing and the Cu film remaining at the time of barrier polishing is simultaneously polished, in this case, the polishing rate of the barrier film and the Cu film is increased. It is necessary to set the ratio to 1: 1, which increases the amount of Cu polishing during barrier polishing, resulting in deterioration in flatness and increase in wiring resistance.

ところで、平坦性とCu残りの除去性とは、通常、トレードオフの関係に有る。
この二つの特性を両立させることは、LSIの微細化が進むに伴って、益々、困難になって来ている。そして、これまで、デバイスメーカ、装置メーカ、材料メーカ等が、各々、検討を行って来ているものの、未だ、二つの特性を両立させた技術は提案されていない。
Incidentally, the flatness and the removability of the remaining Cu are usually in a trade-off relationship.
It is becoming more and more difficult to make these two characteristics compatible as LSIs become finer. And so far, although device manufacturers, equipment manufacturers, material manufacturers, etc. have studied each, a technology that achieves both characteristics has not been proposed yet.

例えば、特開2000−301454「化学的機械研磨プロセス及びその構成要素」では、バリア膜の研磨において、バリア膜の下層の絶縁膜を同時に研磨することで、ディッシングを低減する方法が提案されている。
しかしながら、Cu研磨が終了した段階でのディッシング量に合わせて配線溝の深さを深くする必要があり、ディッシング量が大きい場合には、成膜、エッチング工程への負荷が増大し、プロセスコストが増大する。又、通常、ディッシング量は溝幅によって異なる為、広い幅の配線部分のディッシングが小さくなるまで絶縁膜を研磨すると、幅の狭い配線部分では、配線部分が絶縁膜に対して凸になり、平坦性が損なわれる。この為、異なる配線幅で良好な平坦性を得ることが難しい。
For example, Japanese Patent Laid-Open No. 2000-301454 “Chemical Mechanical Polishing Process and its Components” proposes a method for reducing dishing by polishing an insulating film under the barrier film simultaneously in polishing the barrier film. .
However, it is necessary to increase the depth of the wiring groove in accordance with the dishing amount at the stage when Cu polishing is completed. If the dishing amount is large, the load on the film forming and etching processes increases, and the process cost is increased. Increase. Also, since the dishing amount usually varies depending on the groove width, if the insulating film is polished until the dishing of the wide wiring portion becomes small, the wiring portion becomes convex with respect to the insulating film in the narrow wiring portion and becomes flat. Sexuality is impaired. For this reason, it is difficult to obtain good flatness with different wiring widths.

又、US Patent 6,602,724 B2「Chemical
Mechanical Polishing of a Metal Layer With Polishing Rate Monitoring」では、Cu膜を一定膜厚まで研磨した後、研磨速度を下げて研磨する方法が提案されている。
しかしながら、この技術では、ディッシング量の大幅な改善が見込めず、微細化したLSIで要求されるディッシング量を達成するのは困難である。
Also, US Patent 6,602,724 B2 “Chemical
“Mechanical Polishing of a Metal Layer With Polishing Rate Monitoring” proposes a method in which a Cu film is polished to a certain thickness and then polished at a lower polishing rate.
However, with this technique, a significant improvement in dishing amount cannot be expected, and it is difficult to achieve the dishing amount required for miniaturized LSIs.

又、特開2001−85378「導体装置およびその製造方法」では、ウエハーの表面状態に合わせて、砥粒の分散性が異なる何種類かのスラリーを用いてCu膜の研磨を行う技術が提案されている。
この技術によれば、研磨初期の表面の凹凸が大きい段階では、砥粒の分散性が小さいスラリーを用いて物理的な作用で凸部を除去ることで平坦化を行い、続いて分散性が大きいスラリーを用いて物理的な作用が小さい状態で研磨することで良好な表面状態が得られると謳われている。
しかしながら、本発明者によって検討が行われた結果、表面の凹凸が大きい段階で機械的作用が強い状態で研磨を行うと、表面の凹凸の深さや密度による研磨速度差が大きくなり、その結果バリア膜が露出した時に部分的に厚くCuが残り、研磨後にCu残りが発生し易いことが判って来た。又、機械的な作用が弱い状態で研磨中に下地のバリア膜が露出すると、Cu配線膜のディッシングが増大することも判って来た。従って、この技術では、良好な平坦性を得ることが難しい。
特開2000−301454 US Patent 6,602,724 B2 特開2001−85378
Also, Japanese Patent Laid-Open No. 2001-85378 “Conductor device and manufacturing method thereof” proposes a technique for polishing a Cu film using several types of slurry having different dispersibility of abrasive grains in accordance with the surface state of a wafer. ing.
According to this technique, in the stage where the unevenness of the surface at the initial stage of polishing is large, the surface is flattened by removing the convex portion by a physical action using a slurry having low dispersibility of the abrasive grains, and then the dispersibility is It is said that a good surface state can be obtained by polishing with a large slurry using a small physical action.
However, as a result of investigations by the present inventors, when polishing is performed in a state where the mechanical action is strong at the stage where the surface unevenness is large, the difference in the polishing rate due to the depth and density of the surface unevenness increases, resulting in barrier It has been found that Cu remains partially thick when the film is exposed, and Cu residue is likely to occur after polishing. It has also been found that if the underlying barrier film is exposed during polishing with a weak mechanical action, dishing of the Cu wiring film increases. Therefore, it is difficult to obtain good flatness with this technique.
JP 2000-301454 A US Patent 6,602,724 B2 JP 2001-85378 A

上述の如く、LSIの微細化に伴い、Cu配線膜のCMP後のディッシングを低減することが要求されているが、ディッシングを低減するに伴ってCu残除去性とのトレードオフが顕著になり、目標とするディッシング量とCu残除去性とを両立させることが大変であった。   As described above, with the miniaturization of LSI, it is required to reduce the dishing after CMP of the Cu wiring film, but as the dishing is reduced, the trade-off with Cu residual removal becomes remarkable, It was difficult to achieve both the target dishing amount and the Cu residual removal ability.

従って、本発明が解決しようとする課題は上記の問題点を解決することである。
すなわち、Cu配線膜のCMP後のディッシングの低減とCu残除去との両立を低コストで実現する技術を提供することである。
Therefore, the problem to be solved by the present invention is to solve the above problems.
That is, it is to provide a technique that realizes both the reduction of dishing after CMP of the Cu wiring film and the removal of residual Cu at a low cost.

さて、一般に、CuのCMPは、Cu表面に形成された反応層を砥粒やパッドとの摩擦によって除去することで進行する。尚、本明細書において、機械的作用とは、このような砥粒やパッドとの摩擦による反応層の除去作用のことを意味する。ところで、Cu表面に形成される反応層の硬さはスラリーによって異なる。反応層が強固な場合は、反応層の除去に強い機械的作用が必要になり、この場合は機械的作用が強いほど反応層の除去速度が速くなり、研磨速度が上昇する。このような条件で表面に凹凸が在るウエハーを研磨すると、凹凸パターンが無い領域の研磨速度に対して、凹凸パターンが在る領域における凸部の研磨速度は速い。逆に、凹凸パターンが在る領域における凹部の研磨速度は、凹凸パターンが無い領域よりも遅くなるが、反応層が強固である場合には、凹凸パターンが在る領域における凸部の研磨速度が速くなる効果の方が勝り、凹凸パターンが在る領域の平均の研磨速度は、凹凸パターン無しの領域の研磨速度より速くなる。尚、ここでは、凹凸パターン在りの領域のパターンとしては、配線幅/スペース幅が10μm/10μm程度のL&S(Line and Space)を想定している。このような凹凸パターン無しの領域より凹凸パターン在りの領域の方が研磨速度は速くなる状態を、研磨速度の機械的作用に対する依存性が強いという意味で、「機械的作用依存性が強い状態」と呼ぶことにする。   Now, in general, CMP of Cu proceeds by removing the reaction layer formed on the Cu surface by friction with abrasive grains and pads. In the present specification, the mechanical action means the action of removing the reaction layer by friction with such abrasive grains and pads. By the way, the hardness of the reaction layer formed on the Cu surface varies depending on the slurry. When the reaction layer is strong, a strong mechanical action is required to remove the reaction layer. In this case, the stronger the mechanical action, the faster the removal rate of the reaction layer and the higher the polishing rate. When a wafer having irregularities on the surface is polished under such conditions, the polishing rate of the convex portions in the region having the concavo-convex pattern is faster than the polishing rate in the region having no concavo-convex pattern. On the contrary, the polishing rate of the concave portion in the region where the concave / convex pattern is present is slower than the region where the concave / convex pattern is present, but when the reaction layer is strong, the polishing rate of the convex portion in the region where the concave / convex pattern is present is The effect of increasing the speed is superior, and the average polishing rate in the region where the uneven pattern is present is faster than the polishing rate in the region where the uneven pattern is not present. In this case, an L & S (Line and Space) having a wiring width / space width of about 10 μm / 10 μm is assumed as a pattern of the region having the uneven pattern. The state where the polishing rate is higher in the region with the concavo-convex pattern than the region without such a concavo-convex pattern, in the sense that the dependency of the polishing rate on the mechanical action is strong, `` the state where the mechanical action dependency is strong '' I will call it.

表面反応層の強さが強固な状態から弱い状態に変化するに伴い、凹凸パターン無しの領域と凹凸パターン在りの領域における凸部の研磨速度差は小さくなる。凸部の研磨速度が凹凸パターン無しの領域の研磨速度より速い場合でも、凹部の研磨速度が遅いことにより相殺される程度であれば、凹凸パターン領域で全体で平均した研磨速度は、凹凸パターン無しの領域の研磨速度と同程度になる。このような、表面反応層の強さがやや弱く、凹凸パターン無しの領域と凹凸パターン在りの領域の研磨速度がほぼ同じになる状態を、「機械的作用依存性が弱い状態」と呼ぶことにする。   As the strength of the surface reaction layer changes from a strong state to a weak state, the polishing rate difference between the convex portions in the region without the uneven pattern and the region with the uneven pattern decreases. Even if the polishing rate of the convex part is higher than the polishing rate of the region without the concave / convex pattern, the average polishing rate in the concave / convex pattern region is no uneven pattern as long as it is offset by the slow polishing rate of the concave part. The polishing rate in this region is almost the same. Such a state in which the strength of the surface reaction layer is slightly weak and the polishing rate of the region having no concavo-convex pattern and the region having the concavo-convex pattern is substantially the same is referred to as a “mechanical action-dependent state”. To do.

表面反応層の強さが更に弱くなると、非常に弱い機械的作用で反応層が除去される為、凹凸パターンが無い領域と、凹凸パターンが在る領域における凸部及び凹部の研磨速度がほぼ同じになる。この場合も、凹凸パターン在りの領域における研磨速度と凹凸パターン無しの領域の研磨速度とはほぼ同じになる。しかしながら、この状態で研磨を行うと、表面の凹凸が全く解消されないまま研磨が進行する為、平坦性が極めて悪くなる。従って、通常のCMPでは、このような状態では行われない。   When the strength of the surface reaction layer is further weakened, the reaction layer is removed by a very weak mechanical action, so the polishing rate of the protrusions and recesses in the area where there is no uneven pattern and the area where the uneven pattern is present is almost the same. become. Also in this case, the polishing rate in the region with the concavo-convex pattern is almost the same as the polishing rate in the region without the concavo-convex pattern. However, if the polishing is performed in this state, the polishing proceeds without any surface irregularities being eliminated, and the flatness is extremely deteriorated. Therefore, normal CMP is not performed in such a state.

研磨速度の機械的な作用に対する依存性が大きい状態か小さい状態かは、Cu表面の反応層の強さと砥粒やパッドから受ける機械的作用の強さとのバランスで決まると考えられる。従って、スラリーの化学成分、砥粒の種類や量、パッドの硬さなどによって、機械的作用依存性の強さは変わると考えられる。   Whether the dependence of the polishing rate on the mechanical action is large or small depends on the balance between the strength of the reaction layer on the Cu surface and the strength of the mechanical action received from the abrasive grains and the pad. Accordingly, it is considered that the strength of the mechanical action dependency varies depending on the chemical component of the slurry, the type and amount of abrasive grains, the hardness of the pad, and the like.

表面の凹凸による研磨速度の差を小さくする為には、機械的作用依存性が弱い状態で研磨する必要がある。この条件では、表面の凹凸による研磨速度差は小さいが、凹凸パターンにおける凹部と凸部との研磨速度差も機械的作用依存性が強い状態に比べて小さくなる為、段差解消性は劣る。従って、この条件下で研磨を行うと、表面の凹凸による段差が十分に解消されない中に下地のバリア膜が露出してしまい、結果として、平坦性が損なわれる。段差解消性の不足を補う為には、Cuの膜厚を厚くする必要が有るが、成膜時間やCMP時間が長くなり、コストが増大する。このような条件で下地バリア膜が露出するまで研磨した場合、局所的なCu残りは発生し難い。しかしながら、凹凸パターンの領域における凹部と凸部との研磨速度差が小さい為、下地が露出してからのオーバー研磨によるディッシングの増大は大きくなる。尚、この不具合の状況が図2に示される。   In order to reduce the difference in the polishing rate due to the unevenness of the surface, it is necessary to polish in a state where the mechanical action dependency is weak. Under these conditions, the difference in polishing rate due to the unevenness on the surface is small, but the difference in polishing rate between the recesses and the protrusions in the uneven pattern is also smaller than in the state where the mechanical action dependency is strong, so the level difference resolution is poor. Therefore, when polishing is performed under this condition, the underlying barrier film is exposed while the level difference due to the surface irregularities is not sufficiently eliminated, and as a result, flatness is impaired. In order to compensate for the lack of step resolution, it is necessary to increase the film thickness of Cu, but the film formation time and CMP time become longer and the cost increases. When polishing is performed until the underlying barrier film is exposed under such conditions, local Cu residue is unlikely to occur. However, since the difference in polishing rate between the concave and convex portions in the uneven pattern region is small, the increase in dishing due to over polishing after the base is exposed increases. The situation of this problem is shown in FIG.

微細な凹凸に対する段差解消性を良くする為には、機械的作用依存性が強い状態で研磨する必要がある。この状態では、凹凸パターン領域における凹部と凸部との研磨速度差が大きい為、段差解消性は良くなる。しかしながら、表面の凹凸が大きい研磨の初期段階からこの状態で研磨を行うと、表面の凹凸による研磨速度差が大きい為、Cu膜厚が不均一になる。すなわち、このような条件で下地バリア膜が露出し始めるまで研磨を行うと、研磨速度が遅い領域に局所的に厚いCu残りが発生する。この局所的に厚く残ったCu残りをオーバー研磨によって除去すると、先にバリア膜が露出した領域の配線のディッシングが増大することが、本発明者の検討によって明らかになった。尚、この不具合状況が図3に示される。そして、機械的作用依存性が強い状態では、凹凸パターン領域における凹部と凸部との研磨速度差が大きい為、オーバー研磨時のディッシングの増加は小さく抑えられる筈であるが、局所的に残ったCu膜の厚さが厚い場合には、ディッシングの増加を抑えながらCu残りを完全に除去するのは困難である。   In order to improve the level difference elimination with respect to fine irregularities, it is necessary to polish in a state where the mechanical action dependency is strong. In this state, the difference in polishing rate between the concave and convex portions in the concave and convex pattern region is large, so that the level difference elimination is improved. However, if polishing is performed in this state from the initial stage of polishing with a large surface unevenness, the difference in polishing rate due to the surface unevenness is large, so the Cu film thickness becomes non-uniform. That is, when polishing is performed until the underlying barrier film begins to be exposed under such conditions, a thick Cu residue is locally generated in a region where the polishing rate is low. It has been clarified by the inventor's examination that the removal of the locally thick Cu residue by over-polishing increases the wiring dishing in the region where the barrier film has been previously exposed. This malfunction situation is shown in FIG. And in the state where the mechanical action dependence is strong, the polishing rate difference between the concave and convex portions in the concave and convex pattern region is large, so the increase in dishing during over polishing should be suppressed to a small level, but remained locally. When the Cu film is thick, it is difficult to completely remove the Cu residue while suppressing an increase in dishing.

さて、表面の凹凸による研磨速度の差が小さい研磨条件と、段差解消性が良い研磨条件とは、各々、機械的作用依存性が弱い状態と、機械的作用依存性が強い状態である為、両立は困難であると考えられる。このことが、これまで、CuのCMPにおいて、ディッシングの低減とCu残り除去性との両立が困難となっていた本質的な原因と考えられる。   Now, polishing conditions with a small difference in polishing speed due to unevenness of the surface and polishing conditions with good step resolution are a state where the mechanical action dependency is weak and a state where the mechanical action dependency is strong, respectively. Balancing is considered difficult. This is considered to be an essential cause until now, in Cu CMP, it has been difficult to achieve both dishing reduction and Cu remaining removability.

そして、上記知見を基にして更なる検討が鋭意推し進められて行った結果、以下に述べる第1の研磨条件と第2の研磨条件とを用いる2段階の研磨方法が、良好な平坦性とCu残り除去性とを両立する為の手段として、極めて有効であることを見出すに至った。   As a result of further intensive investigations based on the above knowledge, a two-step polishing method using the first polishing condition and the second polishing condition described below has good flatness and Cu It has been found that it is extremely effective as a means for achieving balance with the remaining removability.

ここで、第1の研磨条件は、機械的作用依存性が弱い状態の研磨条件である。機械的作用依存性が弱い状態の段差解消性は、機械的作用依存性が強い状態より劣るが、段差量が大きい研磨初期では、十分な段差解消性を示す。これにより、表面の凹凸による研磨速度の差を小さく保ちながら段差を解消することが可能である。   Here, the first polishing condition is a polishing condition in which the mechanical action dependency is weak. The step resolution in a state where the mechanical action dependency is weak is inferior to that in the state where the mechanical action dependence is strong, but at the initial stage of polishing where the level difference is large, sufficient level difference resolution is exhibited. Thereby, it is possible to eliminate the level difference while keeping the difference in polishing rate due to the unevenness of the surface small.

第2の研磨条件は、機械的作用依存性が強い状態の研磨条件である。この条件では、凹凸パターン領域における凹部と凸部との研磨速度差が大きい為、第1条件では平坦化されなかった微小な段差を解消することが出来る。この段階では、第1研磨条件による研磨でウエハー表面の凹凸は或る程度小さくなっている為、機械的作用依存性が強い状態で研磨を行っても表面の凹凸による研磨速度の差は小さく保たれる。又、バリア膜が露出した後も、凹凸パターン領域における凹部と凸部との研磨速度差が大きい為、ディッシングの増大が抑えられながら不要なCuが除去される。尚、このような条件による研磨状況が図1に示される。   The second polishing condition is a polishing condition in which the mechanical action dependency is strong. Under this condition, the difference in polishing rate between the concave and convex portions in the concave / convex pattern region is large, so that a minute step that is not flattened under the first condition can be eliminated. At this stage, since the unevenness on the wafer surface is reduced to some extent by polishing under the first polishing condition, the difference in the polishing rate due to the unevenness on the surface is kept small even when polishing is performed with a strong mechanical action dependency. Be drunk. Further, even after the barrier film is exposed, the difference in polishing rate between the concave and convex portions in the concave and convex pattern region is large, so unnecessary Cu is removed while suppressing an increase in dishing. The polishing situation under such conditions is shown in FIG.

そして、上記第1及び第2の研磨条件を用いて研磨することで、研磨初期からバリア膜が露出するまで、表面の凹凸による研磨速度差が常に小さく保たれる。これにより、バリア膜が露出し始めた時のCu膜厚のウエハー面内におけるバラツキが小さく、局所的な厚いCu残りが発生しない。すなわち、下地バリア膜が露出し始めた段階で、局所的な厚いCu残りを発生させずに段差量を小さくできる。従って、短時間のオーバー研磨によってCu残りを完全に除去できる。尚、第2の研磨条件は、凹凸パターン領域における凹部と凸部との研磨速度差が大きい為、第1の研磨条件で平坦化されなかった微細な段差が解消され、オーバー研磨では、ディッシングの増大を抑えながら不要なCuを除去できる。すなわち、オーバー研磨では、ディッシングが増大し難い条件で、短時間の研磨をすることによって、Cu残りを完全に除去できる為、Cu残りの除去とディッシング低減の両立が可能である。   Then, by polishing using the first and second polishing conditions, the difference in polishing rate due to surface irregularities is always kept small from the initial stage of polishing until the barrier film is exposed. As a result, the variation of the Cu film thickness within the wafer surface when the barrier film begins to be exposed is small, and local thick Cu residue does not occur. That is, when the base barrier film begins to be exposed, the step amount can be reduced without generating a local thick Cu residue. Therefore, Cu residue can be completely removed by short-time overpolishing. Note that the second polishing condition has a large polishing rate difference between the concave and convex portions in the concavo-convex pattern region, so that the fine level difference that has not been flattened under the first polishing condition is eliminated. Unnecessary Cu can be removed while suppressing the increase. That is, in the over polishing, the Cu residue can be completely removed by polishing for a short time under the condition that the dishing is difficult to increase. Therefore, both the removal of the Cu residue and the reduction of the dishing can be achieved.

上記知見を基にして本発明がなされた。
すなわち、前記の課題は、CMP方法において、
全面的に略均一な研磨速度の条件下でCMPを行う第1ステップと、
前記第1ステップの後、凹凸の段差解消性が優れた条件下でCMPを行う第2ステップ
とを具備することを特徴とするCMP方法によって解決される。
The present invention has been made based on the above findings.
That is, the above-mentioned problem is in the CMP method.
A first step of performing CMP under conditions of a substantially uniform polishing rate over the entire surface;
After the first step, the present invention is solved by a CMP method comprising: a second step of performing CMP under a condition in which the unevenness unevenness elimination property is excellent.

又、CMP方法において、
凹凸領域における研磨速度V1と平坦領域における研磨速度V2との差が小さい条件下でCMPを行う第1ステップと、
前記第1ステップの後、凹凸領域における研磨速度V1と平坦領域における研磨速度V2との差が前記第1ステップにおける該研磨速度差よりも大きい条件下でCMPを行う第2ステップ
とを具備することを特徴とするCMP方法によって解決される。
In the CMP method,
A first step of performing CMP under a condition where the difference between the polishing rate V1 in the uneven region and the polishing rate V2 in the flat region is small;
After the first step, there is provided a second step in which CMP is performed under a condition in which the difference between the polishing rate V1 in the uneven region and the polishing rate V2 in the flat region is larger than the polishing rate difference in the first step. It is solved by the CMP method characterized by the above.

又、CMP方法において、
凹凸領域における研磨速度V1と平坦領域における研磨速度V2との比(V1/V2)が0.8〜1.1の条件下でCMPを行う第1ステップと、
前記第1ステップの後、凹凸領域における研磨速度V1と平坦領域における研磨速度V2との比(V1/V2)が1.2以上の条件下でCMPを行う第2ステップ
とを具備することを特徴とするCMP方法によって解決される。
特に、CMP方法において、
凹凸領域における研磨速度V1と平坦領域における研磨速度V2との比(V1/V2)が0.9〜1.1(中でも、0.95以上。1.05以下。)の条件下でCMPを行う第1ステップと、
前記第1ステップの後、凹凸領域における研磨速度V1と平坦領域における研磨速度V2との比(V1/V2)が1.2〜10(中でも、1.25以上。特に、1.3以上。更には、1.5以上。そして、5以下。特に、3以下。更には、2以下。もっと更には、1.85以下。)の条件下でCMPを行う第2ステップ
とを具備することを特徴とするCMP方法によって解決される。
In the CMP method,
A first step in which CMP is performed under a condition where the ratio (V1 / V2) of the polishing rate V1 in the uneven region to the polishing rate V2 in the flat region is 0.8 to 1.1;
After the first step, there is provided a second step in which CMP is performed under a condition where the ratio (V1 / V2) of the polishing rate V1 in the uneven region to the polishing rate V2 in the flat region is 1.2 or more. This is solved by the CMP method.
In particular, in the CMP method,
CMP is performed under the condition where the ratio (V1 / V2) of the polishing rate V1 in the uneven region to the polishing rate V2 in the flat region is 0.9 to 1.1 (among these, 0.95 or more and 1.05 or less). The first step;
After the first step, the ratio (V1 / V2) between the polishing rate V1 in the uneven region and the polishing rate V2 in the flat region is 1.2 to 10 (in particular, 1.25 or more, especially 1.3 or more. The second step of performing CMP under the conditions of 1.5 or more, 5 or less, particularly 3 or less, 2 or less, and even 1.85 or less. This is solved by the CMP method.

又、CMP方法において、
表面の凹凸が大きな研磨の初期段階(第1ステップ)では、凹凸の深さや密度による研磨速度差が小さい第1の研磨条件でCu膜が一定膜厚になるまで研磨し、
この後(第2ステップ)、表面の微細な凹凸を平坦化する為、段差解消性が良い第2の研磨条件で研磨することを特徴とするCMP方法によって解決される。
In the CMP method,
In the initial stage of polishing (first step) where the surface irregularities are large, polishing is performed until the Cu film has a constant film thickness under the first polishing condition where the polishing rate difference due to the depth and density of the irregularities is small
Thereafter (second step), in order to flatten the fine irregularities on the surface, the problem is solved by a CMP method characterized by polishing under a second polishing condition with good step resolution.

又、上記CMP方法であって、
第1ステップは段差が段差初期値の1/10〜2/3(より好ましくは、1/2以下)となるまで行われることを特徴とするCMP方法によって解決される。
Also, the above CMP method,
The first step is solved by a CMP method characterized in that the step is performed until the step becomes 1/10 to 2/3 (more preferably, ½ or less) of the step initial value.

又、上記CMP方法であって、
第1ステップは表面凹凸度が大きなCMP初期段階に行われることを特徴とするCMP方法によって解決される。
Also, the above CMP method,
The first step is solved by a CMP method characterized in that the first step is performed in a CMP initial stage having a large degree of surface irregularity.

又、半導体装置の配線膜構造の形成に際して用いられることを特徴とする上記CMP方法によって解決される。   Further, the problem is solved by the above-described CMP method, which is used when forming a wiring film structure of a semiconductor device.

本発明によれば、Cu配線膜のCMP後のディッシングの低減とCu残除去とが共に図られる。しかも、その為の技術手段は簡単であるから、低廉なコストで実施できる。しかも、従来からのCMP装置を用いても実施できる。すなわち、大掛かりな設備更新の必要が無い。従って、高性能な半導体装置が低廉なコストで得られる。   According to the present invention, it is possible to reduce the dishing of the Cu wiring film after CMP and to remove the Cu residue. Moreover, since the technical means for this purpose is simple, it can be carried out at a low cost. Moreover, it can also be carried out using a conventional CMP apparatus. That is, there is no need for extensive equipment renewal. Therefore, a high-performance semiconductor device can be obtained at a low cost.

本発明のCMP方法(特に、半導体装置の配線膜構造の形成に際して用いられるCMP方法)は、全面的に略均一な研磨速度の条件下でCMPを行う第1ステップと、前記第1ステップの後、凹凸の段差解消性が優れた条件下でCMPを行う第2ステップとを具備する。或いは、凹凸領域における研磨速度V1と平坦領域における研磨速度V2との差が小さい条件下でCMPを行う第1ステップと、前記第1ステップの後、凹凸領域における研磨速度V1と平坦領域における研磨速度V2との差が前記第1ステップにおける該研磨速度差よりも大きい条件下でCMPを行う第2ステップとを具備する。若しくは、凹凸領域における研磨速度V1と平坦領域における研磨速度V2との比(V1/V2)が0.8〜1.1(中でも、0.9以上。特に、0.95以上。そして、1.05以下。)の条件下でCMPを行う第1ステップと、前記第1ステップの後、凹凸領域における研磨速度V1と平坦領域における研磨速度V2との比(V1/V2)が1.2以上(中でも、1.25以上。特に、1.3以上。更には、1.5以上。そして、10以下。中でも、5以下。特に、3以下。更には、2以下。もっと更には、1.85以下。)の条件下でCMPを行う第2ステップとを具備する。又は、表面の凹凸が大きな研磨の初期段階(第1ステップ)では、凹凸の深さや密度による研磨速度差が小さい第1の研磨条件でCu膜が一定膜厚になるまで研磨し、この後(第2ステップ)、表面の微細な凹凸を平坦化する為、段差解消性が良い第2の研磨条件で研磨する。前記第1ステップは段差が段差初期値の1/10〜2/3(特に、1/2以下)となるまで行われる。又、第1ステップは表面凹凸度が大きなCMP初期段階に行われる。   The CMP method of the present invention (in particular, the CMP method used for forming a wiring film structure of a semiconductor device) includes a first step of performing CMP under conditions of a substantially uniform polishing rate over the entire surface, and a step after the first step. And a second step of performing CMP under the condition that the unevenness unevenness elimination property is excellent. Alternatively, the first step of performing CMP under a condition where the difference between the polishing rate V1 in the uneven region and the polishing rate V2 in the flat region is small, and after the first step, the polishing rate V1 in the uneven region and the polishing rate in the flat region. And a second step of performing CMP under a condition where the difference from V2 is larger than the polishing rate difference in the first step. Alternatively, the ratio (V1 / V2) between the polishing rate V1 in the uneven region and the polishing rate V2 in the flat region is 0.8 to 1.1 (in particular, 0.9 or more, especially 0.95 or more. The ratio (V1 / V2) between the polishing rate V1 in the uneven region and the polishing rate V2 in the flat region is 1.2 or more after the first step in which CMP is performed under the condition of 05 or less. Among them, 1.25 or more, especially 1.3 or more, further 1.5 or more, and 10 or less, especially 5 or less, especially 3 or less, further 2 or less, and further 1.85. The second step of performing CMP under the following conditions). Alternatively, in the initial stage of polishing (first step) with large surface irregularities, polishing is performed until the Cu film reaches a certain thickness under the first polishing condition where the difference in polishing rate due to the depth and density of the irregularities is small. (2nd step) In order to flatten the fine irregularities on the surface, polishing is performed under the second polishing conditions with good step resolution. The first step is performed until the step becomes 1/10 to 2/3 (particularly, ½ or less) of the step initial value. The first step is performed in the initial stage of CMP having a large surface irregularity.

以下、更に詳しく説明する。   This will be described in more detail below.

図4は、本発明の実施に用いられるCMP(化学的機械的研磨)装置の概略図である。すなわち、被研磨基板を保持したヘッドを、研磨パッドを貼り付けたプラテンに押し付け、パッド表面にスラリーを供給しながら、ヘッドとプラテンとを同方向に回転させながら研磨が行われるように構成されている。パッドは市販のポリウレタン発砲体パッドを用いることも出来る。スラリーの供給系は2系統あり、2種類のスラリーを供給することが可能である。表面にダイヤモンドの粒が埋め込まれたディスクを研磨パッドに押し当て、ディスクとプラテンとを回転させてパッドの表面を削り取ることにより、研磨による反応物やスラリーの砥粒によるパッド表面の目詰まりを防止できる。これは、必要に応じて、研磨中または研磨の合間に実施できる。研磨中のCu膜の膜厚変化はプラテンに設置された渦電流式終点検出器で検出できる。これにより、第1の条件で一定膜厚まで研磨し、そして一旦研磨を停止し、続いて第2の研磨条件で研磨を行うことが出来るように構成されている。又、Cu膜が除去されてバリアが露出した時の終点の検出も可能で、続いて行うオーバー研磨の時間を一定に制御することも可能であるよう構成されている。   FIG. 4 is a schematic view of a CMP (Chemical Mechanical Polishing) apparatus used in the practice of the present invention. That is, the head holding the substrate to be polished is pressed against the platen to which the polishing pad is attached, and the polishing is performed while rotating the head and the platen in the same direction while supplying the slurry to the pad surface. Yes. A commercially available polyurethane foam pad can also be used as the pad. There are two slurry supply systems, and two types of slurry can be supplied. Pressing a disk with diamond grains embedded on the surface against the polishing pad and rotating the disk and platen to scrape off the pad surface prevents clogging of the pad surface due to abrasives from reactants and slurry from polishing. it can. This can be done during polishing or between polishings as required. The film thickness change of the Cu film during polishing can be detected by an eddy current type end point detector installed on the platen. As a result, the film is polished to a certain film thickness under the first condition, and once the polishing is stopped, the polishing can be performed under the second polishing condition. Further, the end point when the Cu film is removed and the barrier is exposed can be detected, and the time of the subsequent overpolishing can be controlled to be constant.

本研磨装置は、Cu研磨に続いてバリア研磨を行う為のCu研磨用とは別のプラテンとヘッドとを有している。これを用いて、バリア用スラリーによってバリア研磨を実施できる。必要に応じて、Cu研磨とバリア研磨とを、自動搬送により連続処理することも、Cu研磨のみ、バリア研磨のみを単独で実施することも出来る。又、研磨後は、自動搬送により薬液洗浄、超音波洗浄などを必要に応じて実施した後、ウエハーをスピン乾燥させて処理を終了する。   This polishing apparatus has a platen and a head different from those for Cu polishing for performing barrier polishing following Cu polishing. Using this, barrier polishing can be carried out with the slurry for the barrier. If necessary, Cu polishing and barrier polishing can be continuously processed by automatic conveyance, or only Cu polishing and barrier polishing can be performed alone. In addition, after polishing, chemical cleaning, ultrasonic cleaning, and the like are performed as necessary by automatic conveyance, and then the wafer is spin-dried to complete the processing.

図5は、被研磨基板の断面図である。この基板は、Si基板にエッチストッパ層および絶縁膜層を形成し、そしてフォトレジストパターンを形成後、エッチングにより配線溝を形成する。エッチング後、残ったフォトレジストをアッシングにより除去し、残渣除去の為の洗浄を行う。続いて、Cuバリア膜、Cuシード膜をスパッタ法で形成した後、メッキ法によってCu膜を形成する。そして、水素アニールを行う。Cu膜厚は、通常、配線溝深さの1.5〜3倍程度であり、本発明においてもその範囲である。   FIG. 5 is a cross-sectional view of the substrate to be polished. In this substrate, an etch stopper layer and an insulating film layer are formed on a Si substrate, and after forming a photoresist pattern, a wiring groove is formed by etching. After etching, the remaining photoresist is removed by ashing, and cleaning is performed to remove the residue. Subsequently, after forming a Cu barrier film and a Cu seed film by a sputtering method, a Cu film is formed by a plating method. Then, hydrogen annealing is performed. The Cu film thickness is usually about 1.5 to 3 times the wiring groove depth, and is also in the present invention.

図6は、被研磨基板の表面に形成されたTEG(Test Element Group)チップの概略図である。チップサイズは、縦32mm、横26mmである。チップ内には、各種の配線幅と配線密度を有する平坦性測定用L&S(Line
and Space)パターン、電気特性測定用パターン、膜厚測定領域などが配置されている。膜厚測定領域は、配線パターン(凹凸パターン)が無い領域と配線パターン(凹凸パターン)が在る領域の二つの領域からなり、各々の領域は縦6mm、横12mmの長方形で、4探針シート抵抗測定器によるCu膜厚の測定が可能である。膜厚測定領域は、配線パターンの有無によるCu研磨速度の差を測定する為に使用される。配線パターン在り領域には、配線幅10μm、スペース幅10μmのL&Sを全面に形成した。配線幅、スペース幅が1μ以下のL&Sでは、凹み部分が狭い為、メッキ後の表面の凹凸の深さは、配線溝深さより小さくなる。又、配線幅、スペース幅が100μm程度になると、凸部、凹み部の幅が広い為、配線パターンが無い状態に近くなり、機械的作用の影響が小さくなると考えられる。従って、表面の凹凸によってパターン無し領域との研磨速度の差が大きくなるのは、5〜50μm程度のL&Sと考えられる。
FIG. 6 is a schematic view of a TEG (Test Element Group) chip formed on the surface of the substrate to be polished. The chip size is 32 mm long and 26 mm wide. In the chip, flatness measurement L & S (Line) with various wiring widths and wiring densities
and Space) pattern, electrical characteristic measurement pattern, film thickness measurement region, and the like. The film thickness measurement region is composed of two regions, a region without a wiring pattern (uneven pattern) and a region with a wiring pattern (uneven pattern). Each region is a rectangle of 6 mm length and 12 mm width, and is a 4-probe sheet. The Cu film thickness can be measured with a resistance meter. The film thickness measurement region is used to measure the difference in Cu polishing rate depending on the presence or absence of a wiring pattern. An L & S having a wiring width of 10 μm and a space width of 10 μm was formed on the entire surface in the wiring pattern area. In the L & S having a wiring width and a space width of 1 μm or less, since the recessed portion is narrow, the depth of the unevenness on the surface after plating is smaller than the wiring groove depth. Further, when the wiring width and the space width are about 100 μm, the width of the convex portion and the concave portion is wide, so that the wiring pattern is almost absent and the influence of the mechanical action is considered to be small. Therefore, it is considered that the difference in the polishing rate from the non-patterned region due to the surface unevenness is L & S of about 5 to 50 μm.

実際のLSIでは、0.1μm以下から100μm程度までの配線が不規則に配置されている為に様々な凹凸が存在するが、上記の理由から、研磨速度の機械的作用依存性によって研磨速度のバラツキが大きくなるのは、5〜50μm程度の幅を持つ凹凸がある場合と予想される。   In an actual LSI, various irregularities exist because the wiring from 0.1 μm or less to about 100 μm is irregularly arranged. For the above reason, the polishing speed depends on the mechanical action dependence of the polishing speed. It is expected that the variation becomes large when there is unevenness having a width of about 5 to 50 μm.

CMPの研磨は、渦電流式終点検出器を用いて研磨速度の測定を行い、残りCu膜厚が予め決められた一定の膜厚になるまで行われる。図7に渦電流式終点検出器の出力が示される。検出器の出力が一定膜厚に対応した出力値に達した処で、自動的に研磨を終了できる。4探針シート抵抗測定器で測定した配線パターン有り領域と無し領域の研磨前後の膜厚差を研磨に要した時間で割算して研磨速度を算出した。配線パターン有り領域の測定における4探針の針の並び方向は、配線の長さ方向に対して垂直にした。測定時の針の並び方向に特に制約はないが、研磨の前後では同じ向きにする方が望ましい。研磨速度を測定する時の研磨量は、配線溝深さの0.5〜2倍程度であれば格別な制限は無い。但し、段差解消性を同時に測定する場合の研磨量は配線溝深さの1〜2倍程度が望ましい。   CMP polishing is performed until the polishing rate is measured using an eddy current type end point detector, and the remaining Cu film thickness reaches a predetermined film thickness. FIG. 7 shows the output of the eddy current type end point detector. Polishing can be automatically terminated when the output of the detector reaches an output value corresponding to a certain film thickness. The polishing rate was calculated by dividing the difference in film thickness before and after polishing between the region with and without the wiring pattern measured with a 4-probe sheet resistance measuring instrument by the time required for polishing. The alignment direction of the four-probe needles in the measurement of the region with the wiring pattern was perpendicular to the length direction of the wiring. There are no particular restrictions on the direction of needle alignment during measurement, but it is desirable to have the same orientation before and after polishing. The amount of polishing at the time of measuring the polishing rate is not particularly limited as long as it is about 0.5 to 2 times the wiring groove depth. However, it is desirable that the polishing amount when measuring the step resolution is about 1 to 2 times the wiring groove depth.

平坦性の測定には、TEGチップ内の各種L&Sパターンを使用できる。測定装置は、触針式段差計が使用される。研磨後のディッシングは配線幅が広いほど大きくなる為、配線幅100μm、スペース幅100μmのパターンのディッシングを測定した。通常のLSIはこの程度の配線幅が最大と考えられる。測定に使用したL&Sパターンの概観が図8に示される。図8のパターンにおいて、下地バリア膜が露出している場合と、露出していない場合との平坦性の定義が図9に示される。   Various L & S patterns in the TEG chip can be used for measuring the flatness. A stylus type step meter is used as the measuring device. Since the dishing after polishing becomes larger as the wiring width is wider, the dishing of a pattern having a wiring width of 100 μm and a space width of 100 μm was measured. A normal LSI is considered to have the maximum wiring width. An overview of the L & S pattern used for the measurement is shown in FIG. In the pattern of FIG. 8, the definition of flatness when the underlying barrier film is exposed and when it is not exposed is shown in FIG.

以下、具体的な実施例を挙げて説明する。   Hereinafter, specific examples will be described.

[実施例]
基板として300mmφのSiウエハーを使用し、図5に示す断面構造の被研磨基板を必要枚数作製した。エッチストッパ膜は50nm厚のSiCN膜とし、絶縁膜は150nm厚のSiOC膜上に50nm厚のSiO膜を積層した2層構造とした。Cuバリア膜は、10nm厚のTaN上に10nm厚のTaを積層した2層構造にした。そして、Cuバリア膜の上に、60nm厚のCuシード膜をスパッタ法で形成した後、メッキ法により540nm厚のCu膜を形成した。そして、220℃、60secの条件で水素アニール処理を行った。このようにして得られた基板を基板1する。
[Example]
A 300 mmφ Si wafer was used as the substrate, and the required number of substrates to be polished having the cross-sectional structure shown in FIG. The etch stopper film was a 50 nm thick SiCN film, and the insulating film was a two-layer structure in which a 50 nm thick SiO film was laminated on a 150 nm thick SiOC film. The Cu barrier film has a two-layer structure in which 10 nm thick Ta is laminated on 10 nm thick TaN. Then, a Cu seed film having a thickness of 60 nm was formed on the Cu barrier film by a sputtering method, and then a Cu film having a thickness of 540 nm was formed by a plating method. Then, a hydrogen annealing process was performed at 220 ° C. for 60 seconds. The substrate thus obtained is designated as substrate 1.

スラリーは、シリカ系砥粒を用いた市販のCu用スラリーを用いた。Cu研磨を行う際には、過酸化水素水を予めスラリーと混合して使用した。   As the slurry, a commercially available slurry for Cu using silica-based abrasive grains was used. When performing Cu polishing, hydrogen peroxide water was mixed with the slurry in advance.

研磨条件は、研磨圧力7kPa、プラテン回転数60rpm、ヘッド回転数61rpm、スラリー流量300cc/minである。研磨中の膜厚変化を渦電流式終点検出器によってモニターし、Cu残り膜厚が約300nmになった時に研磨を終了した。研磨後は、パッドおよびウエハー面上のスラリーを純水によって洗い流し、続いて基板を洗浄装置に自動搬送し、市販の薬液を使用したブラシ洗浄および超音波洗浄後に、水洗し、スピン乾燥した。   The polishing conditions are a polishing pressure of 7 kPa, a platen rotation speed of 60 rpm, a head rotation speed of 61 rpm, and a slurry flow rate of 300 cc / min. The film thickness change during polishing was monitored by an eddy current type end point detector, and the polishing was terminated when the remaining Cu film thickness was about 300 nm. After polishing, the slurry on the pad and wafer surface was washed away with pure water, and then the substrate was automatically transported to a cleaning device, followed by brush cleaning and ultrasonic cleaning using a commercially available chemical solution, followed by water cleaning and spin drying.

濃度30wt%の過酸化水素水とスラリーの混合比率を重量比で、2:8〜7:3の範囲で混合したスラリーを用いて、基板1を研磨した。研磨前後のCu膜厚を測定し、研磨速度を算出した。Cu残り膜厚測定は、直径方向、直線状に、配線パターン有部、無部の各々12点ずつ測定した。基板上のTEGチップの配置と膜厚測定点が図10に示される。同じ基板を用いて、100μm/100μmのL&Sパターンの段差量の測定を実施した。段差量は、ウエハー中心からの距離が1cm,6cm,11cm,13.5cm,14.5cmの5パターンについて測定した。この測定結果の平均値が表−1に示される。   The substrate 1 was polished using a slurry in which the mixing ratio of the hydrogen peroxide solution having a concentration of 30 wt% and the slurry was mixed in a weight ratio of 2: 8 to 7: 3. The Cu film thickness before and after polishing was measured, and the polishing rate was calculated. The remaining Cu film thickness was measured at 12 points each in the diametrical direction and linearly, with and without the wiring pattern. The arrangement of TEG chips on the substrate and the film thickness measurement points are shown in FIG. Using the same substrate, the step amount of the L & S pattern of 100 μm / 100 μm was measured. The level difference was measured for five patterns with distances from the wafer center of 1 cm, 6 cm, 11 cm, 13.5 cm, and 14.5 cm. The average value of the measurement results is shown in Table-1.

表−1

Figure 2007109989
表−1の結果から、2段階の研磨をする場合、最初の第1の研磨条件としては、凹凸パターン在り領域の研磨速度と凹凸パターン無し領域の研磨速度との差が小さい条件1や条件2が適しており、後の第2の研磨条件としては、段差解消性が良い条件4〜6が適していると考えられる。条件1,2は、凹凸パターン在り領域の研磨速度と凹凸パターン無し領域の研磨速度差が小さい(研磨速度比がほぼ1)ことから、機械的作用依存性が弱い状態になっている。そして、過酸化水素水の混合割合が大きくなるに伴って、研磨速度比が大きくなることから、機械的作用依存性が強い状態に変わると考えられる。又、過酸化水素水の混合割合が大きくなるに伴って、段差解消性が良くなる。このことからも、機械的作用依存性が強い状態に変わることが判る。第1の条件としては、或る程度の段差解消性が必要であるが、条件1,2では、初期段差200nmに対して研磨後の段差量は55nm,25nmであり、十分な段差解消性を有すると考えられる。 Table-1
Figure 2007109989
From the results shown in Table 1, when performing two-step polishing, the first first polishing condition is condition 1 or condition 2 in which the difference between the polishing rate in the region with the uneven pattern and the polishing rate in the region without the uneven pattern is small. It is considered that Conditions 4 to 6 having good step resolution are suitable as the subsequent second polishing conditions. Conditions 1 and 2 are in a state where the dependency on the mechanical action is weak because the difference between the polishing rate in the region with the uneven pattern and the polishing rate in the region without the uneven pattern is small (the polishing rate ratio is approximately 1). As the mixing ratio of the hydrogen peroxide solution increases, the polishing rate ratio increases, so that the mechanical action dependency is considered to change to a strong state. Further, as the mixing ratio of the hydrogen peroxide solution is increased, the step resolution is improved. This also indicates that the mechanical action dependency is changed to a strong state. As the first condition, a certain level of level difference elimination is necessary, but in conditions 1 and 2, the level difference after polishing is 55 nm and 25 nm with respect to the initial level 200 nm, and sufficient level difference resolution is achieved. It is thought to have.

又、未研磨の基板1を用いて、2段階の研磨を行った。第1の研磨条件として条件1を用い、Cu残り膜厚が300nmになるまで研磨した。その後、研磨を一旦停止する為、スラリーの供給を止め、パッド上のスラリーを純水で洗い流した。続いて、第2の研磨条件として条件4を用い、バリア膜が露出するまで研磨した。バリア膜が露出後も同条件で20秒間オーバー研磨した。Cu残り膜厚が300nmになった時点やバリア膜が露出した時点は、渦電流式終点検出器で検出された。図11に研磨中の終点検出器の出力が示される。不要なCu膜がほぼ除去された後は、終点検出器からの出力がほぼ一定になる。従って、第2の研磨条件で研磨中、終点検出器からの出力の傾き、即ち、微分値が0になった時点を終点とし、その後の研磨時間をオーバー研磨時間とする。微分値が0になった終点では、バリア膜上に極薄いCu膜が残っている可能性が有る。それを除去する為、オーバー研磨を行った。オーバー研磨後は、パッド上と基板表面のスラリーを純水によって洗い流した。続いて、基板を洗浄装置に自動搬送し、市販の薬液を使用したブラシ洗浄・超音波洗浄の後に、水洗し、スピン乾燥した。   Further, two-stage polishing was performed using the unpolished substrate 1. Using condition 1 as the first polishing condition, polishing was performed until the Cu remaining film thickness reached 300 nm. Thereafter, in order to temporarily stop polishing, the supply of slurry was stopped, and the slurry on the pad was washed away with pure water. Subsequently, using condition 4 as the second polishing condition, polishing was performed until the barrier film was exposed. After the barrier film was exposed, overpolishing was performed for 20 seconds under the same conditions. The time when the remaining Cu film thickness reached 300 nm and the time when the barrier film was exposed were detected by an eddy current end point detector. FIG. 11 shows the output of the end point detector during polishing. After the unnecessary Cu film is almost removed, the output from the end point detector becomes almost constant. Accordingly, during polishing under the second polishing condition, the slope of the output from the end point detector, that is, the time when the differential value becomes 0 is set as the end point, and the subsequent polishing time is set as the over polishing time. At the end point when the differential value becomes 0, there is a possibility that an extremely thin Cu film remains on the barrier film. In order to remove it, overpolishing was performed. After over polishing, the slurry on the pad and the substrate surface was washed away with pure water. Subsequently, the substrate was automatically conveyed to a cleaning apparatus, and after brush cleaning and ultrasonic cleaning using a commercially available chemical solution, it was washed with water and spin-dried.

同様にして、第1の研磨条件として条件1、第2の研磨条件として条件5,6を用いて、基板1の研磨を行った。   Similarly, the substrate 1 was polished using Condition 1 as the first polishing condition and Conditions 5 and 6 as the second polishing condition.

上記3条件(第2の研磨条件として条件4〜5を用いる研磨条件)で研磨した基板1の平坦性を測定した結果、各ウエハーの100μm/100μmのL&Sパターンのディッシング量の平均値が20〜30nmと良好な結果が得られた。又、基板表面を目視と光学顕微鏡とを用いて観察した結果、Cu残りは無いことが確認された。又、第1の研磨条件(条件1)によってCu残り膜厚が400nm(研磨量200nm)、及び200nm(研磨量400nm)まで研磨した後、第2の研磨条件(条件4)で研磨した場合、共に、ほぼ同じ結果が得られた。
従って、第1の研磨条件による研磨量は、配線溝深さに対して1〜2倍の範囲であれば格別な制約は無いことが判った。
As a result of measuring the flatness of the substrate 1 polished under the above three conditions (polishing conditions using conditions 4 to 5 as the second polishing conditions), the average value of the dishing amount of the 100 μm / 100 μm L & S pattern of each wafer is 20 to 20 Good results of 30 nm were obtained. Moreover, as a result of observing the substrate surface using visual observation and an optical microscope, it was confirmed that there was no Cu residue. Further, after polishing to the remaining Cu film thickness of 400 nm (polishing amount 200 nm) and 200 nm (polishing amount 400 nm) according to the first polishing condition (condition 1), polishing is performed under the second polishing condition (condition 4). In both cases, almost the same results were obtained.
Therefore, it has been found that there is no particular limitation if the polishing amount under the first polishing condition is in the range of 1 to 2 times the wiring groove depth.

又、第1の研磨条件による研磨によって、Cu残り膜厚が400nmまで研磨された時の100μm/100μmのL&Sパターンの段差量は90nmであり、Cu残り膜厚が200nmまで研磨された時の100μm/100μmのL&Sパターンの段差量は40nmであった。
従って、第1の研磨条件による研磨によって、段差量が初期段差量の1/2以下に解消されれば十分であることが判った。
Further, when the remaining Cu film thickness is polished to 400 nm by polishing under the first polishing conditions, the step amount of the 100 μm / 100 μm L & S pattern is 90 nm, and when the Cu remaining film thickness is polished to 200 nm, 100 μm. The step amount of the L & S pattern of / 100 μm was 40 nm.
Therefore, it has been found that it is sufficient that the amount of step difference is reduced to 1/2 or less of the initial step amount by polishing under the first polishing condition.

次に、バリア研磨用のプラテンを用い、市販のバリア用スラリーを使用して、上記3条件(第2の研磨条件として条件4〜5を用いる研磨条件)でCu研磨した基板のバリア研磨を実施した。研磨後は、パッドと基板表面のスラリーを純水によって洗い流した後、基板を洗浄装置に自動搬送し、市販の薬液を使用したブラシ洗浄・超音波洗浄の後に、水洗し、スピン乾燥した。研磨後の平坦性を測定した結果、100μm/100μmのL&Sパターンのディッシング量の平均値は10〜20nmとなった。使用したバリア研磨条件のバリア膜と絶縁膜とCu膜との研磨速度比は、2:1:1程度で、バリア膜の研磨速度がCu膜の研磨速度に対して速い為、バリア研磨後のディッシングはCu研磨後より小さくなっている。平坦性の目標値は、配線溝深さの10%程度以下であり、本件では、20nm以下である。上記の結果はこの目標を満足している。又、Cu研磨とバリア研磨とを連続して処理した場合についても、同じ平坦性が得られることが確認された。   Next, using a platen for barrier polishing, using a commercially available barrier slurry, barrier polishing of the substrate polished with Cu under the above three conditions (polishing conditions using conditions 4 to 5 as the second polishing conditions) was performed. did. After polishing, the slurry on the surface of the pad and the substrate was washed away with pure water, and then the substrate was automatically transported to a cleaning device, followed by brush cleaning and ultrasonic cleaning using a commercially available chemical solution, followed by washing with water and spin drying. As a result of measuring the flatness after polishing, the average dishing amount of the 100 μm / 100 μm L & S pattern was 10 to 20 nm. The polishing rate ratio between the barrier film, the insulating film, and the Cu film under the barrier polishing conditions used is about 2: 1: 1, and the barrier film polishing rate is higher than the Cu film polishing rate. The dishing is smaller than after Cu polishing. The target value of flatness is about 10% or less of the wiring groove depth, and is 20 nm or less in this case. The above results meet this goal. In addition, it was confirmed that the same flatness can be obtained even when Cu polishing and barrier polishing are successively processed.

Cu配線の電気特性を測定する為、上記3条件でCu研磨し、連続してバリア研磨まで終了した基板を作製した。その基板に、Cu拡散バリア膜とパッシベーション膜を形成後、パッド部分を開口し、TiとAl膜を成膜、エッチングしてAlパッドを形成した。その後、オートプローバーを用いて電気特性を測定した。90nm/90nmのL&Sで、配線長92cmの折り返しパターンの配線抵抗をウエハー面内64チップ全てについて測定した結果、導通歩留まり100%、配線抵抗のバラツキの幅は10%であった。又、90nm/90nmのL&Sで、対向長92cmの櫛パターンのショートチェックを64チップについて行った結果、歩留まりは100%で、微細配線部のCu残りによる配線間ショートは無いことが確認された。   In order to measure the electrical characteristics of the Cu wiring, Cu polishing was performed under the above three conditions, and a substrate that was continuously subjected to barrier polishing was produced. After forming a Cu diffusion barrier film and a passivation film on the substrate, the pad portion was opened, and a Ti and Al film was formed and etched to form an Al pad. Thereafter, electrical characteristics were measured using an auto prober. As a result of measuring the wiring resistance of the folded pattern with a wiring length of 92 cm on all the 64 chips in the wafer surface with the L & S of 90 nm / 90 nm, the conduction yield was 100% and the width of the variation of the wiring resistance was 10%. In addition, as a result of performing a short check of a comb pattern with a facing length of 92 cm on 64 chips with 90 nm / 90 nm L & S, it was confirmed that the yield was 100% and there was no short circuit between wiring due to Cu remaining in the fine wiring part.

2段階の研磨における第1の研磨条件としては、表面の凹凸による研磨速度差が小さい条件が適しているが、これまでそのような研磨速度差を評価する適切な方法が無かった。本検討により、チップ内に作成した凹凸パターン在り領域と凹凸パターン無し領域の研磨速度を測定し、比較する方法が研磨速度に対する表面の凹凸の影響を評価する方法として適していることが判った。第2の研磨条件としては、機械的作用依存性が強い状態の研磨条件が適している。研磨速度の機械的作用依存性の評価方法としては、従来から、一定膜厚のCuを研磨した後の表面の段差量を測定する方法が用いられてきた。しかしながら、この方法は、研磨膜厚の変動の影響を受け易く、測定に時間が掛かる為に測定点数を増やし難く、又、測定結果のバラツキが大きいなどの問題があり、有効な方法ではなかった。又、本実施例から、凹凸パターン在り領域の研磨速度/凹凸パターン無し領域の研磨速度と、研磨速度の機械的作用に対する依存性の強さに相関が有ることが判った。そして、研磨速度比の測定にあっては、段差測定による方法のような問題がない為、研磨速度の機械的作用依存性の評価方法として極めて有効であると考えられる。   As the first polishing condition in the two-stage polishing, a condition with a small polishing rate difference due to surface irregularities is suitable, but there has been no appropriate method for evaluating such a polishing rate difference. From this study, it was found that the method of measuring and comparing the polishing rate of the region having the concavo-convex pattern and the region having no concavo-convex pattern created in the chip is suitable as a method for evaluating the influence of the surface unevenness on the polishing rate. As the second polishing condition, a polishing condition having a strong mechanical action dependency is suitable. As a method for evaluating the dependency of the polishing rate on the mechanical action, a method of measuring the amount of level difference on the surface after polishing a certain thickness of Cu has been used. However, this method is not an effective method because it is easily affected by fluctuations in the polishing film thickness, and it takes time to measure, so it is difficult to increase the number of measurement points, and there are large variations in measurement results. . Further, it was found from this example that there is a correlation between the polishing rate in the region with the uneven pattern / the polishing rate in the region without the uneven pattern and the strength of the polishing rate on the mechanical action. In measuring the polishing rate ratio, since there is no problem like the method using the step measurement, it is considered to be extremely effective as a method for evaluating the dependency of the polishing rate on the mechanical action.

上記3条件の第1の研磨条件として、条件1の代わりに条件2を用いた場合も、同等の結果が得られた。このことから、表面の凹凸による研磨速度差が小さいことが必要となる第1の研磨条件としては、(凹凸パターン在り領域の研磨速度)/(凹凸パターン無し領域の研磨速度)が、上記のような研磨速度測定方法を使用した場合、0.8〜1.1(中でも、0.9以上。特に、0.95以上。そして、1.05以下。)の範囲となる研磨条件が適している。又、第1の研磨条件としては、或る程度の段差解消性が必要である。条件1,2で、初期段差200nmに対しCu膜厚を300nmした場合の段差解消量は、それぞれ145nm,175nmである。このことから、100μm/100μmのL&Sにおいて、初期段差量の1.5倍の厚さのCuを研磨した場合、Cu研磨量の1/2以上の段差が解消されれば段差解消性は十分であると考えられる。
そして、条件1,2で初期段差量200nmに対してCu残り膜厚が300nmまで研磨された後の段差量は、各々、55nm,25nmである。段差解消性が良すぎると、パターンの凹凸による研磨速度差が大きくなることから、前記の結果と併せて考えると、第1の研磨条件による研磨後における段差量が初期段差量の1/2〜1/10に解消されるのが好ましいと考えられる。
Similar results were obtained when condition 2 was used instead of condition 1 as the first polishing condition of the above three conditions. From this, the first polishing condition that requires a small difference in polishing rate due to unevenness on the surface is (polishing rate in the region with the uneven pattern) / (polishing rate in the region without the uneven pattern) as described above. When a simple polishing rate measuring method is used, polishing conditions that are in the range of 0.8 to 1.1 (among others 0.9 or more, especially 0.95 or more and 1.05 or less) are suitable. . In addition, as the first polishing condition, a certain level of step resolution is required. Under conditions 1 and 2, when the Cu film thickness is 300 nm with respect to the initial step of 200 nm, the step elimination amounts are 145 nm and 175 nm, respectively. Therefore, in the L & S of 100 μm / 100 μm, when Cu having a thickness of 1.5 times the initial step amount is polished, the step resolving property is sufficient if a step of 1/2 or more of the Cu polishing amount is eliminated. It is believed that there is.
Then, the step amounts after the Cu remaining film thickness is polished to 300 nm with respect to the initial step amount of 200 nm under the conditions 1 and 2 are 55 nm and 25 nm, respectively. If the level difference elimination property is too good, the polishing rate difference due to the unevenness of the pattern becomes large. Therefore, considering the above results, the level difference after polishing under the first polishing condition is 1/2 to the initial level difference. It is considered preferable to be eliminated to 1/10.

次に、第2の研磨条件として、条件4〜6を用いることで良好な結果が得られたことから、段差解消性が必要となる第2の研磨条件としては、(凹凸パターン在り領域の研磨速度)/(凹凸パターン無し領域の研磨速度)が、上記のような研磨速度測定方法を使用した場合、1.2以上(中でも、1.25以上。特に、1.3以上。更には、1.5以上。そして、10以下。中でも、5以下。特に、3以下。更には、2以下。もっと更には、1.85以下。)の範囲となる研磨条件が適している。   Next, since favorable results were obtained by using the conditions 4 to 6 as the second polishing condition, the second polishing condition that requires step resolution is (polishing of the region with the uneven pattern). (Speed) / (Polishing speed of the region having no concave / convex pattern) is 1.2 or more (in particular, 1.25 or more, especially 1.3 or more. The polishing conditions are in the range of 0.5 or more, 10 or less, especially 5 or less, especially 3 or less, more preferably 2 or less, and even more preferably 1.85 or less.

上記実施例では、第1、第2の研磨条件で、同じスラリーの過酸化水素水の混合割合が異なるものを用いているが、第1及び第2の研磨条件に必要な特性が得られれば、第1の研磨条件と第2の研磨条件とで異なるスラリーを使用することも可能である。その場合、2種類のスラリーを同一プラテン上で使用することで、砥粒成分の凝集などプロセスに対する悪影響が予想される場合は、三つのプラテンを有する装置を用いて、第1の研磨条件と第2の研磨条件のCu研磨を異なるプラテンで実施した後、第3のプラテンでバリア研磨をするのが望ましい。本実施例の如く、1種類のスラリーを酸化剤の混合割合を変えて用いる場合でも、3つのプラテンを有する装置を用いて、第1及び第2の研磨条件のCu研磨を異なるプラテンで実施しても良く、その場合にはスループットを向上することが出来る。又、本実施例の如く、1種類のスラリーを酸化剤の混合割合を変えて用いる場合は、同一プラテンで、第1,第2の研磨を実施してもプロセスに対して悪影響が出ることはない。尚、1種類のスラリーのみを使用する方が、工程管理、材料コストの面でも有利である。   In the above embodiment, the first and second polishing conditions are different from each other in the mixing ratio of the hydrogen peroxide solution of the same slurry. However, if the characteristics required for the first and second polishing conditions are obtained. It is also possible to use different slurries for the first polishing condition and the second polishing condition. In that case, if two types of slurries are used on the same platen, and adverse effects on the process such as agglomeration of abrasive grain components are expected, the first polishing condition and the first polishing condition can be obtained using an apparatus having three platens. It is desirable to perform barrier polishing with a third platen after performing Cu polishing under the second polishing condition with a different platen. Even when one type of slurry is used with different mixing ratios of oxidizing agents as in this embodiment, Cu polishing under the first and second polishing conditions is performed on different platens using an apparatus having three platens. In that case, the throughput can be improved. Further, as in this embodiment, when one type of slurry is used with the mixing ratio of the oxidizing agent changed, even if the first and second polishing are performed with the same platen, there is no adverse effect on the process. Absent. Note that the use of only one type of slurry is advantageous in terms of process control and material cost.

次に、比較の為、条件1のみでバリア膜が露出するまでCu研磨を行った。その結果、Cu残りは認められ無かったものの、100μm/100μmのL&Sパターンのディッシングは60nmと大きくなった。   Next, for comparison, Cu polishing was performed only under Condition 1 until the barrier film was exposed. As a result, although no Cu residue was observed, the dishing of the 100 μm / 100 μm L & S pattern was as large as 60 nm.

又、条件5のみで研磨を行った結果、40秒間オーバー研磨をしてもCu残りが除去できないことが判った。   Further, as a result of polishing only under condition 5, it was found that the Cu residue could not be removed even after over-polishing for 40 seconds.

更に、条件2,3,4のみでCu研磨を行ったが、いずれの場合も、ディッシングの低減およびCu残りの除去を共に達成することは出来なかった。   Further, Cu polishing was performed only under conditions 2, 3 and 4. In either case, neither dishing reduction nor Cu remaining removal could be achieved.

本発明によるCMPの進行状況説明図Explanatory diagram of progress of CMP according to the present invention 従来のCMPにおける不具合の状況説明図Description of the situation of defects in conventional CMP 従来のCMPにおける不具合の状況説明図Description of the situation of defects in conventional CMP CMP装置の概略図Schematic diagram of CMP equipment 基板の断面図Cross section of substrate TEGチップの概略図Schematic diagram of TEG chip 膜厚測定における渦電流検出器の出力Output of eddy current detector in film thickness measurement 平坦性測定用L&Sパターンの概略図Schematic of L & S pattern for flatness measurement 平坦性の説明図Illustration of flatness 基板上のTEGチップの配置と膜厚測定点説明図Arrangement of TEG chip on substrate and explanation of film thickness measurement points 2段階研磨における渦電流検出器の出力説明図 代 理 人 宇 高 克 己Output explanation diagram of eddy current detector in two-stage polishing Katsumi Utaka

Claims (6)

CMP方法において、
全面的に略均一な研磨速度の条件下でCMPを行う第1ステップと、
前記第1ステップの後、凹凸の段差解消性が優れた条件下でCMPを行う第2ステップ
とを具備することを特徴とするCMP方法。
In the CMP method,
A first step of performing CMP under conditions of a substantially uniform polishing rate over the entire surface;
A CMP method comprising: a second step of performing CMP under the condition that the unevenness unevenness elimination property is excellent after the first step.
CMP方法において、
凹凸領域における研磨速度V1と平坦領域における研磨速度V2との差が小さい条件下でCMPを行う第1ステップと、
前記第1ステップの後、凹凸領域における研磨速度V1と平坦領域における研磨速度V2との差が前記第1ステップにおける該研磨速度差よりも大きい条件下でCMPを行う第2ステップ
とを具備することを特徴とするCMP方法。
In the CMP method,
A first step of performing CMP under a condition where the difference between the polishing rate V1 in the uneven region and the polishing rate V2 in the flat region is small;
After the first step, there is provided a second step in which CMP is performed under a condition in which the difference between the polishing rate V1 in the uneven region and the polishing rate V2 in the flat region is larger than the polishing rate difference in the first step. A CMP method characterized by the above.
CMP方法において、
凹凸領域における研磨速度V1と平坦領域における研磨速度V2との比(V1/V2)が0.8〜1.1の条件下でCMPを行う第1ステップと、
前記第1ステップの後、凹凸領域における研磨速度V1と平坦領域における研磨速度V2との比(V1/V2)が1.2以上の条件下でCMPを行う第2ステップ
とを具備することを特徴とするCMP方法。
In the CMP method,
A first step in which CMP is performed under a condition where the ratio (V1 / V2) of the polishing rate V1 in the uneven region to the polishing rate V2 in the flat region is 0.8 to 1.1;
After the first step, there is provided a second step in which CMP is performed under a condition where the ratio (V1 / V2) of the polishing rate V1 in the uneven region to the polishing rate V2 in the flat region is 1.2 or more. CMP method.
第1ステップは段差が段差初期値の1/10〜2/3となるまで行われることを特徴とする請求項1〜請求項3いずれかのCMP方法。   4. The CMP method according to claim 1, wherein the first step is performed until the step becomes 1/10 to 2/3 of the step initial value. 第1ステップは表面凹凸度が大きなCMP初期段階に行われることを特徴とする請求項1〜請求項4いずれかのCMP方法。   5. The CMP method according to claim 1, wherein the first step is performed in an initial stage of CMP having a large surface roughness. 半導体装置の配線膜構造の形成に際して用いられることを特徴とする請求項1〜請求項5いずれかのCMP方法。
6. The CMP method according to claim 1, which is used for forming a wiring film structure of a semiconductor device.
JP2005301181A 2005-10-17 2005-10-17 Cmp method Pending JP2007109989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301181A JP2007109989A (en) 2005-10-17 2005-10-17 Cmp method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301181A JP2007109989A (en) 2005-10-17 2005-10-17 Cmp method

Publications (1)

Publication Number Publication Date
JP2007109989A true JP2007109989A (en) 2007-04-26

Family

ID=38035596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301181A Pending JP2007109989A (en) 2005-10-17 2005-10-17 Cmp method

Country Status (1)

Country Link
JP (1) JP2007109989A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050283A (en) * 2008-08-21 2010-03-04 Oki Semiconductor Co Ltd Method of testing insulation property of wafer-level csp, and teg pattern used in the method
JP2013533629A (en) * 2010-07-21 2013-08-22 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for directly bonding two elements including a copper portion and a dielectric material portion
CN110178208A (en) * 2017-01-13 2019-08-27 应用材料公司 Measured value based on resistivity adjustment in-situ monitoring

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050283A (en) * 2008-08-21 2010-03-04 Oki Semiconductor Co Ltd Method of testing insulation property of wafer-level csp, and teg pattern used in the method
JP2013533629A (en) * 2010-07-21 2013-08-22 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for directly bonding two elements including a copper portion and a dielectric material portion
JP2017108153A (en) * 2010-07-21 2017-06-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method of directly bonding two elements containing copper part and dielectric material part
CN110178208A (en) * 2017-01-13 2019-08-27 应用材料公司 Measured value based on resistivity adjustment in-situ monitoring
CN110178208B (en) * 2017-01-13 2023-06-06 应用材料公司 Adjusting in-situ monitored measurements based on resistivity

Similar Documents

Publication Publication Date Title
TW530349B (en) Slurry and method for chemical mechanical polishing of copper
US6350694B1 (en) Reducing CMP scratch, dishing and erosion by post CMP etch back method for low-k materials
JP2002530861A (en) Method for reducing dishing speed during CMP in metal semiconductor structure
JP5319887B2 (en) Slurry for polishing
JP2014007415A (en) Polishing solution for cmp
JP3668046B2 (en) Polishing cloth and method for manufacturing semiconductor device using the polishing cloth
JP3033574B1 (en) Polishing method
JPWO2009119485A1 (en) Polishing liquid for metal and polishing method using this polishing liquid
JP2007109989A (en) Cmp method
JP4698144B2 (en) Manufacturing method of semiconductor device
KR101102330B1 (en) Slurry composition for chemical mechanical polishing
JP2010108985A (en) Polishing method
KR20070038293A (en) Chemical mechanical polishing apparatus
TW425626B (en) Manufacture of semiconductor device
JP4301305B2 (en) Substrate polishing method and semiconductor device manufacturing method
JP3440826B2 (en) Semiconductor device and method for polishing semiconductor substrate
KR100891612B1 (en) Chemical Mechanical Polishing Slurry Composition Having Improved Polishing Speed and Selectivity on Copper Metallization Process
JP4400795B2 (en) Evaluation substrate and CMP condition evaluation method
Huang et al. Effect of CMP Pad and Slurry to STI and ILD Polishing
JP2007201124A (en) Substrate for evaluation
Chao et al. Novel Copper Barrier Slurry for Advanced Cu CMP Process
JP5333190B2 (en) Manufacturing method of semiconductor device
JP2001144050A (en) Polishing method
JP2007220921A (en) Apparatus and method for chemical mechanical polishing
DeBear et al. Spin-etch planarization for dual damascene interconnect structures